1
|
Pellman J, Goldstein A, Słabicki M. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection. Biochem Soc Trans 2024; 52:2009-2021. [PMID: 39222407 PMCID: PMC11555711 DOI: 10.1042/bst20230324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
E3 ubiquitin ligases regulate the composition of the proteome. These enzymes mono- or poly-ubiquitinate their substrates, directly altering protein function or targeting proteins for degradation by the proteasome. In this review, we discuss the opposing roles of human E3 ligases as effectors and targets in the evolutionary battle between host and pathogen, specifically in the context of SARS-CoV-2 infection. Through complex effects on transcription, translation, and protein trafficking, human E3 ligases can either attenuate SARS-CoV-2 infection or become vulnerabilities that are exploited by the virus to suppress the host's antiviral defenses. For example, the human E3 ligase RNF185 regulates the stability of SARS-CoV-2 envelope protein through the ubiquitin-proteasome pathway, and depletion of RNF185 significantly increases SARS-CoV-2 viral titer (iScience (2023) 26, 106601). We highlight recent advances that identify functions for numerous human E3 ligases in the SARS-CoV-2 life cycle and we assess their potential as novel antiviral agents.
Collapse
Affiliation(s)
- Jesse Pellman
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Anna Goldstein
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, U.S.A
| |
Collapse
|
2
|
Ferdoush J, Abdul Kadir R, Simay Kaplanoglu S, Osborn M. SARS-CoV-2 and UPS with potentials for therapeutic interventions. Gene 2024; 912:148377. [PMID: 38490508 DOI: 10.1016/j.gene.2024.148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The Ubiquitin proteasome system (UPS), an essential eukaryotic/host/cellular post-translational modification (PTM), plays a critical role in the regulation of diverse cellular functions including regulation of protein stability, immune signaling, antiviral activity, as well as virus replication. Although UPS regulation of viral proteins may be utilized by the host as a defense mechanism to invade viruses, viruses may have adapted to take advantage of the host UPS. This system can be manipulated by viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to stimulate various steps of the viral replication cycle and facilitate pathogenesis, thereby causing the respiratory disease COVID-19. Many SARS-CoV-2 encoded proteins including open reading frame 3a (ORF3a), ORF6, ORF7a, ORF9b, and ORF10 interact with the host's UPS machinery, influencing host immune signaling and apoptosis. Moreover, SARS-CoV-2 encoded papain-like protease (PLpro) interferes with the host UPS to facilitate viral replication and to evade the host's immune system. These alterations in SARS-CoV-2 infected cells have been revealed by various proteomic studies, suggesting potential targets for clinical treatment. To provide insight into the underlying causes of COVID-19 and suggest possible directions for therapeutic interventions, this paper reviews the intricate relationship between SARS-CoV-2 and UPS. Promising treatment strategies are also investigated in this paper including targeting PLpro with zinc-ejector drugs, as well as targeting viral non-structural protein (nsp12) via heat treatment associated ubiquitin-mediated proteasomal degradation to reduce viral pathogenesis.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Selin Simay Kaplanoglu
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Morgan Osborn
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
3
|
Paulis A, Tramontano E. Unlocking STING as a Therapeutic Antiviral Strategy. Int J Mol Sci 2023; 24:ijms24087448. [PMID: 37108610 PMCID: PMC10138487 DOI: 10.3390/ijms24087448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Invading pathogens have developed weapons that subvert physiological conditions to weaken the host and permit the spread of infection. Cells, on their side, have thus developed countermeasures to maintain cellular physiology and counteract pathogenesis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a pattern recognition receptor that recognizes viral DNA present in the cytosol, activating the stimulator of interferon genes (STING) protein and leading to the production of type I interferons (IFN-I). Given its role in innate immunity activation, STING is considered an interesting and innovative target for the development of broad-spectrum antivirals. In this review, we discuss the function of STING; its modulation by the cellular stimuli; the molecular mechanisms developed by viruses, through which they escape this defense system; and the therapeutical strategies that have been developed to date to inhibit viral replication restoring STING functionality.
