1
|
Mahmood NMS, Mahmood AMR, Maulood IM. The roles of melatonin and potassium channels in relaxation response to ang 1-7 in diabetic rat isolated aorta. Cytotechnology 2025; 77:55. [PMID: 39927136 PMCID: PMC11799518 DOI: 10.1007/s10616-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
In a circadian cycle, the pineal gland produces and releases melatonin (MEL) into the bloodstream. By activating distinct melatonin receptors, MEL has been shown to variably change vascular endothelial dysfunction (VED) to various vascular beds. This study investigates the interaction of melatonin (MEL) and potassium ion (K+) on angiotensin 1-7 (Ang 1-7) vasorelaxant in streptozotocin (STZ)-induced diabetes mellitus (DM) and non-diabetes mellitus (non-DM) male albino rat aortic rings. The isometric tension of isolated aortic rings was assessed by generating a dose-response curve (DRC) for Ang 1-7 using a PowerLab data acquisition system. Accordingly, three experimental sets were carried out. In the first set the aortic rings were exposed MEL and MEL agonist ramelteon (RAM) and MEL antagonist luzindole (LUZ). In the second set, the aortic rings were exposed to various non-selective calcium activated potassium channel (KCa) blockers, including tetraethylammonium (TEA), a small and large-conductance calcium-activated K+ [(SKCa) and (BKCa)] channels blocker charybdotoxin (ChTx) and intermediate calcium-activated K+ channel (IKCa) blocker clotrimazole (CLT). In the third set, the aortic rings were exposed to various selective K+ channels blockers, including the selective blocker of KATP channel, glibenclamide (Glib), 4-aminopyridine (4-AP), a selective blocker of Kv channels and BaCl2, delayed inward rectifier K+ channels (Kir) blocker. The results highlight the significant role of MEL in modulating vascular reactivity, particularly in the DM aorta. By enhancing the vasorelaxant effects of Ang 1-7 through mechanisms involving its receptors and antioxidant activities, MEL demonstrates its potential to counteract oxidative stress and VED associated with diabetes. These findings advance the understanding of vascular reactivity in diabetes and suggest MEL as a promising therapeutic agent for improving vascular health in diabetic conditions.
Collapse
Affiliation(s)
- Nazar M. Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| | - Almas M. R. Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| | - Ismail M. Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| |
Collapse
|
2
|
Wu H, Diao H, Zhang F, Jiang W, Pan T, Bian Y. Organelle interplay in cardiovascular diseases: Mechanisms, pathogenesis, and therapeutic perspectives. Biomed Pharmacother 2025; 185:117978. [PMID: 40073746 DOI: 10.1016/j.biopha.2025.117978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/16/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of rising morbidity and mortality among humans worldwide; however, our approach to the pathogenesis, exploration, and management of CVDs still remains limited. As the heart consists of cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, and several types of cells, different types of dysfunction in the interplay between organelles play an important damaging role, resulting in cardiac pathologies. The interplay between cellular organelles is intricate and vital for maintaining cellular homeostasis, as highlighted by multiple diseases linked to the dysfunction of both organelles. Many studies have revealed the potential mechanisms by which organelles communicate with each other and regulate the pathological processes of CVDs together. However, gaps remain in fully understanding the complexity of these interactions and translating these insights into therapeutic approaches. In this review, we summarized how the interplay between cellular organelles in the cardiomyocytes alters in various heart diseases. We find underexplored areas, such as the crucial signaling pathways governing organelle communication, and discuss their implications for disease future progression. Furthermore, we evaluate emerging potential medicines aimed at restoring organelle interactions. Finally, we propose future directions for researching to advance the development of novel medicines and therapies, addressing current gaps and providing a theoretical basis for improved clinical outcomes in CVDs.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tengfei Pan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Gu W, Ma X, Yang C, Jiang D, Fan H, Wang L, Song L. Insight into Ca 2+- inositol 1,4,5-trisphosphate receptor 2 (IP 3R2)-mediated unfolded protein response and apoptosis in scallop Patinopecten yessoensis under high temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111092. [PMID: 40147540 DOI: 10.1016/j.cbpb.2025.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Inositol 1,4,5-trisphosphate receptor 2 (IP3R2) is an essential Ca2+ release channel protein located in the endoplasmic reticulum (ER), and plays a significant role in responding to various environmental stimuli. In the present study, the function of IP3R2 from Yesso scallop Patinopecten yessoensis (PyIP3R2) in regulating the Ca2+-mediated unfolded protein response (UPR) and apoptosis after high temperature (25 °C) treatment was investigated. Three MIR domains, one RYDR_ITPR domain, one RIH_assoc domain and one Ion_trans domain were identified in PyIP3R2. Both D-myo-inositol-1,4,5-triphosphate (IP3, an activator of IP3R) and high temperature significantly upregulated the mRNA expression level of PyIP3R2 and genes related to apoptosis and the UPR, and also increased intracellular Ca2+ content (p < 0.05). Furthermore, the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) had the opposite effect, decreasing intracellular Ca2+ content and the mRNA expression level of PyIP3R2, glucose regulated protein 78 (PyGRP78) and PyCaspase-3 (p < 0.05). However, the apoptosis rate and Caspase-3 activity remained comparable to those in the injection control group. These findings indicate that PyIP3R2 mediates UPR and apoptosis in scallop haemocytes by regulating Ca2+content and distribution, and providing insight into the cellular responses of scallops to high temperature.
Collapse
Affiliation(s)
- Wenfei Gu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxue Ma
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Dongli Jiang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Hongmei Fan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Zhang C, Chang X, Zhao D, He Y, Dong G, Gao L. Decoding interaction between mitochondria and endoplasmic reticulum in ischemic myocardial injury: targeting natural medicines. Front Pharmacol 2025; 16:1536773. [PMID: 40093324 PMCID: PMC11906684 DOI: 10.3389/fphar.2025.1536773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Ischemic cardiomyopathy (ICM) is a special type or end stage of coronary heart disease or other irreversible ischemic myocardial injury. Inflammatory damage to coronary vessels is a crucial factor in causing stenosis or occlusion of coronary arteries, resulting in myocardial ischemia and hypoxia, but it is also an aspect of cardioprotection that is often overlooked. This review discusses the mechanisms of vascular injury during ICM, in which inflammation and oxidative stress interact and trigger cell death as the cause of coronary microvascular injury. Imbalances in endoplasmic reticulum function and mitochondrial quality control are important potential drivers of inflammation and oxidative stress. In addition, many studies have confirmed the therapeutic effects of Chinese herbal medicines and their natural monomeric components on vascular injuries. Their mitochondrial quality control and endoplasmic reticulum protection mechanisms as well as their role in combating improvements in vascular endothelial function and attenuating vascular injury are also summarized, with a perspective to provide a reference for pathologic understanding, drug research, and clinical application of ICM-associated coronary microvascular injury.
Collapse
Affiliation(s)
- Chuxin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangtong Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Zhao H, Wang W, Yang Y, Feng C, Lin T, Gong L. Norepinephrine Attenuates Benzalkonium Chloride-Induced Dry Eye Disease by Regulating the PINK1/Parkin Mitophagy Pathway. Ocul Immunol Inflamm 2024:1-15. [PMID: 39731302 DOI: 10.1080/09273948.2024.2447816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye. PURPOSE This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease. METHODS BAC-pretreated human corneal epithelial cells (HCEpiC) were cultured with various concentrations of NE. A BAC-induced dry eye mice model was established to explore the role of NE. Alterations in mice corneal tissues, ROS levels, mitochondrial function, and mitophagy levels were analyzed. RESULTS In vitro, our results revealed that BAC-exposed HCEpiC led to mitochondrial malfunction, which involved excessive ROS production, decreased mitochondrial membrane potential (MMP), and promoted mitochondrial fragmentation through increased DRP1 and fission protein 1 (Fis1) expression and reduced mitofusin 2 (Mfn2) expression. Moreover, topical BAC application induced excessive mitophagy. These effects were reversed by NE. Additionally, the increased expression of LC3B, SQSTM1/p62, PINK1, and Parkin, which control mitophagy, in BAC-exposed HCEpiC was suppressed by NE. In BAC-induced C57BL/6J mice, NE resulted in lower fluorescein staining scores, decreased TUNEL-positive cells, and decreased mitochondrial fragmentation. CONCLUSIONS In conclusion, our findings showed that NE therapy prevented HCEpiC following BAC application by regulating mitochondrial quality control, which is controlled by PINK1/Parkin-dependent mitophagy. Our research suggests a potential targeted treatment for dry eye disease.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
6
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 2024; 27:623-639. [PMID: 39060773 PMCID: PMC11564294 DOI: 10.1007/s10456-024-09938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
Collapse
Affiliation(s)
- Boxian Pang
- Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | | | - Tieliang Pang
- Beijing Anding hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, UK
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, China.
