1
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
González-Guerrero L, Castellet H, Martínez C, González N, Guijarro F, Lloveras N, Pratcorona M, Gich I, Berenguer-Molins P, Perera-Bel J, Zamora L, Mascaró M, Sampol A, Garcia-Guiñón A, Vives S, Tormo M, Arnan M, Villamor N, Nomdedéu JF. CD200 in acute myeloid leukemia: marked upregulation in CEBPA biallelic mutated cases. Diagn Pathol 2025; 20:56. [PMID: 40307896 PMCID: PMC12042300 DOI: 10.1186/s13000-025-01655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/20/2025] [Indexed: 05/02/2025] Open
Abstract
CD200 is a glycoprotein that binds with its receptor CD200R, providing immunosuppressive signals to T and NK cells. CD200 is expressed by normal stem cells and progenitors committed to B-lymphopoiesis and myeloid development. CD200 biological relevance in acute leukemias is only partially understood.The study included a consecutive series of four hundred thirty-one patients with acute myeloid leukemia (AML). Immunophenotype was established by multiparametric flow cytometry, and the genetic diagnosis was performed by PCR-based methods and a targeted resequencing method covering 42 genes.66% of AML patients expressed CD200 being significantly associated with CD34 reactivity. The frequency of CD200 positivity was higher in cases with core-binding factor genetic lesions such as RUNX1-RUNX1T1 (81.3%) fusions and CBFB-MHY11 (63.2%) rearrangements and also with biallelic CEBPA mutations (100%). The molecular AML group with the lowest CD200 reactivity (19.1%) corresponded to AML with NPM1 mutations. RNA seq showed no uniform pattern of infiltrating cells in CEBPA mutated AML. Deconvolution analysis may be used to assess the immunoregulatory mechanisms of AML.CD200 expression could help identify the more immature compartment and, combined with other markers, single out CEPA-mutated AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/immunology
- Nucleophosmin
- Male
- Female
- Middle Aged
- Adult
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Mutation
- CCAAT-Enhancer-Binding Proteins/genetics
- Aged
- Up-Regulation
- Young Adult
- Adolescent
- Immunophenotyping
- Biomarkers, Tumor/genetics
- Aged, 80 and over
Collapse
Affiliation(s)
- Laura González-Guerrero
- Department of Hematology, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. IIB Sant Pau, Institut Josep Carreras, Sant Quintí, 89, Barcelona, 08041, Spain
| | - Helena Castellet
- Department of Hematology, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. IIB Sant Pau, Institut Josep Carreras, Sant Quintí, 89, Barcelona, 08041, Spain
| | - Clara Martínez
- Department of Hematology, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. IIB Sant Pau, Institut Josep Carreras, Sant Quintí, 89, Barcelona, 08041, Spain
| | - Nuria González
- Department of Hematology, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. IIB Sant Pau, Institut Josep Carreras, Sant Quintí, 89, Barcelona, 08041, Spain
| | - Francesca Guijarro
- Unitat d'Hematopatologia, Servei d'Anatomia Patológica, Hospital Clínic. IDIBAPS, Barcelona, Spain
| | - Natalia Lloveras
- Laboratori Hematologia. Hospital Dr. Josep Trueta. ICO Girona, Girona, Spain
| | - Marta Pratcorona
- Department of Hematology, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. IIB Sant Pau, Institut Josep Carreras, Sant Quintí, 89, Barcelona, 08041, Spain
| | - Ignasi Gich
- Epidemiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pau Berenguer-Molins
- Bioniformatics Unit (BU), MARData, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Júlia Perera-Bel
- Bioniformatics Unit (BU), MARData, Hospital del Mar Research Institute (HMRIB), Barcelona, Spain
| | - Lurdes Zamora
- Hematology Department, Hospital Germans Trias i Pujol. ICO Badalona. Institut Josep Carreras, Badalona, Spain
| | - Martí Mascaró
- Hematology Department, Hospital de Son Llàtzer, Palma de Mallorca, Spain
| | - Antonia Sampol
- Hematology Department, Hospital de Son Espases, Palma de Mallorca, Spain
| | | | - Susana Vives
- Hematology Department, Hospital Germans Trias i Pujol. ICO Badalona. Institut Josep Carreras, Badalona, Spain
| | - Mar Tormo
- Laboratorio de Hematología. Hospital Clínico de Valencia, Universidad de Valencia, Valencia, Spain
| | - Montserrat Arnan
- Clinical Hematology Department, ICO-Hospital Duran i Reynals. Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Neus Villamor
- Unitat d'Hematopatologia, Servei d'Anatomia Patológica, Hospital Clínic. IDIBAPS, Barcelona, Spain
| | - Josep F Nomdedéu
- Department of Hematology, Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. IIB Sant Pau, Institut Josep Carreras, Sant Quintí, 89, Barcelona, 08041, Spain.
| |
Collapse
|
3
|
Addanki S, Kim L, Stevens A. Understanding and Targeting Metabolic Vulnerabilities in Acute Myeloid Leukemia: An Updated Comprehensive Review. Cancers (Basel) 2025; 17:1355. [PMID: 40282531 PMCID: PMC12025543 DOI: 10.3390/cancers17081355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Acute Myeloid Leukemia (AML) is characterized by aggressive proliferation and metabolic reprogramming that support its survival and resistance to therapy. This review explores the metabolic distinctions between AML cells and normal hematopoietic stem cells (HSCs), emphasizing the role of altered mitochondrial function, oxidative phosphorylation (OXPHOS), and biosynthetic pathways in leukemic progression. AML cells exhibit distinct metabolic vulnerabilities, including increased mitochondrial biogenesis, reliance on glycolysis and amino acid metabolism, and unique signaling interactions that sustain leukemic stem cells (LSCs). These dependencies provide potential therapeutic targets, as metabolic inhibitors have demonstrated efficacy in disrupting AML cell survival while sparing normal hematopoietic cells. We examine current and emerging metabolic therapies, such as inhibitors targeting glycolysis, amino acid metabolism, and lipid biosynthesis, highlighting their potential in overcoming drug resistance. However, challenges remain in translating these strategies into clinical practice due to AML's heterogeneity and adaptability. Further research into AML's metabolic plasticity and precision medicine approaches is crucial for improving treatment outcomes. Understanding and exploiting AML's metabolic vulnerabilities could pave the way for novel, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Sridevi Addanki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Alexandra Stevens
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Connerty P, Xie J, El-Najjar F, Trahair TN, Jayatilleke N, Mayoh C, Lock RB. Immune-deficient MISTRG mice support expansion of leukaemia-initiating cells in xenograft models of paediatric acute myeloid leukaemia. Br J Haematol 2025; 206:1092-1096. [PMID: 39984432 DOI: 10.1111/bjh.20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Acute myeloid leukaemia (AML) remains a deadly disease, largely due to the persistence of drug-resistant leukaemia-initiating cells (LICs) which promote relapse. Therefore, effective therapies must target LICs. Patient-derived xenografts (PDXs) are valuable for testing new therapies, though establishing AML PDX models is challenging. Two humanized mouse strains, MISTRG and NRGS, have been developed for this purpose. In this study, we show both are suitable strains for the development of AML PDXs; however, MISTRG-derived PDXs contain 10 times higher LIC frequencies than NRGS-derived PDXs. These differences have crucial implications for preclinical AML therapy testing and modelling relapse models of the disease.
