1
|
Zhang L, Long H, Zhang P, Liu B, Li S, Sun R, Diao T, Li F. Development and characterization of a novel injectable thyroid extracellular matrix hydrogel for enhanced thyroid tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1481295. [PMID: 39664883 PMCID: PMC11631613 DOI: 10.3389/fbioe.2024.1481295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Hypothyroidism, a condition characterized by decreased synthesis and secretion of thyroid hormones, significantly impacts intellectual development and physical growth. Current treatments, including hormone replacement therapy and thyroid transplantation, have limitations due to issues like hormone dosage control and immune rejection. Tissue engineering presents a potential solution by combining cells and biomaterials to construct engineered thyroid tissue. This study focuses on the development and characterization of a novel 3D injectable hydrogel derived from thyroid extracellular matrix (TEM) for thyroid tissue engineering. TEM hydrogels were prepared through decellularization of rat thyroid tissue, followed by extensive physicochemical and mechanical property evaluations. The TEM hydrogels exhibited properties similar to natural thyroid tissue, including high biocompatibility and a complex 3D ultrastructure. Thyroid hormone-secreting cells cultured in TEM hydrogels demonstrated superior viability, hormone secretion, and thyroid-related gene expression compared to those in traditional type I collagen hydrogels. The study also confirmed the significant retention of key growth factors and ECM proteins within the TEM hydrogels. The results indicate that TEM hydrogels can provide a biomimetic microenvironment, promoting the long-term survival and function of thyroid cells, thus holding great promise for the treatment of hypothyroidism. This research contributes a potential new avenue for thyroid tissue engineering, offering a promising alternative for hypothyroidism treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Houlong Long
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Peng Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Bin Liu
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Shuheng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Rong Sun
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Tongmei Diao
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Feng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| |
Collapse
|
2
|
Do HT, Ono M, Wang Z, Kitagawa W, Dang AT, Yonezawa T, Kuboki T, Oohashi T, Kubota S. Inverse genetics tracing the differentiation pathway of human chondrocytes. Osteoarthritis Cartilage 2024; 32:1419-1432. [PMID: 38925474 DOI: 10.1016/j.joca.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process. DESIGN The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway. RESULTS We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9. CONCLUSIONS This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.
Collapse
Affiliation(s)
- H T Do
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - M Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - Z Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - W Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - A T Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - T Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
3
|
Paik SS, Lee JM, Ko IG, Kim SR, Kang SW, An J, Kim JA, Kim D, Hwang L, Jin JJ, Kim SH, Cha JY, Choi CW. Pirfenidone Alleviates Inflammation and Fibrosis of Acute Respiratory Distress Syndrome by Modulating the Transforming Growth Factor-β/Smad Signaling Pathway. Int J Mol Sci 2024; 25:8014. [PMID: 39125585 PMCID: PMC11311955 DOI: 10.3390/ijms25158014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-β1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-β1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS.
Collapse
Affiliation(s)
- Seung Sook Paik
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Jeong Mi Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Sae Rom Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Sung Wook Kang
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin Ah Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dongyon Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Jun-Youl Cha
- Department of Sports and Martial Arts, Howon University, Gunsan 54058, Republic of Korea;
| | - Cheon Woong Choi
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| |
Collapse
|
4
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
5
|
Kato S, Kawata K, Nishida T, Mizukawa T, Takigawa M, Iida S, Kubota S. Expression and function of CCN2-derived circRNAs in chondrocytes. J Cell Commun Signal 2023:10.1007/s12079-023-00782-7. [PMID: 37695440 DOI: 10.1007/s12079-023-00782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Cellular communication network factor 2 (CCN2) molecules promote endochondral ossification and articular cartilage regeneration, and circular RNAs (circRNAs), which arise from various genes and regulate gene expression by adsorbing miRNAs, are known to be synthesized from CCN2 in human vascular endothelial cells and other types of cells. However, in chondrocytes, not only the function but also the presence of CCN2-derived circRNA remains completely unknown. In the present study, we investigated the expression and function of CCN2-derived circRNAs in chondrocytes. Amplicons smaller than those from known CCN2-derived circRNAs were observed using RT-PCR analysis that could specifically amplify CCN2-derived circRNAs in human chondrocytic HCS-2/8 cells. The nucleotide sequences of the PCR products indicated novel circRNAs in the HCS-2/8 cells that were different from known CCN2-derived circRNAs. Moreover, the expression of several Ccn2-derived circRNAs in murine chondroblastic ATDC5 cells was confirmed and observed to change alongside chondrocytic differentiation. Next, one of these circRNAs was knocked down in HCS-2/8 cells to investigate the function of the human CCN2-derived circRNA. As a result, CCN2-derived circRNA knockdown significantly reduced the expression of aggrecan mRNA and proteoglycan synthesis. Our data suggest that CCN2-derived circRNAs are expressed in chondrocytes and play a role in chondrogenic differentiation. Production and role of CCN2-derived RNAs in chondrocytes.
Collapse
Affiliation(s)
- Soma Kato
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
- Department of Oral Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Iida
- Department of Oral Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan.
| |
Collapse
|
6
|
Wang YK, Weng HK, Mo FE. The regulation and functions of the matricellular CCN proteins induced by shear stress. J Cell Commun Signal 2023:10.1007/s12079-023-00760-z. [PMID: 37191841 DOI: 10.1007/s12079-023-00760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Shear stress is a frictional drag generated by the flow of fluid, such as blood or interstitial fluid, and plays a critical role in regulating cellular gene expression and functional phenotype. The matricellular CCN family proteins are dynamically regulated by shear stress of different flow patterns, and their expression significantly alters the microenvironment of cells. Secreted CCN proteins mainly bind to several cell surface integrin receptors to mediate their diverse functions in regulating cell survival, function, and behavior. Gene-knockout studies indicate major functions of CCN proteins in the cardiovascular and skeletal systems, the two primary systems in which CCN expressions are regulated by shear stress. In the cardiovascular system, the endothelium is directly exposed to vascular shear stress. Unidirectional laminar blood flow generates laminar shear stress, which promotes a mature endothelial phenotype and upregulates anti-inflammatory CCN3 expression. In contrast, disturbed flow generates oscillatory shear stress, which induces endothelial dysfunction through the induction of CCN1 and CCN2. Shear-induced CCN1 binds to integrin α6β1 and promotes superoxide production, NF-κB activation, and inflammatory gene expression in endothelial cells. Although the interaction between shear stress and CCN4-6 is not clear, CCN 4 exhibits a proinflammatory property and CCN5 inhibits vascular cell growth and migration. The crucial roles of CCN proteins in cardiovascular development, homeostasis, and disease are evident but not fully understood. In the skeletal system, mechanical loading on bone generates shear stress from interstitial fluid in the lacuna-canalicular system and promotes osteoblast differentiation and bone formation. CCN1 and CCN2 are induced and potentially mediate fluid shear stress mechanosensing in osteocytes. However, the exact roles of interstitial shear stress-induced CCN1 and CCN2 in bone are still not clear. In contrast to other CCN family proteins, CCN3 inhibits osteoblast differentiation, although its regulation by interstitial shear stress in osteocytes has not been reported. The induction of CCN proteins by shear stress in bone and their functions remain largely unknown and merit further investigation. This review discusses the expression and functions of CCN proteins regulated by shear stress in physiological conditions, diseases, and cell culture models. The roles between CCN family proteins can be compensatory or counteractive in tissue remodeling and homeostasis.
