1
|
Donato MA, de Oliveira Souza A, Pacheco A, de Carvalho Silva L, Svenar S, Nagalli A, Passig FH, Brasil Bernardelli JK, Querne de Carvalho K. Intensifying intermittent aeration for optimizing nutrient and hormone removal in vertical-flow constructed wetlands filled with aerated concrete. CHEMOSPHERE 2025; 370:143941. [PMID: 39681191 DOI: 10.1016/j.chemosphere.2024.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.4 LO2 min-1) and CW-2 (1.4 LO2 min-1) were fed with synthetic wastewater in sequencing-batch mode (cycles 48-48-72 h) and intermittently aerated for 1 h, followed by 7 h without aeration for 377 days. Combined with the intensification strategy, the use of planted free-floating macrophytes and concrete-based material (emergent) as filtering media stand out as the innovation and originality aspects of this study. Despite the hormone addition, intensifying aeration enhanced the efficiencies since CW-1 achieved the highest removals with 91% COD, 77% TN, 74% TAN, 60% nitrate, and 97% TP in Stage I (no hormone addition) and 90% COD, 80% TN, 93% TAN, 63% nitrate, and 82% TP in Stage II (with hormone addition). CW-1 achieved the highest removal efficiencies of E1 (84%), E2 (95%), and EE2 (73%). Conversely, the efficiencies decreased under the lower aeration rate (in CW-2) for all parameters. Macrophyte uptake and adsorption stood out for TN (>60.25%) and TP (>27.6%) removal as the main mechanisms in the VFCWs. The characteristics of AC favored ion exchange and precipitation, reinforcing the potential of this material as filtering media in VFCWs. Intensification of intermittent aeration combined with hormone addition diverse and riched the microbial community with the presence of Thauera, Lentimicrobium (denitrification), Candidatus Accumulibacter (phosphorus removal), Pseudomonas, Fusibacter, and Azoarcus (EE2 degradation). Intensifying intermittent aeration was an important strategy to enhance the simultaneous removal of nutrients and hormones in the VFCWs under the evaluated operational conditions.
Collapse
Affiliation(s)
- Mayra Alves Donato
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Amanda Pacheco
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Lucas de Carvalho Silva
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Silvana Svenar
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Tecnhology - Paraná (UTFPR) - Biology and Chemistry Academic Department. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Khan G, Tiwari A, Patel DK, Anbumani S, Manickam N. Bioremediation of polyaromatic hydrocarbon polluted sewage sludge soil employing a bacterial consortium and phytotoxicity evaluation. Lett Appl Microbiol 2024; 77:ovae130. [PMID: 39668638 DOI: 10.1093/lambio/ovae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
A consortium of five distinct bacterial strains was evaluated for their ability to biodegrade multiple polyaromatic hydrocarbons (PAHs) in sewage sludge under microcosm studies. The presence of PAHs was determined from the sludge samples collected during pre- and post-monsoon seasons from three different wastewater treatment plants (WWTPs). Among the 16 PAHs found, the lowest concentration detected was 1.75 ng g-1 of benz(k)fluoranthene, and the highest concentration of 5.41 mg g-1 indeno(1,2,3-cd) pyrene was found in both dry and wet samples, perhaps owing to its multiple origin of contamination. A bacterial consortium comprising of well characterized bacteria Stenotrophomonas maltophilia IITR87, Ochrobactrum anthropi IITR07, Microbacterium esteraromaticum IITR47, Pseudomonas aeruginosa IITR48, and Pseudomonas mendocina IITR46 employed for PAHs bioremediation in a microcosm study. In 20 days, 65%-70% of PAHs were remediated, and low molecular weight PAHs such as naphthalene, phenanthrene, and pyrene showed enhanced degradation. Bioremediated samples showed a significant reduction in phytotoxicity using plant germination of wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea), whereas the contaminated soil showed severe inhibition of plant growth. The results comprehensively suggest a possible remediation option for PAHs occurring in complex sewage sludge, preventing further contamination into other environmental compartments.
Collapse
Affiliation(s)
- Gulfishan Khan
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Anshul Tiwari
- Analytical chemistry Laboratory, Analytical Sciences and Accredited Testing Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devendra K Patel
- Analytical chemistry Laboratory, Analytical Sciences and Accredited Testing Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, CRK Campus, Lucknow 226008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Lan W, Zhou Q, Li J, Liu M, Deng Y, Huang Y, Zhou Y, Yang H, Xiao Y. Investigation of Cd and Pb enrichment capacities of Erigeron sumatrensis across three polluted regions: Insights into soil parameters and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119868. [PMID: 39216739 DOI: 10.1016/j.envres.2024.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erigeron sumatrensis is a vigorously growing invasive plant in mining areas and has been the subject of research for its potential in the phytoremediation of heavy metals. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of E. sumatrensis were assessed to evaluate its phytoaccumulation potential for cadmium (Cd) and lead (Pb) across three distinct zinc mining regions with different degrees of contamination, including Huayuan (HY), Yueyang (YY), and Liuyang (LY) areas. The region of HY is identified as having the most severe Cd contamination, while the most pronounced Pb pollution characterizes the LY area. The findings indicate that E. sumatrensis demonstrated a stronger ability to enrich Cd and Pb in less contaminated areas. To elucidate the underlying mechanisms, high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions was employed to analyze the rhizosphere bacterial and fungal communities across the three areas. The results revealed significant variations in the microbial community structure, function, and composition, suggesting a complex interplay between the plant and its associated microorganisms. Correlation analysis identified several soil properties, including soil pH, total nitrogen (TN), available nitrogen (AN), organic matter (OM), and available phosphorus (AP), as pivotal factors that may influence the heavy metal enrichment capabilities of the plant. Notably, some microorganisms (e.g., Burkholderia, Brevundimonas, Paraglomus, and Trichoderma) and enzymes (e.g., P-type ATPases, citrate synthase, catalase) of microorganisms were found to be potentially involved in facilitating the accumulation of Cd and Pb by E. sumatrensis. This research contributes to understanding how invasive alien plants can be utilized to remedy contaminated environments. It highlights the importance of modulating critical soil factors to enhance the phytoremediation potential of E. sumatrensis, which could aid in developing strategies to manage invasive plants and mitigate heavy metal pollution in ecosystems.
Collapse
Affiliation(s)
- Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| |
Collapse
|
4
|
Murillo AM, Kotamraju A, Mulkeen CJ, Healy MG, Sulpice R, Lens PNL. Selenite (IV) and selenate (VI) uptake and accumulation capacity of Lemna minor L. from an aquatic medium. ENVIRONMENTAL TECHNOLOGY 2024; 45:5630-5640. [PMID: 38190254 DOI: 10.1080/09593330.2023.2298670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
The uptake of sodium selenite (Se(IV)) and sodium selenate (Se(VI)) from aqueous medium by Lemna minor L. and the influence of different Se concentrations on its growth, morphological and ultrastructural characteristics were studied. L. minor was grown at different concentrations (1, 3, 5 and 10 mg L-1) of Se(IV) and Se(IV). The Se(IV) concentration in the plant tissue ranged between 77.7 (± 4.3) to 453 (± 0) mg kg-1 DW. The Se(VI) concentration in plant tissues ranged between 117 (± 11) to 417 (± 2) mg kg-1 DW. The highest bioconcentration factor for Se(VI) was 127 (± 7) at 3 mg/L, with a Se removal efficiency of 44%. For Se(IV), the highest bioconcentration factor was 77.7 (± 4.3) at 1 mg L-1, which had a Se removal efficiency of 23%. Growth of L. minor was suppressed at 10 mg L-1 Se in both forms. The addition of Se promoted the formation of starch granules in L. minor which occupied a chloroplast area of 74% for Se(IV) and 77% for Se(VI). The efficient uptake of both Se forms by L. minor indicates the potential application of this species for phytoremediation of Se laden wastewaters and its use as an alternative feedstock in biofuel production.