Collapse
Affiliation(s)
- Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Fatima El-Najjar
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Nisitha Jayatilleke
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Sakoda T, Kikushige Y, Irifune H, Kawano G, Harada T, Semba Y, Hayashi M, Shima T, Mori Y, Eto T, Kamimura T, Iwasaki H, Ogawa R, Yoshimoto G, Kato K, Maeda T, Miyamoto T, Akashi K. TIM-3 marks measurable residual leukemic stem cells responsible for relapse after allogeneic stem cell transplantation. Cancer Sci 2025; 116:698-709. [PMID: 39726280 PMCID: PMC11875787 DOI: 10.1111/cas.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
In this study, we investigated the measurable residual leukemic stem cell (MR-LSC) population after allogeneic stem cell transplantation (allo-SCT) for high-risk acute myeloid leukemia (AML), utilizing T-cell immunoglobulin mucin-3 (TIM-3) expression as a functional marker of AML leukemic stem cells (LSCs). Analysis of the CD34+CD38- fraction of bone marrow cells immediately after achievement of engraftment revealed the presence of both TIM-3+LSCs and TIM-3- donor hematopoietic stem cells (HSCs) at varying ratios. Genetic analysis confirmed that TIM-3+ cells harbored patient-specific mutations identical to those found in AML clones, whereas TIM-3- cells did not, indicating that TIM-3+CD34+CD38- cells represent residual AML LSCs. In 92 allo-SCT occasions involving 83 AML patients, we enumerated the frequencies of TIM-3+LSCs immediately after achieving hematologic complete remission with complete donor cell chimerism. Notably, only 22.2% of patients who achieved a TIM-3+MR-LSClow status (<60%) experienced relapse, with a median event-free survival (EFS) of 1581 days (median follow-up duration was 2177 days among event-free survivors). Conversely, 87.5% of patients with TIM-3+MR-LSCint/high (≥60%) relapsed, with a median EFS of 140.5 days. Furthermore, MR-LSC status emerged as a significant independent risk factor for relapse (hazard ratio, 8.56; p < 0.0001), surpassing the impact of patient disease status prior to allo-SCT, including failure to achieve complete remission (hazard ratio, 1.98; p = 0.048). These findings suggest that evaluating TIM-3+ MR-LSCs immediately after engraftment, which reflects the competitive reconstitution of residual TIM-3+ LSCs and donor HSCs, may be valuable for predicting outcomes in AML patients undergoing allo-SCT.
Collapse
MESH Headings
- Humans
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Female
- Adult
- Hematopoietic Stem Cell Transplantation
- Transplantation, Homologous
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplasm, Residual
- Young Adult
- Aged
- Adolescent
- Recurrence
- Disease-Free Survival
- Mutation
Collapse
Affiliation(s)
- Teppei Sakoda
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
- Center for Cellular and Molecular MedicineKyushu University HospitalFukuokaJapan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
- Center for Cellular and Molecular MedicineKyushu University HospitalFukuokaJapan
| | - Hidetoshi Irifune
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Gentaro Kawano
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Takuya Harada
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | | | - Takahiro Shima
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Yasuo Mori
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Tetsuya Eto
- Department of HematologyHamanomachi HospitalFukuokaJapan
| | | | - Hiromi Iwasaki
- Department of HematologyNational Hospital Organisation Kyushu Medical CenterFukuokaJapan
| | - Ryosuke Ogawa
- Department of Hematology/OncologyJapan Community Health Care Organisation Kyushu HospitalKitakyushuJapan
| | - Goichi Yoshimoto
- Department of HematologySaga Prefecture Medical Center KoseikanSagaJapan
| | - Koji Kato
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Takahiro Maeda
- Division of Precision MedicineKyushu University Faculty of Medicine Graduate School of Medical ScienceFukuokaJapan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
- Center for Cellular and Molecular MedicineKyushu University HospitalFukuokaJapan
| |
Collapse
|
6
|
Panyajai P, Viriyaadhammaa N, Chiampanichayakul S, Sakamoto Y, Okonogi S, Moroishi T, Anuchapreeda S. Anticancer and cancer preventive activities of shogaol and curcumin from Zingiberaceae family plants in KG-1a leukemic stem cells. BMC Complement Med Ther 2025; 25:87. [PMID: 40022126 PMCID: PMC11869560 DOI: 10.1186/s12906-025-04829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Leukemic stem cells (LSCs) present a significant challenge in the treatment of leukemia in patients because they exhibit a drug-resistant phenotype, making them difficult to eliminate. Searching for a new anticancer drug is crucial for improving leukemia treatment. Plants from the Zingiberaceae family are frequently used in traditional medicines due to their safety and accessibility. This study explores the anticancer activity, cancer preventive properties, and apoptosis inducing mechanisms of active compounds derived from these plants. METHODS Ten crude ethanolic extracts from each plant of the Zingiberaceae family were obtained using maceration techniques. The cytotoxicity of all extracts anticancer was assessed in comparison to anticancer drugs (cyclophosphamide, cytarabine, doxorubicin, and idarubicin) using MTT assay on cancer cell lines (KG-1a, K562, A549, MCF-7, and HeLa) and peripheral blood mononuclear cells (PBMCs). Cancer prevention properties of the effective extracts and their active compounds were evaluated by measuring the levels of tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and nitric oxide (NO) using commercial kits. Cell cycle and cell death analyses were conducted using flow cytometry. Moreover, the effects of effective extracts and their active compounds on WT1 and CD34 expressions, as well as the apoptosis mechanism induced by the active compounds in KG-1a cells, were determined by Western blotting. RESULTS The cytotoxicity tests revealed that crude ethanolic extracts from Curcuma longa, C. zedoaria, and Zingiber officinale exhibited effective cytotoxicity against cancer cell lines while demonstrating lower impact on PBMCs. The active compounds of C. longa and C. zedoaria are curcuminoids, while those in Z. officinale are shogaol and gingerol. Notably, the IC20 values of curcuminoids and shogaol exhibited cancer prevention properties and reduced WT1 protein expression, thereby inhibiting cell proliferation. Furthermore, shogaol and curcumin demonstrated the ability to arrest the cell cycle at the G2/M phase and induce apoptosis through the Akt pathway. CONCLUSION These findings highlight shogaol and curcumin as promising compounds for leukemia treatment.
Collapse
Affiliation(s)
- Pawaret Panyajai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natsima Viriyaadhammaa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yasuhisa Sakamoto
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Busarello E, Biancon G, Cimignolo I, Lauria F, Ibnat Z, Ramirez C, Tomè G, Ciuffreda M, Bucciarelli G, Pilli A, Marino SM, Bontempi V, Aass KR, VanOudenhove J, Mione MC, Standal T, Macchi P, Viero G, Halene S, Tebaldi T. Cell Marker Accordion: interpretable single-cell and spatial omics annotation in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.08.584053. [PMID: 38559181 PMCID: PMC10979856 DOI: 10.1101/2024.03.08.584053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in health and disease. However, reliable identification of cell types and states represents a bottleneck. Available databases and analysis tools employ dissimilar markers, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, limiting their applicability to disease. We developed the Cell Marker Accordion, a user-friendly platform providing automatic annotation and unmatched biological interpretation of single-cell populations, based on consistency weighted markers. We validated our approach on multiple single-cell and spatial datasets from different human and murine tissues, improving annotation accuracy in all cases. Moreover, we show that the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of disease contexts. The breadth of these applications elevates the Cell Marker Accordion as a fast, flexible, faithful and standardized tool to annotate and interpret single-cell and spatial populations in studying physiology and disease.
Collapse
Affiliation(s)
- Emma Busarello
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Cimignolo
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Italy
| | - Zuhairia Ibnat
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Christian Ramirez
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gabriele Tomè
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biophysics, CNR Unit at Trento, Italy
| | - Marianna Ciuffreda
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giorgia Bucciarelli
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Pilli
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Stefano Maria Marino
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Vittorio Bontempi
- Laboratory of Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Kristin R Aass
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Caterina Mione
- Laboratory of Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Therese Standal
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Reuvekamp T, Janssen LLG, Ngai LL, Carbaat-Ham J, den Hartog D, Scholten WJ, Kelder A, Hanekamp D, Wensink E, van Gils N, Gradowska P, Löwenberg B, Ossenkoppele GJ, van de Loosdrecht AA, Westers TM, Smit L, Bachas C, Cloos J. The role of the primitive marker CD133 in CD34-negative acute myeloid leukemia for the detection of leukemia stem cells. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2025; 108:23-34. [PMID: 39177948 DOI: 10.1002/cyto.b.22201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
The most important reason for dismal outcomes in acute myeloid leukemia (AML) is the development of relapse. Leukemia stem cells (LSCs) are hypothesized to initiate relapse, and high CD34+CD38- LSC load is associated with poor prognosis. In 10% of AML patients, CD34 is not or is low expressed on the leukemic cells (<1%), and CD34+CD38- LSCs are absent. These patients are classified as CD34-negative. We aimed to determine whether the primitive marker CD133 can detect LSCs in CD34-negative AML. We retrospectively quantified 148 CD34-negative patients for proportions of CD34-CD133+ and CD133+CD38- cell fractions in the diagnostic samples of CD34-negative patients in the HOVON102 and HOVON132 trials. No prognostic difference was found between patients with high or low proportions of CD34-CD133+, which is found to be aberrantly expressed in AML. A high level of CD133+CD38- cells was not associated with poor overall survival, and expression in AML was similar to normal bone marrow. To conclude, CD133 is useful as an additional primitive marker for the detection of leukemic blast cells in CD34-negative AML. However, CD133+CD38 alone is not suitable for the detection of LSCs at diagnosis.
