1
|
Qiu D, Wang L, Wang L, Dong Y. Human platelet lysate: a potential therapeutic for intracerebral hemorrhage. Front Neurosci 2025; 18:1517601. [PMID: 39881806 PMCID: PMC11774881 DOI: 10.3389/fnins.2024.1517601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis. In this review, we thoroughly explore the potential of HPL for treating ICH from three critical perspectives: the rationale for selecting HPL as a treatment for ICH, the mechanisms through which HPL contributes to ICH management, and the additional measures necessary for HPL as a treatment for ICH. We elucidate the role of platelets in ICH pathophysiology and highlight the limitations of the current treatment options and advancements in preclinical research on the application of HPL in neurological disorders. Furthermore, historical developments and preparation methods of HPL in the field of biomedicine are discussed. Additionally, we summarize the bioactive molecules present in HPL and their potential therapeutic effects in ICH. Finally, we outline the issues that must be addressed regarding utilizing HPL as a treatment modality for ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lanlan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Van Broeckhoven J, Mussen F, Schepers M, Vanmierlo T, Hellings N. A new player in the game: identification of C1ql1 as a novel factor driving OPC differentiation. FEBS J 2024. [PMID: 39548653 DOI: 10.1111/febs.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Oligodendrocytes (OLGs) are the myelin-producing cells in the central nervous system (CNS). Following injury, these cells are prone to death, leading to demyelination and, eventually, axonal loss and neurodegeneration. Upon injury, the damaged CNS repopulates the lesion with oligodendrocyte precursor cells (OPCs) that consequently mature into OLGs to repair the myelin damage and prevent further axonal loss. In this issue, Altunay et al. identified that complement component 1, q subcomponent-like-1 (C1ql1), a factor known to play a role in neuron-neuron synapses, is also expressed by OPCs and drives their differentiation into OLGs. These data suggest that C1ql1 or other downstream factors could be therapeutic targets in the context of demyelinating disorders in which remyelination fails, such as in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, NIC&R Lab, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center, Diepenbeek, Belgium
| | - Femke Mussen
- Department of Immunology and Infection, NIC&R Lab, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Melissa Schepers
- Department of Immunology and Infection, NIC&R Lab, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center, Diepenbeek, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Tim Vanmierlo
- Department of Immunology and Infection, NIC&R Lab, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center, Diepenbeek, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Niels Hellings
- Department of Immunology and Infection, NIC&R Lab, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center, Diepenbeek, Belgium
| |
Collapse
|
3
|
Ionescu RB, Nicaise AM, Reisz JA, Williams EC, Prasad P, Willis CM, Simões-Abade MBC, Sbarro L, Dzieciatkowska M, Stephenson D, Suarez Cubero M, Rizzi S, Pirvan L, Peruzzotti-Jametti L, Fossati V, Edenhofer F, Leonardi T, Frezza C, Mohorianu I, D'Alessandro A, Pluchino S. Increased cholesterol synthesis drives neurotoxicity in patient stem cell-derived model of multiple sclerosis. Cell Stem Cell 2024; 31:1574-1590.e11. [PMID: 39437792 DOI: 10.1016/j.stem.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Senescent neural progenitor cells have been identified in brain lesions of people with progressive multiple sclerosis (PMS). However, their role in disease pathobiology and contribution to the lesion environment remains unclear. By establishing directly induced neural stem/progenitor cell (iNSC) lines from PMS patient fibroblasts, we studied their senescent phenotype in vitro. Senescence was strongly associated with inflammatory signaling, hypermetabolism, and the senescence-associated secretory phenotype (SASP). PMS-derived iNSCs displayed increased glucose-dependent fatty acid and cholesterol synthesis, which resulted in the accumulation of lipid droplets. A 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase (HMGCR)-mediated lipogenic state was found to induce a SASP in PMS iNSCs via cholesterol-dependent transcription factors. SASP from PMS iNSC lines induced neurotoxicity in mature neurons, and treatment with the HMGCR inhibitor simvastatin altered the PMS iNSC SASP, promoting cytoprotective qualities and reducing neurotoxicity. Our findings suggest a disease-associated, cholesterol-related, hypermetabolic phenotype of PMS iNSCs that leads to neurotoxic signaling and is rescuable pharmacologically.