Collapse
Affiliation(s)
- Ana M Murillo
- National University of Ireland Galway, Galway, Ireland
| | | | | | - Mark G Healy
- National University of Ireland Galway, Galway, Ireland
| | - Ronan Sulpice
- National University of Ireland Galway, Galway, Ireland
| | - Piet N L Lens
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
6
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Zhou T, An Q, Zhang L, Wen C, Yan C. Phytoremediation for antibiotics removal from aqueous solutions: A meta-analysis. ENVIRONMENTAL RESEARCH 2024; 240:117516. [PMID: 37890821 DOI: 10.1016/j.envres.2023.117516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Antibiotics are widely used as drugs and enter water bodies through various routes, leading to environmental pollution. As a green in-situ remediation technology, phytoremediation has been proven to be highly effective in removing antibiotics present in the aqueous phase. However, these data are distributed in various studies and lack systematic analysis, which could provide a more comprehensive understanding of the current status and trends in the research field. Based on this, a meta-analysis was conducted from three perspectives in this study: the factors influencing antibiotics removal by phytoremediation, the effect of antibiotics on plant physiological indexes, and the accumulation and translocation of antibiotics in plants. The results showed that plants have a significant effect on antibiotics removal, which is influenced by plant species, running time, biomass, antibiotic types and antibiotic concentration. Although some physiological indexes of plants changed under stress from high antibiotic concentrations, most plant species demonstrated resistance to antibiotic concentrations below 100 μgL-1. Additionally, the amount of antibiotics accumulated in plants was extremely little, so the risk of secondary pollution was minimal during phytoremediation. The results of this study reveal the main factors influencing antibiotics removal by phytoremediation and plant physiological responses to antibiotics, providing a reference for improving the rational application of phytoremediation for antibiotics removal. In addition, it will provide concepts and directions for improving the efficiency of sustainable and environmentally friendly remediation methods for treating antibiotic pollution.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Zhang
- College of Materials Sciences and Engineering, Henan Institute of Technology, Xinxiang, 453003, China
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
8
|
Abdelgawad ZA, Abd El-Wahed MN, Ahmed AA, Madbouly SM, El-Sayyad GS, Khalafallah AA. Assessment of heavy metal accumulation and health risk in three essential edible weeds grown on wastewater irrigated soil. Sci Rep 2023; 13:21768. [PMID: 38066115 PMCID: PMC10709593 DOI: 10.1038/s41598-023-48763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The main problem facing Egypt recently is the shortage of available water resources. Therefore, farmers resort to use wastewater for irrigation. So, the present work aims to assess the impacts of wastewater irrigation on the productivity of three edible weeds (Cichorium endivia, Sonchus oleraceous and Beta vulgaris) and its effect on the nutritional value of plants and its risk on human health. This study will focus on Shibin Al Kanater region, and the physicochemical characteristics of drainage water, canal water, drainage water-irrigated soils and canal-irrigated soils were estimated. The vegetative and traits of edible weeds were determined including their photosynthetic pigments, organic and inorganic nutrients content, and heavy metals content. The health risk index (HRI) associated with consumption of polluted plants was created using the estimated exposure factor of a crop to the oral reference dosage of the toxic metal. The main results showed that biomass productivity of S. oleraceous, B. vulgaris and C. endivia increased due to drainage water irrigation with increasing percentage as 27.9, 19.6, and 19.1%, respectively. Irrigation with drainage water significantly increased the photosynthetic pigments of edible weeds. Irrigation with drainage water increased carbohydrate content, crude protein, total soluble sugar, and gross energy in all studied weeds. C. endivia, S. oleraceus and B. vulgaris plants irrigated with canal and drainage water could accumulate Fe, Zn, Cu, and Co in their roots. C. endivia, S. oleraceus and B. vulgaris plants irrigated with canal water indicated HRI more than the unit for Mn, Cu, Pb, and Cd. This research advises that regulation be put in place to prohibit irrigation using untreated drainage and to restrict the discharge of industrial, domestic, and agricultural wastewater into irrigation canals.
Collapse
Affiliation(s)
- Zinab A Abdelgawad
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Mona N Abd El-Wahed
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Asmaa A Ahmed
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Seliem M Madbouly
- Chemistry Lab, Fresh Water Division, National Institute of Oceanography and Fisher (NIOF), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed A Khalafallah
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
10
|
Barathi S, Lee J, Venkatesan R, Vetcher AA. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3816. [PMID: 38005713 PMCID: PMC10675783 DOI: 10.3390/plants12223816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Rising waste construction, agricultural actions, and manufacturing sewages all contribute to heavy metal accumulation in water resources. Humans consume heavy metals-contaminated substances to make sustenance, which equally ends up in the food circle. Cleaning of these vital properties, along with the prevention of new pollution, has long been required to evade negative strength consequences. Most wastewater treatment techniques are widely acknowledged to be costly and out of the grasp of governments and small pollution mitigation businesses. Utilizing hyper-accumulator plants that are extremely resilient to heavy metals in the environment/soil, phytoremediation is a practical and promising method for eliminating heavy metals from contaminated environments. This method extracts, degrades, or detoxifies harmful metals using green plants. The three phytoremediation techniques of phytostabilization, phytoextraction, and phytovolatilization have been used extensively for soil remediation. Regarding their ability to be used on a wide scale, conventional phytoremediation methods have significant limitations. Hence, biotechnological attempts to change plants for heavy metal phytoremediation methods are extensively investigated in order to increase plant effectiveness and possible use of improved phytoremediation approaches in the country of India. This review focuses on the advances and significance of phytoremediation accompanied by the removal of various harmful heavy metal contaminants. Similarly, sources, heavy metals status in India, impacts on nature and human health, and variables influencing the phytoremediation of heavy metals have all been covered.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
11
|
Daurov D, Zhambakin K, Shamekova M. Phytoremediation as a way to clean technogenically polluted areas of Kazakhstan. BRAZ J BIOL 2023; 83:e271684. [PMID: 37222372 DOI: 10.1590/1519-6984.271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2023] [Indexed: 05/25/2023] Open
Abstract
One of the most serious problems worldwide is heavy metal (HM) pollution. HMs can have a toxic effect on human health and thus cause serious diseases. To date, several methods have been used to clean environments contaminated by HMs, but most of them are expensive, and it is difficult to achieve the desired result. Phytoremediation is currently an effective and affordable processing solution used to clean and remove HMs from the environment. This review article discusses in detail the technology of phytoremediation and mechanisms of HM absorption. In addition, methods are described using genetic engineering of various plants to enhance the resistance and accumulation of HMs. Thus, phytoremediation technology can become an additional aid to traditional methods of purification.
Collapse
Affiliation(s)
- D Daurov
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - K Zhambakin
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| | - M Shamekova
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
12
|
Tőzsér D, Horváth R, Simon E, Magura T. Heavy metal uptake by plant parts of Populus species: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69416-69430. [PMID: 37131011 DOI: 10.1007/s11356-023-27244-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Populus species are well documented for being potentially suitable for phytoremediation purposes regarding their accumulation characteristics. However, published results are contradictory. Based on the data gathered during an extensive literature search, we aimed to assess and revise the metal accumulation potential in the root, stem, and leaf of Populus species growing in contaminated soils, with meta-analysis. We evaluated the influences of pollution level, soil pH, and exposure time on the metal uptake patterns. We found accumulations of Cd, Cr, Cu, Pb, and Zn to be significant in each plant part, while that was only moderate for Ni, and limited for Mn. By calculating the soil pollution index (PI), we observed significantly intensive, PI-independent accumulation for Cd, Cr, Cu, Ni, Pb, and Zn. A decrease in soil pH significantly increased the uptake of Mn and significantly decreased the accumulation of Pb in the stem. Metal uptake was significantly influenced by exposure time as well; Cd concentration was significantly decreased in the stem, while concentrations of Cr in the stem and leaf, and Mn in the stem were significantly increased with time. These aforementioned findings support a well-founded metal-and-growth condition-specific application of poplars in phytoremediation processes, also triggering further in-depth assessments to enhance the efficiency of relevant poplar-based technologies.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, Páter Károly str. 1, Gödöllő, H-2100, Hungary
| | - Roland Horváth
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary.
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary.
| | - Edina Simon
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
| | - Tibor Magura
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
| |
Collapse
|
13
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
14
|
Guidi Nissim W, Castiglione S, Guarino F, Pastore MC, Labra M. Beyond Cleansing: Ecosystem Services Related to Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1031. [PMID: 36903892 PMCID: PMC10005053 DOI: 10.3390/plants12051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Phytotechnologies used for cleaning up urban and suburban polluted soils (i.e., brownfields) have shown some weakness in the excessive extent of the timeframe required for them to be effectively operating. This bottleneck is due to technical constraints, mainly related to both the nature of the pollutant itself (e.g., low bio-availability, high recalcitrance, etc.) and the plant (e.g., low pollution tolerance, low pollutant uptake rates, etc.). Despite the great efforts made in the last few decades to overcome these limitations, the technology is in many cases barely competitive compared with conventional remediation techniques. Here, we propose a new outlook on phytoremediation, where the main goal of decontaminating should be re-evaluated, considering additional ecosystem services (ESs) related to the establishment of a new vegetation cover on the site. The aim of this review is to raise awareness and stress the knowledge gap on the importance of ES associated with this technique, which can make phytoremediation a valuable tool to boost an actual green transition process in planning urban green spaces, thereby offering improved resilience to global climate change and a higher quality of life in cities. This review highlights that the reclamation of urban brownfields through phytoremediation may provide several regulating (i.e., urban hydrology, heat mitigation, noise reduction, biodiversity, and CO2 sequestration), provisional (i.e., bioenergy and added-value chemicals), and cultural (i.e., aesthetic, social cohesion, and health) ESs. Although future research should specifically be addressed to better support these findings, acknowledging ES is crucial for an exhaustive evaluation of phytoremediation as a sustainable and resilient technology.