Collapse
Affiliation(s)
- Tom Reuvekamp
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Luca L G Janssen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jannemieke Carbaat-Ham
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Daphne den Hartog
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute and University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eliza Wensink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Noortje van Gils
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Patrycja Gradowska
- Department of Hematology, Erasmus MC Cancer Institute and University Medical Center Rotterdam, Rotterdam, The Netherlands
- HOVON Foundation, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute and University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Danylesko I, Shem-Tov N, Yerushalmi R, Jacoby E, Toren A, Shouval R, Itzhaki O, Avigdor A, Shimoni A, Nagler A. Point of care CD19 chimeric antigen receptor (CAR) T-cells for relapsed/refractory acute myeloid leukemia (AML) with aberrant CD19 antigen expression. Curr Res Transl Med 2024; 72:103471. [PMID: 39305562 DOI: 10.1016/j.retram.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/10/2024] [Accepted: 09/14/2024] [Indexed: 12/07/2024]
Abstract
Relapsed/refractory (r/r) acute myeloid leukemia (AML) is associated with poor prognosis. CD19 is a B-cell marker, is aberrantly expressed in AML, mostly with t(8; 21)(q22; q22.1). Here we report the results of a phase 2 study giving point of care produced CD19 CAR T- cells for r/r AML with aberrant expression of CD19 (NCT04257175). Lymphodepletion included fludarabine and cyclophosphamide The response was evaluated by bone marrow (BM) aspiration on day 28. Six patients (5 adults and 1 child) were included. Median number of previous chemotherapy lines was 4 (range, 3-8) and four patients received CAR T-cells 8-18 months post allogeneic hematopoietic stem cell transplantation (allo-HSCT). Cytokine release syndrome (CRS) of any grade occurred in all patients, and 1 patient had grade 3 CRS. Immune effector cell-associated neurotoxicity syndrome (ICANS) occurred in 2 patients at low grades. Tocilizumab was administered to 2 patients and corticosteroids to 3 patients. Four patients achieved a complete remission (CR), while 2/6 progressed (PD). Three patients (2 with CR and 1 with PD) underwent allo-HSCT (it was the second transplant in 2) 2-5 months post CAR T-cells infusion. The median duration of response in patients achieving CR was 8.5 (range; 3-14) months. However, all patients eventually died within 5 (1-18) months. In conclusion, CD19 CAR T- cell treatment for AML is feasible and safe. However, the response is short and should be followed by allo-HSCT. Hopefully, future long term results will be improved by combining the CAR T- cell therapy with the emerging novel effective anti-leukemic compounds.
Collapse
Affiliation(s)
- Ivetta Danylesko
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Noga Shem-Tov
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Yerushalmi
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Jacoby
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Toren
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Roni Shouval
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Department of Medicine, Weill Cornell Medical College, New York, New York, USA; Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Orit Itzhaki
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Abraham Avigdor
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avichai Shimoni
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Niibori-Nambu A, Wang CQ, Chin DWL, Chooi JY, Hosoi H, Sonoki T, Tham CY, Nah GSS, Cirovic B, Tan DQ, Takizawa H, Sashida G, Goh Y, Tng J, Fam WN, Fullwood MJ, Suda T, Yang H, Tergaonkar V, Taniuchi I, Li S, Chng WJ, Osato M. Integrin-α9 overexpression underlies the niche-independent maintenance of leukemia stem cells in acute myeloid leukemia. Gene 2024; 928:148761. [PMID: 39002785 DOI: 10.1016/j.gene.2024.148761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jing Yuan Chooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Cheng-Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Branko Cirovic
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Darren Qiancheng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jiaqi Tng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; National University Cancer Institute, Singapore; National University Health System, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan.
| |
Collapse
|
11
|
Ally F, Chen X. Acute Myeloid Leukemia: Diagnosis and Evaluation by Flow Cytometry. Cancers (Basel) 2024; 16:3855. [PMID: 39594810 PMCID: PMC11592599 DOI: 10.3390/cancers16223855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
With recent technological advances and significant progress in understanding the pathogenesis of acute myeloid leukemia (AML), the updated fifth edition WHO Classification (WHO-HAEM5) and the newly introduced International Consensus Classification (ICC), as well as the European LeukemiaNet (ELN) recommendations in 2022, require the integration of immunophenotypic, cytogenetic, and molecular data, alongside clinical and morphologic findings, for accurate diagnosis, prognostication, and guiding therapeutic strategies in AML. Flow cytometry offers rapid and sensitive immunophenotyping through a multiparametric approach and is a pivotal laboratory tool for the classification of AML, identification of therapeutic targets, and monitoring of measurable residual disease (MRD) post therapy. The association of immunophenotypic features and recurrent genetic abnormalities has been recognized and applied in informing further diagnostic evaluation and immediate therapeutic decision-making. Recently, the evolving role of machine learning models in assisting flow cytometric data analysis for the automated diagnosis and prediction of underlying genetic alterations has been illustrated.
Collapse
Affiliation(s)
- Feras Ally
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
14
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 PMCID: PMC11779507 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Khattab S, El Sorady M, El-Ghandour A, Visani G, Piccaluga PP. Hematopoietic and leukemic stem cells homeostasis: the role of bone marrow niche. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1027-1055. [PMID: 39351440 PMCID: PMC11438561 DOI: 10.37349/etat.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Hematology department, Alexandria University, Alexandria 21561, Egypt
| | - Manal El Sorady
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Ashraf El-Ghandour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, Azienda Ospedaliera Marche Nord, 61121 Pesaro, Italy
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
16
|
Osiriphan M, Insukhin C, Anuchapreeda S, Khamphikham P, Duangmano S. MicroRNA‑223 overexpression suppresses protein kinase C ε expression in human leukemia stem cell‑like KG‑1a cells. Mol Clin Oncol 2024; 21:48. [PMID: 38881704 PMCID: PMC11176719 DOI: 10.3892/mco.2024.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
MicroRNA-223 (miR-223) is dysregulated in various cancer types, including acute myeloid leukemia (AML). Despite this, there has been a lack of studies exploring the role of miR-223 in leukemic stem cells, particularly those involved in drug resistance, a major cause of chemotherapy failure in AML. The present study aimed to elucidate the impact of miR-223 on drug resistance in the leukemic stem-cell line, KG-1a. Two AML cell lines, KG-1 and KG-1a, differing in the proportion of CD34+CD38- cells, were assessed for doxorubicin (DOX) sensitivity using the Cell Counting Kit-8 assay. The expression levels of miR-223 and protein kinase C ε (PKCε) were evaluated via reverse transcription-quantitative PCR and western blot analysis. The association between miR-223 and its target, PKCε, was confirmed by luciferase activity assay. The effects of miR-223 overexpression and PKCε inhibition were also evaluated in KG-1a cells using miR-223 mimic and small interfering (si)RNA transfection, respectively. Daunorubicin was then used to assess drug sensitivity in the siRNA-transfected KG-1a cells. Compared with KG-1 cells, KG-1a cells displayed greater resistance to DOX, and had increased PKCε levels and decreased miR-223 expression. Overexpression of miR-223 led to PKCε protein downregulation in KG-1a cells, which was further confirmed by a luciferase assay demonstrating miR-223 targeting of PKCε. However, despite these effects, miR-223 overexpression and PKCε inhibition did not change drug sensitivity in KG-1a cells compared with negative control cells. In summary, the present study demonstrated that miR-223 could target and silence PKCε expression in KG-1a cells; however, the chemoresistance of KG-1a cells to anthracycline drugs may not be directly associated with the low expression of miR-223.