| |
Collapse
|
7
|
Chang X, Wu D, Gao X, Lin J, Tan Y, Wang J, Zhu H, Zhou H. BuyangHuanwu Decoction alleviates Endothelial Cell Apoptosis and Coronary Microvascular Dysfunction via Regulation of the MAPKK4/p38 Signaling Axis. Int J Med Sci 2024; 21:2464-2479. [PMID: 39439466 PMCID: PMC11492876 DOI: 10.7150/ijms.98183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAPKK4 has been implicated in the pathological mechanisms underlying myocardial and vascular injury, specifically influencing endothelial cell damage and programmed cell death via subcellular pathways. Nevertheless, the regulatory role of MAPKK4 in coronary microvascular injury following myocardial infarction remains unconfirmed, and the exploration of targeted mitochondrial protective therapeutic agents remains unaddressed. In light of this gap, we established a MAPKK4 gene-modified mouse model of ischemia-reperfusion injury and employed Buyang Huanwu decoction (BYHW), a traditional cardiovascular therapeutic formula, to assess its efficacy in treating coronary microvascular injury post-ischemia-reperfusion. The study aimed to elucidate the mechanism by which BYHW mitigates coronary microvascular injury induced by ischemia-reperfusion through the attenuation of endothelial cell apoptosis. Experimental outcomes revealed that high-dose BYHW significantly ameliorated coronary microvascular injury post-ischemia-reperfusion, restoring the structural integrity of the coronary microvasculature and reducing inflammation and oxidative stress. Contrarily, in transgenic mice overexpressing MAPKK4, BYHW intervention failed to attenuate microvascular inflammation and oxidative stress. To further investigate, we simulated hypoxia/reoxygenation injury in vascular endothelial cells using a MAPKK4-related cellular gene modification model. The results indicated that BYHW attenuates inflammatory damage and enhances the viability of vascular endothelial cells following hypoxic stress, inhibiting apoptosis via the mitochondrial pathway. However, overexpression of MAPKK4/p38 negated the therapeutic effects of BYHW, showing no impact on endothelial cell apoptosis and oxidative stress under hypoxic conditions. Molecular interaction studies confirmed that the active components of BYHW, Astragaloside IV and Ligustrazine, interact with the MAPKK4/P38 axis. In vitro experiments further suggested that the interaction between MAPKK4 and P38 play a crucial role in the ability of BYHW to inhibit apoptosis in coronary microvascular endothelial cells. Therapeutically, MAPKK4 may potentiate the apoptotic pathway in microvascular endothelial cells by modulating downstream P38 expression and phosphorylation, thereby exacerbating ischemia-reperfusion-induced coronary microvascular endothelial injury. From an in vivo perspective, the transgenic overexpression of MAPKK4 and P38 inhibited the microvascular protective effects of BYHW. These findings collectively underscore the significance of the MAPKK4-P38 axis in the protection of coronary microvascular endothelial cells.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dan Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Gao
- Outpatient Department of the Sixth Medical Center of the PLA General Hospital, China
| | - Jianguo Lin
- The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Tan
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
8
|
Sun Q, Yang R, Chen T, Li S, Wang H, Kong D, Zhang W, Duan J, Zheng H, Shen Z, Zhang J. Icaritin attenuates ischemia-reperfusion injury by anti-inflammation, anti-oxidative stress, and anti-autophagy in mouse liver. Int Immunopharmacol 2024; 138:112533. [PMID: 38924868 DOI: 10.1016/j.intimp.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (IR) injury is a major complication of liver transplantation and gravely affects patient prognosis. Icaritin (ICT), the primary plasma metabolite of icariin (ICA), plays a critical role in anti-inflammatory and immunomodulatory processes. However, the role of ICT in hepatic IR injury remains largely undefined. In this study, we aimed to elucidate the role of ICT in hepatic IR injury. METHODS We established hepatic IR injury models in animals, as well as an oxygen-glucose deprivation/reperfusion (OGD/R) cell model. Liver injury in vivo was assessed by measuring serum alanine aminotransferase (ALT) levels, necrotic areas by liver histology and local hepatic inflammatory responses. For in vitro analyses, we implemented flow-cytometric and western blot analyses, transmission electron microscopy, and an mRFP-GFP-LC3 adenovirus reporter assay to assess the effects of ICT on OGD/R injury in AML12 and THLE-2 cell lines. Signaling pathways were explored in vitro and in vivo to identify possible mechanisms underlying ICT action in hepatic IR injury. RESULTS Compared to the mouse model group, ICT preconditioning considerably protected the liver against IR stress, and diminished the levels of necrosis/apoptosis and inflammation-related cytokines. In additional studies, ICT treatment dramatically boosted the expression ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR proteins in hepatic cells following OGD/R damage. We also applied LY294002 (a PI3K inhibitor) and RAPA (rapamycin, an mTOR inhibitor), which blocked the protective effects of ICT in hepatocytes subjected to OGD/R. CONCLUSION This study indicates that ICT attenuates ischemia-reperfusion injury by exerting anti-inflammation, anti-oxidative stress, and anti-autophagy effects, as demonstrated in mouse livers. We thus posit that ICT could have therapeutic potential for the treatment of hepatic IR injury.
Collapse
Affiliation(s)
- Qian Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Ruining Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Tao Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China.
| | - Shipeng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China.
| | - Hao Wang
- Department of Kidney Transplantation, Shenzhen Third People's Hospital, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China.
| | - Weiye Zhang
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Jinliang Duan
- School of Medicine, Nankai University, Tianjin, China.
| | - Hong Zheng
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| | - Jianjun Zhang
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
10
|
Huang TL, Jiang WJ, Zhou Z, Shi TF, Yu M, Yu M, Si JQ, Wang YP, Li L. Quercetin attenuates cisplatin-induced mitochondrial apoptosis via PI3K/Akt mediated inhibition of oxidative stress in pericytes and improves the blood labyrinth barrier permeability. Chem Biol Interact 2024; 393:110939. [PMID: 38490643 DOI: 10.1016/j.cbi.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Tian-Lan Huang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wen-Jun Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Zan Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Tian-Feng Shi
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Miao Yu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meng Yu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| |
Collapse
|
11
|
Yu Q, Hua R, Zhao B, Qiu D, Zhang C, Huang S, Pan Y. Melatonin protects TEGDMA-induced preodontoblast mitochondrial apoptosis via the JNK/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:393-404. [PMID: 38308473 PMCID: PMC10984853 DOI: 10.3724/abbs.2023263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 02/04/2024] Open
Abstract
Resin monomer-induced dental pulp injury presents a pathology related to mitochondrial dysfunction. Melatonin has been regarded as a strong mitochondrial protective bioactive compound from the pineal gland. However, it remains unknown whether melatonin can prevent dental pulp from resin monomer-induced injury. The aim of this study is to investigate the effects of melatonin on apoptosis of mouse preodontoblast cells (mDPC6T) induced by triethylene glycol dimethacrylate (TEGDMA), a major component in dental resin, and to determine whether the JNK/MAPK signaling pathway mediates the protective effect of melatonin. A well-established TEGDMA-induced mDPC6T apoptosis model is adopted to investigate the preventive function of melatonin by detecting cell viability, apoptosis rate, expressions of apoptosis-related proteins, mitochondrial ROS (mtROS) production, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) level. Inhibitors of MAPKs are used to explore which pathway is involved in TEGDMA-induced apoptosis. Finally, the role of the JNK/MAPK pathway is verified using JNK agonists and antagonists. Our results show that melatonin attenuates TEGDMA-induced mDPC6T apoptosis by reducing mtROS production and rescuing MMP and ATP levels. Furthermore, mitochondrial dysfunction and apoptosis are alleviated only by the JNK/MAPK inhibitor SP600125 but not by other MAPK inhibitors. Additionally, melatonin downregulates the expression of phosphorylated JNK and counteractes the activating effects of anisomycin on the JNK/MAPK pathway, mimicking the effects of SP600125. Our findings demonstrate that melatonin protects mDPC6T cells against TEGDMA-induced apoptosis partly through JNK/MAPK and the maintenance of mitochondrial function, offering a novel therapeutic strategy for the prevention of resin monomer-induced dental pulp injury.
Collapse
Affiliation(s)
- Qihao Yu
- Department of EndodonticsSchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Ruize Hua
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Bingyang Zhao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Dongchao Qiu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Chengfei Zhang
- Restorative Dental SciencesEndodonticsFaculty of DentistryThe University of Hong KongHong Kong SAR 999077China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
- Department of ProsthodonticsSchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Yihuai Pan
- Department of EndodonticsSchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
12
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Lin Y, Yang X, Li Y, Huang DJ, Sun ZQ. A newly synthesized flavone avoids COMT-catalyzed methylation and mitigates myocardial ischemia/reperfusion injury in H9C2 cells via JNK and P38 pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:492-499. [PMID: 38419895 PMCID: PMC10897552 DOI: 10.22038/ijbms.2023.74358.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Objectives Luteolin is a flavone that provides defense against myocardial ischemia/reperfusion (I/R) injury. However, this compound is subjected to methylation mediated by catechol-O-methyltransferase (COMT), thus influencing its pharmacological effect. To synthesize a new flavone from luteolin that avoids COMT-catalyzed methylation and find out the protective mechanism of LUA in myocardial I/R injury. Materials and Methods Luteolin and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) were used to synthesize the new flavone known as LUAAPH-1 (LUA). Then, the myocardial ischemia/reperfusion injury cell model was established using H9c2 cells to detect the effect in myocardial ischemia/reperfusion regulation and to identify the underlying mechanism. Results Pretreatment with LUA (20 μmol/l) substantially increased cell viability while reducing cell apoptosis rate and caspase-3 expression induced by I/R, and the protective effect of LUA on cell viability was stronger than diosmetin, which is the major methylated metabolite of luteolin. In addition, intracellular reactive oxygen species (ROS) production and calcium accumulation were both inhibited by LUA. Furthermore, we identified that LUA markedly relieved the promotive effects of I/R stimulation upon JNK and p38 phosphorylation. Conclusion LUT pretreatment conveys significant cardioprotective effects after myocardial I/R injury, and JNK and p38 MAPK signaling pathway may be involved.