Collapse
Affiliation(s)
- Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hung-Kai Weng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
7
|
Kondo S, Kubota S, Takigawa M. Analyses of the Posttranscriptional Regulation of CCN Genes: Approach to Multiple Steps of CCN2 Gene Expression. Methods Mol Biol 2023; 2582:127-155. [PMID: 36370348 DOI: 10.1007/978-1-0716-2744-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells generally control the concentration of mRNA via transcriptional and posttranscriptional regulation, so the separate contributions of synthesis and degradation (decay) cannot be discriminated by the quantification of mRNA. To elucidate the contribution of posttranscriptional regulation, all experimental procedures for the analysis of the total transcript level, transcriptional induction, degradation of the target mRNA, and inhibition of mRNA translation are performed either individually or in combination. From our experience, measurement of the steady-state levels of mRNA using quantitative real-time polymerase chain reaction is an essential first step in quantifying the ccn2 gene expression. Subsequently, the effect of transcription rates should be assessed by reporter assays of the ccn2 promoter and nuclear run-on assays. The stability of ccn2 mRNAs is then evaluated in the presence of a metabolic inhibitor actinomycin D, followed by mRNA degradation assays in vitro. Finally, repression of ccn2 mRNA translation can be estimated by comparing the expression of mRNA and protein changes. We herein report the strategic methods used in a series of analyses to elucidate the possible involvement of the posttranscriptional regulatory mechanism of the ccn2 gene and show how this approach can, in theory, be used to elucidate the posttranscriptional regulation of other genes belonging to the CCN family.
Collapse
Affiliation(s)
- Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Takigawa M. CCN Proteins (Cellular Communication Network Factors): Expanding Their Repertoire Toward a New Concept. Methods Mol Biol 2023; 2582:1-10. [PMID: 36370338 DOI: 10.1007/978-1-0716-2744-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
I herein report the general structures and functions of CCN proteins and possible molecular mechanisms involved in the unique biological actions of this family of intercellular signaling regulators, which are considered matricellular proteins and were once referred to as "signal conductors" but have recently been renamed "Cellular Communication Network Factors." Their repertoire of functions beyond their role as matricellular proteins is also described to aid in future studies. Advanced research concerning their relevance to pathology is briefly introduced as well. The information provided in this chapter is expected to be useful for readers of subsequent chapters.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
9
|
Kawaki H, Kubota S, Takigawa M. Cellular Fluorescence Imaging for the Evaluation of Bioactivity of CCN Family Proteins. Methods Mol Biol 2023; 2582:23-29. [PMID: 36370341 DOI: 10.1007/978-1-0716-2744-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The method of labeling proteins of interest with fluorescent dyes that can specifically stain organelles in living cells provides a tool for investigating various cellular processes under a microscope. Visualization (imaging) of the cells using fluorescence has many advantages, including the ability to stain multiple cell organelles and intracellular proteins simultaneously and discriminately, and is used in many research fields. In this chapter, we describe the observation of cell organelles using fluorescence staining to analyze the functions of CCN family proteins involved in various cellular events.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Chemistry, Asahi University School of Dentistry, Gifu, Japan.
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
10
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
11
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
12
|
Ribitsch I, Bileck A, Egerbacher M, Gabner S, Mayer RL, Janker L, Gerner C, Jenner F. Fetal Immunomodulatory Environment Following Cartilage Injury-The Key to CARTILAGE Regeneration? Int J Mol Sci 2021; 22:ijms222312969. [PMID: 34884768 PMCID: PMC8657887 DOI: 10.3390/ijms222312969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023] Open
Abstract
Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.
Collapse
Affiliation(s)
- Iris Ribitsch
- VETERM, Equine Surgery Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Monika Egerbacher
- Administrative Unit Veterinary Medicine, UMIT—Private University for Health Sciences, Medical Informatics and Technology GmbH, 6060 Hall in Tirol, Austria;
| | - Simone Gabner
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Rupert L. Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (R.L.M.); (L.J.)
- Correspondence: (C.G.); (F.J.)
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence: (C.G.); (F.J.)
| |
Collapse
|
13
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
14
|
Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S. RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol 2021; 236:6884-6896. [PMID: 33655492 DOI: 10.1002/jcp.30348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Collapse
Affiliation(s)
- Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumire Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
15
|
MacDonald IJ, Huang CC, Liu SC, Lin YY, Tang CH. Targeting CCN Proteins in Rheumatoid Arthritis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22094340. [PMID: 33919365 PMCID: PMC8122640 DOI: 10.3390/ijms22094340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration and differentiation, as well as the regulation of extracellular matrix differentiation. Substantial evidence implicates four of the proteins (CCN1, CCN2, CCN3 and CCN4) in the inflammatory pathologies of rheumatoid arthritis (RA) and osteoarthritis (OA). A smaller evidence base supports the involvement of CCN5 and CCN6 in the development of these diseases. This review focuses on evidence providing insights into the involvement of the CCN family in RA and OA, as well as the potential of the CCN proteins as therapeutic targets in these diseases.
Collapse
Affiliation(s)
- Iona J. MacDonald
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chien-Chung Huang
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Yen-You Lin
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Graduate Institute of Biomedical Sciences, Collage of Medicine, China Medical University, Taichung 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Guan M, Pan D, Zhang M, Leng X, Yao B. Deer antler extract potentially facilitates xiphoid cartilage growth and regeneration and prevents inflammatory susceptibility by regulating multiple functional genes. J Orthop Surg Res 2021; 16:208. [PMID: 33752715 PMCID: PMC7983396 DOI: 10.1186/s13018-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). METHODS The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. RESULTS We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. CONCLUSIONS Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.
Collapse
Affiliation(s)
- Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130117 China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
17
|
Yu HN, Li XM, Kong LL, Ren J, Wu H, Bu LG, Ding NZ, Ni H. Connective tissue growth factor gene expression in goat endometrium during estrous cycle and early pregnancy. Theriogenology 2020; 153:85-90. [DOI: 10.1016/j.theriogenology.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022]
|
18
|
Hsu GCY, Marini S, Negri S, Wang Y, Xu J, Pagani C, Hwang C, Stepien D, Meyers CA, Miller S, McCarthy E, Lyons KM, Levi B, James AW. Endogenous CCN family member WISP1 inhibits trauma-induced heterotopic ossification. JCI Insight 2020; 5:135432. [PMID: 32484792 DOI: 10.1172/jci.insight.135432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Heterotopic ossification (HO) is defined as abnormal differentiation of local stromal cells of mesenchymal origin, resulting in pathologic cartilage and bone matrix deposition. Cyr61, CTGF, Nov (CCN) family members are matricellular proteins that have diverse regulatory functions on cell proliferation and differentiation, including the regulation of chondrogenesis. However, little is known regarding CCN family member expression or function in HO. Here, a combination of bulk and single-cell RNA sequencing defined the dynamic temporospatial pattern of CCN family member induction within a mouse model of trauma-induced HO. Among CCN family proteins, Wisp1 (also known as Ccn4) was most upregulated during the evolution of HO, and Wisp1 expression corresponded with chondrogenic gene profile. Immunohistochemistry confirmed WISP1 expression across traumatic and genetic HO mouse models as well as in human HO samples. Transgenic Wisp1LacZ/LacZ knockin animals showed an increase in endochondral ossification in HO after trauma. Finally, the transcriptome of Wisp1-null tenocytes revealed enrichment in signaling pathways, such as the STAT3 and PCP signaling pathways, that may explain increased HO in the context of Wisp1 deficiency. In sum, CCN family members, and in particular Wisp1, are spatiotemporally associated with and negatively regulate trauma-induced HO formation.
