1
|
Abdel Mageed SS, Elimam H, Elesawy AE, Abulsoud AI, Raouf AA, Tabaa MME, Mohammed OA, Zaki MB, Abd-Elmawla MA, El-Dakroury WA, Mangoura SA, Elrebehy MA, Elballal MS, Mohamed AA, Ashraf A, Abdel-Reheim MA, Eleragi AMS, Abdellatif H, Doghish AS. Unraveling the impact of miRNAs on gouty arthritis: diagnostic significance and therapeutic opportunities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3433-3450. [PMID: 39560752 PMCID: PMC11978694 DOI: 10.1007/s00210-024-03603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Gouty arthritis is a prevalent inflammatory illness. Gout attacks begin when there is an imbalance in the body's uric acid metabolism, which leads to urate buildup and the development of the ailment. A family of conserved, short non-coding RNAs known as microRNAs (miRNAs) can regulate post-transcriptional protein synthesis by attaching to the 3' untranslated region (UTR) of messenger RNA (mRNA). An increasing amount of research is pointing to miRNAs as potential players in several inflammatory diseases, including gouty arthritis. miRNAs may influence the progression of the disease by regulating immune function and inflammatory responses. This review mainly focused on miRNAs and how they contribute to gouty arthritis. It also looked at how miRNAs could be used as diagnostic, prognostic, and potential therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hanan Elimam
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez,, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Aya A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Anatomy and Embryology, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Mardi A, Ghovahi A, Abbasvandi F, Amani D. Experimental Validation of miR-4443, miR-572, and miR-150-5p in Serum and Tissue of Breast Cancer Patients as a Potential Diagnostic Biomarker: A Study Based on Bioinformatics Prediction. Biochem Genet 2025:10.1007/s10528-025-11057-8. [PMID: 40064800 DOI: 10.1007/s10528-025-11057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/08/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the most common invasive cancer diagnosed in females and is also the main cause of cancer-related deaths leading to more than 500,000 deaths annually. The present study aims to identify a promising panel of microRNAs (miRNAs) using bioinformatics analysis, and to clinically validate their utility for diagnosing breast cancer patients with high accuracy in a clinical setting. First, in the in silico phase of our study, using bioinformatics analysis and the data available in the GEO database, miRNAs that were increased in the interstitial fluid of the tumor tissues (differentially expressed miRNAs), were screened and their related target genes were selected. Multimir package of R software was utilized to determine the target genes of the differentially expressed miRNAs (DEMs). The biological functions of discovered genes were analyzed using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In order to determine the molecular mechanisms behind important signaling pathways and cellular functions, the protein-protein interaction network was built using STRING and Cytoscape software. After that, in the laboratory phase, the expression level of three candidate miRNAs on the serum samples of 26 breast cancer patients and 26 control, as well as 14 tumor tissue samples and 14 adjacent normal tissue samples, has been investigated by Real-time PCR method. Then sensitivity and specificity of candidate miRNAs were evaluated through the ROC curve analysis. After in silico analysis, we revealed that three miRNAs including miR-4443, miR-572, and miR-150-5p were highly increased in the interstitial fluid of breast cancer patients compared to breast cancer tissues. Moreover, our results revealed that the expression level of miR-4443, miR-572, and miR-150-5p were significantly decreased in the serum of breast cancer patients compare to normal controls. Also, the expression level of miR-4443 and miR-150-5p was significantly decreased in the tumor tissue compared to the adjacent non-tumor tissue. Also, ROC curve analysis showed that these three miRNAs have high sensitivity and specificity for the diagnosis of breast cancer patients. Data analysis was conducted with GraphPad Prism software. Our findings suggest the potential utility of measuring tumor-derived miRNAs in serum as an important approach for the blood-based detection of breast cancer patients. It appears that miR-4443, miR-572, and miR-150-5p may serve as promising diagnostic biomarkers with high sensitivity and specificity. However, it's important to note that further research will be needed to definitively establish the use of these miRNAs as potential biomarkers in clinical practice.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghovahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ostheim P, Tichý A, Badie C, Davidkova M, Kultova G, Stastna MM, Sirak I, Stewart S, Schwanke D, Kasper M, Ghandhi SA, Amundson SA, Bäumler W, Stroszczynski C, Port M, Abend M. Applicability of Gene Expression in Saliva as an Alternative to Blood for Biodosimetry and Prediction of Radiation-induced Health Effects. Radiat Res 2024; 201:523-534. [PMID: 38499035 PMCID: PMC11587817 DOI: 10.1667/rade-23-00176.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