Collapse
Affiliation(s)
- Ye Lin
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, P.R. China
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xin Yang
- Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117597, Singapore
| | - Yan Li
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - De-Jian Huang
- Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117597, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-Qin Sun
- Changzhou Second People's Hospital, Changzhou 213000, P.R. China
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, P.R. China
| |
Collapse
|
14
|
Ma L, Chang X, Gao J, Zhang Y, Chen Y, Zhou H, Zhou N, Du N, Li J, Bi J, Chen Z, Chen X, He Q. METTL3 boosts mitochondrial fission and induces cardiac fibrosis after ischemia/reperfusion injury. Int J Biol Sci 2024; 20:433-445. [PMID: 38169612 PMCID: PMC10758110 DOI: 10.7150/ijbs.87535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024] Open
Abstract
METTL3, an RNA methyltransferase enzyme, exerts therapeutic effects on various cardiovascular diseases. Myocardial ischemia-reperfusion injury (MIRI) and subsequently cardiac fibrosis is linked to acute cardiomyocyte death or dysfunction induced by mitochondrial damage, particularly mitochondrial fission. Our research aims to elucidate the potential mechanisms underlying the therapeutic actions of METTL3 in MIRI, with focus on mitochondrial fission. When compared with Mettl3flox mice subjected to MIRI, Mettl3 cardiomyocyte knockout (Mettl3Cko) mice have reduced infarct size, decreased serum levels of myocardial injury-related factors, limited cardiac fibrosis, and preserved myocardial ultrastructure and contractile/relaxation capacity. The cardioprotective actions of Mettl3 knockout were associated with reduced inflammatory responses, decreased myocardial neutrophil infiltration, and suppression of cardiomyocyte death. Through signaling pathway validation experiments and assays in cultured HL-1 cardiomyocytes exposed to hypoxia/reoxygenation, we confirmed that Mettl3 deficiency interfere with DNA-PKcs phosphorylation, thereby blocking the downstream activation of Fis1 and preventing pathological mitochondrial fission. In conclusion, this study confirms that inhibition of METTL3 can alleviate myocardial cardiac fibrosis inflammation and prevent cardiomyocyte death under reperfusion injury conditions by disrupting DNA-PKcs/Fis1-dependent mitochondrial fission, ultimately improving cardiac function. These findings suggest new approaches for clinical intervention in patients with MIRI.
Collapse
Affiliation(s)
- Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Ye Chen
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Na Zhou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Na Du
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiamin Li
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiachen Bi
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ziyue Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinxin Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
15
|
Zhang X, Zhou H, Chang X. Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Arch Toxicol 2023; 97:3023-3035. [PMID: 37707623 DOI: 10.1007/s00204-023-03599-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Endothelial cells (ECs), found in the innermost layer of blood vessels, are crucial for maintaining the structure and function of coronary microcirculation. Dysregulated coronary microcirculation poses a fundamental challenge in diabetes-related myocardial microvascular injury, impacting myocardial blood perfusion, thrombogenesis, and inflammation. Extensive research aims to understand the mechanistic connection and functional relationship between cardiac EC dysfunction and the development, diagnosis, and treatment of diabetes-related myocardial microvascular injury. Despite the low mitochondrial content in ECs, mitochondria act as sensors of environmental and cellular stress, influencing EC viability, structure, and function. Mitochondrial dynamics and mitophagy play a vital role in orchestrating mitochondrial responses to various stressors by regulating morphology, localization, and degradation. Impaired mitochondrial dynamics or reduced mitophagy is associated with EC dysfunction, serving as a potential molecular basis and promising therapeutic target for diabetes-related myocardial microvascular injury. This review introduces newly recognized mechanisms of damaged coronary microvasculature in diabetes-related microvascular injury and provides updated insights into the molecular aspects of mitochondrial dynamics and mitophagy. Additionally, novel targeted therapeutic approaches against diabetes-related microvascular injury or endothelial dysfunction, focusing on mitochondrial fission and mitophagy in endothelial cells, are summarized.
Collapse
Affiliation(s)
- Xiao Zhang
- Dermatology, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, 252000, China
| | - Hao Zhou
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
16
|
Zhao J, Hu J, Zhang R, Deng J. CEBPD REGULATES OXIDATIVE STRESS AND INFLAMMATORY RESPONSES IN HYPERTENSIVE CARDIAC REMODELING. Shock 2023; 60:713-723. [PMID: 37752084 DOI: 10.1097/shk.0000000000002228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
ABSTRACT Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. The cell model was established by angiotensin-II treatment and transfected with overexpressed CEBPD vector. Cell viability and surface area and oxidative stress (reactive oxygen species/superoxide dismutase/lactate dehydrogenase/malondialdehyde) were assessed, and inflammatory factors (TNF-α/IL-1β/IL-6/IL-10) were determined both in vivo and in vitro . The levels of CEBPD, miR-96-5p, inositol 1,4,5-trisphosphate receptor 1 (IP3R), natriuretic peptide B, and natriuretic peptide A, collagen I, and collagen III in tissues and cells were determined. The binding relationships of CEBPD/miR-96-5p/IP3R 3' untranslated region were validated. CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1β/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.
Collapse
Affiliation(s)
- Jinghong Zhao
- Department of Cardiology, Nanchong Central Hospital, Nanchong, China
| | | | | | | |
Collapse
|
17
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
18
|
Li F, Zhu H, Chang Z, Li Y. Gentiopicroside alleviates acute myocardial infarction injury in rats by disrupting Nrf2/NLRP3 signaling. Exp Biol Med (Maywood) 2023; 248:1254-1266. [PMID: 37850391 PMCID: PMC10621478 DOI: 10.1177/15353702231199076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/20/2023] [Indexed: 10/19/2023] Open
Abstract
The objective of the present investigation was to assess the protective impact of gentiopicroside (GPS) on acute myocardial infarction (AMI) through the modulation of NF-E2-related factor 2 (Nrf2)/nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) signaling. H9c2 cells were subjected to varying concentrations of GPS, and subsequently, the cells and Sprague-Dawley (SD) rats were segregated into control, model, GPS, t-BHQ (an Nrf2 activator), and GPS + ML385 (an Nrf2 inhibitor) groups. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were analyzed. Reactive oxygen species (ROS) and cell apoptosis were assessed, while Nrf2 and the expression of the NLRP3 inflammatory body signal pathway were evaluated using western blot and immunofluorescence techniques. The infarct area and pathological changes were also examined. Treatment with varying doses of GPS resulted in increased viability of H9c2 cells. Notably, the model group exhibited significantly elevated levels of cell apoptosis, MDA, and ROS compared to the control group, while SOD and Nrf2 levels were significantly reduced. Furthermore, the expression of NLRP3, cleaved caspase-1, interleukin (IL)-1β, and IL-18 were found to be augmented. Following the implementation of GPS in cells and animals, there was a notable reduction in MDA and ROS levels, a decrease in the rate of cellular apoptosis, and a mitigation of inflammation scores. In addition, there was an increase in the expression of SOD and Nrf2. However, the protective effects of GPS were negated when co-administered with ML385. GPS exhibits therapeutic properties in AMI rats by activating Nrf2 expression, thereby reducing the NLRP3 inflammatory body and alleviating the inflammatory response and oxidative stress of myocardial cells. GPS may hold promise as a potential drug for the treatment of AMI.
Collapse
Affiliation(s)
- Fei Li
- The First Ward of Cardiovascular Medicine, Yantaishan Hospital, Yantai 264000, China
| | - Hongxiang Zhu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Zijuan Chang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Ying Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| |
Collapse
|
19
|
Sarkar S, Das A, Mitra A, Ghosh S, Chattopadhyay S, Bandyopadhyay D. An integrated strategy to explore the potential role of melatonin against copper-induced adrenaline toxicity in rat cardiomyocytes: Insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2023; 120:110301. [PMID: 37224648 DOI: 10.1016/j.intimp.2023.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
AIMS Circumstantial anxiety as well as chronic stress may stimulate the release of stress hormones including catecholamines. Adrenaline toxicity has been implicated in many cardiovascular conditions. Considering previous literature that suggests the oxidative potential of the adrenaline-copper entity, we have investigated its potential nocuous role in isolated adult rat cardiomyocytes, the underlying molecular mechanism, and its possible protection by melatonin. MAIN METHODS Given the mechanistic congruity of adrenaline-copper (AC) with the well-established H2O2-copper-ascorbate (HCA) system of free radical generation, we have used the latter as a representative model to study the cytotoxic nature of AC. We further investigated the cardioprotective efficacy of melatonin in both the stress models through scanning electron microscopy, immunofluorescence, flow cytometry, and western blot analysis. KEY FINDINGS Results show that melatonin significantly protects AC-treated cardiomyocytes from ROS-mediated membrane damage, disruption of mitochondrial membrane potential, antioxidant imbalance, and distortion of cellular morphology. Melatonin protects cardiomyocytes from inflammation by downregulating pro-inflammatory mediators viz., COX-2, NF-κB, TNF-α, and upregulating anti-inflammatory IL-10. Melatonin significantly ameliorated cardiomyocyte apoptosis in AC and HCA-treated cells as evidenced by decreased BAX/BCL-2 ratio and subsequent suppression of caspase-9 and caspase-3 levels. The isothermal calorimetric study revealed that melatonin inhibits the binding of adrenaline bitartrate with copper in solution, which fairly explains the rescue potential of melatonin against AC-mediated toxicity in cardiomyocytes. SIGNIFICANCE Findings suggest that the multipronged strategy of melatonin that includes its antioxidant, anti-inflammatory, anti-apoptotic, and overall cardioprotective ability may substantiate its potential therapeutic efficacy against adrenaline-copper-induced damage and death of adult rat cardiomyocytes.