Collapse
Affiliation(s)
| | - Simone Marini
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chase Pagani
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles Hwang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David Stepien
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Miller
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen M Lyons
- Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
The pathogenic role of connective tissue growth factor in osteoarthritis. Biosci Rep 2019; 39:BSR20191374. [PMID: 31262970 PMCID: PMC6639465 DOI: 10.1042/bsr20191374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, and connective tissue growth factor (CTGF) is found to be up-regulated in adjacent areas of cartilage surface damage. CTGF is present in osteophytes of late stage OA. In the present study, we have reviewed association of CTGF in the development and progression of OA and the potential effects of CTGF as a therapeutic agent for the treatment of OA. We have reviewed the recent articles on CTGF and OA in databases like PubMed, google scholar, and SCOPUS and collected the information for the articles. CTGF is usually up-regulated in synovial fluid of OA that stimulates the production of inflammatory cytokines. CTGF also activates nuclear factor-κB, increases the production of chemokines and cytokines, and up-regulates matrix metalloproteinases-3 (MMP-3) that in turn leads to the reduction in proteoglycan contents in joint cartilage. Consequently, cartilage homeostasis is imbalanced that might contribute to the pathogenesis of OA by developing synovial inflammation and cartilage degradation. CTGF might serve as a useful biomarker for the prognosis and treatment of OA, and recent studies have taken attempt to use CTGF as therapeutic target of OA. However, more investigations with clinical trials are necessary to validate the possibility of use of CTGF as a biomarker in OA diagnosis and therapeutic target for OA treatment.
Collapse
|
20
|
Kamatsuki Y, Aoyama E, Furumatsu T, Miyazawa S, Maehara A, Yamanaka N, Nishida T, Kubota S, Ozaki T, Takigawa M. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured meniscus. J Cell Commun Signal 2018; 13:193-207. [PMID: 30460593 DOI: 10.1007/s12079-018-0496-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Menisci are a pair of crescent-shaped fibrocartilages, particularly of which their inner region of meniscus is an avascular tissue. It has characteristics similar to those of articular cartilage, and hence is inferior in healing. We previously reported that low-intensity pulsed ultrasound (LIPUS) treatment stimulates the production of CCN2/CTGF, a protein involved in repairing articular cartilage, and the gene expression of major cartilage matrices such as type II collagen and aggrecan in cultured chondrocytes. Therefore, in this present study, we investigated whether LIPUS has also favorable effect on meniscus cells and tissues. LIPUS applied with a 60 mW/cm2 intensity for 20 min stimulated the gene expression and protein production of CCN2 via ERK and p38 signaling pathways, as well as gene expression of SOX9, aggrecan, and collagen type II in human inner meniscus cells in culture, and slightly stimulated the gene expression of CCN2 and promoted the migration in human outer meniscus cells in culture. LIPUS also induced the expression of Ccn2, Sox9, Col2a1, and Vegf in rat intact meniscus. Furthermore, histological evaluations showed that LIPUS treatment for 1 to 4 weeks promoted healing of rat injured lateral meniscus, as evidenced by better and earlier angiogenesis and extracellular matrix synthesis. The data presented indicate that LIPUS treatment might prevent meniscus from degenerative change and exert a reparative effect on injured meniscus via up-regulation of repairing factors such as CCN2 and that it might thus be useful for treatment of an injured meniscus as a non-invasive therapy.
Collapse
Affiliation(s)
- Yusuke Kamatsuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.,Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Shinichi Miyazawa
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | - Ami Maehara
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | | | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
21
|
Zhou X, Zhang P, Han H, Lei H, Zhang X. Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer progression by targeting yes-associated protein (YAP) pathway. J Cell Biochem 2018; 120:6471-6481. [PMID: 30417565 DOI: 10.1002/jcb.27938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Bladder cancer (BCa) is the most common malignant tumor in the urinary system. Growing evidence suggests that as a tumor suppressor gene, hypermethylated in cancer 1 (HIC1) is correlated with various malignancies in the modulation of tumor progression. This study aims to investigate the effect of HIC1 on regulating the proliferation, migration, and invasion of BCa. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to evaluate the expression of HIC1 messenger RNA and protein in human BCa tissues and cells. Proliferation, migration and invasion assays, and flow cytometry assay were performed to assess the biological functional role of HIC1 in BCa. Co-immunoprecipitation (Co-IP) examined the protein-protein interaction. The signaling pathways involved in the mode of action of HIC1 in BCa were also investigated. RESULTS HIC1 was found downregulated in tested samples. Cloning formation assay and cell-proliferation activity analysis showed that overexpression of HIC1 significantly inhibited the proliferation of BCa cells, while knockdown led to the opposite, namely the promotion of the proliferation. Flow cytometry assay confirmed the arrest of the cell cycle at the G1 phase with overexpression of HIC1 observed. Moreover, HIC1 inhibited migration and invasion of BCa. Co-IP showed the binding between YAP (yes-associated protein) and TEAD (TEA domain/transcription enhancer factor family members) as well as the cancerostatic activity of HIC1, partially manifested via its negative regulation of YAP signaling pathway. CONCLUSIONS Our data unprecedently showed that HIC1 was responsible for the inhibition of proliferation, migration, and invasion of BCa via the YAP signaling pathway. These findings suggested that therapeutic strategies regulating HIC1 expression might provide effective treatments for BCa.
Collapse
Affiliation(s)
- Xiaoguang Zhou
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hu Han
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongen Lei
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
New Functions of Classical Compounds against Orofacial Inflammatory Lesions. MEDICINES 2018; 5:medicines5040118. [PMID: 30388792 PMCID: PMC6313344 DOI: 10.3390/medicines5040118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023]
Abstract
Anti-inflammatory agents have been widely used to ameliorate severe inflammatory symptoms of a number of diseases, and such therapeutics are particularly useful for diseases with intolerable pain without significant mortality. A typical example of this is a disease known as stomatitis; although stomatitis itself is not a life-threatening disease, it severely impairs the individual’s quality of life, and thus a standard therapeutic strategy for it has already been established. The topical application of a bioactive agent is quite easy, and a strong anti-inflammatory agent can be used without significant adverse effects. In contrast, natural products with relatively mild bioactivity are used for systemic intervention. However, new aspects of classical drugs used in these established therapeutic methods have recently been discovered, which is expanding the utility of these compounds to other oral diseases such as osteoarthritis of temporomandibular joints (TMJ-OA). In this review article, after summarizing the general concept and pathobiology of stomatitis, its established therapeutics are explained. Thereafter, recent advances in the research into related compounds, which is uncovering new biological functions of the agents used therein, are introduced. Indeed, regenerative therapeutics for TMJ-OA may be developed with the classical compounds currently being used.
