1
|
Kahwa I, Omara T, Ayesiga I, Shah K, Ambe GNNN, Panwala ZJ, Mbabazi R, Iqbal S, Kyarimpa C, Nagawa CB, Chauhan NS. Nutraceutical benefits of seaweeds and their phytocompounds: a functional approach to disease prevention and management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40304066 DOI: 10.1002/jsfa.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Seaweeds (SWD), macroalgae or sea vegetables are a diverse group of over 9000 macroscopic and multicellular marine algae taxonomically classified (based on morphology and pigmentation) as green, brown and red algae. With microalgae, SWD represents one of the most researched oceanic resources turned to as treasure troves of bioactive compounds with ethnomedicinal, pharmaceutical, cosmeceutical and dietetic end-uses for millennia. This review compiles the nutraceutical uses of SWD and their bioactive compounds in nutrition and traditional management of diseases, offering future perspectives on using this group of organisms to improve human life. The review reveals that the nutraceutical application of SWD as nutrient-dense marine foods for treating diseases may be correlated with their inherent biosynthesis and possession of minerals, vitamins, dietary fibres and bioactive compounds. Compounds of algal origin have been validated and found to elicit antimicrobial, anti-inflammatory, free radical scavenging (antioxidant), antiproliferative and antidiabetic activities, among others. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ivan Kahwa
- Pharm-BioTechnology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | - Rachel Mbabazi
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Christine Kyarimpa
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
2
|
Lee SM, Park SY, Kim JY. Comparative evaluation of the antihyperglycemic effects of three extracts of sea mustard (Undaria pinnatifida): In vitro and in vivo studies. Food Res Int 2024; 190:114623. [PMID: 38945577 DOI: 10.1016/j.foodres.2024.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Undaria pinnatifida (UP) contains multiple bioactive substances, such as polyphenols, polysaccharides, and amino acids, which are associated with various biological properties. This study aimed to evaluate the antihyperglycemic effects of three extracts obtained from UP. UP was extracted under three different conditions: a low-temperature water extract at 50 °C (UPLW), a high-temperature water extract at 90 °C (UPHW), and a 70 % ethanol extract (UPE). Nontargeted chemical profiling using high-performance liquid chromatography-triple/time-of-flight mass spectrometry (HPLC-Triple TOF-MS/MS) was conducted on the three UP extracts. Subsequently, α-glucosidase inhibitory (AGI) activity, glucose uptake, and the mRNA expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated in Caco-2 cell monolayers. Furthermore, an oral carbohydrate tolerance test was performed on C57BL/6 mice. The mice were orally administered UP at 300 mg/kg body weight (B.W.), and the blood glucose level and area under the curve (AUC) were measured. Compared with glucose, UPLW, UPHW and UPE significantly inhibited both glucose uptake and the mRNA expression of SGLT1 and GLUT2 in Caco-2 cell monolayers. After glucose, maltose, and sucrose loading, the blood glucose levels and AUC of the UPLW group were significantly lower than those of the control group. These findings suggest that UPLW has antihyperglycemic effects by regulating glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia. Therefore, UPLW may have potential as a functional food ingredient for alleviating postprandial hyperglycemia.
Collapse
Affiliation(s)
- Sung Min Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|
3
|
Lane MKM, Gilcher EB, Ahrens-Víquez MM, Pontious RS, Wyrtzen NE, Zimmerman JB. Elucidating supercritical fluid extraction of fucoxanthin from algae to enable the integrated biorefinery. BIORESOURCE TECHNOLOGY 2024; 406:131036. [PMID: 38925405 DOI: 10.1016/j.biortech.2024.131036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The emerging nutraceutical, fucoxanthin, shows promise as a high-value product to enable the integrated biorefinery. Fucoxanthin can be extracted from algae through supercritical fluid extraction (SFE), but literature does not agree on optimal extraction conditions. Here, a statistical analysis of literature identifies supercritical carbon dioxide (scCO2) density, ethanol cosolvent amount, and polarity as significant predictors of fucoxanthin yield. Novel SFE experiments are then performed using a fucoxanthin standard, describing its fundamental solubility. These experiments establish solvent system polarity as the key knob to tune fucoxanthin recovery from 0% to 100% and give specific operating conditions for targeted fucoxanthin extraction.Further experiments compare extractions on fucoxanthin standard with extractions from Phaeodactylum tricornutum microalgae to elucidate the effect of the algae matrix. Results show selectivity of fucoxanthin over chlorophyll in scCO2 microalgae extractions that was not seen in extractions with ethanol, indicating a benefit of scCO2 to design selective extraction schemes.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA; Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA
| | - Elise B Gilcher
- Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA; School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Melissa M Ahrens-Víquez
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA
| | - Rachel S Pontious
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA
| | - Nora E Wyrtzen
- Environmental Studies, Yale College, 1 Prospect St, New Haven, CT 06511, USA
| | - Julie B Zimmerman
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA; Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA; School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Siddik MAB, Francis P, Rohani MF, Azam MS, Mock TS, Francis DS. Seaweed and Seaweed-Based Functional Metabolites as Potential Modulators of Growth, Immune and Antioxidant Responses, and Gut Microbiota in Fish. Antioxidants (Basel) 2023; 12:2066. [PMID: 38136186 PMCID: PMC10740464 DOI: 10.3390/antiox12122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweed, also known as macroalgae, represents a vast resource that can be categorized into three taxonomic groups: Rhodophyta (red), Chlorophyta (green), and Phaeophyceae (brown). They are a good source of essential nutrients such as proteins, minerals, vitamins, and omega-3 fatty acids. Seaweed also contains a wide range of functional metabolites, including polyphenols, polysaccharides, and pigments. This study comprehensively discusses seaweed and seaweed-derived metabolites and their potential as a functional feed ingredient in aquafeed for aquaculture production. Past research has discussed the nutritional role of seaweed in promoting the growth performance of fish, but their effects on immune response and gut health in fish have received considerably less attention in the published literature. Existing research, however, has demonstrated that dietary seaweed and seaweed-based metabolite supplementation positively impact the antioxidant status, disease resistance, and stress response in fish. Additionally, seaweed supplementation can promote the growth of beneficial bacteria and inhibit the proliferation of harmful bacteria, thereby improving gut health and nutrient absorption in fish. Nevertheless, an important balance remains between dietary seaweed inclusion level and the resultant metabolic alteration in fish. This review highlights the current state of knowledge and the associated importance of continued research endeavors regarding seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant response, and gut microbiota composition in fish.