Collapse
Affiliation(s)
- Swaimanti Sarkar
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
20
|
Fang G, Shen Y, Liao D. ENPP2 alleviates hypoxia/reoxygenation injury and ferroptosis by regulating oxidative stress and mitochondrial function in human cardiac microvascular endothelial cells. Cell Stress Chaperones 2023; 28:253-263. [PMID: 37052764 PMCID: PMC10167086 DOI: 10.1007/s12192-023-01324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to elucidate the molecular mechanisms of hypoxia/reoxygenation (H/R) injury in human cardiac microvascular endothelial cells (HCMECs) by regulating ferroptosis. H/R model was established with HCMECs and before the reperfusion, ferroptosis inhibitor ferrostatin-1 or ferroptosis inducer erastin was all administered. Wound-healing assay was performed to detect the migration ability of cells in each group, and the angiogenesis ability was determined by tube formation assay. The level of reactive oxygen species (ROS) was detected by flow cytometry. Transmission electron microscopy (TEM) was used to observe the state of mitochondria. The expressions of related proteins in HCMECs were assessed by Western blot. From the results, H/R injury could inhibit the migration and angiogenesis, induce the ROS production, and cause the mitochondrial damage of HCMECs. Ferroptosis activator erastin could aggravate H/R injury in HCMECs, while the ferroptosis inhibitor ferrostatin-1 could reverse the effects of H/R on HCMECs. Western blot results showed that H/R or/and erastin treatment could significantly induce ACSL4, HGF, VEGF, p-ERK, and uPA protein expression and inhibit GPX4 expression. The addition of ferrostatin-1 resulted in the opposite trend of the proteins expression above to erastin treatment. What is more, overexpression of ENPP2 markedly suppressed the damaging effect of H/R on HCMECs and reversed the effects of H/R or erastin treatment on the expression of related proteins. These results demonstrated a great therapeutic efficacy of ENPP2 overexpression in preventing the development of H/R injury through inhibiting oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Guanhua Fang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| | - Yanming Shen
- Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Dongshan Liao
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| |
Collapse
|
21
|
Fu C, Wang M, Lu Y, Pan J, Li Y, Li Y, Wang Y, Wang A, Huang Y, Sun J, Liu C. Polygonum orientale L. Alleviates Myocardial Ischemia-Induced Injury via Activation of MAPK/ERK Signaling Pathway. Molecules 2023; 28:molecules28093687. [PMID: 37175097 PMCID: PMC10180121 DOI: 10.3390/molecules28093687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Although Polygonum orientale L. (PO) has a beneficial effect on treatment of myocardial ischemia (MI), its mechanism remains unclear. This study aimed to explore the pharmacological mechanism of PO against MI through MAPK signaling pathways. Firstly, the therapeutic effect of PO was evaluated for treatment of MI mice. Using Western blot and immunohistochemistry, the influence of PO on MAPK signaling pathways and cell apoptosis was investigated. Subsequently, one key pathway (ERK) of MAPK signaling pathways was screened out, on which PO posed the most obvious impact. Finally, an inhibitor of ERK1/2 was utilized to further verify the regulatory effect of PO on the MAPK/ERK signaling pathway. It was found that PO could reduce the elevation of the ST segment; injury of heart tissue; the activity of LDH, CK, NOS, cNOS and iNOS and the levels of NO, BNP, TNF-α and IL-6. It is notable that PO could significantly modulate the protein content of p-ERK/ERK in mice suffering from MI but hardly had an effect on p-JNK/JNK and p-p38/p38. Additionally, the expressions of bax, caspase3 and caspase9 were inhibited in heart tissue in the PO-treated group. To evaluate whether ERK1/2 inhibitor (PD98059) could block the effect of PO on treatment of MI, both PO and PD98059 were given to mice with MI. It was discovered that the inhibitor indeed could significantly reverse the regulatory effects of PO on the above indicators, indicating that PO could regulate p-ERK/ERK. This study provides experimental evidence that PO extenuates MI injury, cardiomyocyte apoptosis and inflammation by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Changli Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingjin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yueting Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
22
|
Zhang F, Wang S, Zhao C, Jiang D, Wang Y, Qi J, Li Y. D-beta-hydroxybutyrate reduced the enhanced cardiac microvascular endothelial FoxO1 to play protective roles in diabetic rats and high glucose-stimulated human cardiac microvascular endothelial cells. Tissue Cell 2023; 81:102031. [PMID: 36701897 DOI: 10.1016/j.tice.2023.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The O subfamily of forkhead (FoxO) 1 may participate in the pathogenesis of diabetic microvascular endothelial injury. However, it is unknown whether D-beta-hydroxybutyrate (BHB) regulates cardiac microvascular endothelial FoxO1 to play protective roles in diabetes. In the study, limb microvascular morphological changes, endothelial distribution of the tight junction protein Claudin-5 and FoxO1, and FoxO1 content in limb tissue from clinical patients were evaluated. Then the effects of BHB on cardiac microvascular morphological changes, cardiac FoxO1 generation and its microvascular distribution in diabetic rats were measured. And the effects of BHB on FoxO1 generation in high glucose (HG)-stimulated human cardiac microvascular endothelial cells (HCMECs) were further analyzed. The results firstly confirmed the enhanced limb microvascular FoxO1 distribution, with reduced Claudin-5 and endothelial injury in clinical patients. Then the elevated FoxO1 generation and its enhanced cardiac microvascular distribution were verified in diabetic rats and HG-stimulated HCMECs. However, BHB inhibited the enhanced cardiac FoxO1 generation and its microvascular distribution with attenuation of endothelial injury in diabetic rats. Furthermore, BHB reduced the HG-stimulated mRNA expression and protein content of FoxO1 in HCMECs. In conclusion, BHB reduced the enhanced cardiac microvascular endothelial FoxO1 to play protective roles in diabetic rats and HG-stimulated HCMECs.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China; Department of Surgery, First Hospital of Hebei Medical University, Hebei, People's Republic of China
| | - Shuai Wang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China
| | - Chao Zhao
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China
| | - Di Jiang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China.
| | - Yanning Li
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China.
| |
Collapse
|
23
|
Yao X, Zhu J, Li L, Yang B, Chen B, Bao E, Zhang X. Hsp90 protected chicken primary myocardial cells from heat-stress injury by inhibiting oxidative stress and calcium overload in mitochondria. Biochem Pharmacol 2023; 209:115434. [PMID: 36708886 DOI: 10.1016/j.bcp.2023.115434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023]
Abstract
Severe heat stress can cause human and animal heart failure and sudden death, which is an important issue of public health worldwide. Our previous studies in animals showed that myocardial cells injury was critical in the above process, and Hsp90 induction has a definite anti-myocardial injury effect, especially through aspirin (ASA). But the mechanism has not been fully clarified. In this study, an in vitro heat stress model of chicken primary myocardial cells (CPMCs) most sensitive to heat stress was used to explore the cell injuries and corresponding molecular resistance mechanism. We found that heat stress resulted in serious oxidation stress and calcium overload in mitochondria, which destroyed the mitochondrial structure and function and then triggered the cell death mechanism of CPMCs. Hsp90 was proven to be a central regulator for resisting heat-stress injury in CPMCs mitochondria using its inhibitor and inducer (geldanamycin and ASA), respectively. The mechanism involved that Hsp90 could activate Akt and PKM2 signals to promote Bcl-2 translocation into mitochondria and its phosphorylation, thereby preventing ROS production and subsequent cell apoptosis. In addition, Hsp90 inhibited mitochondrial calcium overload to overcome MPTP opening and MMP suppression through the inhibitory effect of Raf-1-ERK activation on the CREB-IP3R pathway. This study is the first to reveal a pivotal reason for heat-stressed damage in chicken myocardial cells at subcellular level and identify an effective regulator, Hsp90, and its protective mechanisms responsible for maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xu Yao
- Department of Veterinary Medicine, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Jie Zhu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Li
- Department of Food Science and Engineering, College of Biological Science and Engineering, Xingtai University, Xingtai 054001, China
| | - Bo Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bixia Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
24
|
Perrone M, Patergnani S, Di Mambro T, Palumbo L, Wieckowski MR, Giorgi C, Pinton P. Calcium Homeostasis in the Control of Mitophagy. Antioxid Redox Signal 2023; 38:581-598. [PMID: 36112728 DOI: 10.1089/ars.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Maintenance of mitochondrial quality is essential for cellular homeostasis. Among processes responsible for preserving healthy mitochondria, mitophagy selectively eliminates dysfunctional mitochondria by targeting them to the autophagosome for degradation. Alterations in mitophagy lead to the accumulation of damaged mitochondria, which plays an essential role in several diseases such as carcinogenesis and tumor progression, neurodegenerative disorders, and autoimmune and cardiovascular pathologies. Recent Advances: Calcium (Ca2+) plays a fundamental role in cell life, modulating several pathways, such as gene expression, proliferation, differentiation, metabolism, cell death, and survival. Indeed, because it is involved in all these events, Ca2+ is the most versatile intracellular second messenger. Being a process that limits cellular degeneration, mitophagy participates in cellular fate decisions. Several mitochondrial parameters, such as membrane potential, structure, and reactive oxygen species, can trigger the activation of mitophagic machinery. These parameters regulate not only mitophagy but also the mitochondrial Ca2+ uptake. Critical Issues: Ca2+ handling is fundamental in regulating ATP production by mitochondria and mitochondrial quality control processes. Despite the growing literature about the link between Ca2+ and mitophagy, the mechanism by which Ca2+ homeostasis regulates mitophagy is still debated. Future Directions: Several studies have revealed that excessive mitophagy together with altered mitochondrial Ca2+ uptake leads to different dysfunctions in numerous diseases. Thus, therapeutic modulation of these pathways is considered a promising treatment. Antioxid. Redox Signal. 38, 581-598.