Collapse
|
23
|
Hou CH, Yang RS, Tsao YT. Connective tissue growth factor stimulates osteosarcoma cell migration and induces osteosarcoma metastasis by upregulating VCAM-1 expression. Biochem Pharmacol 2018; 155:71-81. [PMID: 29909077 DOI: 10.1016/j.bcp.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
Osteosarcoma is the most common bone malignancy that occurs in the young population. After osteosarcoma cells metastasize to the lung, prognosis is very poor owing to difficulties in early diagnosis and effective treatment. Recently, connective tissue growth factor (CTGF) was reported to be a critical contributor to osteosarcoma metastasis. However, the detailed mechanism associated with CTGF-directed migration in bone neoplasms is still mostly unknown. Through the in vivo and in vitro examination of osteosarcoma cells, this study suggests that VCAM-1 up-regulation and increased osteosarcoma cell migration are involved in this process. Antagonizing αvβ3 integrin inhibited cell migration. Moreover, FAK, PI3K, Akt and NF-κB activation were also shown to be involved in CTGF-mediated osteosarcoma metastasis. Taken together, CTGF promotes VCAM-1 production and further induces osteosarcoma metastasis via the αvβ3 integrin/FAK/PI3K/Akt/NF-κB signaling pathway, which could represent a promising clinical target to improve patient outcome.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, NO 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Rong-Sen Yang
- Department of Orthopedic Surgery, National Taiwan University Hospital, NO 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, NO 1, Jen-Ai Road, Taipei 100, Taiwan
| |
Collapse
|
24
|
Zhang S, Li B, Tang W, Ni L, Ma H, Lu M, Meng Q. Effects of connective tissue growth factor on prostate cancer bone metastasis and osteoblast differentiation. Oncol Lett 2018; 16:2305-2311. [PMID: 30008933 PMCID: PMC6036428 DOI: 10.3892/ol.2018.8960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated that connective tissue growth factor (CTGF) is expressed at increased levels in prostate cancer bone metastasis mouse models and patients with prostate cancer which metastasizes to the bone; however, the underlying molecular mechanism(s) remain unknown. The present study investigated the function of CTGF in osteoblast differentiation and its effect on prostate cancer bone metastasis by analyzing CTGF gene expression and transcription at different levels of invasion, metastasis of prostate cancer cells, and the influence of CTGF on proliferation and xenotransplantation. A mouse model demonstrating bone metastasis was used to investigate the function(s) of CTGF in bone metastasis and osteoblast differentiation. Results demonstrated that CTGF expression was increased in association with high bone metastasis in prostate cancer cells, and its expression was significantly decreased in whole cell lysates. CTGF expression in prostate cancer cells with high levels of bone metastasis was increased 1.9-fold compared with prostate cancer cells with low levels of bone metastasis. The expression of CTGF in mesenchymal cells was markedly increased compared with epithelial cells. Results indicated that the increased expression of CTGF does not affect the proliferation of tumor cells and possesses no influence on tumor volume. Control and CTGF plasmids were transfected into RM1 cells and led to 4 and 17% bone lesions, respectively. Increased expression of CTGF significantly enlarged the tumor area in the bone metastatic position compared with the control. Positive areas of alkaline phosphatase were significantly decreased as the concentration of CTGF increased. The results of the present study demonstrated that CTGF promotes prostate carcinoma to metastasize in the bone by dysregulating osteoblast differentiation.
Collapse
Affiliation(s)
- Shuangli Zhang
- Department of Orthopaedic Surgery, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Baolin Li
- Department of Orthopaedic Surgery, Harbin The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| | - Wei Tang
- Department of Orthopaedic Surgery, The Second People's Hospital of Rizhao, Rizhao, Shandong 276807, P.R. China
| | - Linying Ni
- Department of Orthopaedic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Huili Ma
- Department of Orthopaedic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Ming Lu
- Department of Oncological Surgery, The First Hospital of Qiqihaer City, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, Harbin The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
25
|
Seleem AA, Sultan ARS, Said A, Shahat MM, Moustafa MA. Localization of connective tissue growth factor (CTGF) and transforming growth factor beta-2 (TGF-β2) during eye development of four species of birds. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1475861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Amin A. Seleem
- Biology Department, Faculty of Science and Arts, Taibah University, Allula, Kingdom of Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Ahmed Said
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed M. Shahat
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohsen A. Moustafa
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
26
|
Fahmy-Garcia S, van Driel M, Witte-Buoma J, Walles H, van Leeuwen JPTM, van Osch GJVM, Farrell E. NELL-1, HMGB1, and CCN2 Enhance Migration and Vasculogenesis, But Not Osteogenic Differentiation Compared to BMP2. Tissue Eng Part A 2017; 24:207-218. [PMID: 28463604 DOI: 10.1089/ten.tea.2016.0537] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, autografts still represent the gold standard treatment for the repair of large bone defects. However, these are associated with donor-site morbidity and increased pain, cost, and recovery time. The ideal therapy would use biomaterials combined with bone growth factors to induce and instruct bone defect repair without the need to harvest patient tissue. In this line, bone morphogenetic proteins (BMPs) have been the most extensively used agents for clinical bone repair, but at supraphysiological doses that are not without risk. Because of the need to eliminate the risks of BMP2 use in vivo, we assessed the ability of three putative osteogenic factors, nel-like molecule type 1 (NELL-1), high mobility group box 1 (HMGB1), and CCN2, to enhance the essential processes for bone defect repair in vitro and compared them to BMP2. Although it has been reported that NELL-1, HMGB1, and CCN2 play a role in bone formation, less is known about the contribution of these proteins to the different events involved, such as cell migration, osteogenesis, and vasculogenesis. In this study, we investigated the effects of different doses of NELL-1, HMGB, CCN2, and BMP2 on these three processes as a model for the recruitment and differentiation of resident cells in the in vivo bone defect repair situation, using cells of human origin. Our data demonstrated that NELL-1, HMGB1, and CCN2 significantly induced mesenchymal stem cell migration (from 1.58-fold increase compared to control), but BMP2 did not. Interestingly, only BMP2 increased osteogenesis in marrow stromal cells, whereas it inhibited osteogenesis in preosteoblasts. Moreover, the four proteins studied promoted significantly endothelial cell migration, reaching a maximum of 2.4-fold increase compared to control, and induced formation of tube-like structures. NELL-1, HMGB1, and CCN2 had these effects at relatively low doses compared to BMP2. This work indicates that NELL-1, HMGB1, and CCN2 might enhance bone defect healing via the recruitment of endogenous cells and induction of vascularization and act via different processes than BMP2.
