1
|
Mori MP, Lozoya OA, Brooks AM, Bortner CD, Nadalutti CA, Ryback B, Rickard BP, Overchuk M, Rizvi I, Rogasevskaia T, Huang KT, Hasan P, Hajnóczky G, Santos JH. Mitochondrial membrane hyperpolarization modulates nuclear DNA methylation and gene expression through phospholipid remodeling. Nat Commun 2025; 16:4029. [PMID: 40301431 PMCID: PMC12041266 DOI: 10.1038/s41467-025-59427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 04/23/2025] [Indexed: 05/01/2025] Open
Abstract
Maintenance of the mitochondrial inner membrane potential (ΔΨm) is critical for many aspects of mitochondrial function. While ΔΨm loss and its consequences are well studied, little is known about the effects of mitochondrial hyperpolarization. In this study, we used cells deleted of ATP5IF1 (IF1), a natural inhibitor of the hydrolytic activity of the ATP synthase, as a genetic model of increased resting ΔΨm. We found that the nuclear DNA hypermethylates when the ΔΨm is chronically high, regulating the transcription of mitochondrial, carbohydrate and lipid genes. These effects can be reversed by decreasing the ΔΨm and recapitulated in wild-type (WT) cells exposed to environmental chemicals that cause hyperpolarization. Surprisingly, phospholipid changes, but not redox or metabolic alterations, linked the ΔΨm to the epigenome. Sorted hyperpolarized WT and ovarian cancer cells naturally depleted of IF1 also showed phospholipid remodeling, indicating this as an adaptation to mitochondrial hyperpolarization. These data provide a new framework for how mitochondria can impact epigenetics and cellular biology to influence health outcomes, including through chemical exposures and in disease states.
Collapse
Affiliation(s)
- Mateus Prates Mori
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Durham, NC, USA
| | - Oswaldo A Lozoya
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Durham, NC, USA
| | - Ashley M Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Durham, NC, USA
| | - Carl D Bortner
- Flow Cytometry Center, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Durham, NC, USA
| | - Cristina A Nadalutti
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Durham, NC, USA
| | - Birgitta Ryback
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina (UNC), Chapel Hill, NC, USA
| | - Marta Overchuk
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| | - Imran Rizvi
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- Lineberger Comprehensive Cancer Center, UNC, Chapel Hill, NC, USA
| | | | - Kai Ting Huang
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Prottoy Hasan
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Durham, NC, USA.
| |
Collapse
|
2
|
Zhou AL, Ward RE. Dietary Milk Phospholipids Increase Body Fat and Modulate Gut Permeability, Systemic Inflammation, and Lipid Metabolism in Mice. J Dairy Sci 2024:S0022-0302(24)01079-8. [PMID: 39154725 DOI: 10.3168/jds.2024-25235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
The study aimed at how dietary milk polar lipids affect gut permeability, systemic inflammation, and lipid metabolism during diet-induced obesity (DIO). C57BL/6J mice (n = 6x3) were fed diets with 34% fat as energy for 15 weeks: (1) modified AIN-93G diet (CO); (2) CO with milk gangliosides (GG); (3) CO with milk phospholipids (MPL). Gut permeability was assessed by FITC-dextran and sugar absorption tests. Intestinal tight junction proteins were evaluated by Western blot. Plasma cytokines were measured by immunoassay. Body composition was assessed by magnetic resonance imaging. Tissue lipid profiles were obtained by thin layer chromatography. Hepatic expression of genes associated with lipid metabolism was assessed by RT-qPCR. MPL increased the efficiency of converting food into body fat and facilitated body fat accumulation compared with CO. MPL and GG did not affect fasting glucose or HOMA-IR during DIO. MPL increased while GG decreased plasma TG compared with CO. MPL decreased phospholipids subclasses in the muscle while increased those in the liver compared with CO. GG and MPL had little effect on hepatic expression of genes associated with lipid metabolism. Compared with CO, MPL decreased polar lipids content in colon mucosa. Small intestinal permeability decreased while colon permeability increased and then recovered during the feeding period. High-fat feeding increased plasma endotoxin after DIO but did not affect plasma cytokines. MPL and GG did not affect plasma endotoxin, adipokines and inflammatory cytokines. After the establishment of obesity, MPL increased gut permeability to large molecules but decreased intestinal absorption of small molecules while GG tended to have the opposite effects. MPL and GG decreased mannitol and sucralose excretions, which peaked at d 45 in the CO group. MPL decreased occludin in jejunum mucosa compared with CO. GG and MPL did not affect zonula occludens-1 in gut mucosa. In conclusion, during DIO, milk GG decreased gut permeability, and had little effect on systemic inflammation and lipid metabolism; MPL facilitated body fat accumulation, decreased gut permeability, did not affect systemic inflammation.
Collapse
Affiliation(s)
- Albert Lihong Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
3
|
Vanni E, Lindner K, Gavin AC, Montessuit C. Differential intracellular management of fatty acids impacts on metabolic stress-stimulated glucose uptake in cardiomyocytes. Sci Rep 2023; 13:14805. [PMID: 37684349 PMCID: PMC10491837 DOI: 10.1038/s41598-023-42072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stimulation of glucose uptake in response to ischemic metabolic stress is important for cardiomyocyte function and survival. Chronic exposure of cardiomyocytes to fatty acids (FA) impairs the stimulation of glucose uptake, whereas induction of lipid droplets (LD) is associated with preserved glucose uptake. However, the mechanisms by which LD induction prevents glucose uptake impairment remain elusive. We induced LD with either tetradecanoyl phorbol acetate (TPA) or 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Triacylglycerol biosynthesis enzymes were inhibited in cardiomyocytes exposed to FA ± LD inducers, either upstream (glycerol-3-phosphate acyltransferases; GPAT) or downstream (diacylglycerol acyltransferases; DGAT) of the diacylglycerol step. Although both inhibitions reduced LD formation in cardiomyocytes treated with FA and LD inducers, only DGAT inhibition impaired metabolic stress-stimulated glucose uptake. DGAT inhibition in FA plus TPA-treated cardiomyocytes reduced triacylglycerol but not diacylglycerol content, thus increasing the diacylglycerol/triacylglycerol ratio. In cardiomyocytes exposed to FA alone, GPAT inhibition reduced diacylglycerol but not triacylglycerol, thus decreasing the diacylglycerol/triacylglycerol ratio, prevented PKCδ activation and improved metabolic stress-stimulated glucose uptake. Changes in AMP-activated Protein Kinase activity failed to explain variations in metabolic stress-stimulated glucose uptake. Thus, LD formation regulates metabolic stress-stimulated glucose uptake in a manner best reflected by the diacylglycerol/triacylglycerol ratio.