Collapse
Affiliation(s)
- Mariasole Perrone
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy
| |
Collapse
|
25
|
Fu Z, Zhao PY, Yang XP, Li H, Hu SD, Xu YX, Du XH. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol 2023; 14:1094020. [PMID: 36755953 PMCID: PMC9899821 DOI: 10.3389/fphar.2023.1094020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Cannabidiol (CBD) is a terpenoid naturally found in plants. The purified compound is used in the treatment of mental disorders because of its antidepressive, anxiolytic, and antiepileptic effects. CBD can affect the regulation of several pathophysiologic processes, including autophagy, cytokine secretion, apoptosis, and innate and adaptive immune responses. However, several authors have reported contradictory findings concerning the magnitude and direction of CBD-mediated effects. For example, CBD treatment can increase, decrease, or have no significant effect on autophagy and apoptosis. These variable results can be attributed to the differences in the biological models, cell types, and CBD concentration used in these studies. This review focuses on the mechanism of regulation of autophagy and apoptosis in inflammatory response and cancer by CBD. Further, we broadly elaborated on the prospects of using CBD as an anti-inflammatory agent and in cancer therapy in the future.
Collapse
Affiliation(s)
- Ze Fu
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Hao Li
- Medical School of Chinese PLA, Beijing, China
| | - Shi-Dong Hu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying-Xin Xu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiao-Hui Du,
| |
Collapse
|
26
|
Ma L, Liao L, Zhou N, Tao H, Zhou H, Tan Y, Chen W, Cao F, Chen X. Transmembrane BAX inhibitor motif containing 6 suppresses presenilin-2 to preserve mitochondrial integrity after myocardial ischemia-reperfusion injury. Int J Biol Sci 2023; 19:1228-1240. [PMID: 36923943 PMCID: PMC10008687 DOI: 10.7150/ijbs.81100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/21/2023] [Indexed: 03/13/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) damage is characterized by mitochondrial damage in cardiomyocytes. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) and presenilin-2 (PS2) participate in multiple mitochondrial pathways; thus, we investigated the impact of these proteins on mitochondrial homeostasis during an acute reperfusion injury. Myocardial post-ischemic reperfusion stress impaired myocardial function, induced structural abnormalities and promoted cardiomyocyte death by disrupting the mitochondrial integrity in wild-type mice, but not in TMBIM6 transgenic mice. We found that TMBIM6 bound directly to PS2 and promoted its post-transcriptional degradation. Knocking out PS2 in mice reduced I/R injury-induced cardiac dysfunction, inflammatory responses, myocardial swelling and cardiomyocyte death by improving the mitochondrial integrity. These findings demonstrate that sufficient TMBIM6 expression can prevent PS2 accumulation during cardiac I/R injury, thus suppressing reperfusion-induced mitochondrial damage. Therefore, TMBIM6 and PS2 are promising therapeutic targets for the treatment of cardiac reperfusion damage.
Collapse
Affiliation(s)
- Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- ✉ Corresponding author: Dr. Li Ma, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Dr. Xinxin Chen, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lihan Liao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huikang Tao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100037, China
| | - Ying Tan
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100037, China
| | - Weidan Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan Cao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- ✉ Corresponding author: Dr. Li Ma, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Dr. Xinxin Chen, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Qin X, Qin Q, Ran K, Yuan G, Chang Y, Wang Y, Xiao Y. Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD +-SIRT3 pathway in rats. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1108-1119. [PMID: 36097779 PMCID: PMC10950099 DOI: 10.11817/j.issn.1672-7347.2022.200708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Myocardial ischemia reperfusion injury (IRI) occurs occasionally in the process of ischemic heart disease. Sevoflurane preconditioning has an effect on attenuating IRI. Preserving the structural and functional integrity of mitochondria is the key to reduce myocardial IRI. Silent information regulator 3 (SIRT3), a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, is an important signal-regulating molecule in mitochondria. This study aims to explore the role of mitochondrial NAD+-SIRT3 pathway in attenuating myocardial IRI in rats by sevoflurane preconditioning. METHODS A total of 60 male Sprague Dawley (SD) rats were randomly divided into 5 groups (n=12): A sham group (Sham group), an ischemia reperfusion group (IR group), a sevoflurane preconditioning group (Sev group, inhaled 2.5% sevoflurane for 30 min), a sevoflurane preconditioning+SIRT3 inhibitor 3-TYP group (Sev+3-TYP group, inhaled 2.5% sevoflurane for 30 min and received 5 mg/kg 3-TYP), and a 3-TYP group (5 mg/kg 3-TYP). Except for the Sham group, the IR model in the other 4 groups was established by ligating the left anterior descending coronary artery. The size of myocardial infarction was determined by double staining. Serum cardiac troponin I (cTnI) level was measured. The contents of NAD+ and ATP, the activities of mitochondrial complexes I, II, and IV, the content of MDA, the activity of SOD, and the changes of mitochondrial permeability were measured. The protein expression levels of SIRT3, SOD2, catalase (CAT), and voltage dependent anion channel 1 (VDAC1) were detected by Western blotting. The ultrastructure of myocardium was observed under transmission electron microscope. MAP and HR were recorded immediately before ischemia (T0), 30 min after ischemia (T1), 30 min after reperfusion (T2), 60 min after reperfusion (T3), and 120 min after reperfusion (T4). RESULTS After ischemia reperfusion, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased (both P<0.01), and an obvious myocardial injury occurred, including the increase of myocardial infarction size and serum cTnI level (both P<0.01). Correspondingly, the mitochondria also showed obvious damage on energy metabolism, antioxidant function, and structural integrity, which was manifested as: the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level and mitochondrial permeability were increased (all P<0.01). Compared with the IR group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were increased in the Sev group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were decreased in the Sev group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were increased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were decreased in the Sev group (all P<0.01). Compared with the Sev group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased in the Sev+3-TYP group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were increased in the Sev+3-TYP group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were increased in the Sev+3-TYP group (all P<0.01). CONCLUSIONS Sevoflurane preconditioning attenuates myocardial IRI through activating the mitochondrial NAD+-SIRT3 pathway to preserve the mitochondrial function.
Collapse
Affiliation(s)
- Xiunan Qin
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Qin Qin
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guixiu Yuan
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yetian Chang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yaping Wang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yanying Xiao
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
28
|
Zhang B, Sun C, Liu Y, Bai F, Tu T, Liu Q. Exosomal miR-27b-3p Derived from Hypoxic Cardiac Microvascular Endothelial Cells Alleviates Rat Myocardial Ischemia/Reperfusion Injury through Inhibiting Oxidative Stress-Induced Pyroptosis via Foxo1/GSDMD Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8215842. [PMID: 35847592 PMCID: PMC9279077 DOI: 10.1155/2022/8215842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
Background Exosomes derived from cardiac microvascular endothelial cells (CMECs) under hypoxia can mediate cardiac repair functions and alleviate pyroptosis and oxidative stress during ischemia-reperfusion (I/R) injury. This study is aimed at investigating the effect and mechanism of miR-27b-3p underlying hypoxic CMECs-derived exosomes against I/R injury. Methods CMECs were isolated from the left ventricle of Sprague-Dawley rats, followed by culturing under hypoxic conditions or pretreatment with the miR-27b-3p inhibitor. CMECs-derived exosomes were added into H9C2 cells before hypoxia/reoxygenation (H/R) or injected into the rat heart before I/R injury. An in vivo I/R injury model was established by ligating and releasing the left anterior descending coronary artery. Expression of pyroptosis-related factors was detected using Western blot, and heart infarcted size was determined by the 2,3,5-triphenyl-2H-tetrazpinolium chloride staining method. Dual-Luciferase Reporter assays were performed to analyze the interactions of nmiR-27b-3p-forkhead box O1 (Foxo1) and Gasdermin D- (GSDMD-) Foxo1. Chromatin-immunoprecipitation (ChIP) assays were performed to validate the interactions between forkhead box O1 (Foxo1) and Gasdermin D (GSDMD) and Foxo1-mediated histone acetylation of GSDMD. Results CMECs were successfully identified from left ventricle of Sprague-Dawley rats. The expressions of Foxo1 and pyroptosis-related proteins (GSDMD, NLPR3, cleaved caspase 1, IL-1β, and IL-18) were upregulated in the rat heart after I/R injury. Treatment of CMEC-derived exosomes, especially that under hypoxic conditions, significantly reduced pyroptosis in the rat heart. miR-27b-3p was significantly upregulated in CMEC-derived exosomes under hypoxic conditions, and miR-27b-3p inhibition in exosomes alleviated its cytoprotection and inhibited oxidative stress in H9C2 cells. Treatment with Foxo1 overexpression plasmids aggravated in vitro H/R and in vivo I/R injury by upregulating pyroptosis-related proteins. Further experiments validated that miR-27b-3p negatively targeted Foxo1, which bound to the promoter region of GSDMD. Conclusions These results demonstrated a great therapeutic efficacy of miR-27b-3p overexpression in hypoxic CMEC-derived exosomes in preventing the development of myocardial damage post I/R injury through inhibiting Foxo1/GSDMD signaling-induced oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Baojian Zhang
- Cardiac Care Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Sun
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Bai
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Ma L, Zou R, Shi W, Zhou N, Chen S, Zhou H, Chen X, Wu Y. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Am J Cancer Res 2022; 12:5034-5050. [PMID: 35836807 PMCID: PMC9274739 DOI: 10.7150/thno.75121] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Given the importance of microvascular injury in infarct formation and expansion, development of therapeutic strategies for microvascular protection against myocardial ischemia/reperfusion injury (IRI) is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of the SGLT2 inhibitor dapagliflozin (DAPA) against cardiac microvascular dysfunction mediated by IRI. Methods: DAPA effects were evaluated both in vivo, in mice subjected to IRI, and in vitro, in human coronary artery endothelial cells (HCAECs) exposed to hypoxia/reoxygenation (H/R). DAPA pretreatment attenuated luminal stenosis, endothelial swelling, and inflammation in cardiac microvessels of IRI-treated mice. Results: In H/R-challenged HCAECs, DAPA treatment improved endothelial barrier function, endothelial nitric oxide synthase (eNOS) activity, and angiogenic capacity, and inhibited H/R-induced apoptosis by preventing cofilin-dependent F-actin depolymerization and cytoskeletal degradation. Inhibition of H/R-induced xanthine oxidase (XO) activation and upregulation, sarco(endo)plasmic reticulum calcium-ATPase 2 (SERCA2) oxidation and inactivation, and cytoplasmic calcium overload was further observed in DAPA-treated HCAECs. DAPA also suppressed calcium/Calmodulin (CaM)-dependent kinase II (CaMKII) activation and cofilin phosphorylation, and preserved cytoskeleton integrity and endothelial cell viability following H/R. Importantly, the beneficial effects of DAPA on cardiac microvascular integrity and endothelial cell survival were largely prevented in IRI-treated SERCA2-knockout mice. Conclusions: These results indicate that DAPA effectively reduces cardiac microvascular damage and endothelial dysfunction during IRI through inhibition of the XO-SERCA2-CaMKII-cofilin pathway.