Collapse
Affiliation(s)
| | | | - Janneke Witte-Buoma
- 3 Department of Oral and Maxillofacial Surgery, Erasmus MC , Rotterdam, The Netherlands
| | - Heike Walles
- 4 Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg , Würzburg, Germany
| | | | - Gerjo J V M van Osch
- 1 Department of Orthopaedics, Erasmus MC , Rotterdam, The Netherlands .,5 Otorhinolaryngology Department, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Farrell
- 3 Department of Oral and Maxillofacial Surgery, Erasmus MC , Rotterdam, The Netherlands
| |
Collapse
|
27
|
Yang X, Lin K, Ni S, Wang J, Tian Q, Chen H, Brown MA, Zheng K, Zhai W, Sun L, Jin S, Wang J. Serum connective tissue growth factor is a highly discriminatory biomarker for the diagnosis of rheumatoid arthritis. Arthritis Res Ther 2017; 19:257. [PMID: 29166915 PMCID: PMC5700625 DOI: 10.1186/s13075-017-1463-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/30/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Our previous proteomic study indicated that connective tissue growth factor (CTGF) may be a potential biomarker for rheumatoid arthritis (RA) diagnosis. The aim was to assess the performance of CTGF as a biomarker of RA. METHOD Serum and synovial fluid CTGF was detected using a direct high sensitivity sandwich ELISA kit. Serum CTGF levels were tested for discriminatory capacity and optimal assay cutoffs determined in a training cohort of 98 cases of RA with 103 healthy controls. The assay performance was then validated in a further cohort of 572 patients (with RA (n = 217), ankylosing spondylitis (n = 92), gout (n = 74), osteoarthritis (n = 52), systemic lupus erythematosus (n = 72), or primary Sjögren's syndrome (pSS) (n = 65)). RESULTS Significant elevation of synovial fluid CTGF concentration was found in RA patients, demonstrating excellent diagnostic ability to predict RA (area under the curve (AUC) = 0.97). Similar results were found in serum CTGF detection. At the optimal cutoff value 88.66 pg/mL, the sensitivity, specificity, and the AUC was 0.86, 0.92, and 0.92, respectively, in the training cohort. Similar performance was observed in the validation cohort, with sensitivity, specificity, positive likelihood, and negative likelihood of 0.82, 0.91, 5.74, and 0.12, respectively. Stronger discriminatory capacity was seen with the combination of CTGF and anti-citrullinated protein antibody (ACPA) (AUC = 0.96) than with either ACPA or rheumatoid factor (RF) alone (AUC = 0.80 or 0.79, respectively). The discriminatory performance of serum CTGF was consistent across all inflammatory conditions tested (AUC >0.92 in all cases), with the sole exception of pSS. Serum CTGF did not vary with symptom duration or disease activity. CONCLUSIONS Serum CTGF is a promising diagnostic biomarker for RA, with performance in the current study better than either ACPA or RF.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ke Lin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shanmin Ni
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianmin Wang
- Department of Rheumatology, Jiamusi Central Hospital, Jiamusi, China
| | - Qingqing Tian
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huaijun Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Princess Alexandra Hospital, Brisbane, Australia.,Centre for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaidi Zheng
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weitao Zhai
- Department of Orthopaedic Surgery, Shanghai Guanghua Special Hospital for Rheumatoid Arthritis, Shanghai, China
| | - Li Sun
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
28
|
Akashi S, Nishida T, El-Seoudi A, Takigawa M, Iida S, Kubota S. Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. J Cell Commun Signal 2017; 12:245-252. [PMID: 29129024 DOI: 10.1007/s12079-017-0420-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
The CCN family consists of 6 genes in the mammalian genome and produces multifunctional proteins involved in a variety of biological processes. Recent reports indicate the profound roles of CCN2 in energy metabolism in chondrocytes, and Ccn2 deficiency is known to alter the expression of 2 other family members including Ccn3. However, almost nothing is known concerning the regulation of the CCN family genes by energy metabolism. In order to gain insight into this critical issue, we initially and comprehensively evaluated the effect of inhibition of glycolysis on the expression of all of the CCN family genes in chondrocytic cells. Upon the inhibition of a glycolytic enzyme, repression of CCN2 expression was observed, whereas CCN3 expression was conversely induced. Similar repression of CCN2 was conferred by the inhibition of aerobic ATP production, which, however, did not induce CCN3 expression. In contrast, glucose starvation significantly enhanced the expression of CCN3 in those cells. The results of a reporter gene assay using a molecular construct containing a CCN3 proximal promoter revealed a dose-dependent induction of the CCN3 promoter activity by the glycolytic inhibitor in chondrocytic cells. These results unveiled a critical role of glycolytic activity in the regulation of CCN2 and CCN3, which activity mediated the mutual regulation of these 2 major CCN family members in chondrocytes.
Collapse
Affiliation(s)
- Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Abdellatif El-Seoudi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan. .,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
29
|
Takigawa M. An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal 2017; 12:253-264. [PMID: 29076115 DOI: 10.1007/s12079-017-0414-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
The principal aim of this historical review is to present the processes by which the different aspects of CCN2/CTGF/Hcs24 were discovered by different groups and how much CCN2/CTGF, by being integrated into CCN family, has contributed to the establishment of the basic concepts regarding the role and functions of this new class of proteins. This review should be particularly useful to new investigators who have recently entered this exciting field of study and also provides a good opportunity to acknowledge the input of those individuals who participated in the development of this scientific field.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan.
| |
Collapse
|
30
|
Nuglozeh E. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia. J Clin Diagn Res 2017; 11:GC01-GC05. [PMID: 28892929 DOI: 10.7860/jcdr/2017/28158.10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. AIM The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. MATERIALS AND METHODS Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. RESULTS The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×103 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that compelled us to work at the level of hemizygosity. The histological characterisation of left ventricle shows cardiac hypertrophy together with decrease in body mass and alopecia, this compared to the wild type. The immunohistochemical staining of aorta root showed hyperplasia with increased expression and colocalisation of renin and CTGF demonstrating that CTGF may be involved in vascular tone control. CONCLUSION Genetic engineering is a noble avenue to investigate the function of new or existing genes. Our data have shown that CTGF transgenic mouse has cardiac and aorta root hypertrophy and abnormal renin accumulation in aorta root as compared to the wild-type animals. The transgenic animals developed alopecia and lean body mass adding two new functions on pre-existing CTGF multiple functions.
Collapse
Affiliation(s)
- Edem Nuglozeh
- Assistant Professor, Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Zhao K, Xiao L, Zhao M, Ji C. Lichen extracts regulate the expression of BMP7 via miR-194-5p targeting to decrease the risk atrial fibrillation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9092-9103. [PMID: 31966782 PMCID: PMC6965457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/20/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Atrial fibrillation (AF), the most common cardiac supraventricular arrhythmia, affects more than 5 million people worldwide. Increasing evidence has demonstrated that genetic factors play an important role in the pathogenesis of AF, and multiple genes responsible for AF have been identified. A better understanding of the genetic mechanism underlying AF would be expected to lead to more accurate risk stratification of AF and optimal clinical treatment strategies. METHODS Immunofluorescence staining was performed to find the components which would have effects on the H9c2 cells development. The changes of BMP7 and miR-194-5p expressions were detected before and after Human Cardiac Myocytes (HCM) were treated with Lichen extraction. In order to confirm whether Lichen could increase the expression of BMP7 through inhibiting the expression of miR-194-5p, the mRNA levels of BMP7 and miR-194-5p were determined in HCM before and after the treatment of Lichen on the conditions that miR-194-5p was over-expressed or not. RESULTS After 48 hours' treatment with 20 µg/mL Lichen extracts, the Collagen I expression level significantly decreased. The expressions of several genes in H9c2 cells could were changed after the treatment of Lichen extracts and some mRNA of them could also be targeted by miR-194-5p including BMP7. Lichen could depress the expression of miR-194-5p in HCM no matter miR-194-5p was overexpressed or not and correspondingly, the expression of BMP7 could be increased in both conditions. CONCLUSIONS It is indicated that Lichen extracts could regulate the expression of atrial fibrillation-associated genes via miR-194-5a targeting.