Collapse
Affiliation(s)
- Muhammad A. B. Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - Prue Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | | | - Thomas S. Mock
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - David S. Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| |
Collapse
|
5
|
Fatima I, Munir M, Qureshi R, Hanif U, Gulzar N, Sheikh AA. Advanced methods of algal pigments extraction: A review. Crit Rev Food Sci Nutr 2023; 64:9771-9788. [PMID: 37233148 DOI: 10.1080/10408398.2023.2216782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Algae are exclusively aquatic photosynthetic organisms that are microscopic or macroscopic, unicellular or multicellular and distributed across the globe. They are a potential source of food, feed, medicine and natural pigments. A variety of natural pigments are available from algae including chlorophyll a, b, c d, phycobiliproteins, carotenes and xanthophylls. The xanthophylls include acyloxyfucoxanthin, alloxanthin, astaxanthin, crocoxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, loroxanthin, monadoxanthin, neoxanthin, nostoxanthin, perdinin, Prasinoxanthin, siphonaxanthin, vaucheriaxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, while carotenes include echinenone, α-carotene, β-carotene, γ-carotene, lycopene, phytoene, phytofluene. These pigments have applications as pharmaceuticals and nutraceuticals and in the food industry for beverages and animal feed production. The conventional methods for the extraction of pigments are solid-liquid extraction, liquid-liquid extraction and soxhlet extraction. All these methods are less efficient, time-consuming and have higher solvent consumption. For a standardized extraction of natural pigments from algal biomass advanced procedures are in practice which includes Supercritical fluid extraction, Pressurized liquid extraction, Microwave-assisted extraction, Pulsed electric field, Moderate electric field, Ultrahigh pressure extraction, Ultrasound-assisted extraction, Subcritical dimethyl ether extraction, Enzyme assisted extraction and Natural deep eutectic solvents. In the present review, these methods for pigment extraction from algae are discussed in detail.
Collapse
Affiliation(s)
- Ishrat Fatima
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Nabila Gulzar
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Zheng H, Zhao Y, Guo L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar Drugs 2022; 20:742. [PMID: 36547889 PMCID: PMC9785976 DOI: 10.3390/md20120742] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Phlorotannins are a type of natural active substance extracted from brown algae, which belong to a type of important plant polyphenol. Phloroglucinol is the basic unit in its structure. Phlorotannins have a wide range of biological activities, such as antioxidant, antibacterial, antiviral, anti-tumor, anti-hypertensive, hypoglycemic, whitening, anti-allergic and anti-inflammatory, etc. Phlorotannins are mainly used in the fields of medicine, food and cosmetics. This paper reviews the research progress of extraction, separation technology and biological activity of phlorotannins, which will help the scientific community investigate the greater biological significance of phlorotannins.
Collapse
Affiliation(s)
- Hongli Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
7
|
Cikoš AM, Aladić K, Velić D, Tomas S, Lončarić P, Jerković I. Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Yin S, Niu L, Shibata M, Liu Y, Hagiwara T. Optimization of fucoxanthin extraction obtained from natural by-products from Undaria pinnatifida stem using supercritical CO2 extraction method. Front Nutr 2022; 9:981176. [PMID: 36245524 PMCID: PMC9558218 DOI: 10.3389/fnut.2022.981176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
In the recent years, edible brown seaweed, Undaria pinnatifida, has presented beneficial effects, which may be correlated with this species containing major bioactive compounds, such as carotenoids, fatty acids, and phytosterols. Marine carotenoid fucoxanthin is abundantly present in edible Undaria pinnatifida and features strong bioactive activities. The stem of Undaria pinnatifida is very hard to gnaw off and cannot be swallowed; therefore, it is usually discarded as waste, making it an environmental issue. Hence, making full use of the waste stem of Undaria pinnatifida is an urgent motivation. The present study aims to explore the optimal preparation technology of fucoxanthin from Undaria pinnatifida stems using supercritical carbon dioxide methods and provides approaches for the extraction and preparation of bioactive compounds from a waste seaweed part. With the comprehensive optimization conditions applied in this study, the experimental yield of fucoxanthin agreed closely with the predicted value by > 99.3%. The potential of α-amylase and glucoamylase to inhibit bioactive compounds was evaluated. The results demonstrated that the inhibition activity (IC50 value) of α-amylase (0.1857 ± 0.0198 μg/ml) and glucoamylase (0.1577 ± 0.0186 μg/ml) varied with extraction conditions due to the different contents of bioactive components in the extract, especially fucoxanthin (22.09 ± 0.69 mg/g extract). Therefore, this study confirmed supercritical fluid extraction technology to be a useful sample preparation method, which can effectively be used to prepare fucoxanthin from waste marine resources. This method can potentially be applied in functional food and related industries.