Collapse
Affiliation(s)
- Annalaura Paulis
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
4
|
The Role of Ubiquitin-Proteasome System in the Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus-2 Disease. Int J Inflam 2023; 2023:6698069. [PMID: 36915828 PMCID: PMC10008111 DOI: 10.1155/2023/6698069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/07/2023] Open
Abstract
Different protein degradation pathways exist in cells. However, the bulk of cellular proteins are degraded by the ubiquitin-proteasome system (UPS), which is one of these pathways. The upkeep of cellular protein homeostasis is facilitated by the ubiquitin-proteasome system, which has a variety of important functions. With the emergence of eukaryotic organisms, the relationship between ubiquitylation and proteolysis by the proteasome became apparent. Severe acute respiratory syndrome coronavirus-2 (SARS-Coronavirus-2) hijacks the ubiquitin-proteasome system and causes their viral proteins to become ubiquitinated, facilitating assembly and budding. Ubiquitination of the enzyme keratin-38 (E-K38) residue gave the virion the ability to engage with at least one putative cellular receptor, T-cell immunoglobin-mucin (TIM-1), boosting virus entry, reproduction, and pathogenesis. A fraction of infectious viral particles produced during replication have been ubiquitinated. The ubiquitin system promotes viral replication. In order to replicate their viral genome after entering the host cell, viruses combine the resources of the host cell with recently generated viral proteins. Additionally, viruses have the ability to encode deubiquitinating (DUB)-active proteins that can boost viral replication through both direct and indirect means. The SARS-Coronavirus-2 papain-like protease (PLpro) protein is a DUB enzyme that is necessary for breaking down viral polyproteins to create a working replicase complex and promote viral propagation. The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15), which is likewise a regulator of the innate immune response and has antiviral characteristics, can also be broken down by this enzyme. However, limiting the E1-activating enzyme's ability to suppress the ubiquitination pathway prevented virus infection but did not prevent viral RNA genome translation. Numerous investigations have revealed that the use of proteasome inhibitors has a detrimental effect on the replication of SARS-Coronavirus-2 and other viruses in the host cell. Studies have shown that the use of proteasome inhibitors is also known to deplete free cellular ubiquitin, which may have an impact on viral replication and other vital cellular functions.
Collapse
|
5
|
Zhang W, Zhou H, Cen M, Ouyang W, Chen J, Xia L, Lin X, Liu J, He T, Xu F. N-myc and STAT interactor is a novel biomarker of severity in community-acquired pneumonia: a prospective study. Respir Res 2022; 23:253. [PMID: 36123652 PMCID: PMC9483521 DOI: 10.1186/s12931-022-02139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To tested the ability of N-myc and STAT interactor (NMI) levels in patients with community-acquired pneumonia (CAP) to predict the severity of the disease. Methods Prospective observational analysis of patients with CAP was performed. The NMI levels in serum of 394 CAP patients on admission were measured by immunoassay. Thirty-day mortality and intensive care unit (ICU) admission were set as clinical outcomes. The predicting value of NMI for clinical outcomes was determined by receiver operating characteristic curve and logistic regression analysis. The internal validity was assessed using cross-validation with bootstrap resampling. Results NMI was an independent risk factor for both 30-day mortality and admission to ICU for CAP patients. The area under curve (AUC) of NMI to predict mortality was 0.91 (95% CI: 0.86–0.96), and that to predict ICU admission was 0.92 (95% CI: 0.88–0.97), significantly higher than that of other biomarkers including procalcitonin and C-reactive protein. The proportion of clinical outcomes notably rose as NMI levels elevated (P < 0.001). The AUCs of the new score systems including NMI (N-PSI and N-CURB65 score) to predict outcomes were significantly higher than the original score systems. Conclusions NMI is a novel biomarker for predicting CAP severity superior to former biomarkers in 30-day mortality and ICU admission. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02139-x.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mengyuan Cen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jie Chen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Lexin Xia
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jinliang Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Teng He
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
7
|
Parthasarathi KTS, Munjal NS, Dey G, Kumar A, Pandey A, Balakrishnan L, Sharma J. A pathway map of signaling events triggered upon SARS-CoV infection. J Cell Commun Signal 2021; 15:595-600. [PMID: 34487344 PMCID: PMC8419830 DOI: 10.1007/s12079-021-00642-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronaviruses (SARS-CoVs) caused worldwide epidemics over the past few decades. Extensive studies on various strains of coronaviruses provided a basic understanding of the pathogenesis of the disease. Presently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading a global pandemic with unprecedented challenges. This is the third coronavirus outbreak of this century. A signaling pathway map of signaling events induced by SARS-CoV infection is not yet available. In this study, we present a literature-annotated signaling pathway map of reactions induced by SARS-CoV infected cells. Multiple signaling modules were found to be orchestrated including PI3K-AKT, Ras-MAPK, JAK-STAT, Type 1 IFN and NFκB. The signaling pathway map of SARS-CoV consists of 110 molecules and 101 reactions mediated by SARS-CoV proteins. The pathway reaction data are available in various community standard data exchange formats including Systems Biology Graphical Notation (SBGN). The pathway map is publicly available through the GitHub repository and data in various formats can be freely downloadable.
