1
|
Vilotić A, Kostić S, Pirković A, Bojić-Trbojević Ž, Dekanski D, Vrzić-Petronijević S, Jovanović Krivokuća M. Caffeic acid stimulates migration and invasion of human trophoblast HTR-8/SVneo cells. Food Funct 2025; 16:1603-1614. [PMID: 39918297 DOI: 10.1039/d4fo03699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The placenta is a transient organ essential for development of the fetus. Adequate invasion of trophoblast cells, specialized cells of the placenta, is of utmost importance for the establishment and maintenance of healthy pregnancy. Caffeic acid (CA), one of the most abundantly present hydroxycynamic acids in everyday human diet, exhibits various physiological effects such as antioxidant, anti-inflammatory and anticancer activities including an inhibitory effect on migration and invasion of different cancer cell types. There are not many studies on CA safety in human pregnancy. Therefore, the aim of this research was to investigate the potential of CA to affect trophoblast cell function. We evaluated adhesion, migration and invasion of human trophoblast HTR-8/SVneo cells following CA treatment by functional assays. Furthermore, expression of molecular mediators of these processes such as integrin α1, α5 and β1 subunits and matrix metalloproteinase (MMP)-2 and MMP-9 was evaluated at the mRNA level by qPCR and the protein level by cell-based ELISA assay or zymography. Our results showed that 24 h treatment with 10 μM CA stimulated migration and invasion of HTR-8/SVneo cells as well as expression of the integrin α1 subunit. Furthermore, treatment with 100 μM CA stimulated expression of MMP2 and MMP9 mRNA in the treated HTR-8/SVneo cells as well as secretion of MMP-9. According to obtained results, we can conclude that CA could have the potential to affect processes important for placentation. However, further research is needed to elucidate all aspects of potential CA effects on placental function and pregnancy as a whole.
Collapse
Affiliation(s)
- Aleksandra Vilotić
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Sanja Kostić
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Andrea Pirković
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Žanka Bojić-Trbojević
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Dragana Dekanski
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | - Svetlana Vrzić-Petronijević
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| |
Collapse
|
2
|
Yu H, Chen R, Zhou Z, Liu R, Wen J. Efficacy and safety of caffeic acid tablets in the treatment of thrombocytopenia: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35353. [PMID: 37800784 PMCID: PMC10553084 DOI: 10.1097/md.0000000000035353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Caffeic acid tablets (CFA) are a proprietary Chinese medicine in treating thrombocytopenia. The efficacy and safety of CFA compared with other platelet-raising drugs for the treatment of thrombocytopenia have been widely reported in the literature, but there is no systematic evaluation. Therefore, we designed this meta-analysis to further establish the efficacy and safety of CFA in treating thrombocytopenia. METHODS A computerized search was conducted in the Chinese biomedical database (CBM), Chinese National Knowledge Infrastructure (CNKI), Wanfang database, Chinese Scientific Journal Database (VIP), PubMed, and Web of Science databases using the keywords "caffeic acid tablets" and "thrombocytopenia." All randomized controlled trials were selected for the timeframe of build to 02/2023 and then screened and analyzed using RevMan 5.4 and stata17.0 software. RESULTS A total of 35 publications with an overall 2533 patients were included in the study. The results of the meta-analysis showed that CFA were effective in the treatment of thrombocytopenia with a statistically significant difference [relative risk ratio (RR) = 1.24, 95% CI (1.17, 1.31), P < .00001] and in increasing platelet counts [standardized mean difference (SMD) = 1.50, 95% CI (1.09, 1.91), P < .00001], white blood cell count [SMD = 1.08, 95% CI (0.77, 1.39), P < .00001], and neutrophil count [SMD = 0.73, 95% CI (0.19, 1.28), P = .009], and CFA reduced myelosuppression [RR = 0.19, 95% CI (0.1, 0.37), P < .00001] and adverse effects [RR = 0.75, 95% CI (0.58, 0.96), P = .02]. CONCLUSION CFA can effectively improve the clinical outcome of patients with thrombocytopenia with a good safety profile and are worth promoting. However, due to the low quality and small sample size of the included literature, a larger sample size and more standardized, high-quality studies are needed to validate these results.