Collapse
Affiliation(s)
- Ettore Vanni
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Karina Lindner
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christophe Montessuit
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
4
|
Abomughaid M, Tay ESE, Pickford R, Malladi C, Read SA, Coorssen JR, Gloss BS, George J, Douglas MW. PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication. Int J Mol Sci 2023; 24:ijms24108781. [PMID: 37240132 DOI: 10.3390/ijms24108781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.
Collapse
Affiliation(s)
- Mosleh Abomughaid
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chandra Malladi
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Blacktown Clinical School, Western Sydney University and Blacktown Hospital, Sydney, NSW 2751, Australia
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
5
|
Asressu KH, Zhang Q. Detection and Semi-quantification of Lipids on High-Performance Thin-Layer Chromatography Plate using Ceric Ammonium Molybdate Staining. EUR J LIPID SCI TECH 2023; 125:2200096. [PMID: 36818638 PMCID: PMC9937734 DOI: 10.1002/ejlt.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/05/2022]
Abstract
It is desirable to quickly check the composition of lipids in small size samples, but achieving this is challenging using the existing staining methods. Herein, we developed a highly sensitive and semi-quantitative method for analysis of lipid samples with ceric ammonium molybdate (CAM) staining. The CAM detection method was systematically evaluated with a wide range of lipid classes including phospholipids, sphingolipids, glycerolipids, fatty acids (FA) and sterols, demonstrating high sensitivity, stability, and overall efficiency. Additionally, CAM staining provides a clean yellow background in high performance thin-layer chromatography (HPTLC) which facilitates quantification of lipids using image processing software. Lipids can be stained with CAM reagent regardless of their head group types, position of the carbon-carbon double bonds, geometric isomerism and the variation in the length of FA chain, but staining is mostly affected by the degree of unsaturation of the FA backbone. The mechanism of the CAM staining of lipids was proposed on principles of the reduction-oxidation reaction, in which Mo(VI) oxidizes the unsaturated lipids into carbonyl compounds on the HPTLC plate upon heating, while itself being reduced to Mo(IV). This method was applied for the separation, identification, and quantification of lipid extracts from porcine brain.
Collapse
Affiliation(s)
- Kesatebrhan Haile Asressu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
6
|
Lindner K, Beckenbauer K, van Ek LC, Titeca K, de Leeuw SM, Awwad K, Hanke F, Korepanova AV, Rybin V, van der Kam EL, Mohler EG, Tackenberg C, Lakics V, Gavin AC. Isoform- and cell-state-specific lipidation of ApoE in astrocytes. Cell Rep 2022; 38:110435. [PMID: 35235798 DOI: 10.1016/j.celrep.2022.110435] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 01/21/2023] Open
Abstract
Apolipoprotein E transports lipids and couples metabolism between astrocytes and neurons. The E4 variant (APOE4) affects these functions and represents a genetic predisposition for Alzheimer's disease, but the molecular mechanisms remain elusive. We show that ApoE produces different types of lipoproteins via distinct lipidation pathways. ApoE forms high-density lipoprotein (HDL)-like, cholesterol-rich particles via the ATP-binding cassette transporter 1 (ABCA1), a mechanism largely unaffected by ApoE polymorphism. Alternatively, ectopic accumulation of fat in astrocytes, a stress-associated condition, redirects ApoE toward the assembly and secretion of triacylglycerol-rich lipoproteins, a process boosted by the APOE4 variant. We demonstrate in vitro that ApoE can detect triacylglycerol in membranes and spontaneously assemble lipoprotein particles (10-20 nm) rich in unsaturated triacylglycerol, and that APOE4 has remarkable properties behaving as a strong triacylglycerol binder. We propose that fatty APOE4 astrocytes have reduced ability to clear toxic fatty acids from the extracellular milieu, because APOE4 reroutes them back to secretion.
Collapse
Affiliation(s)
- Karina Lindner
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Katharina Beckenbauer
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Larissa C van Ek
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Kevin Titeca
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sherida M de Leeuw
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Khader Awwad
- AbbVie Deutschland GmbH & Co. KG Drug Metabolism and Pharmacokinetics, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Franziska Hanke
- AbbVie Deutschland GmbH & Co. KG Drug Metabolism and Pharmacokinetics, Knollstrasse, 67061 Ludwigshafen, Germany
| | | | - Vladimir Rybin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Eric G Mohler
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Viktor Lakics
- AbbVie Deutschland GmbH & Co. KG Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
7
|
Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int J Mol Sci 2021; 22:ijms22073719. [PMID: 33918442 PMCID: PMC8038311 DOI: 10.3390/ijms22073719] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-β-glucosidases, pectinesterases, polygalacturonases, β-galactosidases and β-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.
Collapse
|
8
|
Rohwedder A, Knipp S, Roberts LD, Ladbury JE. Composition of receptor tyrosine kinase-mediated lipid micro-domains controlled by adaptor protein interaction. Sci Rep 2021; 11:6160. [PMID: 33731760 PMCID: PMC7969938 DOI: 10.1038/s41598-021-85578-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptors and their ligands are well understood, little is known with respect to the impact of lipid/lipid and lipid/protein interactions in the proximal plasma membrane environment. Given that the transmembrane regions of RTKs change in response to extracellular ligand binding, the lipid interactions have important consequences in influencing signal transduction. Fibroblast growth factor receptor 2 (FGFR2) is a highly regulated RTK, including under basal conditions. Binding of the adaptor protein, growth factor receptor-bound protein 2 (GRB2) to FGFR2 prevents full activation and recruitment of downstream signalling effector proteins in the absence of extracellular stimulation. Here we demonstrate that the FGFR2-GRB2 complex is sustained in a defined lipid environment. Dissociation of GRB2 from this complex due to ligand binding, or reduced GRB2 expression, facilitates the dispersion of FGFR2 into detergent-resistant membrane (DRM) micro-domains. This modification of the plasma membrane proximal to FGFR2 provides a further regulatory checkpoint which controls receptor degradation, recycling and recruitment of intracellular signalling proteins.