Collapse
Affiliation(s)
- Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eleanor C Williams
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Pranathi Prasad
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Madalena B C Simões-Abade
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Linda Sbarro
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marta Suarez Cubero
- Genomics, Stem Cell Biology and Regenerative Medicine Group, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck 6020, Austria
| | - Sandra Rizzi
- Genomics, Stem Cell Biology and Regenerative Medicine Group, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck 6020, Austria
| | - Liviu Pirvan
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Frank Edenhofer
- Genomics, Stem Cell Biology and Regenerative Medicine Group, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck 6020, Austria
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Instituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Christian Frezza
- Institute for Metabolomics in Ageing, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50931, Germany; Institute of Genetics, Faculty of Mathematics and Natural Sciences, Faculty of Medicine, University of Cologne, Cologne 50674, Germany
| | - Irina Mohorianu
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
4
|
Mishra RR, Nielsen BE, Trudrung MA, Lee S, Bolstad LJ, Hellenbrand DJ, Hanna AS. The Effect of Tissue Inhibitor of Metalloproteinases on Scar Formation after Spinal Cord Injury. Cells 2024; 13:1547. [PMID: 39329731 PMCID: PMC11430430 DOI: 10.3390/cells13181547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) often results in permanent loss of motor and sensory function. After SCI, the blood-spinal cord barrier (BSCB) is disrupted, causing the infiltration of neutrophils and macrophages, which secrete several kinds of cytokines, as well as matrix metalloproteinases (MMPs). MMPs are proteases capable of degrading various extracellular matrix (ECM) proteins, as well as many non-matrix substrates. The tissue inhibitor of MMPs (TIMP)-1 is significantly upregulated post-SCI and operates via MMP-dependent and MMP-independent pathways. Through the MMP-dependent pathway, TIMP-1 directly reduces inflammation and destruction of the ECM by binding and blocking the catalytic domains of MMPs. Thus, TIMP-1 helps preserve the BSCB and reduces immune cell infiltration. The MMP-independent pathway involves TIMP-1's cytokine-like functions, in which it binds specific TIMP surface receptors. Through receptor binding, TIMP-1 can stimulate the proliferation of several types of cells, including keratinocytes, aortic smooth muscle cells, skin epithelial cells, corneal epithelial cells, and astrocytes. TIMP-1 induces astrocyte proliferation, modulates microglia activation, and increases myelination and neurite extension in the central nervous system (CNS). In addition, TIMP-1 also regulates apoptosis and promotes cell survival through direct signaling. This review provides a comprehensive assessment of TIMP-1, specifically regarding its contribution to inflammation, ECM remodeling, and scar formation after SCI.
Collapse
Affiliation(s)
- Raveena R. Mishra
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Brooke E. Nielsen
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Melissa A. Trudrung
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Samuel Lee
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Luke J. Bolstad
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Daniel J. Hellenbrand
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Elder RT, Mishra RR, Marti TL, Omuro PM, Roddick RM, Lee JS, Murphy WL, Hanna AS. The secondary injury cascade after spinal cord injury: an analysis of local cytokine/chemokine regulation. Neural Regen Res 2024; 19:1308-1317. [PMID: 37905880 PMCID: PMC11467934 DOI: 10.4103/1673-5374.385849] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
After spinal cord injury, there is an extensive infiltration of immune cells, which exacerbates the injury and leads to further neural degeneration. Therefore, a major aim of current research involves targeting the immune response as a treatment for spinal cord injury. Although much research has been performed analyzing the complex inflammatory process following spinal cord injury, there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation. The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury, identify sexual dimorphisms in terms of cytokine levels, and determine local cytokines that significantly change based on the severity of spinal cord injury. Rats were inflicted with either a mild contusion, moderate contusion, severe contusion, or complete transection, 7 mm of spinal cord centered on the injury was harvested at varying times post-injury, and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay. Results demonstrated pro-inflammatory cytokines including tumor necrosis factor α, interleukin-1β, and interleukin-6 were all upregulated after spinal cord injury, but returned to uninjured levels within approximately 24 hours post-injury, while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury. In contrast, several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury. After spinal cord injury, tissue inhibitor of metalloproteinase-1, which specifically affects astrocytes involved in glial scar development, increased more than all other cytokines tested, reaching 26.9-fold higher than uninjured rats. After a mild injury, 11 cytokines demonstrated sexual dimorphisms; however, after a severe contusion only leptin levels were different between female and male rats. In conclusion, pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury, chemokines continue to recruit immune cells for days post-injury, while anti-inflammatory cytokines are downregulated by a week post-injury, and sexual dimorphisms observed after mild injury subsided with more severe injuries. Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury, which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.