As the great majority of gene expression (GE) biodosimetry studies have been performed using blood as the preferred source of tissue, searching for simple and less-invasive sampling methods is important when considering biodosimetry approaches. Knowing that whole saliva contains an ultrafiltrate of blood and white blood cells, it is expected that the findings in blood can also be found in saliva. This human in vivo study aims to examine radiation-induced GE changes in saliva for biodosimetry purposes and to predict radiation-induced disease, which is yet poorly characterized. Furthermore, we examined whether transcriptional biomarkers in blood can also be found equivalently in saliva. Saliva and blood samples were collected in parallel from radiotherapy (RT) treated patients who suffered from head and neck cancer (n = 8) undergoing fractioned partial-body irradiations (1.8 Gy/fraction and 50-70 Gy total dose). Samples were taken 12-24 h before first irradiation and ideally 24 and 48 h, as well as 5 weeks after radiotherapy onset. Due to the low quality and quantity of isolated RNA samples from one patient, they had to be excluded from further analysis, leaving a total of 24 saliva and 24 blood samples from 7 patients eligible for analysis. Using qRT-PCR, 18S rRNA and 16S rRNA (the ratio being a surrogate for the relative human RNA/bacterial burden), four housekeeping genes and nine mRNAs previously identified as radiation responsive in blood-based studies were detected. Significant GE associations with absorbed dose were found for five genes and after the 2nd radiotherapy fraction, shown by, e.g., the increase of CDKN1A (2.0 fold, P = 0.017) and FDXR (1.9 fold increased, P = 0.002). After the 25th radiotherapy fraction, however, all four genes (FDXR, DDB2, POU2AF1, WNT3) predicting ARS (acute radiation syndrome) severity, as well as further genes (including CCNG1 [median-fold change (FC) = 0.3, P = 0.013], and GADD45A (median-FC = 0.3, P = 0.031)) appeared significantly downregulated (FC = 0.3, P = 0.01-0.03). A significant association of CCNG1, POU2AF1, HPRT1, and WNT3 (P = 0.006-0.04) with acute or late radiotoxicity could be shown before the onset of these clinical outcomes. In an established set of four genes predicting acute health effects in blood, the response in saliva samples was similar to the expected up- (FDXR, DDB2) or downregulation (POU2AF1, WNT3) in blood for up to 71% of the measurements. Comparing GE responses (PHPT1, CCNG1, CDKN1A, GADD45A, SESN1) in saliva and blood samples, there was a significant linear association between saliva and blood response of CDKN1A (R2 = 0.60, P = 0.0004). However, the GE pattern of other genes differed between saliva and blood. In summary, the current human in vivo study, (I) reveals significant radiation-induced GE associations of five transcriptional biomarkers in salivary samples, (II) suggests genes predicting diverse clinical outcomes such as acute and late radiotoxicity as well as ARS severity, and (III) supports the view that blood-based GE response can be reflected in saliva samples, indicating that saliva is a "mirror of the body" for certain but not all genes and, thus, studies for each gene of interest in blood are required for saliva.
Collapse
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - A. Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Czech Republic
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - M. Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - G. Kultova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Czech Republic
| | - M. Markova Stastna
- Institute for Hematology and Blood Transfusion, Hospital Na Bulovce, Prague, Czech Republic
| | - I. Sirak
- Department of Oncology and Radiotherapy, University Hospital and Medical Faculty in Hradec Kralove, Czech Republic
| | - S. Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - D. Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Kasper
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032
| | - S. A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032
| | - W. Bäumler
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C. Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
4
|
Shang M, Ma M, Su G, Xiao L. Application value of miRNA-182 as a biomarker for cancer diagnosis: a systematic review with meta-analysis. Biomark Med 2023; 17:907-918. [PMID: 38205594 DOI: 10.2217/bmm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Aim: This study aims to establish the potential reliability and validity of miRNA-182 as a diagnostic tool in oncology, and hence to contribute to the decision-making process in clinical settings. Materials & methods: To further evaluate the role of miRNA-182 as a cancer biomarker, we conducted a search of the PubMed, Cochrane Library, Wanfang and China National Knowledge Infrastructure databases of existing literature. Conclusion: These results suggest that miRNA-182 could function as a potential molecular marker for cancer detection and diagnosis. The effect of miRNA-182 on tumor development should be further studied to confirm these results and add to the current understanding of its role in cancer.