Collapse
Affiliation(s)
- Arndt Rohwedder
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sabine Knipp
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
Pellowe G, Findlay HE, Lee K, Gemeinhardt TM, Blackholly LR, Reading E, Booth PJ. Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies. Biochemistry 2020; 59:2764-2775. [PMID: 32627541 PMCID: PMC7551657 DOI: 10.1021/acs.biochem.0c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.
Collapse
Affiliation(s)
- Grant
A. Pellowe
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Heather E. Findlay
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Karen Lee
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Tim M. Gemeinhardt
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Laura R. Blackholly
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Eamonn Reading
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Paula J. Booth
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
10
|
Enhancement of glycolipid production by Stenotrophomonas acidaminiphila TW3 cultivated in low cost substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Gläser A, Hammerl F, Gräler MH, Coldewey SM, Völkner C, Frech MJ, Yang F, Luo J, Tönnies E, von Bohlen und Halbach O, Brandt N, Heimes D, Neßlauer AM, Korenke GC, Owczarek-Lipska M, Neidhardt J, Rolfs A, Wree A, Witt M, Bräuer AU. Identification of Brain-Specific Treatment Effects in NPC1 Disease by Focusing on Cellular and Molecular Changes of Sphingosine-1-Phosphate Metabolism. Int J Mol Sci 2020; 21:ijms21124502. [PMID: 32599915 PMCID: PMC7352403 DOI: 10.3390/ijms21124502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.
Collapse
Affiliation(s)
- Anne Gläser
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Franziska Hammerl
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
| | - Markus H. Gräler
- Department of Anaesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Fan Yang
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
| | - Jiankai Luo
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Eric Tönnies
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, 17487 Greifswald, Germany; (E.T.); (O.v.B.u.H.)
| | - Oliver von Bohlen und Halbach
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, 17487 Greifswald, Germany; (E.T.); (O.v.B.u.H.)
| | - Nicola Brandt
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Anna-Maria Neßlauer
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | | | - Marta Owczarek-Lipska
- Human Genetics, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; (M.O.-L.); (J.N.)
- Junior Research Group, Genetics of childhood brain malformations, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; (M.O.-L.); (J.N.)
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg,26129 Oldenburg, Germany
| | | | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Anja Ursula Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg,26129 Oldenburg, Germany
- Correspondence: ; Tel.: +49-441-798-3995
| |
Collapse
|
12
|
Hertle AP, García-Cerdán JG, Armbruster U, Shih R, Lee JJ, Wong W, Niyogi KK. A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:9101-9111. [PMID: 32245810 PMCID: PMC7183190 DOI: 10.1073/pnas.1916946117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In eukaryotic photosynthetic organisms, the conversion of solar into chemical energy occurs in thylakoid membranes in the chloroplast. How thylakoid membranes are formed and maintained is poorly understood. However, previous observations of vesicles adjacent to the stromal side of the inner envelope membrane of the chloroplast suggest a possible role of membrane transport via vesicle trafficking from the inner envelope to the thylakoids. Here we show that the model plant Arabidopsis thaliana has a chloroplast-localized Sec14-like protein (CPSFL1) that is necessary for photoautotrophic growth and vesicle formation at the inner envelope membrane of the chloroplast. The cpsfl1 mutants are seedling lethal, show a defect in thylakoid structure, and lack chloroplast vesicles. Sec14 domain proteins are found only in eukaryotes and have been well characterized in yeast, where they regulate vesicle budding at the trans-Golgi network. Like the yeast Sec14p, CPSFL1 binds phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA) and acts as a phosphatidylinositol transfer protein in vitro, and expression of Arabidopsis CPSFL1 can complement the yeast sec14 mutation. CPSFL1 can transfer PIP into PA-rich membrane bilayers in vitro, suggesting that CPSFL1 potentially facilitates vesicle formation by trafficking PA and/or PIP, known regulators of membrane trafficking between organellar subcompartments. These results underscore the role of vesicles in thylakoid biogenesis and/or maintenance. CPSFL1 appears to be an example of a eukaryotic cytosolic protein that has been coopted for a function in the chloroplast, an organelle derived from endosymbiosis of a cyanobacterium.
Collapse
Affiliation(s)
- Alexander P Hertle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
| | - José G García-Cerdán
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Ute Armbruster
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Robert Shih
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jimmy J Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Winnie Wong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
13
|
Cooper Z, Simons C, Martini S. Retardation of Crystallization through the Addition of Dairy Phospholipids. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zachary Cooper
- Department of Nutrition, Dietetics, and Food Sciences Utah State University, 8700 Old Main Hill, 750 N 1200 E Logan UT 84322 USA
| | - Casey Simons
- Department of Chemistry and Biochemistry Utah State University, 8700 Old Main Hill, 750 N 1200 E Logan UT 84322 USA
| | - Silvana Martini
- Department of Nutrition, Dietetics, and Food Sciences Utah State University, 8700 Old Main Hill, 750 N 1200 E Logan UT 84322 USA
| |
Collapse
|
14
|
You Z, Zhang Q, Peng Z, Miao X. Lipid Droplets Mediate Salt Stress Tolerance in Parachlorella kessleri. PLANT PHYSIOLOGY 2019; 181:510-526. [PMID: 31341003 PMCID: PMC6776852 DOI: 10.1104/pp.19.00666] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
Microalgae are known to respond to salinity stress via mechanisms that include accumulation of compatible solutes and synthesis of antioxidants. Here, we describe a salinity-tolerance mechanism mediated by lipid droplets (LDs). In the alga Parachlorella kessleri grown under salt-stress conditions, we observed significant increases in cell size and LD content. LDs that were closely grouped along the plasma membrane shrank as the plasma membrane expanded, and some LDs were engulfed by vacuoles. Transcriptome analysis showed that genes encoding lysophospholipid acyltransferases (LPLATs) and phospholipase A2 were significantly up-regulated following salt stress. Diacylglycerol kinase and LPLAT were identified in the proteome of salt-induced LDs, alongside vesicle trafficking and plastidial proteins and histone H2B. Analysis of fatty acid composition revealed an enrichment of C18:1 and C18:2 at the expense of C18:3 in response to salt stress. Pulse-chase experiments further suggested that variations of fatty acid composition were associated with LDs. Acetate stimulation research further confirmed a positive role of LDs in cell growth under salt stress. These results suggest that LDs play important roles in salt-stress tolerance, through harboring proteins, participating in cytoplasmic component recycling, and providing materials and enzymes for membrane modification and expansion.