Collapse
Affiliation(s)
- Shipeng Yin
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Tomoaki Hagiwara,
| |
Collapse
|
9
|
Extraction and encapsulation of squalene-rich cod liver oil using supercritical CO2 process for enhanced oxidative stability. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Pocha CKR, Chia WY, Chew KW, Munawaroh HSH, Show PL. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Ruiz-Domínguez MC, Salinas F, Medina E, Rincón B, Martín MÁ, Gutiérrez MC, Cerezal-Mezquita P. Supercritical Fluid Extraction of Fucoxanthin from the Diatom Phaeodactylum tricornutum and Biogas Production through Anaerobic Digestion. Mar Drugs 2022; 20:127. [PMID: 35200656 PMCID: PMC8878852 DOI: 10.3390/md20020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce bioenergy through anaerobic digestion (AD) processes. Factors such as temperature (30 °C and 50 °C), pressure (20, 30, and 40 MPa), and ethanol (co-solvent concentration from 10% to 50% v/v) were optimized for improving the yield, purity, and recovery of fucoxanthin extracted using SFE. The highest yield (24.41% w/w) was obtained at 30 MPa, 30 °C, and 30% ethanol but the highest fucoxanthin purity and recovery (85.03mg/g extract and 66.60% w/w, respectively) were obtained at 30 MPa, 30 °C, and 40%ethanol. Furthermore, ethanol as a factor had the most significant effect on the overall process of SFE. Subsequently, P.tricornutum biomass and SFE-extracted diatom were used as substrates for biogas production through AD. The effect of fucoxanthin was studied on the yield of AD, which resulted in 77.15 ± 3.85 LSTP CH4/kg volatile solids (VS) and 56.66 ± 1.90 LSTP CH4/kg VS for the whole diatom and the extracted P.tricornutum, respectively. Therefore, P.tricornutuman can be considered a potential source of fucoxanthin and methane and both productions will contribute to the sustainability of the algae-biorefinery processes.
Collapse
Affiliation(s)
- Mari Carmen Ruiz-Domínguez
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (F.S.); (E.M.)
| | - Francisca Salinas
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (F.S.); (E.M.)
| | - Elena Medina
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (F.S.); (E.M.)
| | - Bárbara Rincón
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46. Ctra. de Utrera km. 1, 41013 Seville, Spain;
| | - Marí Ángeles Martín
- Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus Universitario de Rabanales, 14071 Córdoba, Spain; (M.Á.M.); (M.C.G.)
- Instituto de Química Fina y Nanotecnología (IUNAN), Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie Curie (C-3), Ctra. N-IV, km 396, 14071 Córdoba, Spain
| | - Marí Carmen Gutiérrez
- Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus Universitario de Rabanales, 14071 Córdoba, Spain; (M.Á.M.); (M.C.G.)
- Instituto de Química Fina y Nanotecnología (IUNAN), Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie Curie (C-3), Ctra. N-IV, km 396, 14071 Córdoba, Spain
| | - Pedro Cerezal-Mezquita
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (F.S.); (E.M.)
| |
Collapse
|
12
|
Rodríguez-González I, Díaz-Reinoso B, Domínguez H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Leong YK, Chen CY, Varjani S, Chang JS. Producing fucoxanthin from algae - Recent advances in cultivation strategies and downstream processing. BIORESOURCE TECHNOLOGY 2022; 344:126170. [PMID: 34678455 DOI: 10.1016/j.biortech.2021.126170] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Fucoxanthin, a brown-colored pigment from algae, is gaining much attention from industries and researchers recently due to its numerous potential health benefits, including anti-oxidant, anti-cancer, anti-obesity functions, and so on. Although current commercial production is mainly from brown macroalgae, microalgae with rapid growth rate and much higher fucoxanthin content demonstrated higher potential as the fucoxanthin producer. Factors such as concentration of nitrogen, iron, silicate as well as light intensity and wavelength play a significant role in fucoxanthin biosynthesis from microalgae. Two-stage cultivation approaches have been proposed to maximize the production of fucoxanthin and other valuable metabolites. Sustainable fucoxanthin production can be achieved by using low-cost substrates as a culture medium in an open pond cultivation system utilizing seawater with nutrient recycling. For downstream processing, the integration of novel "green" solvents with other extraction techniques emerged as a promising extraction technique.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology. National Cheng Kung University, Tainan, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Production of Fucoxanthin from Phaeodactylum tricornutum Using High Performance Countercurrent Chromatography Retaining Its FOXO3 Nuclear Translocation-Inducing Effect. Mar Drugs 2021; 19:md19090517. [PMID: 34564179 PMCID: PMC8466784 DOI: 10.3390/md19090517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed combining two elution modes (reverse phase and extrusion). The lower phase of a biphasic solvent system (n-heptane, ethyl acetate, ethanol and water, ratio 5/5/6/3, v/v/v/v) was used as the mobile phase, while the upper phase was the stationary phase. Ten consecutive sample injections (240 mg of extract each) were performed leading to the separation of 38 mg fucoxanthin with purity of 97% and a recovery of 98%. The process throughput was 0.189 g/h, while the efficiency per gram of fucoxanthin was 0.003 g/h. Environmental risk and general process evaluation factors were used for assessment of the developed separation method and compared with existing fucoxanthin liquid-liquid isolation methods. The isolated fucoxanthin retained its well-described ability to induce nuclear translocation of transcription factor FOXO3. Overall, the developed isolation method may represent a useful model to produce biologically active fucoxanthin from diatom biomass.
Collapse
|
15
|
Yim SK, Kim I, Warren B, Kim J, Jung K, Ku B. Antiviral Activity of Two Marine Carotenoids against SARS-CoV-2 Virus Entry In Silico and In Vitro. Int J Mol Sci 2021; 22:6481. [PMID: 34204256 PMCID: PMC8235185 DOI: 10.3390/ijms22126481] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023] Open
Abstract
The marine carotenoids fucoxanthin and siphonaxanthin are powerful antioxidants that are attracting focused attention to identify a variety of health benefits and industry applications. In this study, the binding energy of these carotenoids with the SARS-CoV-2 Spike-glycoprotein was predicted by molecular docking simulation, and their inhibitory activity was confirmed with SARS-CoV-2 pseudovirus on HEK293 cells overexpressing angiotensin-converting enzyme 2 (ACE2). Siphonaxanthin from Codium fragile showed significant antiviral activity with an IC50 of 87.4 μM against SARS-CoV-2 pseudovirus entry, while fucoxanthin from Undaria pinnatifida sporophyll did not. The acute toxicities were predicted to be relatively low, and pharmacokinetic predictions indicate GI absorption. Although further studies are needed to elucidate the inhibition of viral infection by siphonaxanthin, these results provide useful information in the application of these marine carotenoids for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (B.W.); (K.J.)
| | - Inhee Kim
- Medical & Bio Decision (MBD) Co. Ltd., #B-8F, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Korea; (I.K.); (J.K.); (B.K.)
