1
|
Morley SA, Bates AE, Clark MS, Fitzcharles E, Smith R, Stainthorp RE, Peck LS. Testing the Resilience, Physiological Plasticity and Mechanisms Underlying Upper Temperature Limits of Antarctic Marine Ectotherms. BIOLOGY 2024; 13:224. [PMID: 38666836 PMCID: PMC11047991 DOI: 10.3390/biology13040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Antarctic marine ectotherms live in the constant cold and are characterised by limited resilience to elevated temperature. Here we tested three of the central paradigms underlying this resilience. Firstly, we assessed the ability of eight species, from seven classes representing a range of functional groups, to survive, for 100 to 303 days, at temperatures 0 to 4 °C above previously calculated long-term temperature limits. Survivors were then tested for acclimation responses to acute warming and acclimatisation, in the field, was tested in the seastar Odontaster validus collected in different years, seasons and locations within Antarctica. Finally, we tested the importance of oxygen limitation in controlling upper thermal limits. We found that four of 11 species studied were able to survive for more than 245 days (245-303 days) at higher than previously recorded temperatures, between 6 and 10 °C. Only survivors of the anemone Urticinopsis antarctica did not acclimate CTmax and there was no evidence of acclimatisation in O. validus. We found species-specific effects of mild hyperoxia (30% oxygen) on survival duration, which was extended (two species), not changed (four species) or reduced (one species), re-enforcing that oxygen limitation is not universal in dictating thermal survival thresholds. Thermal sensitivity is clearly the product of multiple ecological and physiological capacities, and this diversity of response needs further investigation and interpretation to improve our ability to predict future patterns of biodiversity.
Collapse
Affiliation(s)
- Simon A. Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Amanda E. Bates
- Department of Biology, University of Victoria, P.O. Box 1700, Victoria, BC V8W 2Y2, Canada;
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Elaine Fitzcharles
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Rebecca Smith
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Rose E. Stainthorp
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
- National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| |
Collapse
|
2
|
Collins M, Clark MS, Truebano M. The environmental cellular stress response: the intertidal as a multistressor model. Cell Stress Chaperones 2023; 28:467-475. [PMID: 37129699 PMCID: PMC10469114 DOI: 10.1007/s12192-023-01348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The wild poses a multifaceted challenge to the maintenance of cellular function. Therefore, a multistressor approach is essential to predict the cellular mechanisms which promote homeostasis and underpin whole-organism tolerance. The intertidal zone is particularly dynamic, and thus, its inhabitants provide excellent models to assess mechanisms underpinning multistressor tolerance. Here, we critically review our current understanding of the regulation of the cellular stress response (CSR) under multiple abiotic stressors in intertidal organisms and consider to what extent a multistressor approach brings us closer to understanding responses in the wild. The function of the CSR has been well documented in laboratory and field exposures with a view to understanding single-stressor thermal effects. Multistressor studies still remain relatively limited in comparison but have applied three main approaches: (i) laboratory application of multiple stressors in isolation, (ii) multiple stressors applied in combination, and (iii) field-based correlation of multiple stressors against the CSR. The application of multiple stressors in isolation has allowed the identification of putative, shared stress pathways but overlooks non-additive stressor interactions on the CSR. Combined stressor studies are relatively limited in number but already highlight variable effects on the CSR dependent upon stressor type, timing, and magnitude. Field studies have allowed the identification of responsive components of the CSR to various stressors in situ but are correlative, not causative. A combined approach involving laboratory multistressor studies linking the CSR to whole-organism tolerance as well as field studies is required if we are to understand the role of the CSR in the natural environment.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
3
|
Rahman MF, Billah MM, Kline RJ, Rahman MS. Effects of elevated temperature on 8-OHdG expression in the American oyster ( Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100079. [PMID: 36589260 PMCID: PMC9798191 DOI: 10.1016/j.fsirep.2022.100079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8‑hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.