Collapse
Affiliation(s)
- Daniel J. Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M. Quinn
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zachariah J. Piper
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ryan T. Elder
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Raveena R. Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Taylor L. Marti
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Phoebe M. Omuro
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rylie M. Roddick
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Wang X, Zheng W, Zhu Z, Xing B, Yan W, Zhu K, Xiao L, Yang C, Wei M, Yang L, Jin ZB, Bi X, Zhang C. Timp1 Deletion Induces Anxiety-like Behavior in Mice. Neurosci Bull 2024; 40:732-742. [PMID: 38113013 PMCID: PMC11178759 DOI: 10.1007/s12264-023-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 12/21/2023] Open
Abstract
The hippocampus is essential for learning and memory, but it also plays an important role in regulating emotional behavior, as hippocampal excitability and plasticity affect anxiety and fear. Brain synaptic plasticity may be regulated by tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a known protein inhibitor of extracellular matrix (ECM), and the expression of TIMP1 in the hippocampus can be induced by neuronal excitation and various stimuli. However, the involvement of Timp1 in fear learning, anxiety, and hippocampal synaptic function remains to be established. Our study of Timp1 function in vivo revealed that Timp1 knockout mice exhibit anxiety-like behavior but normal fear learning. Electrophysiological results suggested that Timp1 knockout mice showed hyperactivity in the ventral CA1 region, but the basic synaptic transmission and plasticity were normal in the Schaffer collateral pathway. Taken together, our results suggest that deletion of Timp1 in vivo leads to the occurrence of anxiety behaviors, but that Timp1 is not crucial for fear learning.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ziyi Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Biyu Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijie Yan
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lingli Xiao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chaojuan Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Mengping Wei
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lei Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xueyun Bi
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
7
|
Coates-Park S, Rich JA, Stetler-Stevenson WG, Peeney D. The TIMP protein family: diverse roles in pathophysiology. Am J Physiol Cell Physiol 2024; 326:C917-C934. [PMID: 38284123 PMCID: PMC11193487 DOI: 10.1152/ajpcell.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - Joshua A Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| |
Collapse
|
8
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison ER, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, an inhibitor of oligodendrocyte differentiation and FTY720 responses. Proc Natl Acad Sci U S A 2024; 121:e2306816121. [PMID: 38266047 PMCID: PMC10835138 DOI: 10.1073/pnas.2306816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Cory M. Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Antoine Menoret
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Alexandra M. Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Anthony Sacino
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Arend. H. Sikkema
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Evan R. Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Kyaw K. Win
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - David K. Han
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - William Church
- Department of Chemistry and Neuroscience Program, Trinity College, Hartford, CT06106
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| |
Collapse
|
9
|
Li Z, Cui Z, Wang X, Lv Y. Knockdown of LRCH4 Remodels Tumor Microenvironment Through Inhibiting YAP and TGF-β/Smad Signaling Pathway in Colorectal Cancer. Comb Chem High Throughput Screen 2024; 27:1823-1829. [PMID: 38383956 DOI: 10.2174/0113862073267943231101065948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Colorectal cancer is one of the most common gastrointestinal malignancies worldwide. LRCH4 is the top 1 gene associated with an unfavorable prognosis in colorectal cancer. METHODS Here, we reported that the knockdown of LRCH4 inhibited the proliferation, migration and invasion in HT29 cells. RESULTS The activity of Yes-Associated Protein (YAP), a transcription factor in the Hppo-YAP signaling pathway, was significantly inhibited by LRCH4-siRNA. LRCH4 knockdown also reversed the EMT and regulated the expression of extracellular matrix (ECM) protein, Fibronectin and Collagen IV in HT29 cells. In addition, the TGF-β/Smad signaling pathway, as the downstream pathway of Yap, was also inhibited by LRCH4 knockdown. CONCLUSION Knockdown of LRCH4 involved in the regulation of ECM and EMT and inhibited YAP and the TGF-β/Smad signaling pathway in colorectal cancer cells. Our study provided a mechanism of LRCH4 on colorectal cancer cells, and a new potential target for clinical tumor treatment.
Collapse
Affiliation(s)
- Zhiwen Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenhua Cui
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianren Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfeng Lv
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Schröder LJ, Mulenge F, Pavlou A, Skripuletz T, Stangel M, Gudi V, Kalinke U. Dynamics of reactive astrocytes fosters tissue regeneration after cuprizone-induced demyelination. Glia 2023; 71:2573-2590. [PMID: 37455566 DOI: 10.1002/glia.24440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Demyelination in the central nervous system (CNS) is a hallmark of many neurodegenerative diseases such as multiple sclerosis (MS) and others. Here, we studied astrocytes during de- and remyelination in the cuprizone mouse model. To this end, we exploited the ribosomal tagging (RiboTag) technology that is based on Cre-mediated cell type-selective HA-tagging of ribosomes. Analyses were performed in the corpus callosum of GFAP-Cre+/- Rpl22HA/wt mice 5 weeks after cuprizone feeding, at the peak of demyelination, and 0.5 and 2 weeks after cuprizone withdrawal, when remyelination and tissue repair is initiated. After 5 weeks of cuprizone feeding, reactive astrocytes showed inflammatory signatures with enhanced expression of genes that modulate leukocyte migration (Tlr2, Cd86, Parp14) and they produced the chemokine CXCL10, as verified by histology. Furthermore, demyelination-induced reactive astrocytes expressed numerous ligands including Cx3cl1, Csf1, Il34, and Gas6 that act on homeostatic as well as activated microglia and thus potentially mediate activation and recruitment of microglia and enhancement of their phagocytotic activity. During early remyelination, HA-tagged cells displayed reduced inflammatory response signatures, as indicated by shutdown of CXCL10 production, and enhanced expression of osteopontin (SPP1) as well as of factors that are relevant for tissue remodeling (Timp1), regeneration and axonal repair. During late remyelination, the signatures shifted towards resolving inflammation by active suppression of lymphocyte activation and differentiation and support of glia cell differentiation. In conclusion, we detected highly dynamic astroglial transcriptomic signatures in the cuprizone model, which reflects excessive communication among glia cells and highlights different astrocyte functions during neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Lara-Jasmin Schröder