Collapse
Affiliation(s)
- Hongxiu Yu
- School of Pharmacy, Dali University, Dali, Yunnan, China
- Department of Pharmacy, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ruixiang Chen
- Department of Pharmacy, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhengwen Zhou
- School of Pharmacy, Dali University, Dali, Yunnan, China
- Department of Pharmacy, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rongchun Liu
- Department of Pharmacy, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jin Wen
- Department of Pharmacy, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li Y, Han T, Wang Y, Gao J, Zhang J, Wu Y, Luo J. Association of Calpain10 polymorphisms with polycystic ovarian syndrome susceptibility: a systematic review and meta-analysis with trial sequential analysis. Front Genet 2023; 14:1153960. [PMID: 37727373 PMCID: PMC10505618 DOI: 10.3389/fgene.2023.1153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Insulin resistance plays an important role in the pathogenesis of polycystic ovarian syndrome (PCOS). Calpain10 (CAPN10) gene was the first identified susceptibility gene for type 2 diabetes mellitus and closely related to insulin sensitivity. A lot of research attention has been attracted on the relationship between CAPN10 polymorphisms and PCOS risk, but they didn't reach a consistent conclusion. We therefore performed this systematic review and meta-analysis to assess the association of CAPN10 common variants with PCOS susceptibility. A total of 21 studies were eligible for inclusion. Meta-analyses were done for 5 variants that had at least two data sources: UCSNP-19, -43, -44, -56 and -63. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated under five genetic models. Subgroup analyses by ethnicity, PCOS diagnostic criteria, and source of controls were conducted. Moreover, false-positive report probability (FPRP) test and trial sequential analysis (TSA) were performed to assess the significant associations. The results showed a possible negative association between UCSNP-19 and PCOS risk (ins/ins vs. del/del + del/ins: OR = 0.84, 95% CI: 0.72-0.98). In subgroup analyses, FPRP test indicated that noteworthy associations were observed in mixed ethnicities for UCSNP-43 (A vs. G: OR = 1.81, 95% CI: 1.17-2.79; AA + AG vs. GG: OR = 2.14, 95% CI: 1.20-3.80) and in Asians for UCSNP-44 (CC vs. TT: OR = 2.07, 95% CI: 1.21-3.51; CC vs. CT + TT: OR = 2.19, 95% CI: 1.31-3.69), but TSA plots showed that the accumulated sample sizes of these associations were insufficient to draw firm conclusions. In summary, our study suggested that UCSNP-19, UCSNP-43, and UCSNP-44 in CAPN10 gene may be involved in PCOS susceptibility. These findings warrant further studies.
Collapse
Affiliation(s)
- Yamei Li
- NHC Key Laboratory for Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of Women Health Care, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| | - Ting Han
- Department of Women Health Care, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| | - Yingxia Wang
- Department of Women Health Care, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| | - Jie Gao
- Department of Women Health Care, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| | - Jianglin Zhang
- Department of Women Health Care, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| | - Yinglan Wu
- Department of Women Health Care, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
| | - Jiayou Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Jawhari FZ, Imtara H, Radouane N, El Moussaoui A, Es-safi I, Amaghnouje A, N. AlZain M, Noman O, Parvez MK, Bousta D, Bari A. Phytochemical, Morphological and Genetic Characterisation of Anacyclus pyrethrum var. depressus (Ball.) Maire and Anacyclus pyrethrum var. pyrethrum (L.) Link. Molecules 2023; 28:5378. [PMID: 37513251 PMCID: PMC10385216 DOI: 10.3390/molecules28145378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present study is based on a multidisciplinary approach carried out for the first time on Anacyclus pyrethrum var. pyrethrum and Anacyclus pyrethrum var. depressus, two varieties from the endemic and endangered medicinal species listed in the IUCN red list, Anacyclus pyrethrum (L.) Link. Therefore, morphological, phytochemical, and genetic characterisations were carried out in the present work. Morphological characterisation was established based on 23 qualitative and quantitative characters describing the vegetative and floral parts. The phytochemical compounds were determined by UHPLC. Genetic characterisation of extracted DNA was subjected to PCR using two sets of universal primers, rbcL a-f/rbcL a-R and rpocL1-2/rpocL1-4, followed by sequencing analysis using the Sanger method. The results revealed a significant difference between the two varieties studied. Furthermore, phytochemical analysis of the studied extracts revealed a quantitative and qualitative variation in the chemical profile, as well as the presence of interesting compounds, including new compounds that have never been reported in A. pyrethrum. The phylogenetic analysis of the DNA sequences indicated a similarity percentage of 91%. Based on the morphological characterisation and congruence with the phytochemical characterisation and molecular data, we can confirm that A. pyrethrum var. pyrethrum and A. pyrethrum var. depressus represent two different taxa.