Collapse
Affiliation(s)
| | - Nupur S Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lavanya Balakrishnan
- Mazumdar Shaw Center for Translational Research, Narayana Hrudayalaya Health City, Bangalore, India.
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Ouyang W, Cen M, Yang L, Zhang W, Xia J, Xu F. NMI Facilitates Influenza A Virus Infection by Promoting Degradation of IRF7 through TRIM21. Am J Respir Cell Mol Biol 2021; 65:30-40. [PMID: 33761305 DOI: 10.1165/rcmb.2020-0391oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory infections caused by influenza A virus (IAV) spread widely and lead to substantial morbidity and mortality. Host cell induction of type I interferon (IFN-I) plays a fundamental role in eliminating the virus during the innate antiviral response. The potential role of N-myc and STAT interactor (NMI) and its underlying mechanisms of action during IAV infection, however, remain elusive. In this study, we found that the expression of NMI increased after IAV infection. Nmi-knockout mice infected with IAV displayed increased survival rate, decreased weight loss, lower viral replication, and attenuated lung inflammation when compared with wild-type mice. Deficiency of NMI promoted the production of IFN-I and IFN-stimulated genes in vivo and in vitro. Reduced levels of NMI also resulted in an increase of the expression of IFN regulator factor (IRF) 7. Further studies have revealed that NMI could interact with IRF7 after IAV infection, and this interaction involved its NID1 and NID2 domain. In addition, NMI facilitated ubiquitination and proteasome-dependent degradation of IRF7 through recruitment of the E3 ubiquitin ligase TRIM21 (tripartite motif-containing 21) to limit the IAV-triggered innate immunity. Our findings reveal a clearer understanding of the role of NMI in regulating the host innate antiviral response and provide a potential therapeutic target for controlling IAV infection.
Collapse
Affiliation(s)
| | | | | | | | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases and
| |
Collapse
|
9
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Zhang H, Zheng H, Zhu J, Dong Q, Wang J, Fan H, Chen Y, Zhang X, Han X, Li Q, Lu J, Tong Y, Chen Z. Ubiquitin-Modified Proteome of SARS-CoV-2-Infected Host Cells Reveals Insights into Virus-Host Interaction and Pathogenesis. J Proteome Res 2021; 20:2224-2239. [PMID: 33666082 PMCID: PMC7945586 DOI: 10.1021/acs.jproteome.0c00758] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/12/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to global public health. The mechanism of pathogenesis and the host immune response to SARS-CoV-2 infection are largely unknown. In the present study, we applied a quantitative proteomic technology to identify and quantify the ubiquitination changes that occur in both the virus and the Vero E6 cells during SARS-CoV-2 infection. By applying label-free, quantitative liquid chromatography with tandem mass spectrometry proteomics, 8943 lysine ubiquitination sites on 3086 proteins were identified, of which 138 sites on 104 proteins were quantified as significantly upregulated, while 828 sites on 447 proteins were downregulated at 72 h post-infection. Bioinformatics analysis suggested that SARS-CoV-2 infection might modulate host immune responses through the ubiquitination of important proteins, including USP5, IQGAP1, TRIM28, and Hsp90. Ubiquitination modification was also observed on 11 SAR-CoV-2 proteins, including proteins involved in virus replication and inhibition of the host innate immune response. Our study provides new insights into the interaction between SARS-CoV-2 and the host as well as potential targets for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease
Control and Prevention, Guangzhou 511430, P. R.
China
| | - Jinying Zhu
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Qiao Dong
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Jin Wang
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Yangzhen Chen
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Xi Zhang
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Xiaohu Han
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Qianlin Li
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Zeliang Chen
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021; 13:369. [PMID: 33652634 PMCID: PMC7996891 DOI: 10.3390/v13030369] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.