Collapse
Affiliation(s)
- Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via G. Paolo II n◦ 132, 84084 Fisciano, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via G. Paolo II n◦ 132, 84084 Fisciano, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Maria Chiara Pastore
- Politecnico di Milano, Department of Architecture and Urban Studies, Via Bonardi 3, 20133 Milano, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
15
|
Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, Rinklebe J, Chen X, Peng W. A strategy for bioremediation of nuclear contaminants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120964. [PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation, Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
16
|
Kudo H, Qian Z, Inoue C, Chien MF. Temperature Dependence of Metals Accumulation and Removal Kinetics by Arabidopsis halleri ssp. gemmifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:877. [PMID: 36840224 PMCID: PMC9966424 DOI: 10.3390/plants12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd), which is present in zinc (Zn) ore, is a toxic metal and causes contamination globally. Phytoremediation is a promising technology for the remediation of sites with low and moderate contamination. Temperature is an important factor in phytoremediation because it has an impact on both plant biomass and the accumulation of heavy metals. However, little is known about the influence of temperature on heavy metal accumulation by the Cd and Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera. The effect of temperature on the distribution of Cd and Zn in A. halleri ssp. gemmifera and the mechanism of metal removal from solution were investigated in this study. Our results showed that the temperature dependence of the distribution of Cd and Zn in the plant was different, which may suggest that the mechanisms of xylem loading were different between Cd and Zn. Although Cd and Zn have partially similar transport pathways, the removal kinetics based on the first-order reaction rate constant revealed that the temperature which maximized rate of absorption was different between Cd and Zn. This study suggests a potential for efficient Cd phytoextraction using A. halleri ssp gemmifera in Cd and Zn co-existing environments.
Collapse
|
17
|
Xiao J, Lin G, Cao Z, Chu S, Cui L, Yang Y, Wu X. A shallow constructed wetland combining porous filter material and Rotala rotundifolia for advanced treatment of municipal sewage at low HRT. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27593-27602. [PMID: 36383319 DOI: 10.1007/s11356-022-24111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Water scarcity is a worldwide problem. Recycled municipal wastewater is considered a useful alternative to the conventional types of water resources. In this study, a shallow constructed wetland (SCW) with porous filter material and Rotala rotundifolia was used for advanced municipal sewage treatment. The wetland without plant was set as the control (SCW-C). The pollutant removal performance of the system at different hydraulic retention times (HRTs) was investigated. The diversity of the microbial community was analyzed, and the fate of nutrients, mainly N and P, in the system was discussed. Results showed that SCW was efficient in pollutant removal. Effluent concentrations of chemical oxygen demand (COD), total phosphorus (TP), and ammonium nitrogen (NH4+-N) were 15.0-23.6, 0.19-0.28, and 0.83-1.16 mg/L, separately, with average removal efficiencies of 61.2%, 46.3%, and 88.1% at HRT 18 h, which met the requirements of type [Formula: see text] water set by the environmental quality standards for surface water in China. The richness and evenness of the bacterial community were significantly higher in the plant-rooted SCW. They increased along with the system. The dominant genera in the system were phosphate-solubilizing bacteria, nitrifying bacteria, and denitrifying bacteria. The P in the influent mainly flowed to the substrate and plant. At the same time, most N was removed by nitrification and denitrification. These findings suggested that the SCW could remove pollutants from the municipal sewage effluent and meet the standard requirement at low HRT.
Collapse
Affiliation(s)
- Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Guo Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhuangzhuang Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Shuyi Chu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325000, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Xiangting Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
18
|
de Souza DM, da Silva JDL, Ludwig LDC, Petersen BC, Brehm FA, Modolo RCE, De Marchi TC, Figueiredo R, Moraes CAM. Study of the phytoremediation potential of native plant species identified in an area contaminated by volatile organic compounds: a systematic review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1524-1541. [PMID: 36708140 DOI: 10.1080/15226514.2023.2170974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phytoremediation is a process that uses plants in situ to promote remediation of environments contaminated by organic or inorganic compounds. Phytoremediating species develop methods such as phytoextraction, rhizofiltration, phytodegradation, and phytovolatilization, which can manifest themselves individually or together in a single plant. This study aims to evaluate, through a systematic review, the potential phytoremediation techniques of the genera Syagrus (Mart.), Nephrolepis, Cyperus (L.), Mimosa (L.), Schinus (L.), Brachiaria, and Eryngium (L.) found in a humid area of Rio Grande do Sul, Brazil. The genera that presented significant numbers in the databases consulted were Cyperus and Brachiaria, followed by Nephrolepis. The first two are considered the most promising for phytoremediation processes. The other genera mentioned obtained favorable results for organic contaminants. The studies around these genera are still recent. It is necessary, in research, to highlight which phytoremediation processes the plants exert in relation to the contaminant of the place. In addition, priority should be given to native species that can establish themselves in the environment and that would not unbalance and harm the surrounding biota and ecosystem.
Collapse
Affiliation(s)
- Débora M de Souza
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
| | | | | | - Brunna C Petersen
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
| | - Feliciane A Brehm
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
| | - Regina C Espinosa Modolo
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
- Graduate Program in Mechanical Engineering - PPGEM, Unisinos, São Leopoldo, Brazil
| | | | - Rodrigo Figueiredo
- Environmental Engineer and Work Safety Engineer, NewFields Brazil Environmental Consulting Ltd, Novo Hamburgo, Brazil
| | - Carlos A M Moraes
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
- Graduate Program in Mechanical Engineering - PPGEM, Unisinos, São Leopoldo, Brazil
| |
Collapse
|
19
|
İnan S, Kusumkar VV, Galamboš M, Viglašová E, Rosskopfová O, Daňo M. Isotherm, Kinetic, and Selectivity Studies for the Removal of 133Ba and 137Cs from Aqueous Solution Using Turkish Perlite. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7816. [PMID: 36363408 PMCID: PMC9654746 DOI: 10.3390/ma15217816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The efficiency of 133Ba and 137Cs removal from aqueous solution is vital to mitigate ecological concerns over spreading these radionuclides in the environment. The present work focused on the use of Turkish perlite for the sorptive removal of 133Ba and 137Cs from aqueous solution by the radioindicator method. Perlite was characterized by XRF, XRD, FTIR, SEM−EDX, and BET analyses. The maximum percentage removals of 88.2% and 78.7% were obtained for 133Ba and 137Cs at pH 6 and pH 9, respectively. For both ions, the sorption equilibrium was attained relatively rapidly. Experimental kinetic data were well described with pseudo-second-order and intraparticle diffusion models. The uptake of both ions increased with the increase in metal concentration (1 × 10−5 to 5 × 10−2 mol/L) in solution. The maximum uptake capacities of 133Ba and 137Cs were found to be 1.96 and 2.11 mmol/g, respectively. The effect of competing ions decreased in the order of Ca2+>K+>Ni2+>Na+ for 133Ba sorption, whereas for 137Cs sorption, the order was determined as Ca2+>Ni2+>K+>Na+. Selectivity studies pointed out that sorption of 133Ba onto perlite is preferable to 137Cs. Therefore, Turkish perlite is a promising, cost-effective, and efficient natural material for the removal of 133Ba and 137Cs from relatively diluted aqueous solution.
Collapse
Affiliation(s)
- Süleyman İnan
- Institute of Nuclear Sciences, Ege University, Bornova, 35100 İzmir, Türkiye
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Vipul Vilas Kusumkar
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Michal Galamboš
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Eva Viglašová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Oľga Rosskopfová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Martin Daňo
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
| |
Collapse
|
20
|
Kumar S, Pratap B, Dubey D, Kumar A, Shukla S, Dutta V. Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:885. [PMID: 36239860 DOI: 10.1007/s10661-022-10540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
The continuous exposure to pharmaceuticals and personal care products can lead to a series of individual antagonistic and synergistic effects and long-lasting toxicity to humans and aquatic lives. This may also lead to developing antibiotic resistance, teratogenic, carcinogenic, and endocrine-disrupting effects. However, several PPCPs are also considered biologically active for non-target aquatic organisms, such as mosquito fish, goldfish, and the algae Pseudokirchneriella subcapitata. Various physicochemical methods such as ozonation, photolysis, and membrane separation are recognized for the effective removal of PPCPs. However, the high operation and maintenance costs and associated ecological impacts have limited their further use. Constructed wetlands are considered eco-friendly and sustainable for the removal of pharmaceuticals and personal care products together with antibiotic resistance genes. Several mechanisms such as sorption, biodegradation, oxidation, photodegradation, volatilization, and hydrolysis are occurring during the phytoremediation of PPCPs. During these processes, more than 50% of PPCPs can be eliminated through constructed wetlands. They also offer several additional benefits as obtained macrophytic biomass may be used as raw material in pulp and paper industries and a source for second-generation biofuel production. In this study, we have discussed the origin and impacts of PPCPs together with their treatment methods. We have also investigated the strengths, weaknesses, opportunities, and threats associated with constructed wetlands during the treatment of wastewater laden with pharmaceutical and personal care products.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605.
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Lakhimpur Kheri, UP, India, 262701.
| | - Bhanu Pratap
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Divya Dubey
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Adarsh Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 226025
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Pilibhit, UP, India, 262001
| | - Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India, 225003
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| |
Collapse
|
21
|
Li M, Gu H, Lam SS, Sonne C, Peng W. Deposition-mediated phytoremediation of nitrogen oxide emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119706. [PMID: 35798191 DOI: 10.1016/j.envpol.2022.119706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The growing global population and use of natural resources lead to significant air pollution. Nitrogen oxide emissions is a potential killer threatening human health requiring focus and remediation using vegetation being efficient and cheap. Here we review the mechanisms of removing nitrogen oxides by dry deposition of plants, discussing the principle of leaf absorption of pollutants and factors affecting the removal of nitrogen oxides providing a theoretical basis for the selection of urban greening vegetation.