| | - Boyd Warren
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (B.W.); (K.J.)
| | - Jungwon Kim
- Medical & Bio Decision (MBD) Co. Ltd., #B-8F, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Korea; (I.K.); (J.K.); (B.K.)
| | - Kyoojin Jung
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (B.W.); (K.J.)
| | - Bosung Ku
- Medical & Bio Decision (MBD) Co. Ltd., #B-8F, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Korea; (I.K.); (J.K.); (B.K.)
| |
Collapse
|
16
|
Park J, Kim S, Lee S, Jeong Y, Roy VC, Rizkyana AD, Chun B. Edible oil extracted from anchovies using supercritical CO
2
: Availability of fat‐soluble vitamins and comparison with commercial oils. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin‐Seok Park
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Sung‐Yeoul Kim
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Seung‐Chan Lee
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Yu‐Rin Jeong
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Vikash Chandra Roy
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
- Department of Fisheries Technology Hajee Mohammad Danesh Science and Technology University Dinajpur Bangladesh
| | - Amellia Dwi Rizkyana
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Byung‐Soo Chun
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| |
Collapse
|
17
|
Pangestuti R, Shin KH, Kim SK. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar Drugs 2021; 19:172. [PMID: 33809936 PMCID: PMC8004118 DOI: 10.3390/md19030172] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Director of Research and Development Division for Marine Bio Industry, Indonesian Institute of Sciences (LIPI), West Nusa Tenggara 83352, Indonesia;
| | - Kyung-Hoon Shin
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| | - Se-Kwon Kim
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| |
Collapse
|
18
|
Matos GS, Pereira SG, Genisheva ZA, Gomes AM, Teixeira JA, Rocha CMR. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods 2021; 10:foods10030516. [PMID: 33801287 PMCID: PMC7998159 DOI: 10.3390/foods10030516] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023] Open
Abstract
Seaweeds are a renewable natural source of valuable macro and micronutrients that have attracted the attention of the scientists in the last years. Their medicinal properties were already recognized in the ancient traditional Chinese medicine, but only recently there has been a considerable increase in the study of these organisms in attempts to demonstrate their health benefits. The extraction process and conditions to be used for the obtention of value-added compounds from seaweeds depends mainly on the desired final product. Thermochemical conversion of seaweeds, using high temperatures and solvents (including water), to obtain high-value products with more potential applications continues to be an industrial practice, frequently with adverse impact on the environment and products’ functionality. However more recently, alternative methods and approaches have been suggested, searching not only to improve the process performance, but also to be less harmful for the environment. A biorefinery approach display a valuable idea of solving economic and environmental drawbacks, enabling less residues production close to the much recommended zero waste system. The aim of this work is to report about the new developed methods of seaweeds extractions and the potential application of the components extracted.
Collapse
Affiliation(s)
- Gabriela S. Matos
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Sara G. Pereira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Zlatina A. Genisheva
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Ana Maria Gomes
- Centro de Biotecnologia e Química Fina—Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, 4169-005 Porto, Portugal;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
- Correspondence: ; Tel.: +315-253-604-400
| |
Collapse
|
19
|
Effects of algae subtype and extraction condition on extracted fucoxanthin antioxidant property: A 20-year meta-analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar Drugs 2021; 19:24. [PMID: 33430021 PMCID: PMC7827849 DOI: 10.3390/md19010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
21
|
Foo SC, Khoo KS, Ooi CW, Show PL, Khong NMH, Yusoff FM. Meeting Sustainable Development Goals: Alternative Extraction Processes for Fucoxanthin in Algae. Front Bioeng Biotechnol 2021; 8:546067. [PMID: 33553111 PMCID: PMC7863972 DOI: 10.3389/fbioe.2020.546067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
The ever-expanding human population puts tremendous pressure on global food security. With climate change threats lowering crop productivity and food nutritional quality, it is important to search for alternative and sustainable food sources. Microalgae are a promising carbon-neutral biomass with fast growth rate and do not compete with terrestrial crops for land use. More so, microalgae synthesize exclusive marine carotenoids shown to not only exert antioxidant activities but also anti-cancer properties. Unfortunately, the conventional method for fucoxanthin extraction is mainly based on solvent extraction, which is cheap but less environmentally friendly. With the emergence of greener extraction techniques, the extraction of fucoxanthin could adopt these strategies aligned to UN Sustainable Development Goals (SDGs). This is a timely review with a focus on existing fucoxanthin extraction processes, complemented with future outlook on the potential and limitations in alternative fucoxanthin extraction technologies. This review will serve as an important guide to the sustainable and environmentally friendly extraction of fucoxanthin and other carotenoids including but not limited to astaxanthin, lutein or zeaxanthin. This is aligned to the SDGs wherein it is envisaged that this review becomes an antecedent to further research work in extract standardization with the goal of meeting quality control and quality assurance benchmarks for future commercialization purposes.
Collapse
Affiliation(s)
- Su Chern Foo
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Chien Wei Ooi
- School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Malaysia
| |
Collapse
|
22
|
Jimenez-Lopez C, Pereira AG, Lourenço-Lopes C, Garcia-Oliveira P, Cassani L, Fraga-Corral M, Prieto MA, Simal-Gandara J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem 2020; 341:128262. [PMID: 33038800 DOI: 10.1016/j.foodchem.2020.128262] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
Abstract
Given the growing tendency of consumers to choose products with natural ingredients, food industries have directed scientific research in this direction. In this regard, algae are an attractive option for the research, since they can synthesize a group of secondary metabolites, called phenolic compounds, associated with really promising properties and bioactivities. The objective of this work was to classify the major phenolic compounds, compare the effectiveness of the different extractive techniques used for their extraction, from traditional systems (like heat assisted extraction) to the most advance ones (such as ultrasound, microwave or supercritical fluid extraction); the available methods for identification and quantification; the stability of the enriched extract in phenolic compounds and the main bioactivities described for these secondary metabolites, to offer an overview of the situation to consider if it is possible and/or convenient an orientation of phenolic compounds from algae towards an industrial application.