Collapse
Affiliation(s)
- Zaizhi You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Furber KL, Backlund PS, Yergey AL, Coorssen JR. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes 2019; 7:proteomes7040034. [PMID: 31569819 PMCID: PMC6958363 DOI: 10.3390/proteomes7040034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Regulated exocytosis enables temporal and spatial control over the secretion of biologically active compounds; however, the mechanism by which Ca2+ modulates different stages of exocytosis is still poorly understood. For an unbiased, top-down proteomic approach, select thiol- reactive reagents were used to investigate this process in release-ready native secretory vesicles. We previously characterized a biphasic effect of these reagents on Ca2+-triggered exocytosis: low doses potentiated Ca2+ sensitivity, whereas high doses inhibited Ca2+ sensitivity and extent of vesicle fusion. Capitalizing on this novel potentiating effect, we have now identified fluorescent thiol- reactive reagents producing the same effects: Lucifer yellow iodoacetamide, monobromobimane, and dibromobimane. Top-down proteomic analyses of fluorescently labeled proteins from total and cholesterol-enriched vesicle membrane fractions using two-dimensional gel electrophoresis coupled with mass spectrometry identified several candidate targets, some of which have been previously linked to the late steps of regulated exocytosis and some of which are novel. Initial validation studies indicate that Rab proteins are involved in the modulation of Ca2+ sensitivity, and thus the efficiency of membrane fusion, which may, in part, be linked to their previously identified upstream roles in vesicle docking.
Collapse
Affiliation(s)
- Kendra L Furber
- Northern Medical Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
| | - Peter S Backlund
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alfred L Yergey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
16
|
Neßlauer AM, Gläser A, Gräler M, Engelmann R, Müller-Hilke B, Frank M, Burstein C, Rolfs A, Neidhardt J, Wree A, Witt M, Bräuer AU. A therapy with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone restores splenic cholesterol homeostasis in Niemann-pick disease type C1. Lipids Health Dis 2019; 18:146. [PMID: 31248418 PMCID: PMC6598286 DOI: 10.1186/s12944-019-1088-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C1 (NPC1) is an autosomal-recessive lipid-storage disorder with an estimated minimal incidence of 1/120,000 live births. Besides other neuronal and visceral symptoms, NPC1 patients develop spleen dysfunction, isolated spleno- or hepatosplenomegaly and infections. The mechanisms of splenomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. METHODS Here, we used an NPC1 mouse model to study a splenoprotective effect of a treatment with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone and showed that this treatment has a positive effect on spleen morphology and lipid metabolism. RESULTS Disease progress can be halted and blocked at the molecular level. Mutant Npc1 (Npc1-/-) mice showed increased spleen weight and increased lipid accumulation that could be avoided by our treatment. Also, FACS analyses showed that the increased number of splenic myeloid cells in Npc1-/- mice was normalized by the treatment. Treated Npc1-/- mice showed decreased numbers of cytotoxic T cells and increased numbers of T helper cells. CONCLUSIONS In summary, the treatment promotes normal spleen morphology, stabilization of lipid homeostasis and blocking of inflammation, but alters the composition of T cell subtypes.
Collapse
Affiliation(s)
- Anna-Maria Neßlauer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Anne Gläser
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Department für Humanmedizin, Abteilung Anatomie, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
| | - Markus Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Brigitte Müller-Hilke
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057, Rostock, Germany
| | - Christine Burstein
- Institute of Clinical Chemistry and Pathobiochemistry, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Am Strande 7, 18055, Rostock, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Anja U Bräuer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany. .,Research Group Anatomy, School of Medicine and Health Sciences, Department für Humanmedizin, Abteilung Anatomie, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany. .,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
17
|
Arachidonic acid and lysophosphatidylcholine inhibit multiple late steps of regulated exocytosis. Biochem Biophys Res Commun 2019; 515:261-267. [PMID: 31126681 DOI: 10.1016/j.bbrc.2019.05.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
The canonical Phospholipase A2 (PLA2) metabolites lysophosphatidylcholine (LPC) and arachidonic acid (ARA) affect regulated exocytosis in a wide variety of cells and are proposed to directly influence membrane merger owing to their respective spontaneous curvatures. According to the Stalk-pore hypothesis, negative curvature ARA inhibits and promotes bilayer merger upon introduction into the distal or proximal monolayers, respectively; in contrast, with positive curvature, LPC has the opposite effects. Using fully primed, release-ready native cortical secretory vesicles (CV), well-established fusion assays and standardized lipid analyses, we show that exogenous ARA and LPC, as well as their non-metabolizable analogous, ETYA and ET-18-OCH3, inhibit the docking/priming and membrane merger steps, respectively, of regulated exocytosis.
Collapse
|
18
|
Zhou AL, Ward RE. Milk polar lipids modulate lipid metabolism, gut permeability, and systemic inflammation in high-fat-fed C57BL/6J ob/ob mice, a model of severe obesity. J Dairy Sci 2019; 102:4816-4831. [PMID: 30981495 DOI: 10.3168/jds.2018-15949] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Dynamic interactions between lipid metabolism, gut permeability, and systemic inflammation remain unclear in the context of obesity. Milk polar lipids, lipids derived from the milk fat globule membrane, could positively affect the aforementioned obesity-related endpoints. This study aimed to test the hypotheses that milk polar lipids will reduce gut permeability, systemic inflammation, and liver lipid levels, and differentially affect the hepatic expression of genes associated with fatty acid synthesis and cholesterol regulation in preexisting obesity. We fed 3 groups of C57BL/6J ob/ob mice (n = 6 per group) for 2 wk: (1) a modified AIN-93G diet (CO) with 34% fat by energy; (2) CO with milk gangliosides (GG) at 0.2 g/kg of diet; and (3) CO with milk phospholipids (PL) at 10 g/kg of diet. The GG and PL were provided as semi-purified concentrates and replaced 2.0% and 7.2% of dietary fat by energy. The GG and PL did not affect total food intake, weight gain, fasting glucose, or gut permeability. The PL decreased liver mass and the mesenteric fat depot compared with the CO. The GG increased tight junction protein occludin in colon mucosa compared with the CO. The GG and PL decreased tight junction protein zonula occludens-1 in jejunum mucosa compared with the CO. Plasma endotoxin increased during the study but was unaffected by the treatments. Compared with the CO and GG, the PL increased plasma sphingomyelin and plasma IL-6. The GG and PL differentially regulated genes associated with lipid metabolism in the liver compared with the CO. Regarding general effects on lipid metabolism, the GG and PL decreased lipid levels in the liver and the mesenteric depot, and increased lipid levels in the plasma. Diet consumption decreased significantly when the ob/ob mice were kept in metabolic cages, which were not big enough and resulted in unwanted animal deaths. Future studies may keep this in mind and use better metabolic equipment for ob/ob mice. In conclusion, dietary milk polar lipids may have limited beneficial effects on gut barrier integrity, systemic inflammation, and lipid metabolism in the context of severe obesity.