Collapse
Affiliation(s)
- Fatima Zahra Jawhari
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah (USMBA) University, P.O. Box 2202, Fez 30000, Morocco; (A.E.M.); (I.E.-s.); (A.A.); (D.B.); (A.B.)
| | - Hamada Imtara
- Faculty of Sciences, Arab American University Palestine, Jenin P.O. Box 240, Palestine
| | - Nabil Radouane
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco;
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah (USMBA) University, P.O. Box 2202, Fez 30000, Morocco; (A.E.M.); (I.E.-s.); (A.A.); (D.B.); (A.B.)
| | - Imane Es-safi
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah (USMBA) University, P.O. Box 2202, Fez 30000, Morocco; (A.E.M.); (I.E.-s.); (A.A.); (D.B.); (A.B.)
| | - Amal Amaghnouje
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah (USMBA) University, P.O. Box 2202, Fez 30000, Morocco; (A.E.M.); (I.E.-s.); (A.A.); (D.B.); (A.B.)
| | - Mashail N. AlZain
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11761, Saudi Arabia;
| | - Omer Noman
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany;
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah (USMBA) University, P.O. Box 2202, Fez 30000, Morocco; (A.E.M.); (I.E.-s.); (A.A.); (D.B.); (A.B.)
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah (USMBA) University, P.O. Box 2202, Fez 30000, Morocco; (A.E.M.); (I.E.-s.); (A.A.); (D.B.); (A.B.)
| |
Collapse
|
5
|
Development of Semisynthetic Apoptosis-Inducing Agents Based on Natural Phenolic Acids Scaffold: Design, Synthesis and In-Vitro Biological Evaluation. Molecules 2022; 27:molecules27196724. [PMID: 36235260 PMCID: PMC9571594 DOI: 10.3390/molecules27196724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
A crucial target in drug research is magnifying efficacy and decreasing toxicity. Therefore, using natural active constituents as precursors will enhance both safety and biological activities. Despite having many pharmacological activities, caffeic and ferulic acids showed limited clinical usage due to their poor bioavailability and fast elimination. Therefore, semisynthetic compounds from these two acids were prepared and screened as anticancer agents. In this study, CA and FA showed very potent anticancer activity against Caco-2 cells. Consequently, eighteen derivatives were tested against the same cell line. Four potent candidates were selected for determination of the selectivity index, where compound 10 revealed a high safety margin. Compound 10 represented a new scaffold and showed significant cytotoxic activity against Caco-2. Cell-cycle analysis and evaluation of apoptosis showed that derivatives 10, 7, 11, 15 and 14 showed the highest proportion of cells in a late apoptotic stage.
Collapse
|
6
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
7
|
Alleviation of liver cirrhosis and associated portal-hypertension by Astragalus species in relation to their UPLC-MS/MS metabolic profiles: a mechanistic study. Sci Rep 2022; 12:11884. [PMID: 35831335 PMCID: PMC9279505 DOI: 10.1038/s41598-022-15958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Liver cirrhosis is a late-stage liver disease characterized by excessive fibrous deposition triggering portal-hypertension (PH); the prime restrainer for cirrhosis-related complications. Remedies that can dually oppose hepatic fibrosis and lower PH, may prevent progression into decompensated-cirrhosis. Different Astragalus-species members have shown antifibrotic and diuretic actions with possible subsequent PH reduction. However, A.spinosus and A.trigonus were poorly tested for eliciting these actions. Herein, A.spinosus and A.trigonus roots and aerial parts extracts were subjected to comprehensive metabolic-fingerprinting using UHPLC-MS/MS resulting in 56 identified phytoconstituents, followed by chemometric untargeted analysis that revealed variable metabolic profiles exemplified by different species and organ types. Consequently, tested extracts were in-vivo evaluated for potential antifibrotic/anticirrhotic activity by assessing specific markers. The mechanistic prospective to induce diuresis was investigated by analyzing plasma aldosterone and renal-transporters gene-expression. Serum apelin and dimethylarginine-dimethylaminohydrolase-1 were measured to indicate the overall effect on PH. All extracts amended cirrhosis and PH to varying extents and induced diuresis via different mechanisms. Further, An OPLS model was built to generate a comprehensive metabolic-profiling of A.spinosus and A.trigonus secondary-metabolites providing a chemical-based evidence for their efficacious consistency. In conclusion, A.spinosus and A.trigonus organs comprised myriad pharmacologically-active constituents that act synergistically to ameliorate cirrhosis and associated PH.
