1
|
Lu H, Liu C, Yang C, He Z, Wang L, Song L. Genome-wide identification of the HSP70 genes in Pacific oyster Magallana gigas and their response to heat stress. Cell Stress Chaperones 2024; 29:589-602. [PMID: 38908469 PMCID: PMC11268181 DOI: 10.1016/j.cstres.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
Heat shock protein 70 (HSP70), the most prominent and well-characterized stress protein in animals, plays an important role in assisting animals in responding to various adverse conditions. In the present study, a total of 113 HSP70 gene family members were identified in the updated genome of Magallana gigas (designated MgHSP70) (previously known as Crassostrea gigas). There were 75, 12, 11, and 8 HSP70s located in the cytoplasm, nucleus, mitochondria, and endoplasmic reticulum, respectively, and 7 HSP70s were located in both the nucleus and cytoplasm. Among 113 MgHSP70 genes, 107 were unevenly distributed in 8 chromosomes of M. gigas with the greatest number in chromosome 07 (61 genes, 57.01%). The MgHSP70 gene family members were mainly assigned into five clusters, among which the HSPa12 subfamily underwent lineage-specific expansion, consisting of 89 members. A total of 68 MgHSP70 genes (60.18%) were tandemly duplicated and formed 30 gene pairs, among which 14 gene pairs were under strong positive selection. In general, the expression of MgHSP70s was tissue-specific, with the highest expression in labial palp and gill and the lowest expression in adductor muscle and hemocytes. There were 35, 31, and 47 significantly upregulated genes at 6, 12, and 24 h after heat shock treatment (28 °C), respectively. The expression patterns of different tandemly duplicated genes exhibited distinct characteristics after shock treatment, indicating that these genes may have different functions. Nevertheless, genes within the same tandemly duplicated group exhibit similar expression patterns. Most of the tandemly duplicated HSP70 gene pairs showed the highest expression levels at 24 h. This study provides a comprehensive description of the MgHSP70 gene family in M. gigas and offers valuable insights into the functions of HSP70 in the mollusc adaptation of oysters to environmental stress.
Collapse
Affiliation(s)
- Hongbo Lu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhaoyu He
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Collins M, Clark MS, Truebano M. The environmental cellular stress response: the intertidal as a multistressor model. Cell Stress Chaperones 2023; 28:467-475. [PMID: 37129699 PMCID: PMC10469114 DOI: 10.1007/s12192-023-01348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The wild poses a multifaceted challenge to the maintenance of cellular function. Therefore, a multistressor approach is essential to predict the cellular mechanisms which promote homeostasis and underpin whole-organism tolerance. The intertidal zone is particularly dynamic, and thus, its inhabitants provide excellent models to assess mechanisms underpinning multistressor tolerance. Here, we critically review our current understanding of the regulation of the cellular stress response (CSR) under multiple abiotic stressors in intertidal organisms and consider to what extent a multistressor approach brings us closer to understanding responses in the wild. The function of the CSR has been well documented in laboratory and field exposures with a view to understanding single-stressor thermal effects. Multistressor studies still remain relatively limited in comparison but have applied three main approaches: (i) laboratory application of multiple stressors in isolation, (ii) multiple stressors applied in combination, and (iii) field-based correlation of multiple stressors against the CSR. The application of multiple stressors in isolation has allowed the identification of putative, shared stress pathways but overlooks non-additive stressor interactions on the CSR. Combined stressor studies are relatively limited in number but already highlight variable effects on the CSR dependent upon stressor type, timing, and magnitude. Field studies have allowed the identification of responsive components of the CSR to various stressors in situ but are correlative, not causative. A combined approach involving laboratory multistressor studies linking the CSR to whole-organism tolerance as well as field studies is required if we are to understand the role of the CSR in the natural environment.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
3
|
Li YJ, Ma CS, Yan Y, Renault D, Colinet H. The interspecific variations in molecular responses to various doses of heat and cold stress: the case of cereal aphids. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104520. [PMID: 37148996 DOI: 10.1016/j.jinsphys.2023.104520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Insects are currently subjected to unprecedented thermal stress due to recent increases in the frequency and amplitude of temperature extremes. Understanding molecular responses to thermal stress is critically important to appreciate how species react to thermal stress. Three co-occurring cosmopolitan species are found within the guild of cereal aphids: Sitobion avenae, Ropalosiphum padi and Metopolophium dirhodum. Earlier reports have shown that increasing frequency of temperature extremes causes a shift in dominant species within guilds of cereal aphids by differently altering the population's growth. We hypothesize that a differential molecular response to stress among species may partially explain these changes. Heat shock proteins (HSPs) are molecular chaperones well known to play an important role in protecting against the adverse effects of thermal stress. However, few studies on molecular chaperones have been conducted in cereal aphids. In this study, we compared the heat and cold tolerance between three aphid species by measuring the median lethal time (Lt50) and examined the expression profiles of seven hsp genes after exposures to comparable thermal injury levels and also after same exposure durations. Results showed that R. padi survived comparatively better at high temperatures than the two other species but was more cold-sensitive. Hsp genes were induced more strongly by heat than cold stress. Hsp70A was the most strongly up-regulated gene in response to both heat and cold stress. R. padi had more heat inducible genes and significantly higher mRNA levels of hsp70A, hsp10, hsp60 and hsp90 than the other two species. Hsps ceased to be expressed at 37°C in M. dirhodum and S. avenae while expression was maintained in R. padi. In contrast, M. dirhodum was more cold tolerant and had more cold inducible genes than the others. These results confirm species-specific differences in molecular stress responses and suggest that differences in induced expression of hsps may be related to species' thermal tolerance, thus causing the changes in the relative abundance.