Collapse
Affiliation(s)
- A L Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322
| | - R E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322.
| |
Collapse
|
19
|
Dabral D, Coorssen JR. Combined targeted Omic and Functional Assays Identify Phospholipases A₂ that Regulate Docking/Priming in Calcium-Triggered Exocytosis. Cells 2019; 8:cells8040303. [PMID: 30986994 PMCID: PMC6523306 DOI: 10.3390/cells8040303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
The fundamental molecular mechanism underlying the membrane merger steps of regulated exocytosis is highly conserved across cell types. Although involvement of Phospholipase A₂ (PLA₂) in regulated exocytosis has long been suggested, its function or that of its metabolites-a lyso-phospholipid and a free fatty acid-remain somewhat speculative. Here, using a combined bioinformatics and top-down discovery proteomics approach, coupled with lipidomic analyses, PLA₂ were found to be associated with release-ready cortical secretory vesicles (CV) that possess the minimal molecular machinery for docking, Ca2+ sensing and membrane fusion. Tightly coupling the molecular analyses with well-established quantitative fusion assays, we show for the first time that inhibition of a CV surface calcium independent intracellular PLA₂ and a luminal secretory PLA₂ significantly reduce docking/priming in the late steps of regulated exocytosis, indicating key regulatory roles in the critical step(s) preceding membrane merger.
Collapse
Affiliation(s)
- Deepti Dabral
- Molecular Physiology and Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown Campus, NSW 2560, Australia.
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
20
|
Seneviratne AK, Xu M, Henao JJA, Fajardo VA, Hao Z, Voisin V, Xu GW, Hurren R, Kim S, MacLean N, Wang X, Gronda M, Jeyaraju D, Jitkova Y, Ketela T, Mullokandov M, Sharon D, Thomas G, Chouinard-Watkins R, Hawley JR, Schafer C, Yau HL, Khuchua Z, Aman A, Al-Awar R, Gross A, Claypool SM, Bazinet RP, Lupien M, Chan S, De Carvalho DD, Minden MD, Bader GD, Stark KD, LeBlanc P, Schimmer AD. The Mitochondrial Transacylase, Tafazzin, Regulates for AML Stemness by Modulating Intracellular Levels of Phospholipids. Cell Stem Cell 2019; 24:621-636.e16. [PMID: 30930145 DOI: 10.1016/j.stem.2019.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/19/2018] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
Abstract
Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.
Collapse
Affiliation(s)
- Ayesh K Seneviratne
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingjing Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Juan J Aristizabal Henao
- Laboratory of Nutritional Lipidomics, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Val A Fajardo
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Veronique Voisin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - G Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danny Jeyaraju
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Geethu Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caitlin Schafer
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Zaza Khuchua
- Department of Biochemistry, Sechenov Medical University, Moscow, Russian Federation; Institute of Medical Research Ilia State University, Tbilisi, Georgia
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Steven Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ken D Stark
- Laboratory of Nutritional Lipidomics, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul LeBlanc
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Maerz LD, Burkhalter MD, Schilpp C, Wittekindt OH, Frick M, Philipp M. Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish. Commun Biol 2019; 2:31. [PMID: 30729178 PMCID: PMC6351647 DOI: 10.1038/s42003-018-0272-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Patients with an inherited inability to synthesize sufficient amounts of cholesterol develop congenital malformations of the skull, toes, kidney and heart. As development of these structures depends on functional cilia we investigated whether cholesterol regulates ciliogenesis through inhibition of hydroxymethylglutaryl-Coenzyme A reductase (HMG-CoA-R), the rate-limiting enzyme in cholesterol synthesis. HMG-CoA-R is efficiently inhibited by statins, a standard medication for hyperlipidemia. When zebrafish embryos are treated with statins cilia dysfunction phenotypes including heart defects, left-right asymmetry defects and malformation of ciliated organs develop, which are ameliorated by cholesterol replenishment. HMG-CoA-R inhibition and other means of cholesterol reduction lowered ciliation frequency and cilia length in zebrafish as well as several mammalian cell types. Cholesterol depletion further triggers an inability for ciliary signalling. Because of a reduction of the transition zone component Pi(4,5)P2 we propose that cholesterol governs crucial steps of cilium extension. Taken together, we report that cholesterol abrogation provokes cilia defects.