Collapse
Affiliation(s)
- Mengyu Shang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Mengdan Ma
- Shantou University Medical College, Shantou, 515041, China
| | - Ganglin Su
- Shantou University Medical College, Shantou, 515041, China
| | - Liang Xiao
- Department of Surgery and Oncology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| |
Collapse
|
5
|
Kabzinski J, Kucharska-Lusina A, Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells 2023; 12:1916. [PMID: 37508579 PMCID: PMC10377854 DOI: 10.3390/cells12141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck cancer (HNC) is a prevalent and diverse group of malignancies with substantial morbidity and mortality rates. Early detection and monitoring of HNC are crucial for improving patient outcomes. Liquid biopsy, a non-invasive diagnostic approach, has emerged as a promising tool for cancer detection and monitoring. In this article, we review the application of RNA-based liquid biopsy in HNC. Various types of RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), circular RNA (circRNA) and PIWI-interacting RNA (piRNA), are explored as potential biomarkers in HNC liquid-based diagnostics. The roles of RNAs in HNC diagnosis, metastasis, tumor resistance to radio and chemotherapy, and overall prognosis are discussed. RNA-based liquid biopsy holds great promise for the early detection, prognosis, and personalized treatment of HNC. Further research and validation are necessary to translate these findings into clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Jacek Kabzinski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
6
|
Wei Z, Zhou Y, Wang R, Wang J, Chen Z. Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2022; 14:2561. [PMID: 36559056 PMCID: PMC9781707 DOI: 10.3390/pharmaceutics14122561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Undesirable side effects and multidrug tolerance are the main holdbacks to the treatment of cancer in conventional chemotherapy. Fortunately, targeted drug delivery can improve the enrichment of drugs at the target site and reduce toxicity to normal tissues and cells. A targeted drug delivery system is usually composed of a nanocarrier and a targeting component. The targeting component is called a "ligand". Aptamers have high target affinity and specificity, which are identified as attractive and promising ligands. Therefore, aptamers have potential application in the development of smart targeting systems. For instance, aptamers are able to efficiently recognize tumor markers such as nucleolin, mucin, and epidermal growth factor receptor (EGFR). Besides, aptamers can also identify glycoproteins on the surface of tumor cells. Thus, the aptamer-mediated targeted drug delivery system has received extensive attention in the application of cancer therapy. This article reviews the application of aptamers as smart ligands for targeted drug delivery in cancer therapy. Special interest is focused on aptamers as smart ligands, aptamer-conjugated nanocarriers, aptamer targeting strategy for tumor microenvironment (TME), and aptamers that are specified to crucial cancer biomarkers for targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
7
|
Noh JW, Jang JH, Yoon HS, Kim KB, Heo MH, Jang HE, Kim YJ, Lee Y. Evaluation of Salivary Biomarkers of Periodontal Disease Based on Smoking Status: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14619. [PMID: 36361498 PMCID: PMC9657317 DOI: 10.3390/ijerph192114619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Saliva is a useful biomarker for diagnosing oral health conditions, including periodontal disease (PD). Smoking is a risk factor for PD. The aim of this systematic review was to summarize the salivary biomarkers associated with PD based on smoking status. A comprehensive search of the MEDLINE (via PubMed), EMBASE, Cochrane, SCOPUS, and Web of Sciences databases was conducted up to 1 January 2021 using key terms relevant to the topic of our research and Cochrane methodology and improved with searching a gray literature resource. The methodological quality of all included studies was assessed with the revised Quality Assessment of Diagnostic Accuracy Studies-2. Seven studies were included. Smokers had increased levels of malondialdehyde, sialic acid, salivary cortisol, salivary interleukin 1β, albumin, tissue inhibitor of matrix metalloproteinase (TIMP), and the pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP), as well as decreased levels of superoxide dismutase, activity of lactate dehydrogenase, activity of enzyme activity of β-glucuronidase, uric acid, matrix metalloproteinase-8 (MMP-8)/TIMP-1 ratio, and combinations of MMP-8 and ICTP. However, mixed results were observed some studies in detecting glutathione peroxidase, MMP-8, and MMP-14. The results were interpreted with caution because of limitations in the number of included studies and the study design. Some salivary biomarkers are potentially useful in combination or alone for diagnosing PD. Methodological and systematic studies are needed to develop more effective biomarkers.