Collapse
Key Words
- 8-OHdG, 8‑hydroxy-2′-deoxyguanosine
- BAX, bcl-2-associate X
- BSA, bovine serum albumin
- CAS-3, caspase-3
- Caspase 3
- DSBs, double-stranded breaks
- EP, extrapallial
- Extrapallial fluid
- HSP70
- HSP70, heat shock protein 70
- Heat stress
- Marine mollusks
- PBS, Phosphate buffer saline
- SSBs, single-stranded breaks
- TUNEL, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
- dsDNA breaks
- dsDNA, double-stranded DNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- ssDNA, single-stranded DNA
- γ-H2AX, γ-histone family member X
Collapse
Affiliation(s)
- Md Faizur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J. Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,Corresponding author at: Department of Biology, University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, Texas 78520, USA.
| |
Collapse
|
4
|
Cvetkovska M, Vakulenko G, Smith DR, Zhang X, Hüner NPA. Temperature stress in psychrophilic green microalgae: Minireview. PHYSIOLOGIA PLANTARUM 2022; 174:e13811. [PMID: 36309822 DOI: 10.1111/ppl.13811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic algae are the main primary producers in polar regions, form the basis of polar food webs, and are responsible for a significant portion of global carbon fixation. Many cold-water algae are psychrophiles that thrive in the cold but cannot grow at moderate temperatures (≥20°C). Polar regions are at risk of rapid warming caused by climate change, and the sensitivity of psychrophilic algae to rising temperatures makes them, and the ecosystems they inhabit, particularly vulnerable. Recent research on the Antarctic psychrophile Chlamydomonas priscuii, an emerging algal model, has revealed unique adaptations to life in the permanent cold. Additionally, genome sequencing of C. priscuii and its relative Chlamydomonas sp. ICE-L has given rise to a plethora of computational tools that can help elucidate the genetic basis of psychrophily. This minireview summarizes new advances in characterizing the heat stress responses in psychrophilic algae and examines their extraordinary sensitivity to temperature increases. Further research in this field will help determine the impact of climate change on psychrophiles from threatened polar environments.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, Canada
| | - Xi Zhang
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
6
|
de Aranzamendi MC, Servetto N, Movilla J, Bettencourt R, Sahade R. Ocean acidification effects on the stress response in a calcifying antarctic coastal organism: The case of Nacella concinna ecotypes. MARINE POLLUTION BULLETIN 2021; 166:112218. [PMID: 33721687 DOI: 10.1016/j.marpolbul.2021.112218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification (OA) could become a serious threat for the Antarctic marine ecosystem over coming years, as the solubility of atmospheric CO2 and CaCO3 minerals increases at lower temperatures. We evaluated the effect of OA on the stress response of the limpet Nacella concinna by measuring gene expression levels. The experiment was performed with the two ecotypes (Littoral and Sublittoral) of the species during 54 days (IPCC, 2019 scenario RCP8.5; control, ~375 ppm; low-pH treatment, ~923 ppm). Exposure to low-pH treatment during 15 days triggered the down-regulation of two heat-shock protein genes (HSP70A, HSP70B) only in sublittoral individuals. Little variation in the relative expression values of all genes in both ecotypes was observed probably, due to a historical exposure to the substantial daily natural pH fluctuations recorded in the study area during the experiment. This study provides relevant baseline data for future OA experiments on coastal species in Antarctica.
Collapse
Affiliation(s)
- M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Córdoba, Argentina.
| | - N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Córdoba, Argentina
| | - J Movilla
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume Ferrer, La Mola s/n 07720 Menorca, Spain
| | - R Bettencourt
- OKEANOS Marine Research Center, Faculty of Science and Technology, University of the Azores, 9900-862 Horta, Portugal
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Córdoba, Argentina.