Collapse
Affiliation(s)
- Lars D. Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin D. Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver H. Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
22
|
AhYoung AP, Egea PF. Determining the Lipid-Binding Specificity of SMP Domains: An ERMES Subunit as a Case Study. Methods Mol Biol 2019; 1949:213-235. [PMID: 30790259 DOI: 10.1007/978-1-4939-9136-5_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Membrane contact sites between the endoplasmic reticulum (ER) and mitochondria function as a central hub for the exchange of phospholipids and calcium. The yeast Endoplasmic Reticulum-Mitochondrion Encounter Structure (ERMES) complex is composed of five subunits that tether the ER and mitochondria. Three ERMES subunits (i.e., Mdm12, Mmm1, and Mdm34) contain the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. The SMP domain belongs to the tubular lipid-binding protein (TULIP) superfamily, which consists of ubiquitous lipid scavenging and transfer proteins. Herein, we describe the methods for expression and purification of recombinant Mdm12, a bona fide SMP-containing protein, together with the subsequent identification of its bound phospholipids by high-performance thin-layer chromatography (HPTLC) and the characterization of its lipid exchange and transfer functions using lipid displacement and liposome flotation in vitro assays with liposomes as model biological membranes. These methods can be applied to the study and characterization of novel lipid-binding and lipid-transfer proteins.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Pascal F Egea
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- The Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Abbineni PS, Coorssen JR. Sphingolipids modulate docking, Ca 2+ sensitivity and membrane fusion of native cortical vesicles. Int J Biochem Cell Biol 2018; 104:43-54. [PMID: 30195064 DOI: 10.1016/j.biocel.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022]
Abstract
Docking, priming, and membrane fusion of secretory vesicles (i.e. regulated exocytosis) requires lipids and proteins. Sphingolipids, in particular, sphingosine and sphingosine-1-phosphate, have been implicated in the modulation of exocytosis. However, the specific exocytotic steps that sphingolipids modulate and the enzymes that regulate sphingolipid concentrations on native secretory vesicle membranes remain unknown. Here we use tightly coupled functional and molecular analyses of fusion-ready cell surface complexes and cortical vesicles isolated from oocytes to assess the role of sphingolipids in the late, Ca2+-triggered steps of exocytosis. The molecular changes resulting from treatments with sphingolipid modifying compounds coupled with immunoblotting analysis revealed the presence of sphingosine kinase on native vesicles; the presence of a sphingosine-1-phosphate phosphatase is also indicated. Changes in sphingolipid concentrations on vesicles altered their docking/priming, Ca2+-sensitivity, and ability to fuse, indicating that sphingolipid concentrations are tightly regulated and maintained at optimal levels and ratios to ensure efficient exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, Department of Biology, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
24
|
Fajardo VA, Mikhaeil JS, Leveille CF, Tupling AR, LeBlanc PJ. Elevated whole muscle phosphatidylcholine: phosphatidylethanolamine ratio coincides with reduced SERCA activity in murine overloaded plantaris muscles. Lipids Health Dis 2018. [PMID: 29534725 PMCID: PMC5851149 DOI: 10.1186/s12944-018-0687-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An increase in phosphatidylcholine:phosphatidylethanolamine (PC:PE) and a decrease in fatty acyl chain length, monounsaturated:polyunsaturated (MUFA:PUFA) fatty acyl ratio reduces SERCA activity in liposomes and in mouse models of obesity and muscular dystrophy. We have previously shown that maximal SERCA activity is significantly reduced in mechanically overloaded (OVL) plantaris, however, whether changes in PC:PE ratio or fatty acyl composition may contribute to the alterations in maximal SERCA activity remain unknown. Here, we tested the hypotheses that in OVL plantaris 1) PC:PE ratio would negatively correlate with maximal SERCA activity and 2) PC fatty acyl chain length (ACL) and/or MUFA:PUFA ratio would positively correlate with maximal SERCA activity. METHODS To overload plantaris in mice, we transected the soleus and gastrocnemius tendons from one leg, while the contralateral leg underwent a sham surgery. After two weeks, plantaris muscles were extracted, homogenized and processed for SERCA activity and lipid analyses. Specifically, we performed HPTLC densitometry to examine changes in PC, PE, and the ratio of PC:PE. We also performed gas chromatography to assess any potential changes to fatty acyl composition. RESULTS SERCA activity was significantly reduced in OVL plantaris compared with sham. Coinciding with this, we found a significant increase in PC but not PE in OVL plantaris. In turn, there was an increase in PC:PE but did not reach significance (p = 0.09). However, we found a significant negative correlation between PC:PE and maximal SERCA activity. Fatty acyl composition of PE remained similar between OLV and sham and PC demonstrated higher percent mole fraction of 17:1, 18:1, and ACL compared to sham. In addition, PC ACL, % MUFA, % PUFA, or MUFA:PUFA did not significantly correlate with maximal SERCA activity. CONCLUSIONS Our results indicate that the phospholipid headgroup PC:PE negatively correlated and could potentially contribute to reductions in SERCA activity seen in functionally overloaded plantaris. In contrast, fatty acyl chain (ACL, % MUFA, % PUFA, MUFA:PUFA) did not correlate with maximal SERCA activity. Future studies will determine whether altering PC:PE with genetic and dietary interventions can influence SERCA activity and ultimately change the physiological outcome in response to muscle overloading.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - John S Mikhaeil
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Cameron F Leveille
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada. .,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
25
|
Inorganic mercury and cadmium induce rigidity in eukaryotic lipid extracts while mercury also ruptures red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:710-717. [DOI: 10.1016/j.bbamem.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023]
|
26
|
Navarro-Herrera D, Aranaz P, Eder-Azanza L, Zabala M, Hurtado C, Romo-Hualde A, Martínez JA, González-Navarro CJ, Vizmanos JL. Dihomo-gamma-linolenic acid induces fat loss in C. elegans in an omega-3-independent manner by promoting peroxisomal fatty acid β-oxidation. Food Funct 2018; 9:1621-1637. [PMID: 29465730 DOI: 10.1039/c7fo01625e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bioactive compounds, including some fatty acids (FAs), can induce beneficial effects on body fat-content and metabolism. In this work, we have used C. elegans as a model to examine the effects of several FAs on body fat accumulation. Both omega-3 and omega-6 fatty acids induced a reduction of fat content in C. elegans, with linoleic, gamma-linolenic and dihomo-gamma-linolenic acids being the most effective ones. These three FAs are sequential metabolites especially in omega-6 PUFA synthesis pathway and the effects seem to be primarily due to dihomo-gamma-linolenic acid, and independent of its transformation into omega-3 or arachidonic acid. Gene expression analyses suggest that peroxisomal beta oxidation is the main mechanism involved in the observed effect. These results point out the importance of further analysis of the activity of these omega-6 FAs, due to their potential application in obesity and related diseases.
Collapse
Affiliation(s)
- David Navarro-Herrera
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Paula Aranaz
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Laura Eder-Azanza
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Zabala
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Cristina Hurtado
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Romo-Hualde
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - J Alfredo Martínez
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain and Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain
| | - Carlos J González-Navarro
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - José L Vizmanos
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
27
|
Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases. J Mol Evol 2018; 86:68-76. [PMID: 29330556 DOI: 10.1007/s00239-017-9826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.