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Ferreira AC, Hemmer BM, Philippi SM, Grau-Perales AB, Rosenstadt JL, Liu H, Zhu JD, Kareva T, Ahfeldt T, Varghese M, Hof PR, Castellano JM. Neuronal TIMP2 regulates hippocampus-dependent plasticity and extracellular matrix complexity. Mol Psychiatry 2023; 28:3943-3954. [PMID: 37914840 PMCID: PMC10730400 DOI: 10.1038/s41380-023-02296-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Functional output of the hippocampus, a brain region subserving memory function, depends on highly orchestrated cellular and molecular processes that regulate synaptic plasticity throughout life. The structural requirements of such plasticity and molecular events involved in this regulation are poorly understood. Specific molecules, including tissue inhibitor of metalloproteinases-2 (TIMP2) have been implicated in plasticity processes in the hippocampus, a role that decreases with brain aging as expression is lost. Here, we report that TIMP2 is highly expressed by neurons within the hippocampus and its loss drives changes in cellular programs related to adult neurogenesis and dendritic spine turnover with corresponding impairments in hippocampus-dependent memory. Consistent with the accumulation of extracellular matrix (ECM) in the hippocampus we observe with aging, we find that TIMP2 acts to reduce accumulation of ECM around synapses in the hippocampus. Moreover, its deletion results in hindrance of newborn neuron migration through a denser ECM network. A novel conditional TIMP2 knockout (KO) model reveals that neuronal TIMP2 regulates adult neurogenesis, accumulation of ECM, and ultimately hippocampus-dependent memory. Our results define a mechanism whereby hippocampus-dependent function is regulated by TIMP2 and its interactions with the ECM to regulate diverse processes associated with synaptic plasticity.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Philippi
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandro B Grau-Perales
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob L Rosenstadt
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanxiao Liu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Zhu H, Li Q, Huang Q, Yang H, Zheng J, Xie R, Han D, Wei Q. RIG-I contributes to keratinocyte proliferation and wound repair by inducing TIMP-1 expression through NF-κB signaling pathway. J Cell Physiol 2023; 238:1876-1890. [PMID: 37269543 DOI: 10.1002/jcp.31049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
Epithelial keratinocyte proliferation is an essential element of wound repair, and chronic wound conditions, such as diabetic foot, are characterized by aberrant re-epithelialization. In this study, we examined the functional role of retinoic acid inducible-gene I (RIG-I), a key regulator of epidermal keratinocyte proliferation, in promoting TIMP-1 expression. We found that RIG-I is overexpressed in keratinocytes of skin injury and underexpressed in skin wound sites of diabetic foot and streptozotocin-induced diabetic mice. Moreover, mice lacking RIG-I developed an aggravated phenotype when subjected to skin injury. Mechanistically, RIG-I promoted keratinocyte proliferation and wound repair by inducing TIMP-1 via the NF-κB signaling pathway. Indeed, recombinant TIMP-1 directly accelerated HaCaT cell proliferation in vitro and promoted wound healing in Ddx58-/- and diabetic mice in vivo. In summary, we demonstrated that RIG-I is a crucial factor that mediates epidermal keratinocyte proliferation and may be a potential biomarker for skin injury severity, thus making it an attractive locally therapeutic target for the treatment of chronic wounds such as diabetic foot.
Collapse
Affiliation(s)
- Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qianyu Li
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiongyi Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiqiong Yang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
14
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison E, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, a novel inhibitor of oligodendrocyte differentiation and FTY720 responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529003. [PMID: 36824834 PMCID: PMC9949145 DOI: 10.1101/2023.02.17.529003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout ( Timp1 KO ) mice do not efficiently remyelinate following a demyelinating injury. To better understand the basis of this, we performed unbiased proteomic analyses and identified a fibronectin-derived peptide called anastellin that is unique to the murine Timp1 KO astrocyte secretome. Anastellin was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Anastellin is known to act upon the sphingosine-1-phosphate receptor 1 (S1PR1), and we determined that anastellin also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro . Further, administration of FTY720 to wild-type C57BL/6 mice during MOG 35-55 -EAE ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 in astrocytes ( Timp1 cKO ) had no effect. Analysis of human TIMP1 and fibronectin ( FN1 ) transcripts from healthy and multiple sclerosis (MS) patient brain samples revealed an inverse relationship where lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Lastly, we analyzed proteomic databases of MS samples and identified anastellin peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high versus low disease activity. The prospective role for anastellin generation in association with myelin lesions as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and the innate remyelination potential of the the MS brain. Significance Statement Astrocytic production of TIMP-1 prevents the protein catabolism of fibronectin. In the absence of TIMP-1, fibronectin is further digested leading to a higher abundance of anastellin peptides that can bind to sphingosine-1-phosphate receptor 1. The binding of anastellin with the sphingosine-1-phosphate receptor 1 impairs the differentiation of oligodendrocytes progenitor cells into myelinating oligodendrocytes in vitro , and negates the astrocyte-mediated therapeutic effects of FTY720 in the EAE model of chronic CNS inflammation. These data indicate that TIMP-1 production by astrocytes is important in coordinating astrocytic functions during inflammation. In the absence of astrocyte produced TIMP-1, elevated expression of anastellin may represent a prospective biomarker for FTY720 therapeutic responsiveness.