Collapse
Affiliation(s)
- Yuan-Jie Li
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yi Yan
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France.
| |
Collapse
|
4
|
Passos FD, Sartori AF, Domaneschi O, Bieler R. Anatomy and behavior of Laternula elliptica, a keystone species of the Antarctic benthos (Bivalvia: Anomalodesmata: Laternulidae). PeerJ 2022; 10:e14380. [PMID: 36523477 PMCID: PMC9745791 DOI: 10.7717/peerj.14380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Laternula elliptica (P. P. King, 1832) is the sole representative of the anomalodesmatan family Laternulidae and the largest bivalve in the Antarctic and Subantarctic. A keystone species of the regional benthic communities, it has reached model status, having been studied in hundreds of scientific works across many biological disciplines. In contrast, its anatomy has remained poorly known, with prior published data limited to partial descriptions based on chemically preserved specimens. Based on observations of aquarium-maintained living animals at the Brazilian Comandante Ferraz Antarctic Station, gross-morphological dissections, and histological sectioning, the comparative anatomy, functional morphology, and aspects of behavior of L. elliptica are described and discussed. Special focus is placed on the pallial organs (including elucidation of cleansing and feeding sorting mechanisms in the mantle cavity) and the musculature. Among the noteworthy findings are the presence of well-developed siphons furnished with sensory tentacles at its tips, some of which bearing eyes; large, folded gills and labial palps capable of sorting the material entering the mantle cavity; an inter-chamber communication in the posterior region of the mantle cavity; an ample ventral mantle fusion with an anterior pedal gape; the absence of a 4th pallial opening; and the absence of a ligamental lithodesma in adult specimens. This study reevaluates the available anatomical data in the literature, both supplementing and correcting previously published accounts.
Collapse
Affiliation(s)
- Flávio Dias Passos
- Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Fernando Sartori
- THIS Institute, University of Cambridge, Cambridge, United Kingdom,Department of Zoology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Brazil
| | - Osmar Domaneschi
- Department of Zoology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rüdiger Bieler
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, United States
| |
Collapse
|
5
|
Jahan K, Yin Z, Zhang Y, Yan X, Nie H. Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Different Temperature Stress Adaptation of Manila Clam. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:542-554. [PMID: 35482153 DOI: 10.1007/s10126-022-10117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The Manila clam (Ruditapes philippinarum) is one of the most important aquaculture species and widely distributed along the coasts of China, Japan, and Korea. Due to its wide distribution, it can tolerate a wide range of temperature. Studying the gene expression profiles of clam gills had found differentially expressed genes (DEGs) and pathway involved in temperature stress tolerance. A systematic study of cellular response to temperature stress may provide insights into the mechanism of acquired tolerance. Here, weighted gene co-expression network analysis (WGCNA) was carried out using RNA-seq data from gill transcriptome in response to high and low temperature stress. There are a total 32 gene modules, of which 18 gene modules were identified as temperature-related modules. Blue module was one significantly correlated with temperature which was associated with cellular metabolism, apoptosis pathway, ER stress, and others.