Collapse
Affiliation(s)
- Mallika Osiriphan
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Master's Degree Program in Medical Technology (under the Chiang Mai University Presidential Scholarship), Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Charapat Insukhin
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Suwit Duangmano
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Krastinaite I, Charkavliuk S, Navakauskiene R, Borutinskaite VV. Metformin as an Enhancer for the Treatment of Chemoresistant CD34+ Acute Myeloid Leukemia Cells. Genes (Basel) 2024; 15:648. [PMID: 38790277 PMCID: PMC11121461 DOI: 10.3390/genes15050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Acute myeloid leukemia is the second most frequent type of leukemia in adults. Due to a high risk of development of chemoresistance to first-line chemotherapy, the survival rate of patients in a 5-year period is below 30%. One of the reasons is that the AML population is heterogeneous, with cell populations partly composed of very primitive CD34+CD38- hematopoietic stem/progenitor cells, which are often resistant to chemotherapy. First-line treatment with cytarabine and idarubicin fails to inhibit the proliferation of CD34+CD38- cells. In this study, we investigated Metformin's effect with or without first-line conventional chemotherapy, or with other drugs like venetoclax and S63845, on primitive and undifferentiated CD34+ AML cells in order to explore the potential of Metformin or S63845 to serve as adjuvant therapy for AML. We found that first-line conventional chemotherapy treatment inhibited the growth of cells and arrested the cells in the S phase of the cell cycle; however, metformin affected the accumulation of cells in the G2/M phase. We observed that CD34+ KG1a cells respond better to lower doses of cytarabine or idarubicin in combination with metformin. Also, we determined that treatment with cytarabine, venetoclax, and S63845 downregulated the strong tendency of CD34+ KG1a cells to form cell aggregates in culture due to the downregulation of leukemic stem cell markers like CD34 and CD44, as well as adhesion markers. Also, we found that idarubicin slightly upregulated myeloid differentiation markers, CD11b and CD14. Treatment with cytarabine, idarubicin, venetoclax, metformin, and S63845 upregulated some cell surface markers like HLA-DR expression, and metformin upregulated CD9, CD31, and CD105 cell surface marker expression. In conclusion, we believe that metformin has the potential to be used as an adjuvant in the treatment of resistant-to-first-line-chemotherapy AML cells. Also, we believe that the results of our study will stimulate further research and the potential use of changes in the expression of cell surface markers in the development of new therapeutic strategies.
Collapse
MESH Headings
- Humans
- Metformin/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Drug Resistance, Neoplasm/drug effects
- Antigens, CD34/metabolism
- Cell Line, Tumor
- Cytarabine/pharmacology
- Cell Proliferation/drug effects
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Idarubicin/pharmacology
Collapse
Affiliation(s)
| | | | | | - Veronika Viktorija Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (I.K.); (S.C.); (R.N.)
| |
Collapse
|
18
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
19
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
20
|
Khorashad JS, Rizzo S, Tonks A. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:5. [PMID: 38434766 PMCID: PMC10905166 DOI: 10.20517/cdr.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.
Collapse
Affiliation(s)
- Jamshid Sorouri Khorashad
- Department of Immunology and inflammation, Imperial College London, London, W12 0NN, UK
- Department of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5PT, UK
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Rizzo
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
21
|
Chea M, Rigolot L, Canali A, Vergez F. Minimal Residual Disease in Acute Myeloid Leukemia: Old and New Concepts. Int J Mol Sci 2024; 25:2150. [PMID: 38396825 PMCID: PMC10889505 DOI: 10.3390/ijms25042150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Minimal residual disease (MRD) is of major importance in onco-hematology, particularly in acute myeloid leukemia (AML). MRD measures the amount of leukemia cells remaining in a patient after treatment, and is an essential tool for disease monitoring, relapse prognosis, and guiding treatment decisions. Patients with a negative MRD tend to have superior disease-free and overall survival rates. Considerable effort has been made to standardize MRD practices. A variety of techniques, including flow cytometry and molecular methods, are used to assess MRD, each with distinct strengths and weaknesses. MRD is recognized not only as a predictive biomarker, but also as a prognostic tool and marker of treatment efficacy. Expected advances in MRD assessment encompass molecular techniques such as NGS and digital PCR, as well as optimization strategies such as unsupervised flow cytometry analysis and leukemic stem cell monitoring. At present, there is no perfect method for measuring MRD, and significant advances are expected in the future to fully integrate MRD assessment into the management of AML patients.
Collapse
Affiliation(s)
- Mathias Chea
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
| | - Lucie Rigolot
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Alban Canali
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Francois Vergez
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
22
|
Meriç N, Albayrak E, Gülbaş Z, Kocabaş F. MEIS inhibitors reduce the viability of primary leukemia cells and Stem cells by inducing apoptosis. Leuk Lymphoma 2024; 65:187-198. [PMID: 37902585 DOI: 10.1080/10428194.2023.2275532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
Leukemia stem cells (LSCs) exhibit self-renewal, resistance to standard treatments, and involvement in leukemia relapse. Higher Myeloid Ecotropic Integration Site-1 (MEIS1) expression in leukemic blast samples has been linked to resistance to conventional treatment. We studied the MEIS1 and associated factors in relapsed LSCs and assessed the effect of recently developed MEIS inhibitors (MEISi). Meis1 gene expression was found to be higher in patients with leukemia and relapsed samples. The majority of CD123+ and CD34+ LSCs demonstrated higher MEIS1/2/3 content. Depending on the patient chemotherapy regimen, Meis1 expression increased in relapsed samples. Although there are increased Meis2, Meis3, Hoxa9, Pbx1, or CD34 expressions in the relapsed patients, they are not correlated with Meis1 content in every patient or regimen. MEISi has reduced MEIS1 transcriptional activity and LSC cell survival by apoptosis. Pharmacological targeting with MEISi in LSCs could have a potential effect in limiting leukemia relapse and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Neslihan Meriç
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences, University, Kütahya, Türkiye
| | - Esra Albayrak
- Center of Stem Cell Research and Application, 19 Mayıs University, Samsun, Türkiye
| | - Zafer Gülbaş
- Anadolu Medical Center Hospital, Bone Marrow Transplantation Unit, Kocaeli, Türkiye
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
23
|
Rahmé R, Braun T. Venetoclax Combined with Intensive Chemotherapy: A New Hope for Refractory and/or Relapsed Acute Myeloid Leukemia? J Clin Med 2024; 13:549. [PMID: 38256681 PMCID: PMC10816428 DOI: 10.3390/jcm13020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background. Primary resistance of acute myeloid leukemia (AML) to the conventional 3 + 7 intensive chemotherapy and relapses after first-line chemotherapy are two highly challenging clinical scenarios. In these cases, when allogeneic stem cell transplantation is feasible, patients are usually retreated with other chemotherapeutic regimens, as transplantation is still considered, nowadays, the only curative option. Methods. We discuss the mechanisms behind resistance to chemotherapy and offer a comprehensive review on current treatments of refractory/relapsed AML with a focus on novel approaches incorporating the BCL-2 inhibitor venetoclax. Results. Alas, complete remission rates after salvage chemotherapy remain relatively low, between 30 and 60% at best. More recently, the BCL-2 inhibitor venetoclax was combined either with hypomethylating agents or chemotherapy in refractory/relapsed patients. In particular, its combination with chemotherapy offered promising results by achieving higher rates of remission and bridging a substantial number of patients to transplantation. Conclusions. Venetoclax-based approaches might become, in the near future, the new standard of care for refractory/relapsed AML.
Collapse
Affiliation(s)
- Ramy Rahmé
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| | - Thorsten Braun
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| |
Collapse
|
24
|
Meriç N, Kocabaş F. Primary Human Leukemia Stem Cell (LSC) Isolation and Characterization. Methods Mol Biol 2024; 2736:151-161. [PMID: 37428345 DOI: 10.1007/7651_2023_497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Leukemia stem cells (LSC) are thought to be the basis of leukemia progression since they are highly resistant to conventional chemotherapy. LSC isolation is critical in experimental studies, drug development, and application. Due to their likely hematopoietic stem cell (HSC) origin, LSCs have surface antigens that are similar to HSC. Surface markers such as CD34, CD123, CD133, and CD33 have been used extensively to assess LSCs. LSCs could be separated from other cells using magnetic selection (MS) or flow cytometry selection (FCS) methods using these markers. Understanding the role of LSCs in cancer progression and how to therapeutically target them in vitro and in vivo is critical for the development of LSC-targeting drug candidates. In this chapter, we set out to describe the primary human LSC purification and characterization processes used on patient samples with leukemia and lymphoma.
Collapse
Affiliation(s)
- Neslihan Meriç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye.
- Faculty of Engineering and Life Sciences, Kütahya Health Sciences University, Kütahya, Türkiye.