Collapse
|
15
|
de Almeida V, Seabra G, Reis-de-Oliveira G, Zuccoli GS, Rumin P, Fioramonte M, Smith BJ, Zuardi AW, Hallak JEC, Campos AC, Crippa JA, Martins-de-Souza D. Cannabinoids modulate proliferation, differentiation, and migration signaling pathways in oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2022; 272:1311-1323. [PMID: 35622101 DOI: 10.1007/s00406-022-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Cannabinoid signaling, mainly via CB1 and CB2 receptors, plays an essential role in oligodendrocyte health and functions. However, the specific molecular signals associated with the activation or blockade of CB1 and CB2 receptors in this glial cell have yet to be elucidated. Mass spectrometry-based shotgun proteomics and in silico biology tools were used to determine which signaling pathways and molecular mechanisms are triggered in a human oligodendrocytic cell line (MO3.13) by several pharmacological stimuli: the phytocannabinoid cannabidiol (CBD); CB1 and CB2 agonists ACEA, HU308, and WIN55, 212-2; CB1 and CB2 antagonists AM251 and AM630; and endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The modulation of cannabinoid signaling in MO3.13 was found to affect pathways linked to cell proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Additionally, we found that carbohydrate and lipid metabolism, as well as mitochondrial function, were modulated by these compounds. Comparing the proteome changes and upstream regulators among treatments, the highest overlap was between the CB1 and CB2 antagonists, followed by overlaps between AEA and 2-AG. Our study opens new windows of opportunities, suggesting that cannabinoid signaling in oligodendrocytes might be relevant in the context of demyelinating and neurodegenerative diseases. Proteomics data are available at ProteomeXchange (PXD031923).
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil.
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Priscila Rumin
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Alline C Campos
- National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
16
|
Schira-Heinen J, Agrelo IS, Estrada V, Küry P. Functional in vivo assessment of stem cell-secreted pro-oligodendroglial factors. Neural Regen Res 2022; 17:2194-2196. [PMID: 35259828 PMCID: PMC9083155 DOI: 10.4103/1673-5374.335800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jessica Schira-Heinen
- Department of Neurology, Neuroregeneration Laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Iria Samper Agrelo
- Department of Neurology, Neuroregeneration Laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Veronica Estrada
- Department of Neurology, Neuroregeneration Laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration Laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
17
|
Mercan Isik C, Uzun Cicek A, Ulger D, Bakir S. SIRT1, MMP-9 and TIMP-1 levels in children with specific learning disorder. J Psychiatr Res 2022; 152:352-359. [PMID: 35785578 DOI: 10.1016/j.jpsychires.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Specific Learning Disorder (SLD) is a common developmental and neurobiological disorder of childhood characterized by impairment of functionality in one or more areas such as reading, writing, mathematics, listening, speaking, and reasoning. The etiology of SLD is still not fully understood. The aim of this study was to evaluate children with SLD to investigate the potential role of MMP-9, TIMP-1 and SIRT-1, which have important roles in synaptic plasticity, cognitive functions, learning and memory, and are known to be associated with various psychiatric disorders. METHODS The study was conducted with 44 outpatients aged 8-14 years who were diagnosed with SLD according to DSM-5 in the outpatient clinic and a control group of 44 age, gender and education level-matched healthy children. The groups were compared in respect of serum levels of MMP-9, TIMP-1 and SIRT-1, evaluated using the ELISA method. RESULTS Serum MMP-9 levels were significantly lower in children in the SLD group than in the control group, while TIMP-1 was higher. No difference was determined between the groups in respect of the SIRT1 levels. SLD severity was negatively correlated with MMP-9 levels and positively correlated with TIMP-1 levels. CONCLUSIONS MMP-9 appear to contribute to hippocampal-dependent memory and learning by modulating long-term synaptic plasticity. The findings of this study also reinforce the idea that deregulation of the MMP-9/TIMP-1 ratio may impact learning and play a role in SLD. These findings will help to elucidate the etiology of SLD. Furthermore, understanding molecular pathways can contribute to the discovery of certain biomarkers in SLD pathogenesis and the development of new treatment possibilities.
Collapse
Affiliation(s)
- Cansu Mercan Isik
- Department of Child and Adolescent Psychiatry, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey.
| | - Ayla Uzun Cicek
- Department of Child and Adolescent Psychiatry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey.
| | - Dilara Ulger
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey.
| | - Sevtap Bakir
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey.