Collapse
|
28
|
Naschberger A, Orry A, Lechner S, Bowler MW, Nurizzo D, Novokmet M, Keller MA, Oemer G, Seppi D, Haslbeck M, Pansi K, Dieplinger H, Rupp B. Structural Evidence for a Role of the Multi-functional Human Glycoprotein Afamin in Wnt Transport. Structure 2017; 25:1907-1915.e5. [PMID: 29153507 DOI: 10.1016/j.str.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
Afamin, a human plasma glycoprotein and putative transporter of hydrophobic molecules, has been shown to act as extracellular chaperone for poorly soluble, acylated Wnt proteins, forming a stable, soluble complex with functioning Wnt proteins. The 2.1-Å crystal structure of glycosylated human afamin reveals an almost exclusively hydrophobic binding cleft capable of harboring large hydrophobic moieties. Lipid analysis confirms the presence of lipids, and density in the primary binding pocket of afamin was modeled as palmitoleic acid, presenting the native O-acylation on serine 209 in human Wnt3a. The modeled complex between the experimental afamin structure and a Wnt3a homology model based on the XWnt8-Fz8-CRD fragment complex crystal structure is compelling, with favorable interactions comparable with the crystal structure complex. Afamin readily accommodates the conserved palmitoylated serine 209 of Wnt3a, providing a structural basis how afamin solubilizes hydrophobic and poorly soluble Wnt proteins.
Collapse
Affiliation(s)
- Andreas Naschberger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrew Orry
- MolSoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Stefan Lechner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Didier Nurizzo
- Structural Biology Group, ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mislav Novokmet
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Gregor Oemer
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Daniele Seppi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kathrin Pansi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hans Dieplinger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; k.-k. Hofkristallamt, San Diego, CA 92084, USA.
| |
Collapse
|
29
|
Cardiolipin content, linoleic acid composition, and tafazzin expression in response to skeletal muscle overload and unload stimuli. Sci Rep 2017; 7:2060. [PMID: 28515468 PMCID: PMC5435726 DOI: 10.1038/s41598-017-02089-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/05/2017] [Indexed: 02/04/2023] Open
Abstract
Cardiolipin (CL) is a unique mitochondrial phospholipid that, in skeletal muscle, is enriched with linoleic acid (18:2n6). Together, CL content and CL 18:2n6 composition are critical determinants of mitochondrial function. Skeletal muscle is comprised of slow and fast fibers that have high and low mitochondrial content, respectively. In response to overloading and unloading stimuli, these muscles undergo a fast-to-slow oxidative fiber type shift and a slow-to-fast glycolytic fiber type shift, respectively, with a concomitant change in mitochondrial content. Here, we examined changes in CL content and CL 18:2n6 composition under these conditions along with tafazzin (Taz) protein, which is a transacylase enzyme that generates CL lipids enriched with 18:2n6. Our results show that CL content, CL 18:2n6 composition, and Taz protein content increased with an overload stimulus in plantaris. Conversely, CL content and CL 18:2n6 composition was reduced with an unloaded stimulus in soleus. Interestingly, Taz protein was increased in the unloaded soleus, suggesting that Taz may provide some form of compensation for decreased CL content and CL 18:2n6 composition. Together, this study highlights the dynamic nature of CL and Taz in skeletal muscle, and future studies will examine the physiological significance behind the changes in CL content, CL 18:2n6 and Taz.
Collapse
|
30
|
Rogasevskaia TP, Coorssen JR. The Role of Phospholipase D in Regulated Exocytosis. J Biol Chem 2015; 290:28683-96. [PMID: 26433011 DOI: 10.1074/jbc.m115.681429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/06/2022] Open
Abstract
There are a diversity of interpretations concerning the possible roles of phospholipase D and its biologically active product phosphatidic acid in the late, Ca(2+)-triggered steps of regulated exocytosis. To quantitatively address functional and molecular aspects of the involvement of phospholipase D-derived phosphatidic acid in regulated exocytosis, we used an array of phospholipase D inhibitors for ex vivo and in vitro treatments of sea urchin eggs and isolated cortices and cortical vesicles, respectively, to study late steps of exocytosis, including docking/priming and fusion. The experiments with fluorescent phosphatidylcholine reveal a low level of phospholipase D activity associated with cortical vesicles but a significantly higher activity on the plasma membrane. The effects of phospholipase D activity and its product phosphatidic acid on the Ca(2+) sensitivity and rate of fusion correlate with modulatory upstream roles in docking and priming rather than to direct effects on fusion per se.
Collapse
Affiliation(s)
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine and the Molecular Medicine Research Group, Western Sydney University, Penrith NSW 2751, Australia
| |
Collapse
|
31
|
Boulard C, Bardet M, Chardot T, Dubreucq B, Gromova M, Guillermo A, Miquel M, Nesi N, Yen-Nicolaÿ S, Jolivet P. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes. PLANTA 2015; 242:53-68. [PMID: 25820267 DOI: 10.1007/s00425-015-2286-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.
Collapse
Affiliation(s)
- Céline Boulard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mahadeo M, Furber KL, Lam S, Coorssen JR, Prenner EJ. Secretory vesicle cholesterol: Correlating lipid domain organization and Ca2+ triggered fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1165-74. [DOI: 10.1016/j.bbamem.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/02/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022]
|
33
|
A generic protocol for the purification and characterization of water-soluble complexes of affinity-tagged proteins and lipids. Nat Protoc 2014; 9:2256-66. [DOI: 10.1038/nprot.2014.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Gorné LD, Acosta-Rodríguez VA, Pasquaré SJ, Salvador GA, Giusto NM, Guido ME. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes. Chronobiol Int 2014; 32:11-26. [PMID: 25140391 DOI: 10.3109/07420528.2014.949734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.
Collapse
Affiliation(s)
- Lucas D Gorné
- Departamento de Química Biológica, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Universidad Nacional de Córdoba , Córdoba , Argentina and
| | | | | | | | | | | |
Collapse
|
35
|
Ang JK, Bamforth CW. Foam inhibitors from specialty malts. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Justin K. Ang
- Department of Food Science and Technology; University of California; Davis CA 95616 USA
| | - Charles W. Bamforth
- Department of Food Science and Technology; University of California; Davis CA 95616 USA
| |
Collapse
|
36
|
Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 2013; 501:257-61. [PMID: 23934110 DOI: 10.1038/nature12430] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/04/2013] [Indexed: 12/21/2022]
Abstract
The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.