Collapse
Affiliation(s)
- C Jimenez-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - A G Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - C Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - L Cassani
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, RA7600 Mar del Plata, Argentina
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - M A Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
23
|
Kumar LRG, Treesa Paul P, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK, Geethalakshmi V, Anandan R, Jayarani R, Mathew S. Screening of effective solvents for obtaining antioxidant‐rich seaweed extracts using principal component analysis. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lekshmi R. G. Kumar
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - Preethy Treesa Paul
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - K. K. Anas
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - C. S. Tejpal
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - N. S. Chatterjee
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - T. K. Anupama
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - V. Geethalakshmi
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - R. Anandan
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - R. Jayarani
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| | - Suseela Mathew
- Biochemistry and Nutrition Division Central Institute of Fisheries Technology Cochin India
| |
Collapse
|
24
|
Lourenço-Lopes C, Garcia-Oliveira P, Carpena M, Fraga-Corral M, Jimenez-Lopez C, Pereira AG, Prieto MA, Simal-Gandara J. Scientific Approaches on Extraction, Purification and Stability for the Commercialization of Fucoxanthin Recovered from Brown Algae. Foods 2020; 9:E1113. [PMID: 32823574 PMCID: PMC7465967 DOI: 10.3390/foods9081113] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
The scientific community has corroborated the numerous beneficial activities of fucoxanthin, such as its antioxidant, anti-inflammatory, anticancer or neuroprotective effects, among others. These properties have attracted the attention of nutraceutical, cosmetic and pharmacological industries, giving rise to various possible applications. Fucoxanthin may be chemically produced, but the extraction from natural sources is considered more cost-effective, efficient and eco-friendly. Thus, identifying suitable sources of this compound and giving a general overview of efficient extraction, quantification, purification and stabilization studies is of great importance for the future production and commercialization of fucoxanthin. The scientific research showed that most of the studies are performed using conventional techniques, but non-conventional techniques begin to gain popularity in the recovery of this compound. High Performance Liquid Chromatography (HPLC), Nuclear Magnetic Resonance (NMR) and spectroscopy techniques have been employed in the quantification and identification of fucoxanthin. The further purification of extracts has been mainly accomplished using purification columns. Finally, the stability of fucoxanthin has been assessed as a free molecule, in an emulsion, or encapsulated to identify the variables that might affect its further industrial application.
Collapse
Affiliation(s)
- Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Cecilia Jimenez-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (C.L.-L.); (P.G.-O.); (M.C.); (M.F.-C.); (C.J.-L.); (A.G.P.)
| |
Collapse
|
25
|
Getachew AT, Jacobsen C, Holdt SL. Emerging Technologies for the Extraction of Marine Phenolics: Opportunities and Challenges. Mar Drugs 2020; 18:E389. [PMID: 32726930 PMCID: PMC7459876 DOI: 10.3390/md18080389] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural phenolic compounds are important classes of plant, microorganism, and algal secondary metabolites. They have well-documented beneficial biological activities. The marine environment is less explored than other environments but have huge potential for the discovery of new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical industries. To survive in a very harsh and challenging environment, marine organisms like several seaweed (macroalgae) species produce and accumulate several secondary metabolites, including marine phenolics in the cells. Traditionally, these compounds were extracted from their sample matrix using organic solvents. This conventional extraction method had several drawbacks such as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a huge volume of one or more organic solvents, which consequently results in environmental pollution. To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from researchers around the world. Therefore, in this review, the most recent and emerging technologies are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck for upscaling of these technologies are also presented.
Collapse
Affiliation(s)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | | |
Collapse
|
26
|
Supercritical Fluid Extraction of Polyphenols from Vietnamese Callisia fragrans Leaves and Antioxidant Activity of the Extract. J CHEM-NY 2020. [DOI: 10.1155/2020/9548401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vietnamese Callisia fragrans (C. fragrans) has been considered as a valuable traditional plant with various medicinal properties. In this study, polyphenols were extracted from Vietnamese C. fragrans leaves by supercritical carbon dioxide (SC-CO2) extraction method using ethanol as a cosolvent. The investigation of four factors influencing the total polyphenol content (TPC) and antioxidant activity of the extracts obtained from each single-factor experiment was conducted including ethanol concentration, CO2 flow rate, extraction temperature, and pressure. Besides, the extraction efficiency of the SC-CO2 method under the best extraction conditions, namely ethanol concentration of 14%, CO2 flow rate of 20 g/min, extraction temperature of 45°C, and pressure of 200 bar was compared to that of the Soxhlet extraction (SE) method in terms of the TPC and antioxidant activity of the extracts. The results showed that using SC-CO2 method, the TPC and the half-maximal inhibitory concentration value obtained were of 87.42 ± 1.33 mg/g and 243.83 ± 5.30 μM TE/g, respectively, with much less time and solvent amount required while that obtained using SE method were of 85.34 ± 4.27 mg/g and 236.33 ± 7.66 μM TE/g, respectively. This indicated that SC-CO2 would be suitable for the industrial production of polyphenols with high antioxidant activity of the extracts obtained due to the restrictions of using the SE method and advantages of applying SC-CO2 method. Therefore, SC-CO2 method could be regarded as a potentially upcoming extraction technique which might be employed to replace the conventional SE method.
Collapse
|
27
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Bioactive significance of fucoxanthin and its effective extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch Biochem Biophys 2020; 686:108364. [PMID: 32315653 DOI: 10.1016/j.abb.2020.108364] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Fucoxanthin (Fx), a major carotenoid found in brown seaweed, is known to show a unique and wide variety of biological activities. Upon absorption, Fx is metabolized to fucoxanthinol and amarouciaxanthin, and these metabolites mainly accumulate in visceral white adipose tissue (WAT). As seen in other carotenoids, Fx can quench singlet oxygen and scavenge a wide range of free radicals. The antioxidant activity is related to the neuroprotective, photoprotective, and hepatoprotective effects of Fx. Fx is also reported to show anti-cancer activity through the regulation of several biomolecules and signaling pathways that are involved in either cell cycle arrest, apoptosis, or metastasis suppression. Among the biological activities of Fx, anti-obesity is the most well-studied and most promising effect. This effect is primarily based on the upregulation of thermogenesis by uncoupling protein 1 expression and the increase in the metabolic rate induced by mitochondrial activation. In addition, Fx shows anti-diabetic effects by improving insulin resistance and promoting glucose utilization in skeletal muscle.