Collapse
Affiliation(s)
- Mengzhen Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Universiti Malaysia Terengganu, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries; 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Peng WX, Yue X, Chen H, Ma NL, Quan Z, Yu Q, Wei Z, Guan R, Lam SS, Rinklebe J, Zhang D, Zhang B, Bolan N, Kirkham MB, Sonne C. A review of plants formaldehyde metabolism: Implications for hazardous emissions and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129304. [PMID: 35739801 DOI: 10.1016/j.jhazmat.2022.129304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The wide use of hazardous formaldehyde (CH2O) in disinfections, adhesives and wood-based furniture leads to undesirable emissions to indoor environments. This is highly problematic as formaldehyde is a highly hazardous and toxic compound present in both liquid and gaseous form. The majority of gaseous and atmospheric formaldehyde derive from microbial and plant decomposition. However, plants also reversibly absorb formaldehyde released from for example indoor structural materials in such as furniture, thus offering beneficial phytoremediation properties. Here we provide the first comprehensive review of plant formaldehyde metabolism, physiology and remediation focusing on release and absorption including species-specific differences for maintaining indoor environmental air quality standards. Phytoremediation depends on rhizosphere, temperature, humidity and season and future indoor formaldehyde remediation therefore need to take these biological factors into account including the balance between emission and phytoremediation. This would pave the road for remediation of formaldehyde air pollution and improve planetary health through several of the UN Sustainable Development Goals.
Collapse
Affiliation(s)
- Wan-Xi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiaochen Yue
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Huiling Chen
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Nyuk Ling Ma
- Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zhou Quan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Qing Yu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Zihan Wei
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Ruirui Guan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
23
|
Khalifa AA, Khan E, Akhtar MS. Phytoremediation of indoor formaldehyde by plants and plant material. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:493-504. [PMID: 35771032 DOI: 10.1080/15226514.2022.2090499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Formaldehyde evolves from various household items and is of environmental and public health concern. Removal of this contaminant from the indoor air is of utmost importance and currently, various practices are in the field. Among these practices, indoor plants are of particular importance because they help in controlling indoor temperature, moisture, and oxygen concentration. Plants and plant materials studied for the purpose have been reviewed hereunder. The main topics of the review are, mechanism of phytoremediation, plants and their benefits, plant material in formaldehyde remediation, and airtight environmental and health issues. Future research in the field is also highlighted which will help new researches to plan for the remediation of formaldehyde in indoor air. The remediation capacity of several plants has been tabulated and compared, which gives easy access to assess various plants for remediation of the target pollutant. Challenges and issues in the phytoremediation of formaldehyde are also discussed.Novelty statement: Phytoremediation is a well-known technique to mitigate various organic and inorganic pollutants. The technique has been used by various researchers for maintaining indoor air quality but its efficiency under real-world conditions and human activities is still a question and is vastly affected relative to laboratory conditions. Several modifications in the field are in progress, here in this review article we have summarized and highlighted new directions in the field which could be a better solution to the problem in the future.
Collapse
Affiliation(s)
- Abeer Ahmed Khalifa
- Environment and Sustainable Development Program, College of Science, University of Bahrain, Sakhir, Bahrain
- Department of Architecture and Interior Design, College of Engineering, University of Bahrain, Isa Town, Bahrain
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | | |
Collapse
|
24
|
Patel AK, Singhania RR, Albarico FPJB, Pandey A, Chen CW, Dong CD. Organic wastes bioremediation and its changing prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153889. [PMID: 35181362 DOI: 10.1016/j.scitotenv.2022.153889] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 05/21/2023]
Abstract
Increasing inappropriate anthropogenic activities and industrialization have resulted in severe environmental pollution worldwide. Their effective treatment is vital for general health concerns. Depending on the characteristics of pollutants, the severity of pollution may differ. For sustainable treatment of polluted environments, bioremediation is accepted as the most efficient, economical, and environmentally friendly method hence largely preferred. However, every bioremediation technique has its own unique advantages and limitations due to its defined applications criteria. In bioremediation, microorganisms play a decisive role in detoxification by degrading, mineralizing and accumulating various forms of harmful and biodegradable pollutants from the surroundings and transforming them into less lethal forms. Bioremediation is performed ex-situ or in-situ, based on location of polluted site as well as characteristics, type and strength of the pollutants. Furthermore, the most popular methodologies for bioremediation include bioaugmentation, biostimulation, bioattenuation among others which depend on the prevailing environmental factors into the microbial system. Implementing them appropriately and effectively under ex-situ or in-situ method is extremely important not only for obtaining efficient treatment but also for the best economic, environmental, and social impacts. Therefore, this review aims to analyze various bioremediation methods for organic pollutants remediation from soil/sediments and wastewater, their strength, limitation, and insights for the selection of appropriate bioremediation techniques based on nature, types, degree, and location of the pollution. The novelty aspect of the article is to give updates on several key supporting technologies which have recently emerged and exhibited great potential to enhance the present bioremediation efficiency such as nanobubble, engineered biochar, mixotrophic microalgae, nanotechnology etc. Moreover, amalgamation of these technologies with existing bioremediation facilities are significantly changing the scenario and scope of environmental remediation towards sustainable bioremediation.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Fisheries and Marine Research Station (FaMaRS), Fisheries and Marine Sciences Department, College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
25
|
Positive Effects and Optimal Ranges of Tea Saponins on Phytoremediation of Cadmium-Contaminated Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Confirming positive effects and offering optimal ranges of tea saponins on improving the efficiency of phytoremediation on cadmium is a prerequisite for applying tea saponins in field remediation. Existing studies qualitatively tested the feasibility of tea saponins on promoting the absorption of cadmium by hyperaccumulators in pots experiments, while this study investigated the effects of tea saponins on increasing the proportion of cadmium available fraction in contaminated soil quantitatively and confirmed tea saponins promoted the absorption by Portulaca oleracea in cadmium-contaminated water by independent soil experiments and hydroponic experiments. The results showed that for acquiring a higher proportion of cadmium available fraction, the concentration of tea saponins was negatively correlated with the concentration of cadmium contained in the soil, and the optimal treatment time of tea saponins was between 3–9 days depending on the cadmium concentration in contaminated soil. Using tea saponins could enhance the absorption of cadmium by Portulaca oleracea in a relatively short time to decrease the concentration of cadmium left in the contaminated water. The above findings help to deepen the understanding of tea saponins’ effects and use ranges on phytoremediation of cadmium both in soil and water and conduce studies on phytoremediation of other heavy-metal-contaminated soil and water with the help of tea saponins.
Collapse
|
26
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
27
|
Purkis JM, Bardos RP, Graham J, Cundy AB. Developing field-scale, gentle remediation options for nuclear sites contaminated with 137Cs and 90Sr: The role of Nature-Based Solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114620. [PMID: 35149404 DOI: 10.1016/j.jenvman.2022.114620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The remediation of contaminated land using plants, bacteria and fungi has been widely examined, especially in laboratory or greenhouse systems where conditions are precisely controlled. However, in real systems at the field scale conditions are much more variable and often produce different outcomes, which must be fully examined if 'gentle remediation options', or GROs, are to be more widely implemented, and their associated benefits (beyond risk-management) realized. These secondary benefits can be significant if GROs are applied correctly, and can include significant biodiversity enhancements. Here, we assess recent developments in the field-scale application of GROs for the remediation of two model contaminants for nuclear site remediation (90Sr and 137Cs), their risk management efficiency, directions for future application and research, and barriers to their further implementation at scale. We also discuss how wider benefits, such as biodiversity enhancements, water filtration etc. can be maximized at the field-scale by intelligent application of these approaches.
Collapse
Affiliation(s)
- Jamie M Purkis
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, United Kingdom
| | - R Paul Bardos
- Centre for Aquatic Environments, University of Brighton, Brighton, BN2 4AT, UK; r3 Environmental Technology Ltd., Reading, United Kingdom
| | - James Graham
- National Nuclear Laboratory, Sellafield, Cumbria, CA20 1PG, UK
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre (Southampton), European Way, Southampton, SO14 3ZH, United Kingdom.
| |
Collapse
|
28
|
Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain). ENVIRONMENTS 2022. [DOI: 10.3390/environments9020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mineral processing and metallurgy production centers may leave a far-reaching fingerprint of soil contamination. This scenario is particularly relevant in the mining district of Linares (Southern Spain), where former industrial sites are now dedicated to other land uses. Within this context, we selected five sectors of concern in Linares region, which are currently used as agricultural and residential areas. The study began with an edaphic characterization, including grain-size fractioning and soil chemical analyses, which were complemented by mineralogical and sequential extraction information. Anomalous soil concentrations of As, Cd, Cu, Pb, and Zn were found, with higher values than the admissible regional guideline limits. Moreover, chemical speciation indicated that in general, Pb, Zn, and Cd were highly available and bound mainly to the carbonate fraction. In addition, health risk assessment evidenced potential threats by Pb and As. Regarding remediation approaches, we observed that, in soils affected by mining and ore dressing activities, the clay and silt size fractions contained the highest pollution load, making them suitable for a size classification treatment. By contrast, in areas affected by metallurgical activity, pollutants were prone to be evenly distributed among all grain sizes, thereby complicating the implementation of such remediation strategies.