| |
Collapse
|
7
|
Fang Z, Sun Y, Zhang X, Wang G, Li Y, Wang Y, Zhang Z. Responses of HSP70 Gene to Vibrio parahaemolyticus Infection and Thermal Stress and Its Transcriptional Regulation Analysis in Haliotis diversicolor. Molecules 2019; 24:E162. [PMID: 30609869 PMCID: PMC6337134 DOI: 10.3390/molecules24010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a molecular chaperone that plays critical roles in cell protein folding and metabolism, which helps to protect cells from unfavorable environmental stress. Haliotis diversicolor is one of the most important economic breeding species in the coastal provinces of south China. To date, the expression and transcriptional regulation of HSP70 in Haliotis diversicolor (HdHSP70) has not been well characterized. In this study, the expression levels of HdHSP70 gene in different tissues and different stress conditions were detected. The results showed that the HdHSP70 gene was ubiquitously expressed in sampled tissues and was the highest in hepatopancreas, followed by hemocytes. In hepatopancreas and hemocytes, the HdHSP70 gene was significantly up-regulated by Vibrio parahaemolyticus infection, thermal stress, and combined stress (Vibrio parahaemolyticus infection and thermal stress combination), indicating that HdHSP70 is involved in the stress response and the regulation of innate immunity. Furthermore, a 2383 bp of 5'-flanking region sequence of the HdHSP70 gene was cloned, and it contains a presumed core promoter region, a CpG island, a (TG)39 simple sequence repeat (SSR), and many potential transcription factor binding sites. The activity of HdHSP70 promoter was evaluated by driving the expression of luciferase gene in HEK293FT cells. A series of experimental results indicated that the core promoter region is located between -189 bp and +46 bp, and high-temperature stress can increase the activity of HdHSP70 promoter. Sequence-consecutive deletions of the luciferase reporter gene in HEK293FT cells revealed two possible promoter activity regions. To further identify the binding site of the key transcription factor in the two regions, two expression vectors with site-directed mutation were constructed. The results showed that the transcriptional activity of NF-1 site-directed mutation was significantly increased (p < 0.05), whereas the transcriptional activity of NF-κB site-directed mutation was significantly reduced. These results suggest that NF-1 and NF-κB may be two important transcription factors that regulate the expression of HdHSP70 gene.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yuting Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Clark MS, Thorne MAS, King M, Hipperson H, Hoffman JI, Peck LS. Life in the intertidal: Cellular responses, methylation and epigenetics. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13077] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Melody S. Clark
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| | | | - Michelle King
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| | - Helen Hipperson
- NERC Biomolecular Analysis FacilityDepartment of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Joseph I. Hoffman
- Department of Animal BehaviourUniversity of Bielefeld Bielefeld Germany
| | - Lloyd S. Peck
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| |
Collapse
|
9
|
Khomich AS, Golubev AP, Axenov-Gribanov DV, Bodilovskaya OA, Shirokova YA, Loshakova YV, Lubyaga YA, Shatilina ZM. The Effect of Acute Hiperthermia on Levels of Hsp70 and Lipid Peroxidation in Laboratory-Cultured Pulmonate Mollusk Stagnicola corvus. CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Drake MJ, Miller NA, Todgham AE. The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis. J Exp Biol 2017; 220:3072-3083. [DOI: 10.1242/jeb.159020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Much of our understanding of the thermal physiology of intertidal organisms comes from experiments with animals acclimated under constant conditions and exposed to a single heat stress. In nature, however, the thermal environment is more complex. Aerial exposure and the unpredictable nature of thermal stress during low tides may be critical factors in defining the thermal physiology of intertidal organisms. In the fingered limpet, Lottia digitalis, we investigated whether upper temperature tolerance and thermal sensitivity were influenced by the pattern of fluctuation with which thermal stress was applied. Specifically, we examined whether there was a differential response (measured as cardiac performance) to repeated heat stress of a constant and predictable magnitude compared with heat stress applied in a stochastic and unpredictable nature. We also investigated differences in cellular metabolism and damage following immersion for insights into biochemical mechanisms of tolerance. Upper temperature tolerance increased with aerial exposure, but no significant differences were found between predictable treatments of varying magnitudes (13°C versus 24°C versus 32°C). Significant differences in thermal tolerance were found between unpredictable trials with different heating patterns. There were no significant differences among treatments in basal citrate synthase activity, glycogen content, oxidative stress or antioxidants. Our results suggest that aerial exposure and recent thermal history, paired with relief from high low-tide temperatures, are important factors modulating the capacity of limpets to deal with thermal stress.