Collapse
Affiliation(s)
- Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Rongcheng City, 264300, China
| | - Shuzhou Wang
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Rongcheng City, 264300, China
| |
Collapse
|
29
|
Application of Box-Behnken Design and Desirability Function for Green Prospection of Bioactive Compounds from Isochrysis galbana. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A microalga, Isochrysis galbana, was chosen in this study for its potent natural antioxidant composition. A broad bioactive compounds spectrum such as carotenoids, fatty acid polyunsaturated (PUFA), and antioxidant activity are described with numerous functional properties. However, most of the optimization of extraction use toxic solvents or consume a lot of it becoming an environmental concern. In this research, a Box-Behnken design with desirability function was used to prospect the bioactive composition by supercritical fluid extraction (SFE) after performing the kinetics curve to obtain the optimal extraction time minimizing operational costs in the process. The parameters studied were: pressure (20–40 MPa), temperature (40–60 °C), and co-solvent (0–8% ethanol) with a CO2 flow rate of 7.2 g/min for 120 min. The response variables evaluated in I. galbana were extraction yield, carotenoids content and recovery, total phenols, antioxidant activity (TEAC method, trolox equivalents antioxidant capacity method), and fatty acid profile and content. In general, improvement in all variables was observed using an increase in ethanol concentration used as a co-solvent (8% v/v ethanol) high pressure (40 MPa), and moderately high temperature (50 °C). The fatty acids profile was rich in polyunsaturated fatty acid (PUFA) primarily linoleic acid (C18:2) and linolenic acid (C18:3). Therefore, I. galbana extracts obtained by supercritical fluid extraction showed relevant functional ingredients for use in food and nutraceutical industries.
Collapse
|
30
|
Santos SAO, Félix R, Pais ACS, Rocha SM, Silvestre AJD. The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies. Biomolecules 2019; 9:E847. [PMID: 31835386 PMCID: PMC6995553 DOI: 10.3390/biom9120847] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
The current interest of the scientific community for the exploitation of high-value compounds from macroalgae is related to the increasing knowledge of their biological activities and health benefits. Macroalgae phenolic compounds, particularly phlorotannins, have gained particular attention due to their specific bioactivities, including antioxidant, antiproliferative, or antidiabetic. Notwithstanding, the characterization of macroalgae phenolic compounds is a multi-step task, with high challenges associated with their isolation and characterization, due to the highly complex and polysaccharide-rich matrix of macroalgae. Therefore, this fraction is far from being fully explored. In fact, a critical revision of the extraction and characterization methodologies already used in the analysis of phenolic compounds from macroalgae is lacking in the literature, and it is of uttermost importance to compile validated methodologies and discourage misleading practices. The aim of this review is to discuss the state-of-the-art of phenolic compounds already identified in green, red, and brown macroalgae, reviewing their structural classification, as well as critically discussing extraction methodologies, chromatographic separation techniques, and the analytical strategies for their characterization, including information about structural identification techniques and key spectroscopic profiles. For the first time, mass spectrometry data of phlorotannins, a chemical family quite exclusive of macroalgae, is compiled and discussed.
Collapse
Affiliation(s)
- Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (A.J.D.S.)
| | - Rafael Félix
- On Leave MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-620 Peniche, Portugal;
| | - Adriana C. S. Pais
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (A.J.D.S.)
| | - Sílvia M. Rocha
- QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (A.J.D.S.)
| |
Collapse
|
31
|
Hazal Özyur V, Erdoğan A, Zeliha Demirel Z, Conk Dalay M, Ötleş S. OPTIMIZATION OF EXTRACTION PARAMETERS FOR FUCOXANTHIN, GALLIC ACID AND RUTIN FROM NITZSCHIA THERMALIS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i1.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, microalgae have become important in their health, and cosmetic applications since they are viewed as new sources of carotenoids. Fucoxanthin is also a type of carotenoid. The anti-diabetic, anti-obesity, anti-cancer, and antioxidant properties of fucoxanthin have been widely reported. Since these valuable properties, they also represent a valuable resource of nutraceuticals for functional food applications. This study aims to determine the amount of fucoxanthin, gallic acid, and rutin in Nitzschia thermalis obtained from the Ege University Microalgae Culture Collection. The extraction parameters have been optimized using response surface methodology. The extraction temperature (25, 35, and 45°C), the extraction time (10, 20, and 30 min) and the biomass/solvent ratio (0.005, 0.001, and 0.015 g ml-1) have been assessed as response variables in the Box – Behnken design. The amount of fucoxanthin was determined by the C30 column at 450 nm, while both the amount of gallic acid and rutin were separated in the C18 column at 275 nm by HPLC-DAD. In the present study, the optimum extraction conditions providing the maximum amount of fucoxantin, gallic acid, and rutin were selected by applying the “desirability” function approach in response surface methodology. Finally, the temperature has been determined to be 27.30°C, the extraction time 10 minutes, and the biomass ratio 0.05 g ml-1. Under these conditions, the optimum fucoxanthin level has been determined as 5.8702 mg g-1, the gallic acid level as 0.0140 mg g-1, and the rutin level as 0.0496 mg g-1. The findings are in good agreement with international published values for fucoxanthin content. In addition, response surface methodology was shown to be an effective technique for optimising extraction conditions for maximum fucoxanthin yield. In conclusion, these findings may be applied in the development of extraction methodologies for value added microalgea products as well as can serve as a reference for the extraction of fucoxanthin having high gallic acid and rutin from other brown microalgae, and therefore it could potentially be applied in both pharmaceutical and food industries.