| |
Collapse
|
18
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
19
|
Kihara Y, Zhu Y, Jonnalagadda D, Romanow W, Palmer C, Siddoway B, Rivera R, Dutta R, Trapp BD, Chun J. Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Front Cell Neurosci 2022; 16:918041. [PMID: 35783097 PMCID: PMC9247150 DOI: 10.3389/fncel.2022.918041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2) - the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yunjiao Zhu
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Deepa Jonnalagadda
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - William Romanow
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carter Palmer
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Benjamin Siddoway
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
20
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
21
|
Joseph K, Kirsch M, Johnston M, Münkel C, Stieglitz T, Haas CA, Hofmann UG. Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials 2021; 279:121230. [PMID: 34736153 DOI: 10.1016/j.biomaterials.2021.121230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Long term implantation of (micro-)probes into neural tissue causes unique and disruptive responses. In this study, we investigate the transcriptional trajectory of glial cells responding to chronic implantation of 380 μm flexible micro-probes for up to 18 weeks. Transcriptomic analysis shows a rapid activation of microglial cells and a strong reactive astrocytic polarization, both of which are lost over the chronic of the implant duration. Animals that were implanted for 18 weeks show a transcriptional profile similar to non-implanted controls, with increased expression of genes associated with wound healing and angiogenesis, which raises hope of a normalization of the neuropil to the pre-injury state when using flexible probes. Nevertheless, our data shows that a subset of genes upregulated after 18 weeks belong to the family of immediate early genes, which indicates that structural and functional remodeling is not complete at this time point. Our results confirm and extend previous work on the molecular changes resulting from the presence of neural probes and provide a rational basis for developing interventional strategies to control them.
Collapse
Affiliation(s)
- Kevin Joseph
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Matthias Kirsch
- BrainLinks-BrainTools, University of Freiburg, Germany; Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Midori Johnston
- Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Christian Münkel
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, University of Freiburg, Germany; Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Germany
| | - Carola A Haas
- Faculty of Medicine, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Ulrich G Hofmann
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|
22
|
Justo BL, Jasiulionis MG. Characteristics of TIMP1, CD63, and β1-Integrin and the Functional Impact of Their Interaction in Cancer. Int J Mol Sci 2021; 22:9319. [PMID: 34502227 PMCID: PMC8431149 DOI: 10.3390/ijms22179319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tissue Inhibitor of Metalloproteases 1, also known as TIMP-1, is named for its well-established function of inhibiting the proteolytic activity of matrix metalloproteases. Given this function, many studies were carried out to verify if TIMP-1 was able to interrupt processes such as tumor cell invasion and metastasis. In contrast, many studies have shown that TIMP-1 expression is increased in several types of tumors, and this increase was correlated with a poor prognosis and lower survival in cancer patients. Later, it was shown that TIMP-1 is also able to modulate cell behavior through the induction of signaling pathways involved in cell growth, proliferation, and survival. The mechanisms involved in the regulation of the pleiotropic functions of TIMP-1 are still poorly understood. Thus, this review aimed to present literature data that show its ability to form a membrane complex with CD63 and β1-integrin, and point to N-glycosylation as a potential regulatory mechanism of the functions exerted by TIMP-1. This article reviewed the characteristics and functions performed individually by TIMP1, CD63, and β1-integrin, the roles of the TIMP-1/CD63/β1-integrin complex, both in a physiological context and in cancer, and the regulatory mechanisms involved in its assembly.
Collapse
Affiliation(s)
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 5 Floor, São Paulo 04039-032, Brazil;
| |
Collapse
|
23
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
25
|
Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, Li S, Stolz DB, Chen K, Ding Y, Thomson AW, Leak RK, Chen J, Hu X. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 2021; 54:1527-1542.e8. [PMID: 34015256 DOI: 10.1016/j.immuni.2021.04.022] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
The precise mechanisms underlying the beneficial effects of regulatory T (Treg) cells on long-term tissue repair remain elusive. Here, using single-cell RNA sequencing and flow cytometry, we found that Treg cells infiltrated the brain 1 to 5 weeks after experimental stroke in mice. Selective depletion of Treg cells diminished oligodendrogenesis, white matter repair, and functional recovery after stroke. Transcriptomic analyses revealed potent immunomodulatory effects of brain-infiltrating Treg cells on other immune cells, including monocyte-lineage cells. Microglia depletion, but not T cell lymphopenia, mitigated the beneficial effects of transferred Treg cells on white matter regeneration. Mechanistically, Treg cell-derived osteopontin acted through integrin receptors on microglia to enhance microglial reparative activity, consequently promoting oligodendrogenesis and white matter repair. Increasing Treg cell numbers by delivering IL-2:IL-2 antibody complexes after stroke improved white matter integrity and rescued neurological functions over the long term. These findings reveal Treg cells as a neurorestorative target for stroke recovery.