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye.
| |
Collapse
|
25
|
Baik M, Shin S, Kumar S, Seo D, Lee I, Jun HS, Kang KW, Kim BS, Nam MH, Seo S. Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology. BIOSENSORS 2023; 13:993. [PMID: 38131753 PMCID: PMC10741567 DOI: 10.3390/bios13120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Accurate and efficient classification and quantification of CD34+ cells are essential for the diagnosis and monitoring of leukemia. Current methods, such as flow cytometry, are complex, time-consuming, and require specialized expertise and equipment. This study proposes a novel approach for the label-free identification of CD34+ cells using a deep learning model and lens-free shadow imaging technology (LSIT). LSIT is a portable and user-friendly technique that eliminates the need for cell staining, enhances accessibility to nonexperts, and reduces the risk of sample degradation. The study involved three phases: sample preparation, dataset generation, and data analysis. Bone marrow and peripheral blood samples were collected from leukemia patients, and mononuclear cells were isolated using Ficoll density gradient centrifugation. The samples were then injected into a cell chip and analyzed using a proprietary LSIT-based device (Cellytics). A robust dataset was generated, and a custom AlexNet deep learning model was meticulously trained to distinguish CD34+ from non-CD34+ cells using the dataset. The model achieved a high accuracy in identifying CD34+ cells from 1929 bone marrow cell images, with training and validation accuracies of 97.3% and 96.2%, respectively. The customized AlexNet model outperformed the Vgg16 and ResNet50 models. It also demonstrated a strong correlation with the standard fluorescence-activated cell sorting (FACS) technique for quantifying CD34+ cells across 13 patient samples, yielding a coefficient of determination of 0.81. Bland-Altman analysis confirmed the model's reliability, with a mean bias of -2.29 and 95% limits of agreement between 18.49 and -23.07. This deep-learning-powered LSIT offers a groundbreaking approach to detecting CD34+ cells without the need for cell staining, facilitating rapid CD34+ cell classification, even by individuals without prior expertise.
Collapse
Affiliation(s)
- Minyoung Baik
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Dongmin Seo
- Department of Electrical Engineering, Semyung University, Jecheon 27136, Republic of Korea;
| | - Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (I.L.); (H.S.J.)
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (I.L.); (H.S.J.)
| | - Ka-Won Kang
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-W.K.); (B.S.K.)
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-W.K.); (B.S.K.)
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| |
Collapse
|
26
|
Maffeo B, Panuzzo C, Moraca A, Cilloni D. A Leukemic Target with a Thousand Faces: The Mitochondria. Int J Mol Sci 2023; 24:13069. [PMID: 37685874 PMCID: PMC10487524 DOI: 10.3390/ijms241713069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.
Collapse
Affiliation(s)
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (B.M.); (A.M.); (D.C.)
| | | | | |
Collapse
|
27
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
28
|
Pabst T, Vey N, Adès L, Bacher U, Bargetzi M, Fung S, Gaidano G, Gandini D, Hultberg A, Johnson A, Ma X, Müller R, Nottage K, Papayannidis C, Recher C, Riether C, Shah P, Tryon J, Xiu L, Ochsenbein AF. Results from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy. Haematologica 2023; 108:1793-1802. [PMID: 36779592 PMCID: PMC10316251 DOI: 10.3324/haematol.2022.281563] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Cusatuzumab is a high-affinity, anti-CD70 monoclonal antibody under investigation in acute myeloid leukemia (AML). This two-part, open-label, multicenter, phase I/II trial evaluated cusatuzumab plus azacitidine in patients with newly diagnosed AML ineligible for intensive chemotherapy. Patients received a single dose of cusatuzumab at one of four dose levels (1, 3, 10, or 20 mg/kg) 14 days before starting combination therapy. In phase I dose escalation, cusatuzumab was then administered on days 3 and 17, in combination with azacitidine (75 mg/m2) on days 1-7, every 28 days. The primary objective in phase I was to determine the recommended phase II dose (RP2D) of cusatuzumab plus azacitidine. The primary objective in phase II was efficacy at the RP2D (selected as 10 mg/kg). Thirty-eight patients were enrolled: 12 in phase I (three per dose level; four with European LeukemiaNet 2017 adverse risk) and 26 in phase II (21 with adverse risk). An objective response (≥partial remission) was achieved by 19/38 patients (including 8/26 in phase II); 14/38 achieved complete remission. Eleven patients (37.9%) achieved an objective response among the 29 patients in phase I and phase II treated at the RP2D. At a median follow-up of 10.9 months, median duration of first response was 4.5 months and median overall survival was 11.5 months. The most common treatment-emergent adverse events were infections (84.2%) and hematologic toxicities (78.9%). Seven patients (18.4%) reported infusion-related reactions, including two with grade 3 events. Thus, cusatuzumab/azacitidine appears generally well tolerated and shows preliminary efficacy in this setting. Investigation of cusatuzumab combined with current standard-of-care therapy, comprising venetoclax and azacitidine, is ongoing.
Collapse
Affiliation(s)
- Thomas Pabst
- Department of Medical Oncology, University Hospital, Inselspital and University of Bern, Bern.
| | - Norbert Vey
- Hématologie Clinique, Institut Paoli-Calmettes, Marseille
| | - Lionel Adès
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris and Université Paris Cité, and Centre d'Investigation Clinique (INSERM CIC 1427), Paris
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern
| | - Mario Bargetzi
- Division of Hematology and Transfusion Medicine, Kantonsspital Aarau, Aarau
| | - Samson Fung
- Fung Consulting Healthcare and Life Sciences, Eching
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Maggiore Hospital, Novara
| | | | | | - Amy Johnson
- Janssen Research and Development, Spring House, PA
| | - Xuewen Ma
- Janssen Research and Development, Spring House, PA
| | - Rouven Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich
| | | | - Cristina Papayannidis
- IRCCS, Azienda Ospedaliero Universitaria di Bologna, Istituto di Ematologia "L e A Seràgnoli", Bologna
| | - Christian Recher
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Toulouse, France and Université Toulouse III Paul Sabatier, Toulouse
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Bern
| | - Priya Shah
- Janssen RD, High Wycombe, Buckinghamshire
| | | | | | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of BioMedical Research (DBMR), University of Bern, Bern
| |
Collapse
|
29
|
Tomasoni C, Pievani A, Rambaldi B, Biondi A, Serafini M. A Question of Frame: The Role of the Bone Marrow Stromal Niche in Myeloid Malignancies. Hemasphere 2023; 7:e896. [PMID: 37234820 PMCID: PMC10208717 DOI: 10.1097/hs9.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Until a few years ago, the onset of acute myeloid leukemia (AML) was entirely ascribed to genetic lesions in hematopoietic stem cells. These mutations generate leukemic stem cells, which are known to be the main ones responsible for chemoresistance and relapse. However, in the last years, increasing evidence demonstrated that dynamic interplay between leukemic cells and bone marrow (BM) niche is of paramount relevance in the pathogenesis of myeloid malignancies, including AML. Specifically, BM stromal niche components, such as mesenchymal stromal cells (MSCs) and their osteoblastic cell derivatives, play a key role not only in supporting normal hematopoiesis but also in the manifestation and progression of myeloid malignancies. Here, we reviewed recent clinical and experimental findings about how genetic and functional alterations in MSCs and osteolineage progeny can contribute to leukemogenesis and how leukemic cells in turn generate a corrupted niche able to support myeloid neoplasms. Moreover, we discussed how the newest single-cell technologies may help dissect the interactions between BM stromal cells and malignant hematopoiesis. The deep comprehension of the tangled relationship between stroma and AML blasts and their modulation during disease progression may have a valuable impact on the development of new microenvironment-directed therapeutic strategies, potentially useful for a wide cohort of patients.
Collapse
Affiliation(s)
- Chiara Tomasoni
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Benedetta Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
30
|
Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN, Omar HA. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci 2023; 320:121541. [PMID: 36870386 DOI: 10.1016/j.lfs.2023.121541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Modern cancer chemotherapy originated in the 1940s, and since then, many chemotherapeutic agents have been developed. However, most of these agents show limited response in patients due to innate and acquired resistance to therapy, which leads to the development of multi-drug resistance to different treatment modalities, leading to cancer recurrence and, eventually, patient death. One of the crucial players in inducing chemotherapy resistance is the aldehyde dehydrogenase (ALDH) enzyme. ALDH is overexpressed in chemotherapy-resistant cancer cells, which detoxifies the generated toxic aldehydes from chemotherapy, preventing the formation of reactive oxygen species and, thus, inhibiting the induction of oxidative stress and the stimulation of DNA damage and cell death. This review discusses the mechanisms of chemotherapy resistance in cancer cells promoted by ALDH. In addition, we provide detailed insight into the role of ALDH in cancer stemness, metastasis, metabolism, and cell death. Several studies investigated targeting ALDH in combination with other treatments as a potential therapeutic regimen to overcome resistance. We also highlight novel approaches in ALDH inhibition, including the potential synergistic employment of ALDH inhibitors in combination with chemotherapy or immunotherapy against different cancers, including head and neck, colorectal, breast, lung, and liver.