Collapse
|
32
|
Jacobsen C, Sørensen ADM, Holdt SL, Akoh CC, Hermund DB. Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annu Rev Food Sci Technol 2019; 10:541-568. [PMID: 30673506 DOI: 10.1146/annurev-food-032818-121401] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Driven by a general demand for clean labels on food and cosmetic products, these industries are currently searching for efficient natural antioxidants to replace synthetic antioxidants. Seaweed contains several compounds with antioxidative properties (phlorotannins, pigments, tocopherols, and polysaccharides). It is possible to extract these compounds via different extraction techniques, which are discussed in this review. Among the abovementioned compounds, phlorotannins are probably the most important in terms of the antioxidative potential of seaweed extracts. We review how the different antioxidative compounds can be characterized. We discuss the current knowledge of the relationship between phlorotannin's structure and antioxidant properties in in vitro studies as well as in food systems. Concerning food systems, most studies on the antioxidative effect of seaweed extracts have been performed with extracts prepared from Fucus vesiculosus, despite the fact that this species is less available than other species, such as Ascophyllum nodosum, which also has high phlorotannin content.
Collapse
Affiliation(s)
- Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Ann-Dorit M Sørensen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Susan L Holdt
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Casimir C Akoh
- Food Science and Technology, University of Georgia, Athens, Georgia 30602, USA
| | - Ditte B Hermund
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
33
|
Yin S, Shibata M, Hagiwara T. Extraction of Bioactive Compounds from Stems of Undaria pinnatifida. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shipeng Yin
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
34
|
Pangestuti R, Siahaan EA, Kim SK. Photoprotective Substances Derived from Marine Algae. Mar Drugs 2018; 16:E399. [PMID: 30360482 PMCID: PMC6265938 DOI: 10.3390/md16110399] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Marine algae have received great attention as natural photoprotective agents due to their unique and exclusive bioactive substances which have been acquired as an adaptation to the extreme marine environment combine with a range of physical parameters. These photoprotective substances include mycosporine-like amino acids (MAAs), sulfated polysaccharides, carotenoids, and polyphenols. Marine algal photoprotective substances exhibit a wide range of biological activities such as ultraviolet (UV) absorbing, antioxidant, matrix-metalloproteinase inhibitors, anti-aging, and immunomodulatory activities. Hence, such unique bioactive substances derived from marine algae have been regarded as having potential for use in skin care, cosmetics, and pharmaceutical products. In this context, this contribution aims at revealing bioactive substances found in marine algae, outlines their photoprotective potential, and provides an overview of developments of blue biotechnology to obtain photoprotective substances and their prospective applications.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Research Center for Oceanography, Indonesian Institute of Sciences (LIPI), Jakarta 14430, Indonesia.
| | - Evi Amelia Siahaan
- Research and Development Division of Marine Bio-Industry, Indonesian Institute of Sciences (LIPI), West Nusa Tenggara 83552, Indonesia.
| | - Se-Kwon Kim
- Department of Marine Life Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 606-791, Korea.
| |
Collapse
|
35
|
Cikoš AM, Jokić S, Šubarić D, Jerković I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar Drugs 2018; 16:md16100348. [PMID: 30249037 PMCID: PMC6213729 DOI: 10.3390/md16100348] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Marine macroalgae represent a rich source of bioactive compounds that can be implemented in various food, cosmetic, and pharmaceutical products for health improvement. It has been proven that these bioactive compounds, such as polyphenols, polysaccharides, carotenoids, and ω-3 fatty acids possess bioactivity. For the extraction of these compounds, modern methods (Supercritical Fluid Extraction (SFE), Subcritical Water Extraction (SWE), Ultrasound-Assisted Extraction (UAE), and Microwave-Assisted Extraction (MAE)) have been used due to their advantages over the conventional methods. The process parameters of each method must be optimized for obtaining the extracts with the targeted bioactive compounds. In distinction from the existing reviews, the present review provides novelty with respect to: (a) presenting systematically the selected process parameters of SFE (temperature, time, pressure, use of co-solvents), SWE (temperature, time, pressure, solid-solvent ratio), UAE (temperature, time, frequency, power, solid-solvent ratio), and MAE (temperature, time, frequency, power, solvent type) applied for the extractions of marine macroalgae; (b) reporting the major groups or individual compounds extracted with their biological activities (if determined); and, (c) updating available references.
Collapse
Affiliation(s)
- Ana-Marija Cikoš
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, FranjeKuhača 20, 31000 Osijek, Croatia.
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, FranjeKuhača 20, 31000 Osijek, Croatia.
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, FranjeKuhača 20, 31000 Osijek, Croatia.
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia.
| |
Collapse
|
36
|
Challenges in the production of pharmaceutical and food related compounds by SC-CO2 processing of vegetable matter. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Lee HJ, Haq M, Saravana PS, Cho YN, Chun BS. Omega-3 fatty acids concentrate production by enzyme-catalyzed ethanolysis of supercritical CO2 extracted oyster oil. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0293-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO 2. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.05.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Michalak I, Chojnacka K, Saeid A. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO₂ Algal Extracts. Molecules 2017; 22:E66. [PMID: 28054954 PMCID: PMC6155630 DOI: 10.3390/molecules22010066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 11/25/2022] Open
Abstract
The review paper presents the use of algal extracts as safe and solvent-free components of plant growth biostimulants, dietary feed additives and cosmetics. Innovative technology that uses extracts obtained by supercritical CO₂ extraction, as a method of isolation of biologically active compounds from algal biomass, is presented. An important part of the complete technology is the final formulation of the product. This enabled realization of the further step which was assessment of the utilitarian properties of the extract-based products. The extracts were analysed for the presence of biologically active molecules (e.g., plant hormones, polyphenols) which provide useful properties such as antioxidant, antiviral, anti-inflammatory and antibacterial. The bio-products were tested in germination tests and underwent field trials to search for plant growth biostimulatory properties. Tests on animals (laying hens experiments) were conducted to assess pro-health properties of new dietary feed supplement. Another application were cosmetic formulations (dermatological tests). The results of the application tests were very promising, however further studies are required for the registration of the products and successful implementation to the market.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
| | - Agnieszka Saeid
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
| |
Collapse
|
40
|
Poojary MM, Barba FJ, Aliakbarian B, Donsì F, Pataro G, Dias DA, Juliano P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar Drugs 2016; 14:md14110214. [PMID: 27879659 PMCID: PMC5128757 DOI: 10.3390/md14110214] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022] Open
Abstract
Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.