Collapse
Affiliation(s)
- Kailin Zhao
- Department of Cardiology, Yantai Yeda HospitalShandong, China
| | - Liyun Xiao
- Department of Cardiology, Jinxiang People’s Hospital Affiliated to Jining Medical SchoolShandong, China
| | - Meili Zhao
- Department of Cardiology, Jinxiang People’s Hospital Affiliated to Jining Medical SchoolShandong, China
| | - Changjian Ji
- Department of Cardiology, Jinxiang People’s Hospital Affiliated to Jining Medical SchoolShandong, China
| |
Collapse
|
32
|
Kawata K, Kubota S, Eguchi T, Aoyama E, Moritani NH, Oka M, Kawaki H, Takigawa M. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation. J Cell Biochem 2017; 118:4033-4044. [PMID: 28407304 DOI: 10.1002/jcb.26059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/11/2017] [Indexed: 11/08/2022]
Abstract
The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Takanori Eguchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Norifumi H Moritani
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Morihiko Oka
- Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-City, Okayama, 700-8525, Japan
| |
Collapse
|
33
|
Zhao L, Wang Q, Zhang C, Huang C. Genome-wide DNA methylation analysis of articular chondrocytes identifies TRAF1, CTGF, and CX3CL1 genes as hypomethylated in osteoarthritis. Clin Rheumatol 2017; 36:2335-2342. [PMID: 28470428 DOI: 10.1007/s10067-017-3667-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/08/2017] [Accepted: 04/25/2017] [Indexed: 01/05/2023]
Abstract
The aim of this study is to identify osteoarthritis (OA)-associated differentially methylated genes in human articular chondrocytes from patients with OA. DNA methylation profiling of articular chondrocytes from OA patients, rheumatoid arthritis (RA) patients, and controls was performed, and candidate genes were chosen for validation of gene demethylation status. The mRNA expression levels of candidate genes in chondrocytes were detected by real-time quantitative PCR. Chondrocytes from OA and RA group were treated with 5-Aza-2-deoxycytidine (5-Aza), and then the mRNA expression levels were detected. Forty-five genes with significant methylation differences between OA and control group were identified. Tumor necrosis factor receptor-associated factor 1 (TRAF1), connective tissue growth factor (CTGF), and chemokine (C-X3-C motif) ligand 1(CX3CL1) genes were hypomethylated in chondrocytes of OA and RA patients, which verified by bisulfite sequencing analysis. The mRNA expression level of TRAF1 and CTGF was significantly increased in OA and RA group (p < 0.05), while the expression level of CX3CL1 was only increased in OA group (p < 0.05). For the chondrocytes from OA and RA treated with 5-Aza, the mRNA expression level of TRAF1 and CTGF was highly increased (p < 0.05). It is the first time to show that TRAF1, CTGF, and CX3CL1 genes were hypomethylated in OA chondrocytes and have a consistent correlation with mRNA expression, which suggests that epigenetic changes in the methylation status of TRAF1, CTGF, and CX3CL1 contribute to the pathology of OA.
Collapse
Affiliation(s)
- Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, No. 1 Da Hua Road, Dong Dan, Beijing, 100730, People's Republic of China.
| | - Qian Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, No. 1 Da Hua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Chunmei Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, No. 1 Da Hua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Cibo Huang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, No. 1 Da Hua Road, Dong Dan, Beijing, 100730, People's Republic of China
| |
Collapse
|
34
|
Lu X, Guo S, Cheng Y, Kim JH, Feng Y, Feng Y. Stimulation of ovarian follicle growth after AMPK inhibition. Reproduction 2017; 153:683-694. [DOI: 10.1530/rep-16-0577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
Previous studies showed that the protein kinase B (Akt)–mammalian target of rapamycin (mTOR) and Hippo signaling Yes-associated protein (YAP) pathways play important roles in promoting follicle growth. Additionally, other studies demonstrated that 5′ adenosine monophosphate-activated protein kinase (AMPK) is an upstream regulatory element of mTOR and YAP. Here, we used AMPK inhibitor (Compound C) toin vitrocultured ovaries from 10-day-old mice followed byin vivografting into adult hosts or toin situtreated ovaries of 3-week-old mice by intrabursal injection followed by gonadotropin stimulation. We found that the phosphorylation of ovarian mTOR and downstream proteins (ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4B (eIF4B)) was upregulated following Compound C administration, whereas tuberous sclerosis complex 2 (TSC2) phosphorylation was downregulated. Additionally, treatment with Compound C increased hypoxia-inducible factor 1-alpha (Hif1a), vascular endothelial growth factor A (Vegfa), VEGF receptor 2 (Vegfr2) and connective tissue growth factor (Ctgf) mRNA levels. Furthermore, treatment of 10-day-old mice with Compound C promoted the growth of preantral and antral follicles accompanied by enhanced angiogenesis.In situintrabursal injection with Compound C, followed by controlled ovarian hyperstimulation, increased the number of ovulated oocytes in 3-week-old mice, and these oocytes could be successfully fertilized, leading to the delivery of healthy pups. Our results demonstrated that treatment with AMPK inhibitor resulted in the activation of the mTOR signaling pathway, increases inCtgfexpression in mouse ovaries, stimulation of follicle development and promotion of ovarian angiogenesis for ovary growth.
Collapse
|
35
|
Takano-Yamamoto T, Fukunaga T, Takeshita N. Gene Expression Analysis of CCN Protein in Bone Under Mechanical Stress. Methods Mol Biol 2017; 1489:283-308. [PMID: 27734385 DOI: 10.1007/978-1-4939-6430-7_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To investigate mechanical-dependent bone remodeling, we had previously applied various types of mechanical loading onto the teeth of rats and mice. In vitro cultured bone cells were then used to elucidate the mechanisms underlying the specific phenomenon revealed by in vivo experiments. This review describes the techniques used to upregulate CCN2 expression in bone cells produced by different types of mechanical stress, such as fluid shear stress and substrate strain in vitro, and compression or tension force in vivo.
Collapse
Affiliation(s)
- Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
36
|
Abstract
I introduce the general structures and functions of CCN proteins and possible molecular mechanisms regarding the unique biological actions of this new family of signaling regulators, which may be referred to as "signal conductors." Relevance to pathology is also briefly introduced. The information provided in this overview should be useful for readers of the following chapters.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
37
|
Analysis of Posttranscriptional Regulation of CCN Genes. Methods Mol Biol 2016. [PMID: 27734378 DOI: 10.1007/978-1-4939-6430-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cells generally control the concentration of mRNA by transcriptional and posttranscriptional regulation, so the separate contributions of synthesis and degradation ("decay") cannot be discriminated by the quantification of mRNA. To elucidate the contribution of posttranscriptional regulation, all experimental procedures for the analysis of the total transcript level, transcriptional induction, and degradation of the target mRNA are performed either individually, or in combination. From our experience, measurement of the steady-state levels of the mRNA using quantitative real-time polymerase chain reaction is an essential first step in quantifying ccn2 gene expression level. Subsequently, the effect of transcription rates should be assessed by reporter assays of the ccn2 promoter and nuclear run-on assays. Finally, the stability of ccn2 mRNAs is evaluated in the presence of a metabolic inhibitor actinomycin D, followed by mRNA degradation assays in vitro. Here, we describe the strategic methods used in a series of analyses to elucidate the possible involvement of the posttranscriptional regulatory mechanism of the ccn2 gene and show how this approach can in theory be applied to elucidating the posttranscriptional regulation of other genes belonging to the CCN family.