Collapse
Affiliation(s)
- Salma A Al-Shamma
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
31
|
Bachas C, Duetz C, van Spronsen MF, Verhoeff J, Garcia Vallejo JJ, Jansen JH, Cloos J, Westers TM, van de Loosdrecht AA. Characterization of myelodysplastic syndromes hematopoietic stem and progenitor cells using mass cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:128-140. [PMID: 35289472 DOI: 10.1002/cyto.b.22066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) at risk of transformation to acute myeloid leukemia (AML) are difficult to identify. The bone marrows of MDS patients harbor specific hematopoietic stem and progenitor cell (HSPC) abnormalities that may be associated with sub-types and risk-groups. Leukemia-associated characteristics of such cells may identify MDS patients at risk of progression to AML and provide insight in the pathobiology of MDS. METHODS Bone marrow samples from healthy donors (n = 10), low risk (n = 12) and high risk (n = 13) MDS patients were collected, in addition, AML samples for 5 out of 6 MDS patients that progressed. Mass cytometry was applied to assess expression of stem cell subset and leukemia-associated immunophenotype markers. RESULTS We analyzed the data using FlowSOM to cluster cells with similar expression of 10 commonly used stem cell markers. Metaclusters (n = 20) of these clusters represented populations of cells with a related phenotype, largely resembling known stem cell subsets. Within specific subsets, intra-cellular expression levels of pCREB, IkBα, or pS6 differed significantly between healthy bone marrow (HBM) and MDS or consecutive secondary AML samples. CD34, CD44, and CD49f expression was significantly increased in high risk MDS and AML-associated metaclusters. We identified MDS/sAML cells with aberrant phenotypes when compared to HBM. Such cells were observed in clusters of both primary MDS and secondary AML samples. CONCLUSIONS High-dimensional mass cytometry and computational data analyses enabled characterization of HSPC subsets in MDS and identification of leukemia stem cell populations based on their immunophenotype. Stem cells in MDS that display leukemia-associated features may predict the risk of developing AML.
Collapse
Affiliation(s)
- Costa Bachas
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carolien Duetz
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Margot F van Spronsen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joop H Jansen
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Anderson NR, Sheth V, Li H, Harris MW, Qiu S, Crossman DK, Kumar H, Agarwal P, Nagasawa T, Paterson AJ, Welner RS, Bhatia R. Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling. Leukemia 2023; 37:560-570. [PMID: 36550214 PMCID: PMC10750268 DOI: 10.1038/s41375-022-01798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Fms-like tyrosine kinase 3 (Flt3) tyrosine kinase inhibitors (Flt3-TKI) have improved outcomes for patients with Flt3-mutated acute myeloid leukemia (AML) but are limited by resistance and relapse, indicating persistence of leukemia stem cells (LSC). Here utilizing a Flt3-internal tandem duplication (Flt3-ITD) and Tet2-deleted AML genetic mouse model we determined that FLT3-ITD AML LSC were enriched within the primitive ST-HSC population. FLT3-ITD LSC showed increased expression of the CXCL12 receptor CXCR4. CXCL12-abundant reticular (CAR) cells were increased in Flt3-ITD AML marrow. CXCL12 deletion from the microenvironment enhanced targeting of AML cells by Flt3-TKI plus chemotherapy treatment, including enhanced LSC targeting. Both treatment and CXCL12 deletion partially reduced p38 mitogen-activated protein kinase (p38) signaling in AML cells and further reduction was seen after treatment in CXCL12 deleted mice. p38 inhibition reduced CXCL12-dependent and -independent maintenance of both murine and human Flt3-ITD AML LSC by MSC and enhanced their sensitivity to treatment. p38 inhibition in combination with chemotherapy plus TKI treatment leads to greater depletion of Flt3-ITD AML LSC compared with CXCL12 deletion. Our studies support roles for CXCL12 and p38 signaling in microenvironmental protection of AML LSC and provide a rationale for inhibiting p38 signaling to enhance Flt3-ITD AML targeting.
Collapse
Affiliation(s)
- Nicholas R Anderson
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vipul Sheth
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Li
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mason W Harris
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaowei Qiu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harish Kumar
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Puneet Agarwal
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology & Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Andrew J Paterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
33
|
Numata M, Haginoya N, Shiroishi M, Hirata T, Sato-Otsubo A, Yoshikawa K, Takata Y, Nagase R, Kashimoto Y, Suzuki M, Schulte N, Polier G, Kurimoto A, Tomoe Y, Toyota A, Yoneyama T, Imai E, Watanabe K, Hamada T, Kanada R, Watanabe J, Kagoshima Y, Tokumaru E, Murata K, Baba T, Shinozaki T, Ohtsuka M, Goto K, Karibe T, Deguchi T, Gocho Y, Yoshida M, Tomizawa D, Kato M, Tsutsumi S, Kitagawa M, Abe Y. A novel Menin-MLL1 inhibitor, DS-1594a, prevents the progression of acute leukemia with rearranged MLL1 or mutated NPM1. Cancer Cell Int 2023; 23:36. [PMID: 36841758 PMCID: PMC9960487 DOI: 10.1186/s12935-023-02877-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Mixed lineage leukemia 1-rearranged (MLL1-r) acute leukemia patients respond poorly to currently available treatments and there is a need to develop more effective therapies directly disrupting the Menin‒MLL1 complex. Small-molecule-mediated inhibition of the protein‒protein interaction between Menin and MLL1 fusion proteins is a potential therapeutic strategy for patients with MLL1-r or mutated-nucleophosmin 1 (NPM1c) acute leukemia. In this study, we preclinically evaluated the new compound DS-1594a and its salts. METHODS We evaluated the preclinical efficacy of DS-1594a as well as DS-1594a·HCl (the HCl salt of DS-1594a) and DS-1594a·succinate (the succinic acid salt of DS-1594a, DS-1594b) in vitro and in vivo using acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) models. RESULTS Our results showed that MLL1-r or NPM1c human leukemic cell lines were selectively and highly sensitive to DS-1594a·HCl, with 50% growth inhibition values < 30 nM. Compared with cytrabine, the standard chemotherapy drug as AML therapy, both DS-1594a·HCl and DS-1594a·succinate mediated the eradication of potential leukemia-initiating cells by enhancing differentiation and reducing serial colony-forming potential in MLL1-r AML cells in vitro. The results were confirmed by flow cytometry, RNA sequencing, RT‒qPCR and chromatin immunoprecipitation sequencing analyses. DS-1594a·HCl and DS-1594a·succinate exhibited significant antitumor efficacy and survival benefit in MOLM-13 cell and patient-derived xenograft models of MLL1-r or NPM1c acute leukemia in vivo. CONCLUSION We have generated a novel, potent, orally available small-molecule inhibitor of the Menin-MLL1 interaction, DS-1594a. Our results suggest that DS-1594a has medicinal properties distinct from those of cytarabine and that DS-1594a has the potential to be a new anticancer therapy and support oral dosing regimen for clinical studies (NCT04752163).
Collapse
Affiliation(s)
- Masashi Numata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Noriyasu Haginoya
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Machiko Shiroishi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Hirata
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Aiko Sato-Otsubo
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kenji Yoshikawa
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshimi Takata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Reina Nagase
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshinori Kashimoto
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Makoto Suzuki
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Nina Schulte
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Gernot Polier
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Akiko Kurimoto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yumiko Tomoe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Akiko Toyota
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoko Yoneyama
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Emi Imai
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Kenji Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoaki Hamada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Ryutaro Kanada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Jun Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshiko Kagoshima
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Eri Tokumaru
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Kenji Murata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takayuki Baba
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Taeko Shinozaki
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Masami Ohtsuka
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Koichi Goto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Karibe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takao Deguchi
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Gocho
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan ,grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shinji Tsutsumi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Mayumi Kitagawa
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005, Japan.
| | - Yuki Abe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| |
Collapse
|
34
|
Totiger TM, Ghoshal A, Zabroski J, Sondhi A, Bucha S, Jahn J, Feng Y, Taylor J. Targeted Therapy Development in Acute Myeloid Leukemia. Biomedicines 2023; 11:641. [PMID: 36831175 PMCID: PMC9953553 DOI: 10.3390/biomedicines11020641] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Therapeutic developments targeting acute myeloid leukemia (AML) have been in the pipeline for five decades and have recently resulted in the approval of multiple targeted therapies. However, there remains an unmet need for molecular treatments that can deliver long-term remissions and cure for this heterogeneous disease. Previously, a wide range of small molecule drugs were developed to target sub-types of AML, mainly in the relapsed and refractory setting; however, drug resistance has derailed the long-term efficacy of these as monotherapies. Recently, the small molecule venetoclax was introduced in combination with azacitidine, which has improved the response rates and the overall survival in older adults with AML compared to those of chemotherapy. However, this regimen is still limited by cytotoxicity and is not curative. Therefore, there is high demand for therapies that target specific abnormalities in AML while sparing normal cells and eliminating leukemia-initiating cells. Despite this, the urgent need to develop these therapies has been hampered by the complexities of this heterogeneous disease, spurring the development of innovative therapies that target different mechanisms of leukemogenesis. This review comprehensively addresses the development of novel targeted therapies and the translational perspective for acute myeloid leukemia, including the development of selective and non-selective drugs.