Collapse
|
29
|
Lin LD, Ho JR, Yang BY, Ko CH, Chang FC. Life cycle assessment of heavy metal contaminated sites: phytoremediation and soil excavation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:334-341. [PMID: 34166152 DOI: 10.1080/15226514.2021.1937933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phytoextraction by native Taiwanese chenopod (Chenopodium formosanum Koidz.) and Napier grass (Pennisetum purpureum) for heavy metals such as chromium (Cr), nickel (Ni), and copper (Cu) was reported first. Maximum bioconcentration factors of Cu and Cr were 8.8 and 12.5 by Taiwanese chenopod. Napier grass cultivar Taishi No.4 plants demonstrated higher survivals than that of Taiwanese chenopod, under heavy metal stress in soils. All heavy metal accumulation and biomass data were employed, as well as historical engineering data were collected for conventional excavation-and-refill remediation of two sites. Life cycle assessment (LCA) was conducted for comparing environmental performances of phytoextraction and conventional remediation for two contaminated sites. Assuming one-year growth, three harvests were done and biomass was collected and sent to the nearest municipal incinerators, phytoextraction by both plants demonstrated superior environmental performances than conventional methods for contaminated site remediation. High quantities of fuels to haul the soils of conventional methods mainly contributed to the greenhouse gas emission. Phytoextraction has the most advantages for sites with lesser extents of pollution and time restraints. Environmental performances of phytoremediation were even better if energy recovered from biomass incineration is counted. Novelty statement Phytoextraction by native Taiwanese chenopod and Napier grass was firstly reported. Life cycle assessment was conducted for comparing the phytoextraction and conventional remediation. Phytoextraction demonstrated superior environmental performances. Energy reutilization of biomass recovered made phytoremediation more sustainable.
Collapse
Affiliation(s)
- Lang-Dong Lin
- Department of Cultural Heritage Conservation, National Yunlin University of Science and Technology, Douliu, Taiwan
| | - Jian-Ren Ho
- Environmental Protection Administration, Taipei, Taiwan
| | - Bing-Yuan Yang
- School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan
| | - Chun-Han Ko
- School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan
| | - Fang-Chih Chang
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Chu-Shan, Taiwan
| |
Collapse
|
30
|
Bhatt P, Ganesan S, Santhose I, Durairaj T. Phytoremediation as an effective tool to handle emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phytoremediation is a process which effectively uses plants as a tool to remove, detoxify or immobilize contaminants. It has been an eco-friendly and cost-effective technique to clean contaminated environments. The contaminants from various sources have caused an irreversible damage to all the biotic factors in the biosphere. Bioremediation has become an indispensable strategy in reclaiming or rehabilitating the environment that was damaged by the contaminants. The process of bioremediation has been extensively used for the past few decades to neutralize toxic contaminants, but the results have not been satisfactory due to the lack of cost-effectiveness, production of byproducts that are toxic and requirement of large landscape. Phytoremediation helps in treating chemical pollutants on two broad categories namely, emerging organic pollutants (EOPs) and emerging inorganic pollutants (EIOPs) under in situ conditions. The EOPs are produced from pharmaceutical, chemical and synthetic polymer industries, which have potential to pollute water and soil environments. Similarly, EIOPs are generated during mining operations, transportations and industries involved in urban development. Among the EIOPs, it has been noticed that there is pollution due to heavy metals, radioactive waste production and electronic waste in urban centers. Moreover, in recent times phytoremediation has been recognized as a feasible method to treat biological contaminants. Since remediation of soil and water is very important to preserve natural habitats and ecosystems, it is necessary to devise new strategies in using plants as a tool for remediation. In this review, we focus on recent advancements in phytoremediation strategies that could be utilized to mitigate the adverse effects of emerging contaminants without affecting the environment.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Swamynathan Ganesan
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Infant Santhose
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Thirumurugan Durairaj
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| |
Collapse
|
31
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
32
|
Kaushal J, Mahajan P, Kaur N. A review on application of phytoremediation technique for eradication of synthetic dyes by using ornamental plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67970-67989. [PMID: 34636019 DOI: 10.1007/s11356-021-16672-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation emerges as an innovative and eco-friendly technique to remediate textile dyes with the use of various categories of plants. In recent years, ornamental plants emerge as more attractive and effective substitute in comparison to edible plants for phytoremediation. Regardless of aesthetic value, some ornamental plants can be grown to remediate the sites contaminated with dyes, heavy metals, pesticides, or other organic compounds. In this review, we focus on pioneer research on synthetic dye removal using ornamental plants and evaluate the phytoremediation capability of ornamental plants for treatment of textile effluent. This paper also emphasized specific ornamental plants having high accumulation and tolerance ability for removal of dyes. The mechanisms explored for the phytoremediation of dyes by ornamental plants have also been explained. This review will also be helpful for researchers for exploring more new ornamental plants in phytoremediation technique.
Collapse
Affiliation(s)
- Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Navjeet Kaur
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
33
|
Differential modulation of photosynthesis and defense strategies towards copper toxicity in primary and cotyledonary leaves of Ricinus communis L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
34
|
Liao J, Cai X, Yang Y, Chen Q, Gao S, Liu G, Sun L, Luo Z, Lei T, Jiang M. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. CHEMOSPHERE 2021; 282:131089. [PMID: 34119730 DOI: 10.1016/j.chemosphere.2021.131089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Dwarf bamboo is a woody plant with potential for use in the remediation of Pb-contaminated soil. Due to its clonal growth habit, there are two keys to its application for continuous soil Pb remediation: 1) its ability to form shoots and grow into new bamboo normally under Pb stress and 2) the Pb tolerance and accumulation characteristics of this new bamboo. Here, 5 species of dwarf bamboo were treated with 2 levels of soil Pb stress (0 and 1500 mg kg-1). In the roots of 3 of the species (Sasa argenteostriata, Sasaella glabra, and Indocalamus decorus), Pb tended to be distributed along the cell wall and transported to vacuoles. In the other 2 species (Sasa auricoma and Sasa fortunei), Pb was arranged linearly along the cell wall. Under Pb treatment, the new bamboo of all species showed gradual physiological adaptation to Pb stress. Correlations of the net photosynthetic rate, superoxide dismutase activity, and free proline levels with Pb content in new leaves in November were all higher than those in July, though that of malondialdehyde content decreased, suggesting that new dwarf bamboo exhibits good soil Pb stress tolerance. Sasa argenteostriata and Indocalamus decorus consistently maintained higher antioxidant enzyme activities and free proline levels than the other species under Pb treatment, and the total biomass per pot of the new bamboo decreased the least compared to that in the Pb-free treatment for these two species. Therefore, these bamboo species may be used in the long-term continuous remediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Guangli Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
35
|
Brunhoferova H, Venditti S, Schlienz M, Hansen J. Removal of 27 micropollutants by selected wetland macrophytes in hydroponic conditions. CHEMOSPHERE 2021; 281:130980. [PMID: 34289626 DOI: 10.1016/j.chemosphere.2021.130980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/06/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
In this work, the primary focus is given on a mixture of 27 micropollutants (pharmaceuticals, pesticides, herbicides, fungicides and others) and its removal from aqueous solution by phytoremediation. Phytoremediation belongs to technologies, which are contributing on removal of micropollutants from wastewater in constructed wetlands. Constructed wetlands can be used as an additional step for elimination of micropollutants from municipal medium-sized wastewater treatment plants. To our knowledge, such a broad variety of micropollutants was never targeted for removal by phytoremediation before. In this work, we carry out experiments with 3 emergent macrophytes: Phragmites australis, Iris pseudacorus and Lythrum salicaria in hydroponic conditions. The selected plants are exposed to mixture of micropollutants in concentrations 1-14 mg/l for a time period of 30 days. The highest affinity for phytoremediation is detected at groups of fluorosurfactants (removal rate up to 30%), beta-blockers (removal rate up to 50%) and antibiotics (removal rate up to 90%). The leading capability for micropollutant uptake is detected at Lythrum salicaria, where 25 out of 27 compounds are removed with more than 20% efficiency. The results demonstrate well usefulness of this technology e.g. in an additional treatment step, because the mentioned groups of micropollutants are removed with comparable or even higher effectivity, than it is in case of conventional wastewater treatment plants.