Collapse
Affiliation(s)
- Jin-won Noh
- Division of Health Administration, College of Software and Digital Healthcare Convergence, Yonsei University, Gangwon-do, Wonju 26493, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, College of Health Science, Dankook University, Chungcheongnam-do, Cheonan 31116, Korea
- Department of Public Health Science, Dankook University Graduate School, Chungcheongnam-do, Cheonan 31116, Korea
| | - Hae-Soo Yoon
- Department of Public Health Science, Dankook University Graduate School, Chungcheongnam-do, Cheonan 31116, Korea
| | - Kyoung-Beom Kim
- Department of Health Administration, Dankook University, Chungcheongnam-do, Cheonan 31116, Korea
- Industry-Academic Cooperation Foundation, Yonsei University, Gangwon-do, Wonju 26493, Korea
| | - Min-Hee Heo
- Department of Health Administration, Yonsei University Graduate School, Gangwon-do, Wonju 26493, Korea
| | - Ha-eun Jang
- Department of Healthcare Management, College of Bio Convergence, Eulji University, Gyeonggi-do, Seongnam 13135, Korea
| | - Young-Jin Kim
- Department of Health Administration, Yonsei University Graduate School, Gangwon-do, Wonju 26493, Korea
| | - Yejin Lee
- Department of Public Health Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
González-Moles MÁ, Aguilar-Ruiz M, Ramos-García P. Challenges in the Early Diagnosis of Oral Cancer, Evidence Gaps and Strategies for Improvement: A Scoping Review of Systematic Reviews. Cancers (Basel) 2022; 14:4967. [PMID: 36230890 PMCID: PMC9562013 DOI: 10.3390/cancers14194967] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer is a growing problem, accounting for 377,713 worldwide new cases per year, and 177,757 deaths annually and representing a 5-year mortality rate close to 50%, which is a considerable mortality that has not decreased substantially in the last 40 years. The main cause of this high mortality is related to the diagnosis of a high percentage of oral cancers in advanced stages (stages III and IV) in which treatment is complex, mutilating or disabling, and ineffective. The essential cause of a cancer diagnosis at a late stage is the delay in diagnosis, therefore, the achievement of the objective of improving the prognosis of oral cancer involves reducing the delay in its diagnosis. The reasons for the delay in the diagnosis of oral cancer are complex and involve several actors and circumstances-patients, health care providers, and health services. In this paper, we present the results of a scoping review of systematic reviews on the diagnostic delay in oral cancer with the aim to better understand, based on the evidence, and discuss in depth, the reasons for this fact, and to identify evidence gaps and formulate strategies for improvement.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- Faculty of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | | | - Pablo Ramos-García
- Faculty of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
9
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
10
|
Koopaie M, Kolahdooz S, Fatahzadeh M, Manifar S. Salivary biomarkers in breast cancer diagnosis: A systematic review and diagnostic meta-analysis. Cancer Med 2022; 11:2644-2661. [PMID: 35315584 PMCID: PMC9249990 DOI: 10.1002/cam4.4640] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/25/2021] [Accepted: 01/02/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Salivary diagnostics and their utility as a nonaggressive approach for breast cancer diagnosis have been extensively studied in recent years. This meta-analysis assesses the diagnostic value of salivary biomarkers in differentiating between patients with breast cancer and controls. METHODS We conducted a meta-analysis and systematic review of studies related to salivary diagnostics published in PubMed, EMBASE, Scopus, Ovid, Science Direct, Web of Science (WOS), and Google Scholar. The articles were chosen utilizing inclusion and exclusion criteria, as well as assessing their quality. Specificity and sensitivity, along with negative and positive likelihood ratios (NLR and PLR) and diagnostic odds ratio (DOR), were calculated based on random- or fixed-effects model. Area under the curve (AUC) and summary receiver-operating characteristic (SROC) were plotted and evaluated, and Fagan's Nomogram was evaluated for clinical utility. RESULTS Our systematic review and meta-analysis included 14 papers containing 121 study units with 8639 adult subjects (4149 breast cancer patients and 4490 controls without cancer). The pooled specificity and sensitivity were 0.727 (95% CI: 0.713-0.740) and 0.717 (95% CI: 0.703-0.730), respectively. The pooled NLR and PLR were 0.396 (95% CI: 0.364-0.432) and 2.597 (95% CI: 2.389-2.824), respectively. The pooled DOR was 7.837 (95% CI: 6.624-9.277), with the AUC equal to 0.801. The Fagan's nomogram showed post-test probabilities of 28% and 72% for negative and positive outcomes, respectively. We also conducted subgroup analyses to determine specificity, sensitivity, DOR, PLR, and NLR based on the mean age of patients (≤52 or >52 years old), saliva type (stimulated and unstimulated saliva), biomarker measurement method (mass spectrometry [MS] and non-MS measurement methods), sample size (≤55 or >55), biomarker type (proteomics, metabolomics, transcriptomics and proteomics, and reagent-free biophotonic), and nations. CONCLUSION Saliva, as a noninvasive biomarker, has the potential to accurately differentiate breast cancer patients from healthy controls.