Collapse
Affiliation(s)
- Kifat Jahan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Collins M, Peck LS, Clark MS. Large within, and between, species differences in marine cellular responses: Unpredictability in a changing environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148594. [PMID: 34225140 DOI: 10.1016/j.scitotenv.2021.148594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of altered environments on future biodiversity requires a detailed understanding of organism responses to change. To date, studies evaluating mechanisms underlying marine organism stress responses have largely concentrated on oxygen limitation and the use of heat shock proteins as biomarkers. However, whether these biomarkers represent responses that are consistent across species and different environmental stressors remains open to question. Here we show that responses to four different thermal stresses (three rates of thermal ramping (1 °C h-1, 1 °C day-1 or 1 °C 3 day-1) and a three-month acclimation to warming of 2 °C) applied to three species of Antarctic marine invertebrate produced highly individual responses in gene expression profiles, both within and between species. Mapping the gene expression profiles from each treatment for each of the three species, identified considerable difference in numbers of differentially regulated transcripts ranging from 10 to 3011. When these data were correlated across the different temperature treatments, there was no evidence for a common response with only 0-2 transcripts shared between all four treatments within any one species. There were also no shared differentially expressed genes across species, even at the same thermal ramping rates. The classical cellular stress response (CSR) i.e. up-regulation of heat shock proteins, was only strongly present in two species at the fastest ramping rate of 1 °C h-1, albeit with different sets of stress genes expressed in each species. These data demonstrate the wide variability in response to warming at the molecular level in marine species. Therefore, identification of biodiversity stress responses engendered by changing conditions will require evaluation at the species level using targeted key members of the ecosystem, strongly correlated to the local biotic and abiotic factors.
Collapse
Affiliation(s)
- Michael Collins
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| |
Collapse
|
7
|
Nieva LV, Peck LS, Clark MS. Variable heat shock response in Antarctic biofouling serpulid worms. Cell Stress Chaperones 2021; 26:945-954. [PMID: 34601709 PMCID: PMC8578209 DOI: 10.1007/s12192-021-01235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
The classical heat shock response (HSR) with up-regulation of hsp70 in response to warming is often absent in Antarctic marine species. Whilst in Antarctic fish, this is due to a mutation in the gene promoter region resulting in permanent constitutive expression of the inducible form of hsp70; there are further questions as to whether evolution to life below 0 °C has resulted in a generalised alteration to the HSR in Antarctic marine invertebrates. However, the number of species investigated to date is limited. In the first evaluation of the HSR in two spirorbid polychaetes Romanchella perrieri and Protolaeospira stalagmia, we show highly variable results of HSR induction depending on warming regimes. These animals were subjected to in situ warming (+ 1 °C and + 2 °C above ambient conditions) using heated settlement panels for 18 months, and then the HSR was tested in R. perrieri using acute and chronic temperature elevation trials. The classic HSR was not induced in response to acute thermal challenge in this species (2 h at 15 °C) and significant down-regulation of hsp90 occurred during chronic warming at 4 °C for 30 days. Analysis of heat shock protein (HSP) genes in a transcriptome study of P. stalagmia, which had been warmed in situ for 18 months, showed up-regulation of HSP70 and HSP90 family members, thus further emphasising the complexity of the response in Antarctic marine species. It is increasingly apparent that the Antarctic HSR has evolved in a species-specific manner to life in the cold.
Collapse
Affiliation(s)
- Leyre Villota Nieva
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| |
Collapse
|
8
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
9
|
Clark MS, Peck LS, Arivalagan J, Backeljau T, Berland S, Cardoso JCR, Caurcel C, Chapelle G, De Noia M, Dupont S, Gharbi K, Hoffman JI, Last KS, Marie A, Melzner F, Michalek K, Morris J, Power DM, Ramesh K, Sanders T, Sillanpää K, Sleight VA, Stewart-Sinclair PJ, Sundell K, Telesca L, Vendrami DLJ, Ventura A, Wilding TA, Yarra T, Harper EM. Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biol Rev Camb Philos Soc 2020; 95:1812-1837. [PMID: 32737956 DOI: 10.1111/brv.12640] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO3 crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO3 precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (~29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes for in situ localization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that the Lsdia1 gene sets shell chirality in Lymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Jaison Arivalagan
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France.,Proteomics Center of Excellence, Northwestern University, 710 N Fairbanks Ct, Chicago, IL, U.S.A
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium.,Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Sophie Berland
- UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Joao C R Cardoso
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Carlos Caurcel
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Gauthier Chapelle
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Michele De Noia
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany.,Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Karim Gharbi
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Joseph I Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Kim S Last
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kati Michalek
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - James Morris
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Deborah M Power
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Trystan Sanders
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kirsikka Sillanpää
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | | | - Kristina Sundell
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Luca Telesca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| | - David L J Vendrami
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Alexander Ventura
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Tejaswi Yarra
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K.,Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| |
Collapse
|