Collapse
Affiliation(s)
- Hana Brunhoferova
- Department of Engineering, University of Luxembourg, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg.
| | - Silvia Venditti
- Department of Engineering, University of Luxembourg, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg
| | - Markus Schlienz
- Department of Engineering, University of Luxembourg, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg
| | - Joachim Hansen
- Department of Engineering, University of Luxembourg, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg
| |
Collapse
|
36
|
Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. WATER 2021. [DOI: 10.3390/w13152065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Greater awareness of micropollutants present in water and wastewater motivates the search for effective methods of their neutralization. Although their concentration in waters is measured in micro- and nanograms per liter, even at those levels, they may cause serious health consequences for different organisms, including harmful effects on the functioning of the endocrine system of vertebrates. Traditional methods of wastewater treatment, especially biological methods used in municipal wastewater treatment plants, are not sufficiently effective in removing these compounds, which results in their presence in natural waters. The growing interest in phytoremediation using constructed wetlands as a method of wastewater treatment or polishing indicates a need for the evaluation of this process in the context of micropollutant removal. Therefore, the present work presents a systematic review of the effectiveness in the removal of micropollutants from polluted waters by processes based on plant used. The article also analyzes issues related to the impact of micropollutants on the physiological processes of plants as well as changes in general indicators of pollution caused by contact of wastewater with plants. Additionally, it is also the first review of the literature that focuses strictly on the removal of micropollutants through the use of constructed wetlands.
Collapse
|
37
|
Nugroho AP, Butar ESB, Priantoro EA, Sriwuryandari L, Pratiwi ZB, Sembiring T. Phytoremediation of electroplating wastewater by vetiver grass (Chrysopogon zizanoides L.). Sci Rep 2021; 11:14482. [PMID: 34262111 PMCID: PMC8280137 DOI: 10.1038/s41598-021-93923-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The electroplating industry generates wastewater containing a variety of heavy metals which potentially contaminate water ecosystems. The available and well-known electroplating wastewater treatments are considered as an expensive and less effective method, therefore phytoremediation was used as an alternative friendly solution. This study aims to evaluate the uptake and elimination rate of heavy metals by vetiver (Chrysopogon zizanoides L.) on metal-polluted water. Vetiver was planted in artificial electroplating wastewater containing different levels (low, medium, high) of chromium (Cr) and nickel (Ni). Water, roots, and shoots were collected periodically to determine Cr and Ni contents using Atomic Absorption Spectrometry (AAS). Metal accumulation and elimination rate, Bioconcentration Factor (BCF), Biological Absorption Coefficient (BAC), and Translocation Factor (TF) were calculated to evaluate plant's effectiveness in metal remediation processes. The results showed that vetiver (C. zizanoides L.) was able to remove 61.10% Cr and 95.65% Ni on metal-contaminated water. The highest uptake rates for Cr and Ni are 127.21 mg/kg/day and 15.60 mg/kg/day respectively, while the elimination rates for Cr and Ni tend to slow 1.09 mg/kg/day and 12.24 mg/kg/day respectively. Vetiver BCF, BAC, and TF values on Cr and Ni contaminated water were greater than 1, which indicates that vetiver work through phytoextraction and phytostabilization to treat metals. The findings showed that vetiver has promise as a phytoremediation agent thus providing implication for electroplating wastewater treatment.
Collapse
Affiliation(s)
| | - Erni Saurmalinda Butar Butar
- Waste Treatment and Environmental Management Working Group, Research Unit for Clean Technology – Indonesian Institute of Sciences, Bandung, Indonesia
| | - Ekaputra Agung Priantoro
- Waste Treatment and Environmental Management Working Group, Research Unit for Clean Technology – Indonesian Institute of Sciences, Bandung, Indonesia
| | - Lies Sriwuryandari
- Waste Treatment and Environmental Management Working Group, Research Unit for Clean Technology – Indonesian Institute of Sciences, Bandung, Indonesia
| | | | - Tarzan Sembiring
- Waste Treatment and Environmental Management Working Group, Research Unit for Clean Technology – Indonesian Institute of Sciences, Bandung, Indonesia
| |
Collapse
|
38
|
El-Tanbouly R, Hassan Z, El-Messeiry S. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Front Mol Biosci 2021; 8:709395. [PMID: 34277711 PMCID: PMC8279815 DOI: 10.3389/fmolb.2021.709395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
The last two decades have seen the discovery of novel retroviruses that have resulted in severe negative consequences for human health. In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged with a high transmission rate and severe effects on human health, with 5% infected persons requiring hospitalisation and 3.81 million deaths to date globally. Aerosol particles containing virions are considered the main source of SARS CoV-2 transmission in this pandemic, with increased infection rates in confined spaces. Consequently, public and private institutions had to institute mitigation measures including the use of facial masks and social distancing to limit the spread of the virus. Moreover, the role of air purification and bio-decontamination is understood as being essential to mitigate viral spread. Various techniques can be applied to bio-decontaminate the air such as the use of filtration and radiation; however, these methods are expensive and not feasible for home use. Another method of air purification is where indoor plants can purify the air by the removal of air pollutants and habituated airborne microbes. The use of indoor plants could prove to be a cost-efficient way of indoor air-purification that could be adapted for a variety of environments with no need for special requirements and can also add an aesthetic value that can have an indirect impact on human health. In this review, we discuss the emergence of the COVID-19 pandemic and the currently used air purification methods, and we propose the use of indoor plants as a new possible eco-friendly tool for indoor air purification and for reducing the spread of COVID-19 in confined places.
Collapse
Affiliation(s)
- Rania El-Tanbouly
- Department of Floriculture, Ornamental Horticulture and Landscape Design, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ziad Hassan
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA. Bibliometric Analysis of Hydrocarbon Bioremediation in Cold Regions and a Review on Enhanced Soil Bioremediation. BIOLOGY 2021; 10:biology10050354. [PMID: 33922046 PMCID: PMC8143585 DOI: 10.3390/biology10050354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Anthropogenic activities in cold regions require petroleum oils to support various purposes. With the increased demand of petroleum, accidental oil spills are generated during transportation or refuelling processes. Soil is one of the major victims in petroleum pollution, hence studies have been devoted to find solutions to remove these petroleum hydrocarbons. However, the remote and low-temperature conditions in cold regions hindered the implementation of physical and chemical removal treatments. On the other hand, biological treatments in general have been proposed as an innovative approach to attenuate these hydrocarbon pollutants in soils. To understand the relevancy of biological treatments for cold regions specifically, bibliometric analysis has been applied to systematically analyse studies focused on hydrocarbon removal treatment in a biological way. To expedite the understanding of this analysis, we have summarised these biological treatments and suggested other biological applications in the context of cold conditions. Abstract The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
Collapse
Affiliation(s)
- How Swen Yap
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
40
|
Kudo H, Inoue C, Sugawara K. Effects of Growth Stage and Cd Chemical Form on Cd and Zn Accumulation in Arabidopsis halleri ssp. gemmifera. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084214. [PMID: 33923395 PMCID: PMC8072776 DOI: 10.3390/ijerph18084214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Cadmium is a hazardous heavy metal and causes contamination globally. Phytoremediation can potentially become a low-cost and eco-friendly technique for mitigating Cd contamination. Arabidopsis halleri ssp. gemmifera hyper-accumulates Cd and Zn, and may be used to remediate Cd-contaminated sites. However, few studies have focused on Cd accumulation by A. halleri ssp. gemmifera. Herein, we demonstrate the accumulation of Cd by A. halleri ssp. gemmifera. The biomass, Cd, and Zn concentration of the plant increased in the 103 days of experimentation. Cd concentration of soil significantly decreased compared to its initial concentration (≈10%). The material balance of Cd uptake by plant and Cd decrement from soil ranged from 63.3% to 83.7% in each growth stage. Analysis indicated that the water-eluted and exchangeable forms of Cd were stable during the experiment. However, Cd concentration extracted with 0.1 M HCl decreased (25% of initial), and this fraction was not bioavailable. The study exhibits the mass balance of Cd between plant uptake and decrement from the soil and the changes in the chemical form of Cd during stages of A. halleri ssp. gemmifera cultivation.
Collapse
Affiliation(s)
- Hiroshi Kudo
- Graduate School of Environmental Studies, Tohoku University, Miyagi 980-0845, Japan; (H.K.); (C.I.)
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Miyagi 980-0845, Japan; (H.K.); (C.I.)
| | - Kazuki Sugawara
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musahino, Tokyo 180-8633, Japan
- Correspondence:
| |
Collapse
|
41
|
Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban civilization has a high impact on the environment and human health. The pollution level of indoor air can be 2–5 times higher than the outdoor air pollution, and sometimes it reaches up to 100 times or more in natural/mechanical ventilated buildings. Even though people spend about 90% of their time indoors, the importance of indoor air quality is less noticed. Indoor air pollution can be treated with techniques such as chemical purification, ventilation, isolation, and removing pollutions by plants (phytoremediation). Among these techniques, phytoremediation is not given proper attention and, therefore, is the focus of our review paper. Phytoremediation is an affordable and more environmentally friendly means to purify polluted indoor air. Furthermore, studies show that indoor plants can be used to regulate building temperature, decrease noise levels, and alleviate social stress. Sources of indoor air pollutants and their impact on human health are briefly discussed in this paper. The available literature on phytoremediation, including experimental works for removing volatile organic compound (VOC) and particulate matter from the indoor air and associated challenges and opportunities, are reviewed. Phytoremediation of indoor air depends on the physical properties of plants such as interfacial areas, the moisture content, and the type (hydrophobicity) as well as pollutant characteristics such as the size of particulate matter (PM). A comprehensive summary of plant species that can remove pollutants such as VOCs and PM is provided. Sources of indoor air pollutants, as well as their impact on human health, are described. Phytoremediation and its mechanism of cleaning indoor air are discussed. The potential role of green walls and potted-plants for improving indoor air quality is examined. A list of plant species suitable for indoor air phytoremediation is proposed. This review will help in making informed decisions about integrating plants into the interior building design.