Collapse
Affiliation(s)
| | | | - Mahnaz Fatahzadeh
- Department of Diagnostic SciencesRutgers School of Dental MedicineNewarkNew JerseyUSA
| | - Soheila Manifar
- Tehran University of Medical SciencesTehranIran
- Cancer Research Center, Cancer Institute of IranTehranIran
| |
Collapse
|
11
|
Seif S, Afra N, Dadgar E, Enteghad S, Argani P, Aghdasi N, Masouleh SS, Barati G. The expression of salivary microRNAs in oral lichen planus: Searching for a prognostic biomarker. Pathol Res Pract 2022; 234:153923. [PMID: 35526303 DOI: 10.1016/j.prp.2022.153923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
Abstract
Oral lichen planus (OLP) is a premalignant disease with unknown etiology. It has been demonstrated that inflammation and immune activation play a central role in the pathogenesis of OLP. Various cellular and molecular mechanisms are involved in the pathogenesis of OLP. Studies have shown that 2-7% of OLP patients develop oral squamous cell carcinoma (OSCC). As a result, determining the prognosis of the disease will be promising in preventing oral carcinoma. MicroRNAs are involved in the regulation of cytokine expression and cytokines have a central role in the pathogenesis of OLP. As a result, their evaluation in body fluids may be helpful in assessing the disease's status and progression, and facilitating the treatment process. In this regard, much attention has been paid to the saliva of OLP patients as the sampling is cost-effective and non-invasive. Here, we discuss the potential of miRNAs in predicting the disease severity and progression.
Collapse
Affiliation(s)
- Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Enteghad
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pendar Argani
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noura Aghdasi
- Faculty of Dentistry, Inonu University, Malatya, Turkey
| | | | | |
Collapse
|
12
|
Wu S, Xu H, Zhang R, Wang X, Yang J, Li X, Chen S, He W, Nan A. Circular RNA circLAMA3 inhibits the proliferation of bladder cancer by directly binding an mRNA. Mol Ther Oncolytics 2022; 24:742-754. [PMID: 35317525 PMCID: PMC8908064 DOI: 10.1016/j.omto.2022.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The circular RNA (circRNA) circLAMA3 is significantly downregulated in bladder cancer tissues and cell lines. However, its function in bladder cancer has not yet been explored, and further research is needed. In this study, functional experiments demonstrated that circLAMA3 significantly inhibited the proliferation, migration, and invasion of bladder cancer cells and inhibited bladder cancer growth in vivo. Mechanistically, circLAMA3 directly binds to and promotes the degradation of MYCN mRNA, thereby reducing the MYCN protein expression in bladder cancer cells. Decreased expression of the MYCN protein inhibits the promoter activity and expression of CDK6. Ultimately, circLAMA3 affects DNA replication by downregulating CDK6, resulting in G0/G1 phase arrest and inhibition of bladder cancer proliferation. In summary, we report a potential novel regulatory mechanism via which a circRNA directly binds an mRNA and thereby regulates its fate. Moreover, circLAMA3 significantly affects the progression of bladder cancer and has potential as a diagnostic biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Shuilian Wu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haotian Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ruirui Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaofei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Sixian Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wanting He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Aruo Nan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
13
|
Ostheim P, Alemu SW, Tichý A, Sirak I, Davidkova M, Stastna MM, Kultova G, Schuele S, Paunesku T, Woloschak G, Ghandhi SA, Amundson SA, Haimerl M, Stroszczynski C, Port M, Abend M. Examining potential confounding factors in gene expression analysis of human saliva and identifying potential housekeeping genes. Sci Rep 2022; 12:2312. [PMID: 35145126 PMCID: PMC8831573 DOI: 10.1038/s41598-022-05670-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Isolation of RNA from whole saliva, a non-invasive and easily accessible biofluid that is an attractive alternative to blood for high-throughput biodosimetry of radiological/nuclear victims might be of clinical significance for prediction and diagnosis of disease. In a previous analysis of 12 human samples we identified two challenges to measuring gene expression from total RNA: (1) the fraction of human RNA in whole saliva was low and (2) the bacterial contamination was overwhelming. To overcome these challenges, we performed selective cDNA synthesis for human RNA species only by employing poly(A)+-tail primers followed by qRT-PCR. In the current study, this approach was independently validated on 91 samples from 61 healthy donors. Additionally, we used the ratio of human to bacterial RNA to adjust the input RNA to include equal amounts of human RNA across all samples before cDNA synthesis, which then ensured comparable analysis using the same base human input material. Furthermore, we examined relative levels of ten known housekeeping genes, and assessed inter- and intra-individual differences in 61 salivary RNA isolates, while considering effects of demographical factors (e.g. sex, age), epidemiological factors comprising social habits (e.g. alcohol, cigarette consumption), oral hygiene (e.g. flossing, mouthwash), previous radiological diagnostic procedures (e.g. number of CT-scans) and saliva collection time (circadian periodic). Total human RNA amounts appeared significantly associated with age only (P ≤ 0.02). None of the chosen housekeeping genes showed significant circadian periodicity and either did not associate or were weakly associated with the 24 confounders examined, with one exception, 60% of genes were altered by mouthwash. ATP6, ACTB and B2M represented genes with the highest mean baseline expression (Ct-values ≤ 30) and were detected in all samples. Combining these housekeeping genes for normalization purposes did not decrease inter-individual variance, but increased the robustness. In summary, our work addresses critical confounders and provides important information for the successful examination of gene expression in human whole saliva.