Collapse
Affiliation(s)
- Kenji Maeda
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Schwiering M, Hellmann N. Validation of liposomal lipid composition by thin-layer chromatography. J Liposome Res 2012; 22:279-84. [DOI: 10.3109/08982104.2012.696657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Adam F, Abert-Vian M, Peltier G, Chemat F. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. BIORESOURCE TECHNOLOGY 2012; 114:457-465. [PMID: 22459961 DOI: 10.1016/j.biortech.2012.02.096] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up.
Collapse
Affiliation(s)
- Fanny Adam
- Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| | | | | | | |
Collapse
|
39
|
Ormerod KG, Rogasevskaia TP, Coorssen JR, Mercier AJ. Cholesterol-independent effects of methyl-β-cyclodextrin on chemical synapses. PLoS One 2012; 7:e36395. [PMID: 22590538 PMCID: PMC3348160 DOI: 10.1371/journal.pone.0036395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/05/2012] [Indexed: 01/22/2023] Open
Abstract
The cholesterol chelating agent, methyl-β-cyclodextrin (MβCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MβCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MβCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MβCD impaired impulse propagation and decreased EJP amplitude by 40% (P<0.05) in preparations from crayfish acclimatized to 14 °C but not from those acclimatized to 21 °C. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P<0.05). MβCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and cold-acclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P<0.05; 50% reduction in warm, P<0.05). MβCD reduced cholesterol in isolated nerve and muscle from cold- and warm-acclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P<0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MβCD on glutamate-sensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MβCD can affect both presynaptic and postsynaptic properties, and that some effects of MβCD are unrelated to cholesterol chelation.
Collapse
Affiliation(s)
- Kiel G. Ormerod
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Tatiana P. Rogasevskaia
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jens R. Coorssen
- Department of Molecular Physiology, School of Medicine and the Molecular Medicine Research Group, University of Western Sydney, Penrith South DC, New South Wales, Australia
| | - A. Joffre Mercier
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
40
|
Rogasevskaia TP, Churchward MA, Coorssen JR. Anionic lipids in Ca(2+)-triggered fusion. Cell Calcium 2012; 52:259-69. [PMID: 22516687 DOI: 10.1016/j.ceca.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 01/30/2023]
Abstract
Anionic lipids are native membrane components that have a profound impact on many cellular processes, including regulated exocytosis. Nonetheless, the full nature of their contribution to the fast, Ca(2+)-triggered fusion pathway remains poorly defined. Here we utilize the tightly coupled quantitative molecular and functional analyses enabled by the cortical vesicle model system to elucidate the roles of specific anionic lipids in the docking, priming and fusion steps of regulated release. Studies with cholesterol sulfate established that effectively localized anionic lipids could contribute to Ca(2+)-sensing and even bind Ca(2+) directly as effectors of necessary membrane rearrangements. The data thus support a role for phosphatidylserine in Ca(2+) sensing. In contrast, phosphatidylinositol would appear to serve regulatory functions in the physiological fusion machine, contributing to priming and thus the modulation and tuning of the fusion process. We note the complexities associated with establishing the specific roles of (anionic) lipids in the native fusion mechanism, including their localization and interactions with other critical components that also remain to be more clearly and quantitatively defined.
Collapse
Affiliation(s)
- Tatiana P Rogasevskaia
- Department of Chemical & Biological Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6 Canada
| | | | | |
Collapse
|
41
|
Rogasevskaia TP, Coorssen JR. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J Chem Biol 2011; 4:117-36. [PMID: 22315653 DOI: 10.1007/s12154-011-0056-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca(2+)-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca(2+)-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.
Collapse
|
42
|
Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 2011; 11:7. [PMID: 21255402 PMCID: PMC3036615 DOI: 10.1186/1472-6750-11-7] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/21/2011] [Indexed: 12/05/2022] Open
Abstract
Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields.
Collapse
Affiliation(s)
- Magali Siaut
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction of Life Sciences, Institute for Environmental Biology and Biotechnology, Saint-Paul-lez-Durance, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
44
|
Furber KL, Dean KT, Coorssen JR. Dissecting the mechanism of Ca2+-triggered membrane fusion: probing protein function using thiol reactivity. Clin Exp Pharmacol Physiol 2009; 37:208-17. [PMID: 19671061 DOI: 10.1111/j.1440-1681.2009.05278.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Ca(2+)-triggered membrane fusion involves the coordinated actions of both lipids and proteins, but the specific mechanisms remain poorly understood. The urchin cortical vesicle model is a stage-specific native preparation fully enabling the directly coupled functional-molecular analyses necessary to identify critical components of fast triggered membrane fusion. 2. Recent work on lipidic components has established a direct role for cholesterol in the fusion mechanism via local contribution of negative curvature to readily enable the formation of transient lipidic fusion intermediates. In addition, cholesterol- and sphingomyelin-enriched domains regulate the efficiency of fusion by focally organizing other components to ensure an optimized response to the triggering Ca(2+) transient. 3. There is less known about the identity of proteins involved in the Ca(2+)-triggering steps of membrane fusion. Thiol reagents can be used as unbiased tools to probe protein functions. Comparisons of several thiol-reactive reagents have identified different effects on Ca(2+) sensitivity and the extent of fusion, suggesting that there are at least two distinct thiol sites that participate in the fusion mechanism: one that regulates the efficiency of Ca(2+) sensing/triggering and one that may function during the membrane merger event itself. 4. To identify the proteins that regulate Ca(2+) sensitivity, the fluorescent thiol reagent Lucifer yellow iodoacetamide was used to potentiate fusion and simultaneously tag the proteins involved. Ongoing work involves the isolation of cholesterol-enriched membrane fractions to reduce the complexity of the labelled proteome, narrowing the number of candidate proteins.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
45
|
Abstract
The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate energies by altering the elastic constants of the patches of lipid monolayer that form the stalk. Here, it is shown that if peptide binding changes kappa or some other combinations of local elastic constants by only tens of percents, the stalk energy and the energy of catenoidal fusion pores would decrease by tens of k(B)T relative to the pure lipid value. This is comparable to the required mediating effect. The curvature energies of stalks and catenoidal fusion pores have almost the same dependence on monolayer elastic constants as the curvature energies of the rhombohedral and Q(II) phases; respectively. The effects of isolated fusion-relevant peptides on the energies of these intermediates can be determined by studying the effects of the peptides on the stability of rhombohedral and Q(II) phases.
Collapse
|