Collapse
Affiliation(s)
- Tulasigeri M. Totiger
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anirban Ghoshal
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jenna Zabroski
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anya Sondhi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Saanvi Bucha
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yangbo Feng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
35
|
Abe K, Ikeda S, Nara M, Kitadate A, Tagawa H, Takahashi N. Hypoxia-induced oxidative stress promotes therapy resistance via upregulation of heme oxygenase-1 in multiple myeloma. Cancer Med 2023; 12:9709-9722. [PMID: 36775962 PMCID: PMC10166934 DOI: 10.1002/cam4.5679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematopoietic malignancy for which proteasome inhibitors have become available in recent years. However, many patients develop resistance to these drugs during treatment. Therefore, it is important to elucidate the mechanisms underlying resistance acquisition by proteasome inhibitors. Side population (SP) cells, which have a high drug efflux capacity and hypoxic responses in the microenvironment have both provided important insights into drug resistance in MM; however, little is known about the characteristics of SP cells in hypoxic microenvironments. METHODS We performed cDNA microarray analysis for SP and non-SP obtained from RPMI-8226 and KMS-11 cell lines cultured for 48 h in normoxic and hypoxic conditions (1% O2 ). Genes specifically upregulated in hypoxic SP were examined. RESULTS Our comprehensive gene expression analysis identified HMOX1, BACH2, and DUX4 as protein-coding genes that are specifically highly expressed in SP cells under hypoxic conditions. We have shown that HMOX1/heme oxygenase-1 (HMOX1/HO-1) is induced by hypoxia-inducible reactive oxygen species (ROS) and reduces ROS levels. Furthermore, we found that HMOX1 contributes to hypoxia-induced resistance to proteasome inhibitors in vitro and in vivo. Excessive ROS levels synergistically enhance bortezomib sensitivity. In clinical datasets, HMOX1 had a strong and significantly positive correlation with MAFB but not MAF. Interestingly, hypoxic stimulation increased MAFB/MafB expression in myeloma cells; in addition, the knockdown of MAFB under hypoxic conditions suppressed HMOX1 expression. CONCLUSION These results suggest that the hypoxia-ROS-HMOX1 axis and hypoxia-induced MafB may be important mechanisms of proteasome inhibitor resistance in hypoxic microenvironments.
Collapse
Affiliation(s)
- Ko Abe
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Sho Ikeda
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Miho Nara
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akihiro Kitadate
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
36
|
Ragusa D, Dijkhuis L, Pina C, Tosi S. Mechanisms associated with t(7;12) acute myeloid leukaemia: from genetics to potential treatment targets. Biosci Rep 2023; 43:BSR20220489. [PMID: 36622782 PMCID: PMC9894016 DOI: 10.1042/bsr20220489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukaemia (AML), typically a disease of elderly adults, affects 8 children per million each year, with the highest paediatric incidence in infants aged 0-2 of 18 per million. Recurrent cytogenetic abnormalities contribute to leukaemia pathogenesis and are an important determinant of leukaemia classification. The t(7;12)(q36;p13) translocation is a high-risk AML subtype exclusively associated with infants and represents the second most common abnormality in this age group. Mechanisms of t(7;12) leukaemogenesis remain poorly understood. The translocation relocates the entire MNX1 gene within the ETV6 locus, but a fusion transcript is present in only half of the patients and its significance is unclear. Instead, research has focused on ectopic MNX1 expression, a defining feature of t(7;12) leukaemia, which has nevertheless failed to produce transformation in conventional disease models. Recently, advances in genome editing technologies have made it possible to recreate the t(7;12) rearrangement at the chromosomal level. Together with recent studies of MNX1 involvement using murine in vivo, in vitro, and organoid-based leukaemia models, specific investigation on the biology of t(7;12) can provide new insights into this AML subtype. In this review, we provide a comprehensive up-to-date analysis of the biological features of t(7;12), and discuss recent advances in mechanistic understanding of the disease which may deliver much-needed therapeutic opportunities to a leukaemia of notoriously poor prognosis.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
| | - Cristina Pina
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Sabrina Tosi
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| |
Collapse
|
37
|
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022; 140:1345-1377. [PMID: 35797463 DOI: 10.1182/blood.2022016867] [Citation(s) in RCA: 1432] [Impact Index Per Article: 477.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The 2010 and 2017 editions of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults are widely recognized among physicians and investigators. There have been major advances in our understanding of AML, including new knowledge about the molecular pathogenesis of AML, leading to an update of the disease classification, technological progress in genomic diagnostics and assessment of measurable residual disease, and the successful development of new therapeutic agents, such as FLT3, IDH1, IDH2, and BCL2 inhibitors. These advances have prompted this update that includes a revised ELN genetic risk classification, revised response criteria, and treatment recommendations.
Collapse
|
38
|
Weeda V, Mestrum SGC, Leers MPG. Flow Cytometric Identification of Hematopoietic and Leukemic Blast Cells for Tailored Clinical Follow-Up of Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231810529. [PMID: 36142442 PMCID: PMC9506284 DOI: 10.3390/ijms231810529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy that is characterized by the accumulation of leukemic blast cells, which originate from hematopoietic stem cells that have undergone leukemic transformation and/or are more mature progenitors that have gained stemness features. Currently, no consensus exists for the flow cytometric identification of normal blast cells and their leukemic counterparts by their antigenic expression profile. Differentiating between the benign cells and the malignant cells is crucial for the further deployment of immunophenotype panels for the clinical follow-up of AML patients. This review provides an overview of immunophenotypic markers that allow the identification of leukemic blast cells in the bone marrow with multiparameter flow cytometry. This technique allows the identification of hematopoietic blast cells at the level of maturing cells by their antigen expression profile. While aberrant antigen expression of a single immunophenotypic marker cell cannot be utilized in order to differentiate leukemic blast cells from normal blast cells, combinations of multiple immunophenotypic markers can enable the distinction of normal and leukemic blast cells. The identification of these markers has provided new perspectives for tailored clinical follow-up, including therapy management, diagnostics, and prognostic purposes. The immunophenotypic marker panels, however, should be developed by carefully considering the variable antigen marker expression profile of individual patients.