Collapse
Affiliation(s)
- Madeline J. Drake
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Nathan A. Miller
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA
| | - Anne E. Todgham
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Lim HJ, Kim BM, Hwang IJ, Lee JS, Choi IY, Kim YJ, Rhee JS. Thermal stress induces a distinct transcriptome profile in the Pacific oyster Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:62-70. [PMID: 27341139 DOI: 10.1016/j.cbd.2016.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023]
Abstract
Oysters are frequently subjected to heat stress during tidal emersion/immersion cycles in their habitats due to attachment on the rocky shore. To understand the effect of temperature elevation on the whole transcriptome over time, the Pacific oyster Crassostrea gigas was exposed to seawater temperature 32°C for 72h from the control 20°C. RNA-seq identified differentially expressed stress responsive transcripts upon thermal stress in the gill tissues of C. gigas. The primary effect of heat stress appears to be significantly induced transcription of molecular chaperones, including members of the heat shock protein (hsp) families, while genes typically associated with protein metabolism, such as those involved in protein degradation (e.g. ATP-dependent proteolysis pathway) and biosynthesis (e.g. ribosomal protein genes), were repressed. In particular, several hsp70 isoforms and a small hsp20 maintained prolonged mRNA expressions for 72h. This study provides preliminary insights into the molecular response of C. gigas to heat stress and suggests a basis for future studies examining molecular adaptation or thermotolerance metabolism in the Pacific oyster.
Collapse
Affiliation(s)
- Hyun-Jeong Lim
- West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 22383, South Korea
| | - Bo-Mi Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - In Joon Hwang
- West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 22383, South Korea
| | - Jeong-Soo Lee
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Department of Agricultural Industry, Center for Lifelong Learning, Kangwon National University, Chuncheon 24341, South Korea.
| | - Youn-Jung Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|
12
|
Peck LS. A Cold Limit to Adaptation in the Sea. Trends Ecol Evol 2015; 31:13-26. [PMID: 26552514 DOI: 10.1016/j.tree.2015.09.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Temperature affects biological functions by altering reaction rates. Physiological rates usually double to treble for every 10 °C rise, and 1-4 fold encompasses normal biological functions. However, in polar marine species inhabiting temperatures around 0 °C many processes are slowed beyond the Arrhenius relationships for warmer water species. Growth, embryonic development, Specific dynamic action (SDA) duration, and time to acclimate to altered temperature, are all 5-12 fold slower in species living near 0 °C than at 10 °C. This cold marine physiological transition to slower states is absent, however, in oxygen consumption and SDA factorial scope; processes where capacity is related to aerobic scope. My opinion is that processes involving significant protein modification are impacted, and protein synthesis or folding problems cause the slowing of rates beyond expected temperature effects.
Collapse
Affiliation(s)
- Lloyd S Peck
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK.
| |
Collapse
|
13
|
|
14
|
Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:150-9. [DOI: 10.1016/j.cbpa.2015.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
|
15
|
Cascella K, Jollivet D, Papot C, Léger N, Corre E, Ravaux J, Clark MS, Toullec JY. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS One 2015; 10:e0121642. [PMID: 25835552 PMCID: PMC4383606 DOI: 10.1371/journal.pone.0121642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. METHODOLOGY/PRINCIPAL FINDING Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. CONCLUSIONS The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change.
Collapse
Affiliation(s)
- Kévin Cascella
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Claire Papot
- Université de Lille1, CNRS UMR8198, Ecoimmunology of Marine Annelids, 59655 Villeneuve d’Ascq, France
| | - Nelly Léger
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Erwan Corre
- Sorbonne Universités, UPMC Université Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, FR 2424, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Juliette Ravaux
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| | - Jean-Yves Toullec
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
- * E-mail:
| |
Collapse
|
16
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
17
|
Koenigstein S, Pöhlmann K, Held C, Abele D. Ecological comparison of cellular stress responses among populations - normalizing RT-qPCR values to investigate differential environmental adaptations. BMC Ecol 2013; 13:21. [PMID: 23680017 PMCID: PMC3663710 DOI: 10.1186/1472-6785-13-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Rising temperatures and other environmental factors influenced by global climate change can cause increased physiological stress for many species and lead to range shifts or regional population extinctions. To advance the understanding of species’ response to change and establish links between individual and ecosystem adaptations, physiological reactions have to be compared between populations living in different environments. Although changes in expression of stress genes are relatively easy to quantify, methods for reliable comparison of the data remain a contentious issue. Using normalization algorithms and further methodological considerations, we compare cellular stress response gene expression levels measured by RT-qPCR after air exposure experiments among different subpopulations of three species of the intertidal limpet Nacella. Results Reference gene assessment algorithms reveal that stable reference genes can differ among investigated populations and / or treatment groups. Normalized expression values point to differential defense strategies to air exposure in the investigated populations, which either employ a pronounced cellular stress response in the inducible Hsp70 forms, or exhibit a comparatively high constitutive expression of Hsps (heat shock proteins) while showing only little response in terms of Hsp induction. Conclusions This study serves as a case study to explore the methodological prerequisites of physiological stress response comparisons among ecologically and phylogenetically different organisms. To improve the reliability of gene expression data and compare the stress responses of subpopulations under potential genetic divergence, reference gene stability algorithms are valuable and necessary tools. As the Hsp70 isoforms have been shown to play different roles in the acute stress responses and increased constitutive defenses of populations in their different habitats, these comparative studies can yield insight into physiological strategies of adaptation to environmental stress and provide hints for the prudent use of the cellular stress response as a biomarker to study environmental stress and stress adaptation of populations under changing environmental conditions.