Collapse
Affiliation(s)
- Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rongjun Zou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanting Shi
- Department of Paediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Na Zhou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, E-mail: ; Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China. Xinxin Chen, E-mail: ; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Yueheng Wu, E-mail: ; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,✉ Corresponding authors: Hao Zhou, E-mail: ; Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China. Xinxin Chen, E-mail: ; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Yueheng Wu, E-mail: ; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,✉ Corresponding authors: Hao Zhou, E-mail: ; Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China. Xinxin Chen, E-mail: ; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Yueheng Wu, E-mail: ; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Hamad S, Derichsweiler D, Gaspar JA, Brockmeier K, Hescheler J, Sachinidis A, Pfannkuche KP. High-efficient serum-free differentiation of endothelial cells from human iPS cells. Stem Cell Res Ther 2022; 13:251. [PMID: 35690874 PMCID: PMC9188069 DOI: 10.1186/s13287-022-02924-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Endothelial cells (ECs) form the inner lining of all blood vessels of the body play important roles in vascular tone regulation, hormone secretion, anticoagulation, regulation of blood cell adhesion and immune cell extravasation. Limitless ECs sources are required to further in vitro investigations of ECs’ physiology and pathophysiology as well as for tissue engineering approaches. Ideally, the differentiation protocol avoids animal-derived components such as fetal serum and yields ECs at efficiencies that make further sorting obsolete for most applications.
Method Human induced pluripotent stem cells (hiPSCs) are cultured under serum-free conditions and induced into mesodermal progenitor cells via stimulation of Wnt signaling for 24 h. Mesodermal progenitor cells are further differentiated into ECs by utilizing a combination of human vascular endothelial growth factor A165 (VEGF), basic fibroblast growth factor (bFGF), 8-Bromoadenosine 3′,5′-cyclic monophosphate sodium salt monohydrate (8Bro) and melatonin (Mel) for 48 h.
Result This combination generates hiPSC derived ECs (hiPSC-ECs) at a fraction of 90.9 ± 1.5% and is easily transferable from the two-dimensional (2D) monolayer into three-dimensional (3D) scalable bioreactor suspension cultures. hiPSC-ECs are positive for CD31, VE-Cadherin, von Willebrand factor and CD34. Furthermore, the majority of hiPSC-ECs express the vascular endothelial marker CD184 (CXCR4).
Conclusion The differentiation method presented here generates hiPSC-ECs in only 6 days, without addition of animal sera and at high efficiency, hence providing a scalable source of hiPSC-ECs.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02924-x.
Collapse
Affiliation(s)
- Sarkawt Hamad
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany.,Biology Department, Faculty of Science, Soran University, Kurdistan Region, Soran, Iraq
| | - Daniel Derichsweiler
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany
| | - John Antonydas Gaspar
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany
| | - Konrad Brockmeier
- Department of Pediatric Cardiology, University Hospital of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kurt Paul Pfannkuche
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany. .,Department of Pediatric Cardiology, University Hospital of Cologne, Cologne, Germany. .,Marga-and-Walter-Boll Laboratory for Cardiac Tissue Engineering, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
32
|
Liu Y, Lu J, Dong C, Zhu L, Zhou L, Zhu K. Hydroxyethyl Starch Improves the Prognosis of Rats with Traumatic Shock via Activation of the ERK Signaling Pathway in Lymphocytes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5262189. [PMID: 35178114 PMCID: PMC8847030 DOI: 10.1155/2022/5262189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Severe traumatic shock is one of the leading causes of death in young adults. A large number of studies have shown that effective volumetry resuscitation on the basis of controlled injury can not only increase the success rate of early resuscitation but also reduce systemic inflammatory response and improve the cure rate of severe traumatic shock. The study explored the effects of hydroxyethyl starch (HES) on the survival rate, lymphocyte function and proliferation of rats with traumatic shock, and the potential mechanisms. METHODS Traumatic shock was constructed in rats as experimental model, and liquid resuscitation was performed using HES and lactated Ringer's (LR). 24-h mortality was recorded, and lymphocytes were isolated. The expressions of signaling pathway factors was detected by qPCR and Western blot. ELISA was performed to determine the expression of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in cell supernatant. RESULTS HES for fluid resuscitation augmented the survival of traumatic shock rats, upregulated the expressions of MEK and ERK1/2, and downregulated the expressions of IL-6 and TNF-α. However, inhibition of ERK signaling pathway reversed the effect of HES on the immune improvement and the 24-h survival rate of the traumatic shock rats (P < 0.05). CONCLUSION HES could exert the anti-inflammatory effects on lymphocytes by mediating the phosphorylation of proteins of the ERK signaling pathway. HSE demonstrated a high efficacy in effectively treating traumatic shock, thus could be used in clinical practice.
Collapse
Affiliation(s)
- Yun Liu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Jian Lu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Caifu Dong
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Limin Zhu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Li Zhou
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| | - Kai Zhu
- Department of General Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang Province 315200, China
| |
Collapse
|
33
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Ma X, Wang S, Cheng H, Ouyang H, Ma X. Melatonin Attenuates Ischemia/Reperfusion-Induced Oxidative Stress by Activating Mitochondrial Fusion in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7105181. [PMID: 35047108 PMCID: PMC8763517 DOI: 10.1155/2022/7105181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury can stimulate mitochondrial reactive oxygen species production. Optic atrophy 1- (OPA1-) induced mitochondrial fusion is an endogenous antioxidative mechanism that preserves the mitochondrial function. In our study, we investigated whether melatonin augments OPA1-dependent mitochondrial fusion and thus maintains redox balance during myocardial I/R injury. In hypoxia/reoxygenation- (H/R-) treated H9C2 cardiomyocytes, melatonin treatment upregulated OPA1 mRNA and protein expression, thereby enhancing mitochondrial fusion. Melatonin also suppressed apoptosis in H/R-treated cardiomyocytes, as evidenced by increased cell viability, diminished caspase-3 activity, and reduced Troponin T secretion; however, silencing OPA1 abolished these effects. H/R treatment augmented mitochondrial ROS production and repressed antioxidative molecule levels, while melatonin reversed these changes in an OPA1-dependent manner. Melatonin also inhibited mitochondrial permeability transition pore opening and maintained the mitochondrial membrane potential, but OPA1 silencing prevented these outcomes. These results illustrate that melatonin administration alleviates cardiomyocyte I/R injury by activating OPA1-induced mitochondrial fusion and inhibiting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Xiaoling Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Shengchi Wang
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Hui Cheng
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Haichun Ouyang
- Department of Cardiology, The Seventh Affiliated Hospital, Southern Medical University, China
| | - Xiaoning Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
35
|
FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal 2022; 92:110249. [DOI: 10.1016/j.cellsig.2022.110249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
|
36
|
Zou R, Tao J, Qiu J, Lu H, Wu J, Zhu H, Li R, Mui D, Toan S, Chang X, Zhou H, Fan X. DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction. J Adv Res 2022; 41:39-48. [PMID: 36328752 PMCID: PMC9637726 DOI: 10.1016/j.jare.2022.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
DNA-PKcs inhibition attenuates sepsis-related MODS by preserving mitochondrial function and homeostasis. Organ-specific deletion of DNA-PKcs sustained myocardial contraction, liver function, and kidney performance in LPS-challenged mice. DNA-PKcs deficiency supported cardiomyocyte function through improving mitochondrial respiration. DNA-PKcs deficiency alleviated liver dysfunction by inhibiting LPS-induced mitochondrial oxidative stress and apoptosis. DNA-PKcs deficiency attenuated kidney dysfunction by normalizing mitochondrial dynamics and biogenesis, as well as mitophagy.