Collapse
Affiliation(s)
- Ligen Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zeyu Sun
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wei Su
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Di Xie
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qingxiu Zhang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kartik Iyer
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Lesley M Foley
- Animal Imaging Center and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kong Chen
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| |
Collapse
|
26
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
27
|
He Y, An J, Yin JJ, Miao Q, Sui RX, Han QX, Ding ZB, Huang JJ, Ma CG, Xiao BG. Ethyl Pyruvate-Derived Transdifferentiation of Astrocytes to Oligodendrogenesis in Cuprizone-Induced Demyelinating Model. Neurotherapeutics 2021; 18:488-502. [PMID: 33140235 PMCID: PMC8116372 DOI: 10.1007/s13311-020-00947-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Astrocytes redifferentiate into oligodendrogenesis, raising the possibility that astrocytes may be a potential target in the treatment of adult demyelinated lesion. Upon the basis of the improvement of behavior abnormality and demyelination by ethyl pyruvate (EP) treatment, we further explored whether EP affects the function of astrocytes, especially the transdifferentiation of astrocytes into oligodendrogenesis. The results showed that EP treatment increased the accumulation of astrocytes in myelin sheath and promoted the phagocytosis of myelin debris by astrocytes in vivo and in vitro. At the same time, EP treatment induced astrocytes to upregulate the expression of CNTF and BDNF in the corpus callosum and striatum as well as cultured astrocytes, accompanied by increased expression of nestin, Sox2, and β-catenin and decreased expression of Notch1 by astrocytes. As a result, EP treatment effectively promoted the generation of NG2+ and PDGF-Ra+ oligodendrocyte precursor cells (OPCs) that, in part, express astrocyte marker GFAP. Further confirmation was performed by intracerebral injection of primary astrocytes labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). As expected, NG2+ OPCs expressing CFSE and Sox2 were elevated in the corpus callosum of mice treated with EP following transplantation, revealing that EP can convert astrocytes into myelinating cells. Our results indicate the possibility that EP lead to effective myelin repair in patients suffering from myelination deficit.Graphical Abstract The diagram of EP action for promoting myelin regeneration in CPZ model. EP promoted migration and enrichment of astrocytes to demyelinated tissue and induced astrocytes to express neurotrophic CNTF and BDNF as well as translation factor nestin, Sox2, and β-catenin, which should contribute to astrocytes to differentiate of oligodendrogenesis. At the same time, EP promoted astrocytes to phagocytized myelin debris for removing the harmful substances of myelin regeneration.
Collapse
Affiliation(s)
- Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jian-Jun Huang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China.
- Department of Neurosurgery, First Hospital, Datong Coalmine Group, Datong, 037006, China.
| | - Bao-Guo Xiao
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
28
|
Wang L, Zhang CG, Jia YL, Hu L. Tissue Inhibitor of Metalloprotease-1 (TIMP-1) Regulates Adipogenesis of Adipose-derived Stem Cells (ASCs) via the Wnt Signaling Pathway in an MMP-independent Manner. Curr Med Sci 2020; 40:989-996. [PMID: 33123912 DOI: 10.1007/s11596-020-2265-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Tissue inhibitor of metalloprotease-1 (TIMP-1) is a tissue inhibitor of matrix metalloproteinases (MMPs). It however exerts multiple effects on biological processes, such as cell growth, proliferation, differentiation and apoptosis, in an MMP-independent manner. This study aimed to examine the role of TIMP-1 in adipogenesis of adipose-derived stem cells (ASCs) and the underlying mechanism. We knocked down the TIMP-1 gene in ASCs through lentiviral vectors encoding TIMP-1 small interfering RNA (siRNA), and then found that the knockdown of TIMP-1 in ASCs promoted the adipogenic differentiation of stem cells and inhibited the Wnt/β-catenin signaling pathway in ASCs. We also noted that mutant TIMP-1 without the inhibitory activity on MMPs promoted the activation of Wnt/β-catenin pathway as well as the recombinant wild type TIMP-1 did, which indicated that the effect of TIMP-1 on Wnt/β-catenin pathway was MMP-independent. Our study suggested that TIMP-1 negatively regulated the adipogenesis of ASCs via the Wnt/β-catenin signaling pathway in an MMP-independent manner.
Collapse
Affiliation(s)
- Lu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen-Guang Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes (Basel) 2020; 11:genes11070804. [PMID: 32708801 PMCID: PMC7397164 DOI: 10.3390/genes11070804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.
Collapse
|
30
|
Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. Int J Mol Sci 2020; 21:ijms21124350. [PMID: 32570968 PMCID: PMC7352621 DOI: 10.3390/ijms21124350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.
Collapse
|
31
|
Oncostatin M-induced astrocytic tissue inhibitor of metalloproteinases-1 drives remyelination. Proc Natl Acad Sci U S A 2020; 117:5028-5038. [PMID: 32071226 DOI: 10.1073/pnas.1912910117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The brain's endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS). We identified two promising therapeutic candidates which enhance remyelination: oncostatin M (OSM), a member of the interleukin-6 family, and downstream mediator tissue inhibitor of metalloproteinases-1 (TIMP-1). While remyelination was completely abrogated in OSMRβ knockout (KO) mice, OSM overexpression in the chronically demyelinated CNS established remyelination. Astrocytic TIMP-1 was demonstrated to play a pivotal role in OSM-mediated remyelination. Astrocyte-derived TIMP-1 drove differentiation of oligodendrocyte precursor cells into mature oligodendrocytes in vitro. In vivo, TIMP-1 deficiency completely abolished spontaneous remyelination, phenocopying OSMRβ KO mice. Finally, TIMP-1 was expressed by human astrocytes in demyelinated multiple sclerosis lesions, confirming the human value of our findings. Taken together, OSM and its downstream mediator TIMP-1 have the therapeutic potential to boost remyelination in demyelinating disorders.