Collapse
Affiliation(s)
- P Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany.
| | - S W Alemu
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - A Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Brno, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital and Medical Faculty in Hradec Kralove, Hradec Králové, Czech Republic
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Markova Stastna
- Institute for Hematology and Blood Transfusion, Hospital Na Bulovce, Prague, Czech Republic
| | - G Kultova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Brno, Czech Republic
| | - S Schuele
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - T Paunesku
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - G Woloschak
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - S A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - M Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| |
Collapse
|
14
|
Scholtz B, Horváth J, Tar I, Kiss C, Márton IJ. Salivary miR-31-5p, miR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma. Pathogens 2022; 11:pathogens11020229. [PMID: 35215172 PMCID: PMC8876825 DOI: 10.3390/pathogens11020229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
If not detected early, oral squamous cell carcinoma (OSCC) has very poor prognosis, emphasizing the need for reliable early diagnostics. Saliva is considered a promising surrogate biosample for OSCC detection, because it comes into contact with many cells of the tumor mass, providing a comprehensive sampling of tumor-specific biomolecules. Although several protein- and RNA-based salivary biomarkers have been proposed for the detection of OSCC, the results of the studies show large differences. Our goal was to clarify which salivary microRNAs (miRNA) show reliably high expression in the saliva of OSCC patients, to be used as cancer-specific biomarkers, and potentially as early diagnostic biomarkers. Based on a detailed literature search, we selected six miRNAs commonly overexpressed in OSCC, and analyzed their expression in saliva samples of cancer patients and controls by real-time quantitative PCR. Our results suggest that miR-345 and miR-31-5p are consistently upregulated salivary biomarkers for OSCC, and a three-miRNA panel of miR-345, miR-31-5p, and miR-424-3p can distinguish cancer and control patients with high sensitivity.
Collapse
Affiliation(s)
- Beáta Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-30-634-6065; Fax: +36-52-314-989
| | - József Horváth
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Tar
- Department of Oral Medicine, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csongor Kiss
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó J. Márton
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
15
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
16
|
Lugo-Flores MA, Quintero-Cabello KP, Palafox-Rivera P, Silva-Espinoza BA, Cruz-Valenzuela MR, Ortega-Ramirez LA, Gonzalez-Aguilar GA, Ayala-Zavala JF. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines 2021; 9:1669. [PMID: 34829898 PMCID: PMC8615420 DOI: 10.3390/biomedicines9111669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial diseases and reactive oxygen species can cause dental caries and oral cancer. Therefore, the present review analyzes and discusses the antibacterial and antioxidant properties of synthetic and plant-derived substances and their current and future patents to formulate dental products. The reviewed evidence indicates that chlorhexidine, fluorides, and hydrogen peroxide have adverse effects on the sensory acceptability of oral care products. As an alternative, plant-derived substances have antimicrobial and antioxidant properties that can be used in their formulation. Also, adding plant metabolites favors the sensory acceptability of dental products compared with synthetic compounds. Therefore, plant-derived substances have antibacterial, antioxidant, and flavoring activity with the potential to be used in the formulation of toothpaste, mouth rinses, dentures cleansers-fixatives, and saliva substitutes.