Collapse
Affiliation(s)
- Karl M. Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| |
Collapse
|
12
|
Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci 2020; 7:605236. [PMID: 33392262 PMCID: PMC7773825 DOI: 10.3389/fmolb.2020.605236] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread in humans in almost every country, causing the disease COVID-19. Since the start of the COVID-19 pandemic, research efforts have been strongly directed towards obtaining a full understanding of the biology of the viral infection, in order to develop a vaccine and therapeutic approaches. In particular, structural studies have allowed to comprehend the molecular basis underlying the role of many of the SARS-CoV-2 proteins, and to make rapid progress towards treatment and preventive therapeutics. Despite the great advances that have been provided by these studies, many knowledge gaps on the biology and molecular basis of SARS-CoV-2 infection still remain. Filling these gaps will be the key to tackle this pandemic, through development of effective treatments and specific vaccination strategies.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca J. Farthing
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | | | - Julien R. C. Bergeron
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020; 63:12359-12386. [PMID: 32511912 PMCID: PMC7323060 DOI: 10.1021/acs.jmedchem.0c00606] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.
Collapse
Affiliation(s)
- Carmen Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Tiziana Ginex
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Jesús Urquiza
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas,
Universidad Autónoma de Chile,
Llano Subercaseaux 2801- piso 6, 7500912 Santiago,
Chile
| | - Covadonga Alonso
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - Nuria E. Campillo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
A Rare Deletion in SARS-CoV-2 ORF6 Dramatically Alters the Predicted Three-Dimensional Structure of the Resultant Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577643 DOI: 10.1101/2020.06.09.134460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The function of the SARS-CoV-2 accessory protein p6, encoded by ORF6, is not fully known. Based upon its similarity to p6 from SARS-CoV, it may play a similar role, namely as an antagonist of type I interferon (IFN) signaling. Here we report the sequencing of a SARS-CoV-2 strain passaged six times after original isolation from a clinical patient in Hong Kong. The genome sequence shows a 27 nt in-frame deletion (Δ27,264-27,290) within ORF6, predicted to result in a 9 aa deletion ( ΔFKVSIWNLD ) from the central portion of p6. This deletion is predicted to result in a dramatic alteration in the three-dimensional structure of the resultant protein (p6 Δ22-30 ), possibly with significant functional implications. Analysis of the original clinical sample indicates that the deletion was not present, while sequencing of subsequent passages of the strain identifies the deletion as a majority variant. This suggests that the deletion originated ab initio during passaging and subsequently propagated into the majority, possibly due to the removal of selective pressure through the IFN-deficient Vero E6 cell line. The specific function of the SARS-CoV-2 p6 N-terminus, if any, has not yet been determined. However, this deletion is predicted to cause a shift from N-endo to N-ecto in the transmembrane localization of the SARS-CoV-2 p6 Δ22-30 N-terminus, possibly leading to the ablation of its native function.
Collapse
|
15
|
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018; 13:405-430. [PMID: 32201497 PMCID: PMC7080180 DOI: 10.2217/fvl-2018-0008] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) refer to the covalent modifications of polypeptides after they are synthesized, adding temporal and spatial regulation to modulate protein functions. Being obligate intracellular parasites, viruses rely on the protein synthesis machinery of host cells to support replication, and not surprisingly, many viral proteins are subjected to PTMs. Coronavirus (CoV) is a group of enveloped RNA viruses causing diseases in both human and animals. Many CoV proteins are modified by PTMs, including glycosylation and palmitoylation of the spike and envelope protein, N- or O-linked glycosylation of the membrane protein, phosphorylation and ADP-ribosylation of the nucleocapsid protein, and other PTMs on nonstructural and accessory proteins. In this review, we summarize the current knowledge on PTMs of CoV proteins, with an emphasis on their impact on viral replication and pathogenesis. The ability of some CoV proteins to interfere with PTMs of host proteins will also be discussed.