Collapse
|
38
|
Lin CH, Wang YH, Chen YW, Lin YL, Chen BC, Chen MC. Transcriptional and posttranscriptional regulation of CXCL8/IL-8 gene expression induced by connective tissue growth factor. Immunol Res 2016; 64:369-384. [PMID: 26071024 DOI: 10.1007/s12026-015-8670-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Connective tissue growth factor (CTGF), a CCN family member, is a secreted protein regulating cellular functions, including fibrosis, apoptosis, adhesion, migration, differentiation, proliferation, angiogenesis, and chondrogenesis. CTGF increases proinflammatory factor production; however, inflammatory cytokine regulation by CTGF is poorly understood. The aim of this study was to identify novel biological functions and elucidate the functional mechanisms of CTGF. Specifically, the study focused on the ability of CTGF-primed monocytes to secrete interleukin 8 (CXCL8/IL-8) and determined the signaling pathways involved in CTGF-induced CXCL8/IL-8 gene regulation during inflammation. We transfected wild-type or mutant CXCL8/IL-8 promoter-derived luciferase reporter constructs into 293T cells to examine the effect of CTGF on the CXCL8/IL-8 promoter. The results showed that the activator protein-1 and nuclear factor κB binding sites of the CXCL8/IL-8 promoter are essential for CTGF-induced CXCL8/IL-8 transcription. Moreover, the CTGF-induced activation of p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase, and extracellular signal-regulated kinase (ERK) is involved in this process. In addition, adenosine-uridine-rich elements (AREs) of the CXCL8/IL-8 3'-untranslated region (3'-UTR) reduce CXCL8/IL-8 mRNA stability. To investigate whether CTGF regulates CXCL8/IL-8 gene expression at the posttranscriptional level, we transfected 293 cells with serial luciferase constructs containing different segments of the CXCL8/IL-8 3'-UTR and then stimulated the cells with CTGF. The results suggested that CTGF stabilized luciferase mRNA and increased luciferase activity by regulating the CXCL8/IL-8 3'-UTR. Moreover, the p38 MAPK pathway may contribute to CTGF-induced CXCL8/IL-8 mRNA stabilization.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Wen Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Liang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chieh Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
39
|
Wang TY, Xu ZW, Wang KH, Wang N. Regulatory Network of MicroRNAs, Host Genes, Target Genes and Transcription Factors in Human Esophageal Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2016; 16:3677-83. [PMID: 25987021 DOI: 10.7314/apjcp.2015.16.9.3677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abnormally expressed microRNAs (miRNAs) and genes have been found to play key roles in esophageal squamous cell carcinoma (ESCC), but little is known about the underlying mechanisms. The aim of this paper was to assess inter-relationships and the regulatory mechanisms of ESCC through a network-based approach. We built three regulatory networks: an abnormally expressed network, a related network and a global network. Unlike previous examples, containing information only on genes or miRNAs, the prime focus was on relationships. It is worth noting that abnormally expressed network emerged as a fault map of ESCC. Theoretically, ESCC might be treated and prevented by correcting the included errors. In addition, the predicted transcription factors (TFs) obtained by the P-match method also warrant further study. Our results may further guide gene therapy researchers in the study of ESCC.
Collapse
Affiliation(s)
- Tian-Yan Wang
- College of Software Engineering, Jilin University, Changchun, Jilin, China E-mail :
| | | | | | | |
Collapse
|
40
|
Oral biosciences: The annual review 2015. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Huang Y, Zhao S, Zhang C, Li X. Downregulation of connective tissue growth factor reduces migration and invasiveness of osteosarcoma cells. Mol Med Rep 2015; 13:1888-94. [PMID: 26707502 DOI: 10.3892/mmr.2015.4701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 09/18/2015] [Indexed: 11/05/2022] Open
Abstract
As one of the most serious types of primary bone tumor, osteosarcoma (OSA) features metastatic lesions, and resistance to chemotherapy is common. The underlying mechanisms of these characteristics may account for the failure of treatments and the poor prognosis of patients with OSA. It has been reported that inhibition of Cyr61 suppresses OSA cell proliferation as it represents a target of statins. In addition to cystein‑rich protein 61 (Cyr61) and nephroblastoma overexpression, connective tissue growth factor (CTGF) is a member of the CCN family and may therefore exhibit effects on human OSA cells similar to those of Cyr61. In the current study, acridine orange/ethidium bromide staining were used to determine the rate of apoptosis. The present study demonstrated that small interfering RNA‑mediated silencing of CTGF promoted cell death and suppressed OSA cell migration and invasion, as indicated by wound healing and Transwell assays, while lentivirus‑mediated overexpression of CTGF reversed these effects. Furthermore, a colorimetric caspase assay demonstrated that CTGF knockdown enhanced the efficacy of chemotherapeutic drugs. The results of the present study provided a novel molecular target which may be utilized for the treatment of metastatic OSA.
Collapse
Affiliation(s)
- Yinjun Huang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
42
|
Wang YN, Qin L, Li JM, Chen L, Pei C. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor. Int J Ophthalmol 2015; 8:872-6. [PMID: 26558194 DOI: 10.3980/j.issn.2222-3959.2015.05.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/24/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF). METHODS HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA) were further determined by Western blot analysis. RESULTS HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P<0.01). The increased Slug protein levels were correlated well with up-expression of α-SMA (0.78±0.05, 0.85±0.06, 2.17±0.15, 2.86±0.10; F=449.85, P<0.01) and down-expression of E-cadherin (2.50±0.11, 1.79±0.26, 1.05±0.14, 0.63±0.08; F=101.55, P<0.01). CONCLUSION Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.
Collapse
Affiliation(s)
- Ying-Na Wang
- Medical School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Li Qin
- Department of Ophthalmology, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jing-Ming Li
- Department of Ophthalmology, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Li Chen
- Department of Ophthalmology, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Cheng Pei
- Department of Ophthalmology, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
43
|
Komatsu M, Nakamura Y, Maruyama M, Abe K, Watanapokasin R, Kato H. Expression profiles of human CCN genes in patients with osteoarthritis or rheumatoid arthritis. J Orthop Sci 2015; 20:708-16. [PMID: 25986313 DOI: 10.1007/s00776-015-0727-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) and rheumatoid arthritis (RA) are widespread disabling joint disorders that are considered to be polygenic in nature. This study investigated the spatial expression patterns of all six known human CCN genes using end-stage OA and RA joint samples. DESIGN We performed in situ hybridization and histological analysis to investigate the spatial expression patterns of human CCN genes using joint tissues obtained during total knee and hip joint replacement procedures on patients with advanced OA or RA. Normal joint tissues taken while performing bipolar hip replacement surgeries were used as controls. RESULTS All CCN genes were expressed at higher levels in OA and RA synovial samples as compared with normal controls. Whereas CCN3 and CCN6 were undetectable in control, OA, and RA cartilage, CCN1, CCN2, CCN4, and CCN5 were expressed to a greater extent in OA and RA knee cartilage. CONCLUSIONS Our results indicate an involvement of several CCN genes in the pathophysiology of OA and RA.