Collapse
Affiliation(s)
- Marco A. Lugo-Flores
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Karen P. Quintero-Cabello
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Patricia Palafox-Rivera
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Brenda A. Silva-Espinoza
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Manuel Reynaldo Cruz-Valenzuela
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Luis Alberto Ortega-Ramirez
- Unidad Académica San Luis Río Colorado, Universidad Estatal de Sonora, Carretera, Sonoyta-San Luis Río Colorado km. 6.5, Parque Industrial, San Luis Río Colorado C.P. 83500, Sonora, Mexico;
| | - Gustavo Adolfo Gonzalez-Aguilar
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| |
Collapse
|
17
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 PMCID: PMC11552548 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Canada
- CytoGnomix Inc, London, Canada
| | | | - Gayle E. Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA
- Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L. Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
18
|
Li M, Qi Y, Wang G, Bu S, Chen M, Yu J, Luo T, Meng L, Dai A, Zhou Y, Liu S, Huo X. Proteomic profiling of saliva reveals association of complement system with primary Sjögren's syndrome. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1724-1739. [PMID: 34516718 PMCID: PMC8589410 DOI: 10.1002/iid3.529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To compare the saliva proteomes of experimental Sjögren's syndrome (ESS) model mice and healthy controls to identify potential diagnostic biomarkers for primary Sjögren's syndrome (pSS). METHODS Proteins were extracted from the saliva of three ESS and three normal control mice using the data-independent acquisition technique. R language was used to identify the differentially expressed proteins (DEPs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to functionally annotate the DEPs. The protein-protein interaction (PPI) network was constructed and the core proteins were identified with the STRING website and Cytoscape software. The concentrations of Serpin family G member 1 (SERPING1), C3, complement factor H (CFH), fibrinogen alpha (FGA), and fibrinogen gamma (FGG) in saliva were determined by ELISA. RESULTS A total of 1722 DEPs were identified in the saliva of the ESS mice relative to the controls, of which 50 showed significantly different expression levels between the two groups. SERPING1, C3, CFH, FGA, and FGG were significantly downregulated, and keratin 4 (Krt4) and transglutaminase 3 (TGM3) were upregulated in the saliva of ESS mice. The PPI network showed that SERPING1, C3, FGG, FGA, TGM3, and hemopexin (HPX) were the core proteins. ELISA results showed that the expression of C3, CFH, FGA, and SERPING1 were significantly downregulated in the saliva of ESS mice. However, the expression of FGG was a little downregulated but with no significant difference. SERPING1, FGG, and FGA may downregulate the complement C3 by inhibiting immune complement system, thereby promoting pSS progression. CONCLUSIONS The salivary proteome of ESS mice was markedly different from that of healthy controls, suggesting that salivary proteomics is a promising noninvasive diagnostic tool for pSS. SERPING1, C3, CFH, FGA, and FGG are potential biomarkers of pSS.
Collapse
Affiliation(s)
- Mingde Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Anesthesiology, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Yajun Qi
- Department of Traditional Chinese Medicine, College of Acupuncture and Massage, Anhui University of traditional Chinese Medicine, Hefei, Anhui, China
| | - Guizhen Wang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Su Bu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ming Chen
- Department of Anesthesiology, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiahui Yu
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Tianyang Luo
- Department of Anesthesiology, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Lulu Meng
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anran Dai
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yong Zhou
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuai Liu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
19
|
Wang Y, Wang N, Cui L, Li Y, Cao Z, Wu X, Wang Q, Zhang B, Ma C, Cheng Y. Long Non-coding RNA MEG3 Alleviated Ulcerative Colitis Through Upregulating miR-98-5p-Sponged IL-10. Inflammation 2021; 44:1049-1059. [PMID: 33394187 DOI: 10.1007/s10753-020-01400-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Ulcerative colitis (UC) is a refractory chronic colitis disease with the particularly complex cause. Recently, long noncoding RNAs (lncRNAs) have been reported to be related to the development of UC. LncRNA MEG3 has been proved to play an anti-inflammatory role in a variety of inflammatory diseases, which share similar pathogenesis with UC, indicating the potential involvement of lncRNA MEG3 in UC. This study aims to investigate the functional role and underlying mechanism of lncRNA MEG3 in UC. Gradient concentration of H2O2 (0, 20, 50, 100, and 200 μM) was used to induce Caco-2 damage models in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay. LncRNA MEG3, miR-98-5p, and IL-10 levels in H2O2-treated Caco-2 cells were assessed by performing real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, the binding relationship between lncRNA MEG3 and miR-98-5p, as well as the binding relationship between miR-98-5p and IL-10, was validated using dual-luciferase reporter assay. 