Introduction Multiple organ failure is the commonest cause of death in septic patients. Objectives This study was undertaken in an attempt to elucidate the functional importance of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on mitochondrial dysfunction associated with the development and progression of sepsis-related multiple organ dysfunction syndrome (MODS). Methods Cardiomyocyte-specific DNA-PKcs knockout (DNA-PKcsCKO) mice, liver-specific DNA-PKcs knockout (DNA-PKcsLKO) mice, and kidney tubular cell-specific DNA-PKcs knockout (DNA-PKcsTKO) mice were used to generate an LPS-induced sepsis model. Echocardiography, serum biochemistry, and tissue microscopy were used to analyze organ damage and morphological changes induced by sepsis. Mitochondrial function and dynamics were determined by qPCR, western blotting, ELISA, and mt-Keima and immunofluorescence assays following siRNA-mediated DNA-PKCs knockdown in cardiomyocytes, hepatocytes, and kidney tubular cells. Results DNA-PKcs deletion attenuated sepsis-mediated myocardial damage through improving mitochondrial metabolism. Loss of DNA-PKcs protected the liver against sepsis through inhibition of mitochondrial oxidative damage and apoptosis. DNA-PKcs deficiency sustained kidney function upon LPS stress through normalization of mitochondrial fission/fusion events, mitophagy, and biogenesis. Conclusion We conclude that strategies targeting DNA-PKcs expression or activity may be valuable therapeutic options to prevent or reduce mitochondrial dysfunction and organ damage associated with sepsis-induced MODS.
Collapse
|
37
|
Song XW, Zhao F, Yang J, Yuan QN, Zeng ZY, Shen M, Tang Y, Cao M, Shen YF, Li SH, Yang YJ, Wu H, Zhao XX, Hu ST. Cardiovascular-Specific PSEN1 Deletion Leads to Abnormalities in Calcium homeostasis. Cell Biol Int 2021; 46:475-487. [PMID: 34939719 DOI: 10.1002/cbin.11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was down-regulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Feng Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Jing Yang
- Department of Cardiology, Changhai Hospital, Shanghai, China.,Department of Physiology, Ningxia Medical University, Yinchuan, China
| | - Qing-Ning Yuan
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Zeng
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ming Shen
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Ya-Feng Shen
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Yong-Ji Yang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Shu-Ting Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
38
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
39
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int J Mol Sci 2021; 22:9206. [PMID: 34502115 PMCID: PMC8431496 DOI: 10.3390/ijms22179206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for enormous socio-economic impact and the highest mortality globally. The standard of care for CVDs, which includes medications and surgical interventions, in most cases, can delay but not prevent the progression of disease. Gene therapy has been considered as a potential therapy to improve the outcomes of CVDs as it targets the molecular mechanisms implicated in heart failure. Cardiac reprogramming, therapeutic angiogenesis using growth factors, antioxidant, and anti-apoptotic therapies are the modalities of cardiac gene therapy that have led to promising results in preclinical studies. Despite the benefits observed in animal studies, the attempts to translate them to humans have been inconsistent so far. Low concentration of the gene product at the target site, incomplete understanding of the molecular pathways of the disease, selected gene delivery method, difference between animal models and humans among others are probable causes of the inconsistent results in clinics. In this review, we discuss the most recent applications of the aforementioned gene therapy strategies to improve cardiac tissue regeneration in preclinical and clinical studies as well as the challenges associated with them. In addition, we consider ongoing gene therapy clinical trials focused on cardiac regeneration in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (Z.Z.); (M.S.); (G.Y.)
| |
Collapse
|
40
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
41
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Wang Y, Jasper H, Toan S, Muid D, Chang X, Zhou H. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol 2021; 45:102049. [PMID: 34174558 PMCID: PMC8246635 DOI: 10.1016/j.redox.2021.102049] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a fundamental challenge in septic cardiomyopathy. Mitophagy and the mitochondrial unfolded protein response (UPRmt) are the predominant stress-responsive and protective mechanisms involved in repairing damaged mitochondria. Although mitochondrial homeostasis requires the coordinated actions of mitophagy and UPRmt, their molecular basis and interactive actions are poorly understood in sepsis-induced myocardial injury. Our investigations showed that lipopolysaccharide (LPS)-induced sepsis contributed to cardiac dysfunction and mitochondrial damage. Although both mitophagy and UPRmt were slightly activated by LPS in cardiomyocytes, their endogenous activation failed to prevent sepsis-mediated myocardial injury. However, administration of urolithin A, an inducer of mitophagy, obviously reduced sepsis-mediated cardiac depression by normalizing mitochondrial function. Interestingly, this beneficial action was undetectable in cardiomyocyte-specific FUNDC1 knockout (FUNDC1CKO) mice. Notably, supplementation with a mitophagy inducer had no impact on UPRmt, whereas genetic ablation of FUNDC1 significantly upregulated the expression of genes related to UPRmt in LPS-treated hearts. In contrast, enhancement of endogenous UPRmt through oligomycin administration reduced sepsis-mediated mitochondrial injury and myocardial dysfunction; this cardioprotective effect was imperceptible in FUNDC1CKO mice. Lastly, once UPRmt was inhibited, mitophagy-mediated protection of mitochondria and cardiomyocytes was partly blunted. Taken together, it is plausible that endogenous UPRmt and mitophagy are slightly activated by myocardial stress and they work together to sustain mitochondrial performance and cardiac function. Endogenous UPRmt, a downstream signal of mitophagy, played a compensatory role in maintaining mitochondrial homeostasis in the case of mitophagy inhibition. Although UPRmt activation had no negative impact on mitophagy, UPRmt inhibition compromised the partial cardioprotective actions of mitophagy. This study shows how mitophagy modulates UPRmt to attenuate inflammation-related myocardial injury and suggests the potential application of mitophagy and UPRmt targeting in the treatment of myocardial stress. Mitochondrial dysfunction is a fundamental challenge in septic cardiomyopathy. LPS-induced sepsis contributes to cardiac dysfunction and mitochondrial damage. Endogenous UPRmt and mitophagy could be slightly activated by myocardial stress. Mitophagy modulates UPRmt to attenuate inflammation-related myocardial injury. Mitophagy and UPRmt targeting can be applied in treatment of myocardial stress.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Heinrich Jasper
- Center for Molecular Medicine, Tarrant County College, TX, 76102, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - David Muid
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China.
| | - Hao Zhou
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, 100853, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| |
Collapse
|
43
|
Wang S, Li C, Sun P, Shi J, Wu X, Liu C, Peng Z, Han H, Xu S, Yang Y, Tian Y, Li J, He H, Li J, Wang Z. PCV2 Triggers PK-15 Cell Apoptosis Through the PLC-IP3R-Ca 2+ Signaling Pathway. Front Microbiol 2021; 12:674907. [PMID: 34211446 PMCID: PMC8239299 DOI: 10.3389/fmicb.2021.674907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum (ER) plays an essential role in Ca2+ concentration balance and protein biosynthesis. During infection, the virus needs to complete its life process with the help of ER. At the same time, ER also produces ER stress (ERS), which induces apoptosis to resist virus infection. Our study explored the Ca2+ concentration, ERS, and the apoptosis mechanism after porcine circovirus 2 (PCV2) infection. We show here that PCV2 infection induces the increased cytoplasmic Ca2+ level and PK-15 cell ER swelling. The colocalization of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptor (IP3R) in the cytoplasm was observed by laser confocal microscopy. Western blot and quantitative polymerase chain reaction experiments confirmed that PLC and IP3R expression levels increased after PCV2 infection, and Ca2+ concentration in the cytoplasm increased after virus infection. These results suggest that PCV2 infection triggers ERS of PK-15 cells via the PLC–IP3R–Ca2+ signaling pathway to promote the release of intracellular Ca2+ and led to cell apoptosis.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chen Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Panpan Sun
- Qingdao Agricultural University, Qingdao, China
| | - Jianli Shi
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chang Liu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhe Peng
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hong Han
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shaojian Xu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Yang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yao Tian
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Jiaxin Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China.,Qingdao Agricultural University, Qingdao, China
| | - Zhao Wang
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
44
|
Novel Insight into the Role of Endoplasmic Reticulum Stress in the Pathogenesis of Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529810. [PMID: 33854692 PMCID: PMC8019635 DOI: 10.1155/2021/5529810] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Impaired function of the endoplasmic reticulum (ER) is followed by evolutionarily conserved cell stress responses, which are employed by cells, including cardiomyocytes, to maintain and/or restore ER homeostasis. ER stress activates the unfolded protein response (UPR) to degrade and remove abnormal proteins from the ER lumen. Although the UPR is an intracellular defense mechanism to sustain cardiomyocyte viability and heart function, excessive activation initiates ER-dependent cardiomyocyte apoptosis. Myocardial ischemia/reperfusion (I/R) injury is a pathological process occurring during or after revascularization of ischemic myocardium. Several molecular mechanisms contribute to the pathogenesis of cardiac I/R injury. Due to the dual protective/degradative effects of ER stress on cardiomyocyte viability and function, it is of interest to understand the basic concepts, regulatory signals, and molecular processes involved in ER stress following myocardial I/R injury. In this review, therefore, we present recent findings related to the novel components of ER stress activation. The complex effects of ER stress and whether they mitigate or exacerbate myocardial I/R injury are summarized to serve as the basis for research into potential therapies for cardioprotection through control of ER homeostasis.