Collapse
Affiliation(s)
- Masatoshi Komatsu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Khattab HM, Aoyama E, Kubota S, Takigawa M. Physical interaction of CCN2 with diverse growth factors involved in chondrocyte differentiation during endochondral ossification. J Cell Commun Signal 2015; 9:247-54. [PMID: 25895141 DOI: 10.1007/s12079-015-0290-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
CCN family member 2 (CCN2) has been shown to promote the proliferation and differentiation of chondrocytes, osteoblasts, osteoclasts, and vascular endothelial cells. In addition, a number of growth factors and cytokines are known to work in harmony to promote the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification. Earlier we showed that CCN2 physically interacts with some of them, suggesting that multiple effects of CCN2 on various differentiation stages of chondrocytes may be attributed to its interaction with these growth factors and cytokines. However, little is known about the functional interaction occurring between CCN2 and other growth factors and cytokines in promoting chondrocyte proliferation and differentiation. In this study we sought to shed light on the binding affinities between CCN2 and other essential growth factors and cytokines known to be regulators of chondrocyte differentiation. Using the surface plasmon resonance assay, we analyzed the dissociation constant between CCN2 and each of the following: TGF-β1, TGF-β3, IGF-I, IGF-II, PDGF-BB, GDF5, PTHrP, and VEGF. We found a strong association between CCN2 and VEGF, as well as a relatively high association with TGF-β1, TGF-β3, PDGF-BB, and GDF-5. However, the sensorgrams obtained for possible interaction between CCN2 and IGF-I, IGF-II or PTHrP showed no response. This study underlines the correlation between CCN2 and certain other growth factors and cytokines and suggests the possible participation of such interaction in the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification.
Collapse
Affiliation(s)
- Hany Mohamed Khattab
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
45
|
Kubota S, Maeda-Uematsu A, Nishida T, Takigawa M. New functional aspects of CCN2 revealed by trans-omic approaches. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Forrester SJ, Kawata K, Lee H, Kim JS, Sebzda K, Butler T, Yingling VR, Park JY. Bioinformatic identification of connective tissue growth factor as an osteogenic protein within skeletal muscle. Physiol Rep 2014; 2:2/12/e12255. [PMID: 25539834 PMCID: PMC4332228 DOI: 10.14814/phy2.12255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with increasing incidence of osteoporosis; a skeletal disorder characterized by compromised bone strength that may predispose patients to an increased risk of fracture. It is imperative to identify novel ways in which to attenuate such declines in the functional properties of bone. The purpose of this study was to identify, through in silico, in vitro, and in vivo approaches, a protein secreted from skeletal muscle that is putatively involved in bone formation. We performed a functional annotation bioinformatic analysis of human skeletal muscle‐derived secretomes (n = 319) using DAVID software. Cross‐referencing was conducted using OMIM, Unigene, UniProt, GEO, and CGAP databases. Signal peptides and transmembrane residues were analyzed using SignalP and TMHMM software. To further investigate functionality of the identified protein, L6 and C2C12 myotubes were grown for in vitro analysis. C2C12 myotubes were subjected to 16 h of glucose deprivation (GD) prior to analysis. In vivo experiments included analysis of 6‐week calorie restricted (CR) rat muscle samples. Bioinformatic analysis yielded 15 genes of interest. GEO dataset analysis identified BMP5, COL1A2, CTGF, MGP, MMP2, and SPARC as potential targets for further processing. Following TMHMM and SignalP processing, CTGF was chosen as a candidate gene. CTGF expression level was increased during L6 myoblast differentiation (P <0.01). C2C12 myotubes showed no change in response to GD. Rat soleus muscle samples exhibited an increase in CTGF expression (n = 16) in response to CR (35%) (P <0.05). CTGF was identified as a skeletal muscle expressed protein through bioinformatic analysis of skeletal muscle‐derived secretomes and in vitro/in vivo analysis. Future study is needed to determine the role of muscle‐derived CTGF in bone formation and remodeling processes. In this study, we explore the method of bioinformatic analysis, coupled with in vitro and in vivo investigation, to identify a new skeletal muscle‐derived protein with osteogenic properties. CTGF is expressed in young, healthy skeletal muscle, and this expression is increased with calorie restriction. Muscular secretion of CTGF might play an osteogenic role in maintaining bone health.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Keisuke Kawata
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Hojun Lee
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Ji-Seok Kim
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Kelly Sebzda
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Tiffiny Butler
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Vanessa R Yingling
- Department of Kinesiology, California State University, East BayHayward, California
| | - Joon-Young Park
- Cardiovascular Genomics Laboratory, Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania Cardiovascular Research Center, School of Medicine, Temple UniversityPhiladelphia, Pennsylvania
| |
Collapse
|
47
|
Maeda-Uematsu A, Kubota S, Kawaki H, Kawata K, Miyake Y, Hattori T, Nishida T, Moritani N, Lyons KM, Iida S, Takigawa M. CCN2 as a novel molecule supporting energy metabolism of chondrocytes. J Cell Biochem 2014; 115:854-65. [PMID: 24288211 DOI: 10.1002/jcb.24728] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 02/01/2023]
Abstract
CCN2/connective tissue growth factor (CTGF) is a unique molecule that promotes both chondrocytic differentiation and proliferation through its matricellular interaction with a number of extracellular biomolecules. This apparently contradictory functional property of CCN2 suggests its certain role in basic cellular activities such as energy metabolism, which is required for both proliferation and differentiation. Comparative metabolomic analysis of costal chondrocytes isolated from wild-type and Ccn2-null mice revealed overall impaired metabolism in the latter. Among the numerous metabolites analyzed, stable reduction in the intracellular level of ATP, GTP, CTP, or UTP was observed, indicating a profound role of CCN2 in energy metabolism. Particularly, the cellular level of ATP was decreased by more than 50% in the Ccn2-null chondrocytes. The addition of recombinant CCN2 (rCCN2) to cultured Ccn2-null chondrocytes partly redeemed the cellular ATP level attenuated by Ccn2 deletion. Next, in order to investigate the mechanistic background that mediates the reduction in ATP level in these Ccn2-null chondrocytes, we performed transcriptome analysis. As a result, several metabolism-associated genes were found to have been up-regulated or down-regulated in the mutant mice. Up-regulation of a number of ribosomal protein genes was observed upon Ccn2 deletion, whereas a few genes required for aerobic and anaerobic ATP production were down-regulated in the Ccn2-null chondrocytes. Among such genes, reduction in the expression of the enolase 1 gene was of particular note. These findings uncover a novel functional role of CCN2 as a metabolic supporter in the growth-plate chondrocytes, which is required for skeletogenesis in mammals.
Collapse
Affiliation(s)
- Aya Maeda-Uematsu
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 2014; 128:181-96. [DOI: 10.1042/cs20140264] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CCN family protein 2 (CCN2), also widely known as connective tissue growth factor (CTGF), is one of the founding members of the CCN family of matricellular proteins. Extensive investigation on CCN2 over decades has revealed the novel molecular action and functional properties of this unique signalling modulator. By its interaction with multiple molecular counterparts, CCN2 yields highly diverse and context-dependent biological outcomes in a variety of microenvironments. Nowadays, CCN2 is recognized to conduct the harmonized development of relevant tissues, such as cartilage and bone, in the skeletal system, by manipulating extracellular signalling molecules involved therein by acting as a hub through a web. However, on the other hand, CCN2 occasionally plays profound roles in major human biological disorders, including fibrosis and malignancies in major organs and tissues, by modulating the actions of key molecules involved in these clinical entities. In this review, the physiological and pathological roles of this unique protein are comprehensively summarized from a molecular network-based viewpoint of CCN2 functionalities.
Collapse
|
49
|
Takano-Yamamoto T. Osteocyte function under compressive mechanical force. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2013.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
50
|
Chen JL, Duan L, Zhu W, Xiong J, Wang D. Extracellular matrix production in vitro in cartilage tissue engineering. J Transl Med 2014; 12:88. [PMID: 24708713 PMCID: PMC4233628 DOI: 10.1186/1479-5876-12-88] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen 518035, Guangdong Province, China.
| |
Collapse
|