Collapse
Affiliation(s)
- Stefan Koenigstein
- Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven D-27515, Germany.
| | | | | | | |
Collapse
|
18
|
Michail X, Kontogiannatos D, Syriou V, Kourti A. Bisphenol-A affects the developmental progression and expression of heat-shock protein genes in the moth Sesamia nonagrioides. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2244-2253. [PMID: 22847829 DOI: 10.1007/s10646-012-0980-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
The effects of bisphenol A (BPA) on the endocrine system of vertebrates have been demonstrated in several studies. Here, we report the impact of BPA on the developmental progression and expression of heat shock protein genes on the terrestrial insect Sesamia nonagrioides (Lepidoptera: Noctuidae). S. nonagrioides 1st instar larvae were exposed until the end of 6th (last) instar to selected concentrations of BPA (1 μg/L, 10 μg/L, 100 μg/L, 1 mg/L and 10 mg/L) applied in their artificial diets. The lower doses of BPA (1-10 μg/L) were found to decrease larvae's weight while the 100 μg/L dose increased it. The higher doses of BPA were found to induce various abnormal phenotypes during 5th instar larval molting, larval-pupal transformation and metamorphosis. The developmental and metamorphosis endpoints presented here may indicate the possible impact of BPA on terrestrial insects. Additionally, 6th instar larvae were injected with several concentrations of BPA. Semi-quantitative and Real-Time PCR assays were used to identify the effects of BPA in the transcriptional regulation of five heat shock protein genes (SnoHsp19.5, SnoHsp20.8, SnoHsp70, SnoHsc70 and SnoHsp83). Application of BPA by feeding or by injection induced the synthesis of the SnoHsp19.5 and SnoHsp20.8 mRNAs. The expression levels of SnoHsp70 were not affected. In contrast, SnoHsc70 and SnoHsp83, which play a pivotal role in vertebrate sex steroid signal transduction, were elevated by BPA. Our results suggest that SnoHsp19.5, SnoHsp20.8, SnoHsp83 and SnoHsc70 genes can be modulated by BPA.
Collapse
Affiliation(s)
- Xenia Michail
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | | | | | | |
Collapse
|
19
|
Peck LS. Organisms and responses to environmental change. Mar Genomics 2011; 4:237-43. [DOI: 10.1016/j.margen.2011.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
|
20
|
Pöhlmann K, Koenigstein S, Alter K, Abele D, Held C. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats. Cell Stress Chaperones 2011; 16:621-32. [PMID: 21671159 PMCID: PMC3220384 DOI: 10.1007/s12192-011-0272-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 01/24/2023] Open
Abstract
Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.