Collapse
|
45
|
Melatonin Attenuates ox-LDL-Induced Endothelial Dysfunction by Reducing ER Stress and Inhibiting JNK/Mff Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5589612. [PMID: 33763168 PMCID: PMC7952160 DOI: 10.1155/2021/5589612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Endothelial dysfunction, which is characterized by damage to the endoplasmic reticulum (ER) and mitochondria, is involved in a variety of cardiovascular disorders. Here, we explored whether mitochondrial damage and ER stress are associated with endothelial dysfunction. We also examined whether and how melatonin protects against oxidized low-density lipoprotein- (ox-LDL-) induced damage in endothelial cells. We found that CHOP, GRP78, and PERK expressions, which are indicative of ER stress, increased significantly in response to ox-LDL treatment. ox-LDL also induced mitochondrial dysfunction as evidenced by decreased mitochondrial membrane potential, increased mitochondrial ROS levels, and downregulation of mitochondrial protective factors. In addition, ox-LDL inhibited antioxidative processes, as evidenced by decreased antioxidative enzyme activity and reduced Nrf2/HO-1 expression. Melatonin clearly reduced ER stress and promoted mitochondrial function and antioxidative processes in the presence of ox-LDL. Molecular investigation revealed that ox-LDL activated the JNK/Mff signaling pathway, and melatonin blocked this effect. These results demonstrate that ox-LDL induces ER stress and mitochondrial dysfunction and activates the JNK/Mff signaling pathway, thereby contributing to endothelial dysfunction. Moreover, melatonin inhibited JNK/Mff signaling and sustained ER homeostasis and mitochondrial function, thereby protecting endothelial cells against ox-LDL-induced damage.
Collapse
|
46
|
Zhu H, Toan S, Mui D, Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf) 2021; 231:e13590. [PMID: 33270362 DOI: 10.1111/apha.13590] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. As mitochondrial dysfunction critically contributes to the pathogenesis of MI, intensive research is focused on the development of therapeutic strategies targeting mitochondrial homeostasis. Mitochondria possess a quality control system which maintains and restores their structure and function by regulating mitochondrial fission, fusion, biogenesis, degradation and death. In response to slight damage such as transient hypoxia or mild oxidative stress, mitochondrial metabolism shifts from oxidative phosphorylation to glycolysis, in order to reduce oxygen consumption and maintain ATP output. Mitochondrial dynamics are also activated to modify mitochondrial shape and structure, in order to meet cardiomyocyte energy requirements through augmenting or reducing mitochondrial mass. When damaged mitochondria cannot be repaired, poorly structured mitochondria will be degraded through mitophagy, a process which is often accompanied by mitochondrial biogenesis. Once the insult is severe enough to induce lethal damage in the mitochondria and the cell, mitochondrial death pathway activation is an inevitable consequence, and the cardiomyocyte apoptosis or necrosis program will be initiated to remove damaged cells. Mitochondrial quality surveillance is a hierarchical system preserving mitochondrial function and defending cardiomyocytes against stress. A failure of this system has been regarded as one of the potential pathologies underlying MI. In this review, we discuss the recent findings focusing on the role of mitochondrial quality surveillance in MI, and highlight the available therapeutic approaches targeting mitochondrial quality surveillance during MI.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| | - Sam Toan
- Department of Chemical Engineering University of Minnesota‐Duluth Duluth MN USA
| | - David Mui
- Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Hao Zhou
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| |
Collapse
|
47
|
De la Cruz-Concepción B, Espinoza-Rojo M, Álvarez-Fitz P, Illades-Aguiar B, Acevedo-Quiroz M, Zacapala-Gómez AE, Navarro-Tito N, Jiménez-Wences H, Torres-Rojas FI, Mendoza-Catalán MA. Cytotoxicity of Ficus Crocata Extract on Cervical Cancer Cells and Protective Effect against Hydrogen Peroxide-Induced Oxidative Stress in HaCaT Non-Tumor Cells. PLANTS 2021; 10:plants10010183. [PMID: 33478134 PMCID: PMC7835743 DOI: 10.3390/plants10010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Oxidative stress causes several chronic diseases including cancer. Some chemotherapeutic agents are not selective against tumor cells, causing oxidative stress in non-tumor cells. This study aimed to evaluate the cytotoxic effect of acetone extract of Ficus crocata
(Miq.) Mart. ex Miq. (F. crocata) leaves (Ace-EFc) on cervical cancer cells, as well as its protective effect on hydrogen peroxide (H2O2)-induced lipoperoxidation and cytotoxicity in non-tumor HaCaT cells. Antioxidant activity was determined using the DPPH and ABTS radicals. Cell viability and lipoperoxidation were determined with MTT and 1-methyl-2-phenylindole assays, respectively. A model of H2O2-induced cytotoxicity and oxidative damage in HaCaT cells was established. HaCaT cells were exposed to the extract before or after exposure to H2O2, and oxidative damage and cell viability were evaluated. Ace-EFc inhibited the DPPH and ABTS radicals and showed a cytotoxic effect on SiHa and HeLa cells. Furthermore, the extract treatment had a protective effect on hydrogen peroxide-induced lipoperoxidation and cytotoxicity, avoiding the increase in MalonDiAldehyde (MDA) levels and the decrease in cell viability (p < 0.001). These results suggest that the metabolites of F. crocata leaves possess antioxidant and cytoprotective activity against oxidative damage. Thus, they could be useful for protecting cells from conditions that cause oxidative stress.
Collapse
Affiliation(s)
- Brenda De la Cruz-Concepción
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Patricia Álvarez-Fitz
- Laboratorio de Toxicología, CONACYT-Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Macdiel Acevedo-Quiroz
- Departamento de Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico/IT de Zacatepec, Calzada Tecnológico 27, Centro, Zacatepec 62780, Morelos, Mexico;
| | - Ana E. Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Francisco I. Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
- Correspondence: ; Tel.: +52-747-4710901
| |
Collapse
|
48
|
Kumar VK, Lackey A, Snyder J, Karhadkar S, Rao AD, DiCarlo A, Sato PY. Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Front Cell Dev Biol 2020; 8:609241. [PMID: 33425917 PMCID: PMC7786191 DOI: 10.3389/fcell.2020.609241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research efforts in the twenty-first century have been paramount to the discovery and development of novel pharmacological treatments in a variety of diseases resulting in improved life expectancy. Yet, cardiac disease remains a leading cause of morbidity and mortality worldwide. Over time, there has been an expansion in conditions such as atrial fibrillation (AF) and heart failure (HF). Although past research has elucidated specific pathways that participate in the development of distinct cardiac pathologies, the exact mechanisms of action leading to disease remain to be fully characterized. Protein turnover and cellular bioenergetics are integral components of cardiac diseases, highlighting the importance of mitochondria and endoplasmic reticulum (ER) in driving cellular homeostasis. More specifically, the interactions between mitochondria and ER are crucial to calcium signaling, apoptosis induction, autophagy, and lipid biosynthesis. Here, we summarize mitochondrial and ER functions and physical interactions in healthy physiological states. We then transition to perturbations that occur in response to pathophysiological challenges and how this alters mitochondrial–ER and other intracellular organelle interactions. Finally, we discuss lifestyle interventions and innovative therapeutic targets that may be used to restore beneficial mitochondrial and ER interactions, thereby improving cardiac function.
Collapse
Affiliation(s)
- Vishnu K Kumar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Atreju Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ajay D Rao
- Section of Endocrinology, Diabetes and Metabolism, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Antonio DiCarlo
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
49
|
Torabi H, Mehdikhani M, Varshosaz J, Shafiee F. An innovative approach to fabricate a thermosensitive melatonin‐loaded conductive pluronic/chitosan hydrogel for myocardial tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.50327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hadis Torabi
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center Isfahan University of Medical Sciences Isfahan Iran
- Department of Pharmaceutics School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
50
|
Critical hubs of renal ischemia-reperfusion injury: endoplasmic reticulum-mitochondria tethering complexes. Chin Med J (Engl) 2020; 133:2599-2609. [PMID: 32960842 PMCID: PMC7722596 DOI: 10.1097/cm9.0000000000001091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial injury and endoplasmic reticulum (ER) stress are considered to be the key mechanisms of renal ischemia-reperfusion (I/R) injury. Mitochondria are membrane-bound organelles that form close physical contact with a specific domain of the ER, known as mitochondrial-associated membranes. The close physical contact between them is mainly restrained by ER-mitochondria tethering complexes, which can play an important role in mitochondrial damage, ER stress, lipid homeostasis, and cell death. Several ER-mitochondria tethering complex components are involved in the process of renal I/R injury. A better understanding of the physical and functional interaction between ER and mitochondria is helpful to further clarify the mechanism of renal I/R injury and provide potential therapeutic targets. In this review, we aim to describe the structure of the tethering complex and elucidate its pivotal role in renal I/R injury by summarizing its role in many important mechanisms, such as mitophagy, mitochondrial fission, mitochondrial fusion, apoptosis and necrosis, ER stress, mitochondrial substance transport, and lipid metabolism.
Collapse
|