Collapse
Affiliation(s)
- Vera Weeda
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
| | - Stefan G. C. Mestrum
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, 6200MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-6-36176124
| | - Math P. G. Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
| |
Collapse
|
39
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
40
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
41
|
Li Y, Wang C, Gao H, Gu J, Zhang Y, Zhang Y, Xie M, Cheng X, Yang M, Zhang W, Li Y, He M, Xu H, Zhang H, Ji Q, Ma T, Ding S, Zhao Y, Gao Y. KDM4 inhibitor SD49-7 attenuates leukemia stem cell via KDM4A/MDM2/p21 CIP1 axis. Theranostics 2022; 12:4922-4934. [PMID: 35836814 PMCID: PMC9274755 DOI: 10.7150/thno.71460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/04/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Traditional treatments for leukemia fail to address stem cell drug resistance characterized by epigenetic mediators such as histone lysine-specific demethylase 4 (KDM4). The KDM4 family, which acts as epigenetic regulators inducing histone demethylation during the development and progression of leukemia, lacks specific molecular inhibitors. Methods: The KDM4 inhibitor, SD49-7, was synthesized and purified based on acyl hydrazone Schiff base. The interaction between SD49-7 and KDM4s was monitored in vitro by surface plasma resonance (SPR). In vitro and in vivo biological function experiments were performed to analyze apoptosis, colony-formation, proliferation, differentiation, and cell cycle in cell sub-lines and mice. Molecular mechanisms were demonstrated by RNA-seq, ChIP-seq, RT-qPCR and Western blotting. Results: We found significantly high KDM4A expression levels in several human leukemia subtypes. The knockdown of KDM4s inhibited leukemogenesis in the MLL-AF9 leukemia mouse model but did not affect the survival of normal human hematopoietic cells. We identified SD49-7 as a selective KDM4 inhibitor that impaired the progression of leukemia stem cells (LSCs) in vitro. SD49-7 suppressed leukemia development in the mouse model and patient-derived xenograft model of leukemia. Depletion of KDM4s activated the apoptosis signaling pathway by suppressing MDM2 expression via modulating H3K9me3 levels on the MDM2 promoter region. Conclusion: Our study demonstrates a unique KDM4 inhibitor for LSCs to overcome the resistance to traditional treatment and offers KDM4 inhibition as a promising strategy for resistant leukemia therapy.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Huier Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qing Ji
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| |
Collapse
|
42
|
Imetelstat Induces Leukemia Stem Cell Death in Pediatric Acute Myeloid Leukemia Patient-Derived Xenografts. J Clin Med 2022; 11:jcm11071923. [PMID: 35407531 PMCID: PMC8999576 DOI: 10.3390/jcm11071923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) in children remains deadly, despite the use of maximally intensive therapy. Because leukemia stem cells (LSCs) significantly contribute to chemoresistance and relapse, therapies that specifically target the LSCs are likely to be more beneficial in improving outcome. LSCs are known to have high telomerase activity and telomerase activity is negatively correlated with survival in pediatric AML. We evaluated the preclinical efficacy of imetelstat, an oligonucleotide inhibitor of telomerase activity in patient-derived xenograft (PDX) lines of pediatric AML. Imetelstat treatment significantly increased apoptosis/death of the LSC population in a dose-dependent manner in six pediatric AML PDX lines ex vivo, while it had limited activity on the stem cell population in normal bone marrow specimens. These results were validated in vivo in two distinct PDX models wherein imetelstat as single agent or in combination with chemotherapy greatly reduced the LSC percentage and prolonged median survival. Imetelstat combination with DNA hypomethylating agent azacitidine was also beneficial in extending survival. Secondary transplantation experiments showed delayed engraftment and improved survival of mice receiving imetelstat-treated cells, confirming the diminished LSC population. Thus, our data suggest that imetelstat represents an effective therapeutic strategy for pediatric AML.
Collapse
|
43
|
Mazloumi Z, Farahzadi R, Rafat A, Asl KD, Karimipour M, Montazer M, Movassaghpour AA, Dehnad A, Charoudeh HN. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol 2022; 125:104757. [PMID: 35339454 DOI: 10.1016/j.yexmp.2022.104757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
DNA methylation, as an epigenetic mechanism, occurs by adding a methyl group of cytosines in position 5 by DNA methyltransferases and has essential roles in cellular function, especially in the transcriptional regulation of embryonic and adult stem cells. Hypomethylation and hypermethylation cause either the expression or inhibition of genes, and there is a tight balance between regulating the activation or repression of genes in normal cellular activity. Abnormal methylation is well-known hallmark of cancer development and progression and can switch normal stem cells into cancer stem cells. Cancer Stem Cells (CSCs) are minor populations of tumor cells that exhibit unique properties such as self-regeneration, resistance to chemotherapy, and high ability of metastasis. The purpose of this paper is to show how aberrant DNA methylation accumulation affects self-renewal, differentiation, multidrug-resistant, and metastasis processes in cancer stem cells.
Collapse
Affiliation(s)
- Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Cardiovascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Dehnad
- Department of Bacterial Disease Research, Razi Vaccine and Serum Research Institute, AREEO, Tabriz, Iran
| | | |
Collapse
|
44
|
Petersen MA, Rosenberg CA, Brøndum RF, Aggerholm A, Kjeldsen E, Rahbek O, Ludvigsen M, Hasle H, Roug AS, Bill M. Immunophenotypically defined stem cell subsets in paediatric AML are highly heterogeneous and demonstrate differences in BCL-2 expression by cytogenetic subgroups. Br J Haematol 2022; 197:452-466. [PMID: 35298835 DOI: 10.1111/bjh.18094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
In adult acute myeloid leukaemia (AML), immunophenotypic differences enable discrimination of leukaemic stem cells (LSCs) from healthy haematopoietic stem cells (HSCs). However, immunophenotypic stem cell characteristics are less explored in paediatric AML. Employing a 15-colour flow cytometry assay, we analysed the expression of eight aberrant surface markers together with BCL-2 on CD34+ CD38- bone marrow stem cells from 38 paediatric AML patients and seven non-leukaemic, age-matched controls. Furthermore, clonality was investigated by genetic analyses of sorted immunophenotypically abnormal stem cells from six patients. A total of 50 aberrant marker positive (non-HSC-like) subsets with 41 different immunophenotypic profiles were detected. CD123, CLEC12A, and IL1RAP were the most frequently expressed markers. IL1RAP, CD93, and CD25 expression were not restricted to stem cells harbouring leukaemia-associated mutations. Differential BCL-2 expression was found among defined cytogenetic subgroups. Interestingly, only immunophenotypically abnormal non-HSC-like subsets demonstrated BCL-2 overexpression. Collectively, we observed pronounced immunophenotypic heterogeneity within the stem cell compartment of paediatric AML patients. Additionally, certain aberrant markers used in adults seemed to be ineligible for detection of leukaemia-representing stem cells in paediatric patients implying that inference from adult studies must be done with caution.
Collapse
Affiliation(s)
- Marianne A Petersen
- Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Carina A Rosenberg
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus F Brøndum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Anni Aggerholm
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Eigil Kjeldsen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Rahbek
- Department of Orthopaedic Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Maja Ludvigsen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Hasle
- Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne S Roug
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marie Bill
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
45
|
Ayyadurai VAS, Deonikar P, McLure KG, Sakamoto KM. Molecular Systems Architecture of Interactome in the Acute Myeloid Leukemia Microenvironment. Cancers (Basel) 2022; 14:756. [PMID: 35159023 PMCID: PMC8833542 DOI: 10.3390/cancers14030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | - Prabhakar Deonikar
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | | | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
46
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
47
|
|
48
|
Meriç N, Kocabaş F. The Historical Relationship Between Meis1 and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:127-144. [DOI: 10.1007/5584_2021_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
50
|
Stetson LC, Balasubramanian D, Ribeiro SP, Stefan T, Gupta K, Xu X, Fourati S, Roe A, Jackson Z, Schauner R, Sharma A, Tamilselvan B, Li S, de Lima M, Hwang TH, Balderas R, Saunthararajah Y, Maciejewski J, LaFramboise T, Barnholtz-Sloan JS, Sekaly RP, Wald DN. Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression. Leukemia 2021; 35:2799-2812. [PMID: 34244611 PMCID: PMC8807029 DOI: 10.1038/s41375-021-01338-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The prognosis of most patients with AML is poor due to frequent disease relapse. The cause of relapse is thought to be from the persistence of leukemia initiating cells (LIC's) following treatment. Here we assessed RNA based changes in LICs from matched patient diagnosis and relapse samples using single-cell RNA sequencing. Previous studies on AML progression have focused on genetic changes at the DNA mutation level mostly in bulk AML cells and demonstrated the existence of DNA clonal evolution. Here we identified in LICs that the phenomenon of RNA clonal evolution occurs during AML progression. Despite the presence of vast transcriptional heterogeneity at the single cell level, pathway analysis identified common signaling networks involving metabolism, apoptosis and chemokine signaling that evolved during AML progression and become a signature of relapse samples. A subset of this gene signature was validated at the protein level in LICs by flow cytometry from an independent AML cohort and functional studies were performed to demonstrate co-targeting BCL2 and CXCR4 signaling may help overcome therapeutic challenges with AML heterogeneity. It is hoped this work will facilitate a greater understanding of AML relapse leading to improved prognostic biomarkers and therapeutic strategies to target LIC's.
Collapse
Affiliation(s)
- L C Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Tammy Stefan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xuan Xu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Anne Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ashish Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Samuel Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Marcos de Lima
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | | - Yogen Saunthararajah
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw Maciejewski
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas LaFramboise
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, University Hospitals Cleveland Medical Center and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|