2, 4, 6-Trinitrobenzenesulfonic acid solution (TNBS) was applied to induce ulcerative colitis in young rats. The body weight, disease activity index (DAI), length and weight of the colons, pathological scores of UC rats, reactive oxygen species (ROS), and inflammatory cytokines were determined to evaluate the effects of lncRNA MEG3 on the progression of UC. Besides, hematoxylin-eosin (HE) staining was exploited to observe histological changes of UC rat colons. In addition, western blotting analysis was also performed to evaluate the apoptosis and pyroptosis-related protein levels. Moreover, lncRNA MEG3, miR-98-5p, and IL-10 levels in UC rat colons were further assessed by RT-qPCR. Meanwhile, IL-10 expression was determined using immunohistochemistry. LncRNA MEG3 and IL-10 levels were distinctly decreased while miR-98-5p was increased in Caco-2 damage models and UC rats. Bioinformatics analysis predicted the binding sites of lncRNA MEG3 to miR-98-5p and miR-98-5p to IL-10. Besides, dual-luciferase reporter assay validated the negative correlation between lncRNA MEG3 and miR-98-5p, miR-98-5p, and IL-10. Overexpressed lncRNA MEG3 reduced. DAI scores and colon weight/length ratio improved UC ulceration. In addition, upregulation of lncRNA MEG3 relieved oxidative stress, inflammatory response, apoptosis, and pyroptosis of UC rat colons. LncRNA MEG3 overexpression alleviates the serve ulceration of UC rat colons by upregulating IL-10 expression via sponging miR-98-5p. To sum up, this study reveals the protective role of lncRNA MEG3 in the development of UC and may provide potential therapeutic targets for UC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Nan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Lianlian Cui
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Yan Li
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Zhenfeng Cao
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Xing Wu
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Qianhan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Bo Zhang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Caixia Ma
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Yanbo Cheng
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
20
|
Bazzano M, Laghi L, Zhu C, Lotito E, Sgariglia S, Tesei B, Laus F. Exercise Induced Changes in Salivary and Serum Metabolome in Trained Standardbred, Assessed by 1H-NMR. Metabolites 2020; 10:metabo10070298. [PMID: 32708237 PMCID: PMC7407172 DOI: 10.3390/metabo10070298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
In the present study, data related to the metabolomics of saliva and serum in trained standardbred horses are provided for the first time. Metabolomic analysis allows to analyze all the metabolites within selected biofluids, providing a better understanding of biochemistry modifications related to exercise. On the basis of the current advances observed in metabolomic research on human athletes, we aimed to investigate the metabolites’ profile of serum and saliva samples collected from healthy standardbred horses and the relationship with physical exercise. Twelve trained standardbred horses were sampled for blood and saliva before (T0) and immediately after (T1) standardized exercise. Metabolomic analysis of both samples was performed by 1H-NMR spectroscopy. Forty-six metabolites in serum and 62 metabolites in saliva were detected, including alcohols, amino acids, organic acids, carbohydrates and purine derivatives. Twenty-six and 14 metabolites resulted to be significantly changed between T0 and T1 in serum and saliva, respectively. The findings of 2-hydroxyisobutyrate and 3-hydroxybutyrate in serum and GABA in equine saliva, as well as their modifications following exercise, provide new insights about the physiology of exercise in athletic horses. Glycerol might represent a novel biomarker for fitness evaluation in sport horses.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
- Correspondence:
| | - Chenglin Zhu
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Enrica Lotito
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| | | | - Beniamino Tesei
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, Italy; (M.B.); (E.L.); (B.T.); (F.L.)
| |
Collapse
|
21
|
Mujica ML, Gallay PA, Perrachione F, Montemerlo AE, Tamborelli LA, Vaschetti VM, Reartes DF, Bollo S, Rodríguez MC, Dalmasso PR, Rubianes MD, Rivas GA. New trends in the development of electrochemical biosensors for the quantification of microRNAs. J Pharm Biomed Anal 2020; 189:113478. [PMID: 32768875 DOI: 10.1016/j.jpba.2020.113478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Pablo A Gallay
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Fabrizio Perrachione
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Luis A Tamborelli
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Daiana F Reartes
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Soledad Bollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santiago, Chile
| | - Marcela C Rodríguez
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Pablo R Dalmasso
- CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - María D Rubianes
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
22
|
Overcoming challenges in human saliva gene expression measurements. Sci Rep 2020; 10:11147. [PMID: 32636420 PMCID: PMC7341869 DOI: 10.1038/s41598-020-67825-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
Saliva, as a non-invasive and easily accessible biofluid, has been shown to contain RNA biomarkers for prediction and diagnosis of several diseases. However, systematic analysis done by our group identified two problematic issues not coherently described before: (1) most of the isolated RNA originates from the oral microbiome and (2) the amount of isolated human RNA is comparatively low. The degree of bacterial contamination showed ratios up to 1:900,000, so that only about one out of 900,000 RNA copies was of human origin, but the RNA quality (average RIN 6.7 + /− 0.8) allowed for qRT-PCR. Using 12 saliva samples from healthy donors, we modified the methodology to (1) select only human RNA during cDNA synthesis by aiming at the poly(A)+-tail and (2) introduced a pre-amplification of human RNA before qRT-PCR. Further, the manufacturer’s criteria for successful pre-amplification (Ct values ≤ 35 for unamplified cDNA) had to be replaced by (3) proofing linear pre-amplification for each gene, thus, increasing the number of evaluable samples up to 70.6%. When considering theses three modifications unbiased gene expression analysis on human salivary RNA can be performed.
Collapse
|
23
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|