Collapse
|
42
|
Yan L, Le QV, Sonne C, Yang Y, Yang H, Gu H, Ma NL, Lam SS, Peng W. Phytoremediation of radionuclides in soil, sediments and water. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124771. [PMID: 33388721 DOI: 10.1016/j.jhazmat.2020.124771] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Soil and water contaminated with radionuclides threaten the environment and public health during leaks from nuclear power plants. Remediation of radionuclides at the contaminated sites uses mainly physical and chemical methods such as vitrification, chemical immobilization, electro-kinetic remediation and soil excavation, capping and washing being among the preferred methods. These traditional technologies are however costly and less suitable for dealing with large-area pollution. In contrast to this, cost-effective and environment-friendly alternatives such as phytoremediation using plants to remove radionuclides from polluted sites in situ represent promising alternatives for environmental cleanup. Understanding the physiology and molecular mechanisms of radionuclides accumulation in plants is essential to optimize and improve this new remediation technology. Here, we give an overview of radionuclide contamination in the environment and biochemical characteristics for uptake, transport, and compartmentation of radionuclides in plants that characterize phytoextraction and its efficiency. Phytoextraction is an eco-friendly and efficient method for environmental removal of radionuclides at contaminated sites such as mine tailings. Selecting the most proper plant for the specific purpose, however, is important to obtain the best result together with, for example, applying soil amendments such as citric acid. In addition, using genetic engineering and optimizing agronomic management practices including regulation of atmospheric CO2 concentration, reasonable measures of fertilization and rational water management are important as well. For future application, the technique needs commercialization in order to fully exploit the technique at mining activities and nuclear industries.
Collapse
Affiliation(s)
- Lijun Yan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Christian Sonne
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, Roskilde DK-4000, Denmark.
| | - Yafeng Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Han Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Nyuk Ling Ma
- Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
43
|
Shtangeeva I. About plant species potentially promising for phytoextraction of large amounts of toxic trace elements. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1689-1701. [PMID: 32607703 DOI: 10.1007/s10653-020-00633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
There is no information yet about plant species capable of accumulating many different metals/metalloids. The plants feasible for phytoremediation aims must grow fast, have high biomass, deep roots, and should accumulate and tolerate a range of toxicants in their aerial parts. In our research, greenhouse and field experiments have been performed to investigate accumulation and tolerance of not well-studied trace elements such as Br, Eu, Sc, Th (and also U) in couch grass and wheat. We compared bioaccumulation abilities of the plants with those of some other plant species grown under the same conditions. Additionally, we tested the effects of inoculation of seeds with Cellulomonas bacteria on phytoextraction of the trace elements from contaminated soils. For determination of elements, we used neutron activation analysis and ICP-MS. It was found that couch grass and wheat can grow in heavily contaminated soils and accumulate different toxic trace elements to levels that exceed physiological requirements typical for most plant species. Infection of seeds with bacteria resulted in a significant increase in the uptake of various trace elements and their translocation to upper plant parts. The use of couch grass and/or wheat, either alone or in combination with microorganisms, is a promising way to phytoextract metals/metalloids from contaminated soils.
Collapse
Affiliation(s)
- Irina Shtangeeva
- Institute of Earth Sciences, St. Petersburg University, Universitetskaya Nab., 7/9, 199034, St. Petersburg, Russia.
| |
Collapse
|
44
|
Llerena JPP, Coasaca RL, Rodriguez HOL, Llerena SÁP, Valencia YD, Mazzafera P. Metallothionein production is a common tolerance mechanism in four species growing in polluted Cu mining areas in Peru. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112009. [PMID: 33556811 DOI: 10.1016/j.ecoenv.2021.112009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Cu pollution is a problem in mining areas in Peru. Here we evaluate the phytoextraction capacity, physiological and proteomic responses of four species growing in copper-contaminated areas in Arequipa, Peru. The plants used in the experiments were obtained by collecting seedlings (Tessaria integrifolia, Bacharis salicifolia), rhizomes (Eleocharis montevidensis) and seeds (Chenopodium murale) along a polluted river. They were exposed to solutions containing 2, 4, 8, 16 and 32 mg Cu L-1 during 20 days. Growth was affected in a concentration-dependent way. According to the tolerance index, B. salicifolia and C. murale were the most sensitive species, but with greater Cu phytoextraction capacity and accumulation in the biomass. The content and ratio of photosynthetic pigments changed differently for each specie and carotenoids level were less affected than chlorophyll. Cu also induced changes in the protein and sugar contents. Antioxidant enzyme activities (catalase and superoxide dismutase) increased with a decrease in the malondialdehyde. There were marked changes in the protein 2D-PAGE profiles with an increase in the abundance of metallothioneins (MT) of class II type I and II. Our results suggest that these species can grow in Cu polluted areas because they developed multiple tolerance mechanisms, such as and MTs production seems a important one.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| | - Raúl Lima Coasaca
- Department of Sanitation and Environment, Faculty of Civil Engineering, Architecture and Urbanism, State University of Campinas, Campinas, SP 13083-970, Brazil; School of Chemical Engineering, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Herbert Omar Lazo Rodriguez
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Sofía Ángela Portilla Llerena
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Ysabel Diaz Valencia
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Crop Science, College of Agriculture "Luiz de Queiroz" - ESALQ, University of São Paulo - USP, Piracicaba, SP, Brazil
| |
Collapse
|
45
|
Rajkumari J, Choudhury Y, Bhattacharjee K, Pandey P. Rhizodegradation of Pyrene by a Non-pathogenic Klebsiella pneumoniae Isolate Applied With Tagetes erecta L. and Changes in the Rhizobacterial Community. Front Microbiol 2021; 12:593023. [PMID: 33708179 PMCID: PMC7940843 DOI: 10.3389/fmicb.2021.593023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
The non-clinical Klebsiella pneumoniae variants, isolated from different environments, are now well acknowledged for their role in plant-growth promotion and biodegradation of pollutants. In the present study, a non-clinical environmental isolate K. pneumoniae AWD5 is being described for rhizoremediation of pyrene, applied through the rhizosphere of an ornamental plant, Tagetes erecta L (marigold). The non-pathogenic nature of AWD5 was established using an in vivo mouse model experiment, where AWD5 was unable to cause lung infection in tested mice. Degradation of pyrene, in the presence of succinate as co-substrate, was observed to be 87.5% by AWD5, after 21 days of incubation in minimal (Bushnell–Hass) medium in vitro conditions. Consequently, the bacterial inoculation through the rhizosphere of T. erecta L. plants resulted in 68.61% degradation of pyrene, which was significantly higher than control soil. Inoculation of AWD5 also improved plant growth and exhibited an increase in root length (14.64%), dry root weight (80.56%), shoot length (3.26%), and dry shoot weight (45.35%) after 60 days of incubation. T. erecta L., an ornamental plant, was also found to be suitable for bioremediation of pyrene. The effect of AWD5 application, and rhizoremediation process, on rhizosphere bacterial diversity and community structure has been studied using the metagenomic analysis of the 16S (V3–V4) region of rRNA. 37 bacterial phyla constituted the core microbiome, which was dominated by Proteobacteria followed by Actinobacteria, Actinobacteria, and Planctomycetes for all the treatments. AWD5 inoculation enhanced the relative abundance of Firmicutes and Acidobacteria as compared with other treatments. Genus Kaistobacter and Verrucomicrobia were found to be an abundant indigenous population in pyrene-spiked soils. Bacterial richness and diversity were analyzed using the Shannon–Wiener (H) index. A lower diversity index was observed in pyrene-spiked soils. Canonical correspondence analysis (CCA) showed a possible linkage with plant growth attributes and available nitrogen content that influences diversity and abundance of the bacterial community.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, India
| | | | | | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
46
|
Udemba EN. Ecological implication of offshored economic activities in Turkey: foreign direct investment perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38015-38028. [PMID: 32617824 DOI: 10.1007/s11356-020-09629-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Turkish place in industrial activities is strategic, and its involvement in oil and gas importation because of high energy utilization in manufacturing sector is susceptible to high emission. For this, it is required that the economy be researched towards its involvement in both emission inducement and abatement globally. The author adopts ecological footprint and offshored economic activities as proxies to both environment and foreign direct investment (FDI) in ascertainment of Turkish involvement in global emission and decarbonization. Structural break analysis, autoregressive distributed lag-bound testing, and Granger causality were utilized for the effective analysis of the offshore implication of environmental performance in Turkey. The author's findings are as follows: a positive relationship between economic performance (GDP per capita) and ecological footprint, hence giving credence to growth-induced pollution. Also, a positive relationship is established among foreign offshored economic activities (FDI), energy use, and ecological footprint which shows that both energy use and foreign offshored economic activities are positively related to the ecology which established unfavorable impact on the environment. This supports the pollution haven hypothesis (PHH) which is among the theoretical backgrounds of this study. Among the findings established in this study is from Granger causality method which supports the pollution haven hypothesis. They are as follows: a feedback causal transmission between FDI and the ecological footprint, and a one-way causal relationship passing from energy use to ecological footprint. With these findings, it can be said that the environmental implication of foreign offshored economic activities in Turkey is unfavorable. Policy implication of Turkey should be towards moderation of economic growth and the activities of foreign investors for sustainable energy, environment, and growth. Graphical abstract A display of the author's findings which are as follows: a positive relationship between economic performance (GDP per capita) and ecological footprint. Also, a positive relationship is established among foreign offshored economic activities (FDI), energy use, and ecological footprint which shows that both energy use and foreign offshored economic activities are positively related to the ecology (this relationship is shown on the graph with red colored arrows moving from independent variables to the dependent variable). From Granger causality method, the author found a feedback causal transmission between FDI and the ecological footprint, and a one-way causal relationship passing from energy use to ecological footprint (this relationship is shown with blue arrows showing either two-way transmission for the case of FDI and ecology or one-way transmission for the case of energy use to ecology).