Collapse
Affiliation(s)
- Kevin Pöhlmann
- Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Stefan Koenigstein
- Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Katharina Alter
- Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Doris Abele
- Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Christoph Held
- Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
21
|
Clark MS, Thorne MAS, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 2011; 6:e15919. [PMID: 21253607 PMCID: PMC3017093 DOI: 10.1371/journal.pone.0015919] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS), providing a resource for population and also gene function studies. CONCLUSIONS This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding marine ectotherms' capacities to cope with environmental change.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Freezing in the Antarctic limpet, Nacella concinna. Cryobiology 2010; 61:128-32. [DOI: 10.1016/j.cryobiol.2010.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 06/01/2010] [Accepted: 06/15/2010] [Indexed: 11/19/2022]
|
23
|
Tomanek L. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. J Exp Biol 2010; 213:971-9. [DOI: 10.1242/jeb.038034] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SUMMARY
The preferential synthesis of heat shock proteins (Hsps) in response to thermal stress [the heat shock response (HSR)] has been shown to vary in species that occupy different thermal environments. A survey of case studies of aquatic (mostly marine) organisms occupying stable thermal environments at all latitudes, from polar to tropical, shows that they do not in general respond to heat stress with an inducible HSR. Organisms that occupy highly variable thermal environments (variations up to >20°C), like the intertidal zone, induce the HSR frequently and within the range of body temperatures they normally experience, suggesting that the response is part of their biochemical strategy to occupy this thermal niche. The highest temperatures at which these organisms can synthesize Hsps are only a few degrees Celsius higher than the highest body temperatures they experience. Thus, they live close to their thermal limits and any further increase in temperature is probably going to push them beyond those limits. In comparison, organisms occupying moderately variable thermal environments (<10°C), like the subtidal zone, activate the HSR at temperatures above those they normally experience in their habitats. They have a wider temperature range above their body temperature range over which they can synthesize Hsps. Contrary to our expectations, species from highly (in comparison with moderately) variable thermal environments have a limited acclimatory plasticity. Due to this variation in the HSR, species from stable and highly variable environments are likely to be more affected by climate change than species from moderately variable environments.
Collapse
Affiliation(s)
- L. Tomanek
- Center for Coastal Marine Sciences and Environmental Proteomics Laboratory, Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
24
|
Janecki T, Kidawa A, Potocka M. The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Polar Biol 2010. [DOI: 10.1007/s00300-010-0779-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Clark MS, Peck LS. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 2009; 14:649-60. [PMID: 19404777 PMCID: PMC2866954 DOI: 10.1007/s12192-009-0117-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022] Open
Abstract
The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (-1.9 degrees C and -1.6 degrees C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.
Collapse
Affiliation(s)
- Melody S Clark
- Biological Sciences Division, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | | |
Collapse
|
26
|
Peck LS, Clark MS, Morley SA, Massey A, Rossetti H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01537.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Clark MS, Peck LS. HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review. Mar Genomics 2009; 2:11-8. [DOI: 10.1016/j.margen.2009.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/03/2009] [Accepted: 03/02/2009] [Indexed: 11/25/2022]
|
28
|
Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:154-61. [PMID: 19535033 DOI: 10.1016/j.cbpa.2009.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/26/2009] [Accepted: 02/01/2009] [Indexed: 11/20/2022]
Abstract
Latitudinal comparisons of the Southern Ocean limpet, Nacella concinna, and clam, Laternula elliptica, acclimated to 0.0 degrees C, were used to assess differences in thermal response to two regimes, 0.0, 5.1 to 10.0 degrees C and 2.5, 7.5 to 12.5 degrees C, raised at 5.0 degrees C per week. At each temperature, tissue energy status was measured through a combination of O(2) consumption, intracellular pH, cCO(2), citrate synthase (CS) activity, organic acids (succinate, acetate, propionate), adenylates (ATP, ADP, AMP, ITP, PLA (phospho-L-arginine)) and heart rate. L. elliptica from Signy (60 degrees S) and Rothera (67 degrees S), which experience a similar thermal regime (-2 to +1 degrees C) had the same lethal (7.5-10.0 degrees C), critical (5.1-7.5 degrees C) and pejus (<5.1 degrees C;=getting worse) limits with only small differences in biochemical response. N. concinna, which experiences a wider thermal regime (-2 to +15.8 degrees C), had higher lethal limits (10.0-12.5 degrees C). However, at their Northern geographic limit N. concinna, which live in a warmer environment (South Georgia, 54 degrees S), had a lower critical limit (5.1-10.0 degrees C; O(2), PLA and organic acids) than Rothera and Signy N. concinna (10.0-12.5 degrees C). This lower limit indicates that South Georgia N. concinna have different biochemical responses to temperatures close to their thermal limit, which may make them more vulnerable to future warming trends.
Collapse
|
29
|
Clark MS, Fraser KPP, Peck LS. Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biol 2008. [DOI: 10.1007/s00300-008-0447-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|