Collapse
|
32
|
Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, Baumbauer KM. TIMP-1 Attenuates the Development of Inflammatory Pain Through MMP-Dependent and Receptor-Mediated Cell Signaling Mechanisms. Front Mol Neurosci 2019. [PMID: 31616247 DOI: 10.3389/fnmol.2019.00220/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Unresolved inflammation is a significant predictor for developing chronic pain, and targeting the mechanisms underlying inflammation offers opportunities for therapeutic intervention. During inflammation, matrix metalloproteinase (MMP) activity contributes to tissue remodeling and inflammatory signaling, and is regulated by tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 and -2 have known roles in pain, but only in the context of MMP inhibition. However, TIMP-1 also has receptor-mediated cell signaling functions that are not well understood. Here, we examined how TIMP-1-dependent cell signaling impacts inflammatory hypersensitivity and ongoing pain. We found that hindpaw injection of complete Freund's adjuvant (CFA) increased cutaneous TIMP-1 expression that peaked prior to development of mechanical hypersensitivity, suggesting that TIMP-1 inhibits the development of inflammatory hypersensitivity. To examine this possibility, we injected TIMP-1 knockout (T1KO) mice with CFA and found that T1KO mice exhibited rapid onset thermal and mechanical hypersensitivity at the site of inflammation that was absent or attenuated in WT controls. We also found that T1KO mice exhibited hypersensitivity in adjacent tissues innervated by different sets of afferents, as well as skin contralateral to the site of inflammation. Replacement of recombinant murine (rm)TIMP-1 alleviated hypersensitivity when administered at the site and time of inflammation. Administration of either the MMP inhibiting N-terminal or the cell signaling C-terminal domains recapitulated the antinociceptive effect of full-length rmTIMP-1, suggesting that rmTIMP-1inhibits hypersensitivity through MMP inhibition and receptor-mediated cell signaling. We also found that hypersensitivity was not due to genotype-specific differences in MMP-9 activity or expression, nor to differences in cytokine expression. Administration of rmTIMP-1 prevented mechanical hypersensitivity and ongoing pain in WT mice, collectively suggesting a novel role for TIMP-1 in the attenuation of inflammatory pain.
Collapse
Affiliation(s)
- Brittany E Knight
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Nathan Kozlowski
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Joshua Havelin
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Stephen J Crocker
- Department of Neuroscience, UConn Health, Farmington, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States
| | - Erin E Young
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States.,The Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States.,Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kyle M Baumbauer
- School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
33
|
Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, Baumbauer KM. TIMP-1 Attenuates the Development of Inflammatory Pain Through MMP-Dependent and Receptor-Mediated Cell Signaling Mechanisms. Front Mol Neurosci 2019; 12:220. [PMID: 31616247 PMCID: PMC6764257 DOI: 10.3389/fnmol.2019.00220] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Unresolved inflammation is a significant predictor for developing chronic pain, and targeting the mechanisms underlying inflammation offers opportunities for therapeutic intervention. During inflammation, matrix metalloproteinase (MMP) activity contributes to tissue remodeling and inflammatory signaling, and is regulated by tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 and -2 have known roles in pain, but only in the context of MMP inhibition. However, TIMP-1 also has receptor-mediated cell signaling functions that are not well understood. Here, we examined how TIMP-1-dependent cell signaling impacts inflammatory hypersensitivity and ongoing pain. We found that hindpaw injection of complete Freund’s adjuvant (CFA) increased cutaneous TIMP-1 expression that peaked prior to development of mechanical hypersensitivity, suggesting that TIMP-1 inhibits the development of inflammatory hypersensitivity. To examine this possibility, we injected TIMP-1 knockout (T1KO) mice with CFA and found that T1KO mice exhibited rapid onset thermal and mechanical hypersensitivity at the site of inflammation that was absent or attenuated in WT controls. We also found that T1KO mice exhibited hypersensitivity in adjacent tissues innervated by different sets of afferents, as well as skin contralateral to the site of inflammation. Replacement of recombinant murine (rm)TIMP-1 alleviated hypersensitivity when administered at the site and time of inflammation. Administration of either the MMP inhibiting N-terminal or the cell signaling C-terminal domains recapitulated the antinociceptive effect of full-length rmTIMP-1, suggesting that rmTIMP-1inhibits hypersensitivity through MMP inhibition and receptor-mediated cell signaling. We also found that hypersensitivity was not due to genotype-specific differences in MMP-9 activity or expression, nor to differences in cytokine expression. Administration of rmTIMP-1 prevented mechanical hypersensitivity and ongoing pain in WT mice, collectively suggesting a novel role for TIMP-1 in the attenuation of inflammatory pain.
Collapse
Affiliation(s)
- Brittany E Knight
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Nathan Kozlowski
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Joshua Havelin
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Stephen J Crocker
- Department of Neuroscience, UConn Health, Farmington, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States
| | - Erin E Young
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States.,The Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States.,Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kyle M Baumbauer
- School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States
| |
Collapse
|