Collapse
Affiliation(s)
- Edmund Ntom Udemba
- Faculty of Economics Administrative and Social Sciences, Istanbul Gelisim University, Istanbul, Turkey.
| |
Collapse
|
47
|
Natarajan V, Karunanidhi M, Raja B. A critical review on radioactive waste management through biological techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29812-29823. [PMID: 32232758 DOI: 10.1007/s11356-020-08404-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 03/12/2020] [Indexed: 05/26/2023]
Abstract
Our world is subject to various kinds of pollution and contamination due to rapid growth and development of industrialization. Though, industries are helping to improve the human life style in many ways in day to day life such as power generation to treatment of diseases. At the same time, industries emit the waste which causes major environmental pollution and leads to harmful for all living organism. As the renewable energy sources are depleting, energy/power generation become a major research around the world. Nuclear energy is one of the promising energy to sort out the energy demand, but the problem associated with the nuclear energy is the management and treatment of radioactive waste/emission/effluent since which is more dangerous to all living organism. There is a large scale contamination of radioactive waste associated for the past 60 years of global nuclear activity. It is necessary to pay special attention to the management of radioactive wastes in order to approach pollution-free environment and avoid diseases to living organism through various clean-up strategies. In this review, we discussed the wide ranges of strategies available for radioactive waste management such as physical, chemical, and biological methods. Bioremediation may be the powerful tool for treatment of radioactive wastes. Additionally, discussed on recent advancement have been made in treatment of radioactive waste through microbial transformation as well as phytoremediation which play a major role in disposal of radioactive waste.
Collapse
Affiliation(s)
| | - Mahalakshmi Karunanidhi
- Department of Biotechnology, Sree Sastha Institute of Engineering & Technology, Chembarambakkam, Chennai, 600 123, India
| | - Balamanikandan Raja
- Department of Biotechnology, Sree Sastha Institute of Engineering & Technology, Chembarambakkam, Chennai, 600 123, India
| |
Collapse
|
48
|
Xian L, Zhang Y, Cao Y, Wan T, Gong Y, Dai C, Ochieng WA, Nasimiyu AT, Li W, Liu F. Glutamate dehydrogenase plays an important role in ammonium detoxification by submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137859. [PMID: 32182513 DOI: 10.1016/j.scitotenv.2020.137859] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Ammonium is a paradoxical chemical because it is a nutrient but also damages ecosystems at high concentration. As the most eco-friendly method of water restoration, phytoremediation technology still faces great challenges. To provide more theoretical support, we exploited six common submerged macrophytes and selected the most ammonium-tolerant and -sensitive species; then further explored and compared the mechanisms underlying ammonium detoxification. Our results showed the activity of glutamate dehydrogenase (GDH) in the ammonium-tolerant species Myriophyllum spicatum leaves performed a dose-response curve (increased 169% for NADH-dependent GDH and 103% for NADPH-dependent GDH) with the [NH4+-N] increasing from 0 to 100 mg/L while glutamine synthetase (GS) activity slightly changed. But for the ammonium-sensitive species, Potamogeton lucens, the activity of GDH recorded no major changes, while the GS increased slightly (17%). Based on this, we conclude that the alternative pathway of GDH is more important than the pathway catalyzed by GS in determining the tolerance of submerged macrophytes to high ammonium concentration (up to 100 mg N/L). Our present study identifies submerged macrophytes that are tolerant of high concentrations of ammonium and provides mechanistic support for practical water restoration by aquatic plants.
Collapse
Affiliation(s)
- Ling Xian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, PR China
| | - Yizhi Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, PR China.
| | - Yu Cao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China
| | - Tao Wan
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, PR China
| | - Yanbing Gong
- State Key Laboratory of Hybrid Rice, Department of Ecology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Wyckliffe Ayoma Ochieng
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, PR China
| | - Annah Timinah Nasimiyu
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, PR China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China
| | - Fan Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, PR China.
| |
Collapse
|
49
|
Yin X, Zhang L, Harigai M, Wang X, Ning S, Nakase M, Koma Y, Inaba Y, Takeshita K. Hydrothermal-treatment desorption of cesium from clay minerals: The roles of organic acids and implications for soil decontamination. WATER RESEARCH 2020; 177:115804. [PMID: 32302807 DOI: 10.1016/j.watres.2020.115804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The adsorption and desorption of cesium (Cs) on clays of contaminated soil in a rhizosphere zone can be greatly affected by various biogeochemical processes, the timespans of which are usually months to years. Herein, we present several representative scenarios of the binding of Cs on diverse sites of vermiculitized biotite by controlled Cs adsorption to particles of different sizes. We investigated whether and how the fixed Cs in the different scenarios is desorbed by ambient and hydrothermal treatments with several low-molecular-weight organic acids (LMWOAs). The results showed that the sorbed Cs was discriminatively retained in the un-collapsed, partially collapsed, and thoroughly collapsed structures of vermiculites. The desorption of the sorbed Cs by hydrothermal LMWOAs extractions was easily realized in the un-collapsed structure, but was limited or minimal in the partially collapsed and thoroughly collapsed structures. The Cs desorption varied in accord with the LMWOA species applied and increased with the acid concentration, temperature, and number of treating cycles. The analysis of Cs-desorbed specimens confirmed their partial destruction and interlayer expansion, suggesting that the underlying mechanism of Cs removal by LMWOAs involves not only acid dissolution and complexation but also the accelerated weathering of clays within a short time under hydrothermal conditions. Our findings contribute novel insights into the mobility, bioavailability, and fate of Cs in contaminated soils and its removal from these soils for environmental restorations.
Collapse
Affiliation(s)
- Xiangbiao Yin
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan; Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, 790-1 Otsuka, Motooka, Tomioka, Fukushima, 979-1195, Japan.
| | - Lijuan Zhang
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Miki Harigai
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Xinpeng Wang
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning, 530004, PR China
| | - Shunyan Ning
- School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning, 530004, PR China
| | - Masahiko Nakase
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshikazu Koma
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, 790-1 Otsuka, Motooka, Tomioka, Fukushima, 979-1195, Japan
| | - Yusuke Inaba
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenji Takeshita
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
50
|
Kaur J, Anand V, Srivastava S, Bist V, Tripathi P, Naseem M, Nand S, Khare P, Srivastava PK, Bisht S, Srivastava S. Yeast strain Debaryomyces hansenii for amelioration of arsenic stress in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110480. [PMID: 32203774 DOI: 10.1016/j.ecoenv.2020.110480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a serious threat for environment and human health. Rice, the main staple crop is more prone to As uptake. Bioremediation strategies with heavy metal tolerant rhizobacteria are well known. The main objective of the study was to characterize arsenic-resistant yeast strains, capable of mitigating arsenic stress in rice. Three yeast strains identified as Debaryomyces hansenii (NBRI-Sh2.11), Candida tropicalis (NBRI-B3.4) and Candida dubliniensis (NBRI-3.5) were found to have As reductase activity. D. hansenii with higher As tolerance has As expulsion ability as compared to other two strains. Inoculation of D. hansenii showed improved detoxification through scavenging of reactive oxygen species (ROS) by the modulation of SOD and APX activity under As stress condition in rice. Modulation of defense responsive gene (NADPH, GST, GR) along with arsR and metal cation transporter are the probable mechanism of As detoxification as evident with improved membrane (electrolyte leakage) stability. Reduced grain As (~40% reduction) due to interaction with D. hansenii (NBRI-Sh2.11) further validated it's As mitigation property in rice. To the best of our knowledge D. hansenii has been reported for the first time for arsenic stress mitigation in rice with improved growth and nutrient status of the plant.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vandana Anand
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | | | - Mariya Naseem
- Environmental Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Sampurna Nand
- Environmental Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Puja Khare
- Chemistry Division, CSIR-CIMAP, Lucknow, India
| | | | - Saraswati Bisht
- Department of Botany, Kumaun University, Nainital, 263002, India
| | - Suchi Srivastava
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
| |
Collapse
|