Collapse
Affiliation(s)
- To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
16
|
Feng L, Sheng J, Vu GP, Liu Y, Foo C, Wu S, Trang P, Paliza-Carre M, Ran Y, Yang X, Sun X, Deng Z, Zhou T, Lu S, Li H, Liu F. Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein. PLoS Pathog 2018; 14:e1006867. [PMID: 29377960 PMCID: PMC5805366 DOI: 10.1371/journal.ppat.1006867] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulated genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects. Interferon-γ (IFN-γ) responses are vital for a host to combat infections of many human viruses including human herpesviruses. Upon treatment of IFN-γ, transcription of many genes responsible for IFN-γ immune responses is activated primarily by the signal transducer and activator of transcription (STAT) proteins such as STAT1 protein. Human N-myc interactor (Nmi) protein has been shown to interact with STAT proteins including STAT1 and activate IFN-γ induced STAT-dependent transcription. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi protein. UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ responses and an increase of viral resistance to IFN-γ. Blocking UL23 expression led to higher transcription of IFN-γ stimulated genes and significant inhibition of viral growth in infected cells. These results suggest that interfering with Nmi function may represent an effective mechanism for a herpesvirus to block Nmi-mediated IFN-γ responses and increase viral resistance to IFN-γ. This also provides a potentially new therapeutic strategy to treat HCMV infection by modulating Nmi activity with blocking the expression of a viral protein.
Collapse
Affiliation(s)
- Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chingman Foo
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Songbin Wu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Marco Paliza-Carre
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zemin Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Tianhong Zhou
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- * E-mail: (FL); (HL)
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (FL); (HL)
| |
Collapse
|
17
|
Porcine Epidemic Diarrhea Virus Infection Inhibits Interferon Signaling by Targeted Degradation of STAT1. J Virol 2016; 90:8281-92. [PMID: 27384656 DOI: 10.1128/jvi.01091-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Porcine epidemic diarrhea virus (PEDV) is a worldwide-distributed alphacoronavirus, but the pathogenesis of PEDV infection is not fully characterized. During virus infection, type I interferon (IFN) is a key mediator of innate antiviral responses. Most coronaviruses develop some strategy for at least partially circumventing the IFN response by limiting the production of IFN and by delaying the activation of the IFN response. However, the molecular mechanisms by which PEDV antagonizes the antiviral effects of interferon have not been fully characterized. Especially, how PEDV impacts IFN signaling components has yet to be elucidated. In this study, we observed that PEDV was relatively resistant to treatment with type I IFN. Western blot analysis showed that STAT1 expression was markedly reduced in PEDV-infected cells and that this reduction was not due to inhibition of STAT1 transcription. STAT1 downregulation was blocked by a proteasome inhibitor but not by an autophagy inhibitor, strongly implicating the ubiquitin-proteasome targeting degradation system. Since PEDV infection-induced STAT1 degradation was evident in cells pretreated with the general tyrosine kinase inhibitor, we conclude that STAT1 degradation is independent of the IFN signaling pathway. Furthermore, we report that PEDV-induced STAT1 degradation inhibits IFN-α signal transduction pathways. Pharmacological inhibition of STAT1 degradation rescued the ability of the host to suppress virus replication. Collectively, these data show that PEDV is capable of subverting the type I interferon response by inducing STAT1 degradation. IMPORTANCE In this study, we show that PEDV is resistant to the antiviral effect of IFN. The molecular mechanism is the degradation of STAT1 by PEDV infection in a proteasome-dependent manner. This PEDV infection-induced STAT1 degradation contributes to PEDV replication. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response.
Collapse
|
18
|
Pruitt HC, Devine DJ, Samant RS. Roles of N-Myc and STAT interactor in cancer: From initiation to dissemination. Int J Cancer 2016; 139:491-500. [PMID: 26874464 PMCID: PMC5069610 DOI: 10.1002/ijc.30043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
Abstract
N‐myc & STAT Interactor, NMI, is a protein that has mostly been studied for its physical interactions with transcription factors that play critical roles in tumor growth, progression and metastasis. NMI is an inducible protein, thus its intracellular levels and location can vary dramatically, influencing a diverse array of cellular functions in a context‐dependent manner. The physical interactions of NMI with its binding partners have been linked to many aspects of tumor biology including DNA damage response, cell death, epithelial‐to‐mesenchymal transition and stemness. Thus, discovering more details about the function(s) of NMI could reveal key insights into how transcription factors like c‐Myc, STATs and BRCA1 are contextually regulated. Although a normal, physiological function of NMI has not yet been discovered, it has potential roles in pathologies ranging from viral infection to cancer. This review provides a timely perspective of the unfolding roles of NMI with specific focus on cancer progression and metastasis.
Collapse
Affiliation(s)
- Hawley C Pruitt
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama, AL
| | | | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama, AL
| |
Collapse
|