Collapse
Affiliation(s)
- Mahesha M Poojary
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, 3083 Bundoora, Australia.
- Chemistry Section, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| | - Bahar Aliakbarian
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa, Italy.
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
- ProdAl Scarl, via Ponte don Melillo, 84084 Fisciano, SA, Italy.
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
- ProdAl Scarl, via Ponte don Melillo, 84084 Fisciano, SA, Italy.
| | - Daniel A Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, 3083 Bundoora, Australia.
| | - Pablo Juliano
- CSIRO Agriculture and Food, 671 Sneydes Road, 3030 Werribee, VIC, Australia.
| |
Collapse
|
41
|
|
42
|
Heffernan N, Smyth T, FitzGerald RJ, Vila-Soler A, Mendiola J, Ibáñez E, Brunton N. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach. J Med Food 2016; 19:615-28. [DOI: 10.1089/jmf.2016.3706] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
44
|
Foo SC, Yusoff FM, Ismail M, Basri M, Chan KW, Khong NM, Yau SK. Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun BS. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction. Mar Drugs 2015; 13:3422-42. [PMID: 26035021 PMCID: PMC4483637 DOI: 10.3390/md13063422] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/01/2022] Open
Abstract
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.
Collapse
Affiliation(s)
| | - Shipeng Yin
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 608-737, Korea.
| | - Jae Hyung Choi
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, 599-1 Daeyeon-3dong, Nam-gu, Busan 608-737, Korea.
| | - Yong Beom Park
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, 599-1 Daeyeon-3dong, Nam-gu, Busan 608-737, Korea.
| | - Hee Chul Woo
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, 599-1 Daeyeon-3dong, Nam-gu, Busan 608-737, Korea.
| | - Byung Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 608-737, Korea.
| |
Collapse
|
46
|
Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 2015; 13:3182-230. [PMID: 26006714 PMCID: PMC4446625 DOI: 10.3390/md13053182] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered.
Collapse
|
47
|
Meillisa A, Woo HC, Chun BS. Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem 2015; 171:70-7. [PMID: 25308644 DOI: 10.1016/j.foodchem.2014.08.097] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 11/16/2022]
Abstract
Polysaccharides are the major components of brown seaweed, accounting for approximately 40-65% of the total mass. The majority of the brown seaweed polysaccharides consists of alginate (40% of dry matter), a linear hetero-polysaccharides commonly developed in fields. However, depolymerisation of alginate is required to recover high-value compounds. In this report, depolymerisation was performed using subcritical water hydrolysis (SWH) at 180-260°C, with a ratio of material to water of 1:25 (w/v) and 1% formic acid as a catalyst. Sugar recovery was higher at low temperatures in the presence of catalyst. The antioxidant properties of Saccharina japonica showed the best activity at 180°C in the presence of a catalyst. The mass spectra produced using MALDI-TOF showed that polysaccharides and oligosaccharides were produced during hydrothermal treatment. Hydrolysis treatment at 180°C in the presence of a catalyst may be useful for modifying the structure of S. japonica and purified alginate.
Collapse
Affiliation(s)
- Aviannie Meillisa
- Department of Food Science and Technology, Pukyong National University, 608-737, 45 Yongso-ro, Nam-gu, Busan, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 608-739, 365 Sinseon-ro, Nam-gu, Busan, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 608-737, 45 Yongso-ro, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
48
|
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry; Wrocław University of Technology; Wrocław Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry; Wrocław University of Technology; Wrocław Poland
| |
Collapse
|
49
|
Affiliation(s)
- Izabela Michalak
- Department of Chemistry, Institute of Inorganic Technology and Mineral Fertilizers; Wrocław University of Technology; Wrocław Poland
| | - Katarzyna Chojnacka
- Department of Chemistry, Institute of Inorganic Technology and Mineral Fertilizers; Wrocław University of Technology; Wrocław Poland
| |
Collapse
|
50
|
Kanda H, Kamo Y, Machmudah S, Wahyudiono, Goto M. Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether. Mar Drugs 2014; 12:2383-96. [PMID: 24796299 PMCID: PMC4052295 DOI: 10.3390/md12052383] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 03/26/2014] [Indexed: 11/17/2022] Open
Abstract
Macroalgae are one of potential sources for carotenoids, such as fucoxanthin, which are consumed by humans and animals. This carotenoid has been applied in both the pharmaceutical and food industries. In this study, extraction of fucoxanthin from wet brown seaweed Undaria pinnatifida (water content was 93.2%) was carried out with a simple method using liquefied dimethyl ether (DME) as an extractant in semi-continuous flow-type system. The extraction temperature and absolute pressure were 25 °C and 0.59 MPa, respectively. The liquefied DME was passed through the extractor that filled by U. pinnatifida at different time intervals. The time of experiment was only 43 min. The amount of fucoxanthin could approach to 390 μg/g dry of wet U. pinnatifida when the amount of DME used was 286 g. Compared with ethanol Soxhlet and supercritical CO₂ extraction, which includes drying and cell disruption, the result was quite high. Thus, DME extraction process appears to be a good method for fucoxanthin recovery from U. pinnatifida with improved yields.
Collapse
Affiliation(s)
- Hideki Kanda
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; E-Mails: (Y.K.); (S.M.); (W.)
- Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan; E-Mail:
| | - Yuichi Kamo
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; E-Mails: (Y.K.); (S.M.); (W.)
| | - Siti Machmudah
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; E-Mails: (Y.K.); (S.M.); (W.)
- Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Wahyudiono
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; E-Mails: (Y.K.); (S.M.); (W.)
| | - Motonobu Goto
- Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan; E-Mail:
| |
Collapse
|