Collapse
|
8
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
10
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
11
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
12
|
Antifibrotic effect of curcumin, N-acetyl cysteine and propolis extract against bisphenol A-induced hepatotoxicity in rats: Prophylaxis versus co-treatment. Life Sci 2020; 260:118245. [PMID: 32791144 DOI: 10.1016/j.lfs.2020.118245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
AIMS Bisphenol A (BPA) has been shown to induce liver fibrosis in rodents. Therefore, this study examined the protective effect of a triple combination of curcumin (Cur), N-acetyl cysteine (NAC) and propolis (Prp) extract against BPA-induced hepatic fibrosis. METHODS 100 Wistar male rats were equally assigned into 10 groups; one group was designated as control. 10 rats were gavaged with BPA (50 mg/kg/day) for 8 wk and left un-treated (BPA group). The remaining 80 rats were divided into 8 groups, distributed in 2 models. Protective model: rats were daily co-treated with BPA and Cur (100 mg/kg, p.o) or NAC (150 mg/kg, p.o) or Prp (200 mg/kg, p.o) or their combination for 8 wk. Preventive model: rats were daily treated with Cur or NAC or Prp or their combination for 4 wk before BPA administration and then in the same manner as protective model. KEY FINDINGS Current treatment interventions significantly alleviated BPA-induced hepatic damage and fibrosis. They also restored pro-oxidant/antioxidant balance, shifted cytokine balance towards the anti-inflammatory side, decreasing interleukin-1β/interleukin-10 ratio. Moreover, these compounds seem to exert anti-apoptotic effects by increasing the immunoexpression of B-cell lymphoma 2 in hepatocytes and decreasing hepatic caspase-3 content. Finally, they ameliorated extracellular matrix turn over through down-regulation of matrix metalloproteinase-9 and up-regulation of tissue inhibitor of matrix metalloproteinase-2 genetic expression. SIGNIFICANCE Current treatments guarded against BPA-induced hepatic fibrosis due to their antioxidant, anti-inflammatory and anti-apoptotic properties, decreasing extracellular matrix turnover. Interestingly, the triple therapy provided hepatoprotection superior to monotherapy. Besides, prophylactic and concurrent treatments seem to be more effective than concurrent treatments.
Collapse
|
13
|
Sari AN, Bhargava P, Dhanjal JK, Putri JF, Radhakrishnan N, Shefrin S, Ishida Y, Terao K, Sundar D, Kaul SC, Wadhwa R. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers (Basel) 2020; 12:E1160. [PMID: 32380701 PMCID: PMC7281427 DOI: 10.3390/cancers12051160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
We have earlier reported anticancer activity in Withaferin A (Wi-A), a withanolide derived from Ashwagandha (Withania somnifera) and caffeic acid phenethyl ester (CAPE), an active compound from New Zealand honeybee propolis. Whereas Wi-A was cytotoxic to both cancer and normal cells, CAPE has been shown to cause selective death of cancer cells. In the present study, we investigated the efficacy of Wi-A, CAPE, and their combination to ovarian and cervical cancer cells. Both Wi-A and CAPE were seen to activate tumor suppressor protein p53 by downregulation of mortalin and abrogation of its interactions with p53. Downregulation of mortalin translated to compromised mitochondria integrity and function that affected poly ADP-ribose polymerase1 (PARP1); a key regulator of DNA repair and protein-target for Olaparib, drugs clinically used for treatment of breast, ovarian and cervical cancers)-mediated DNA repair yielding growth arrest or apoptosis. Furthermore, we also compared the docking capability of Wi-A and CAPE to PARP1 and found that both of these could bind to the catalytic domain of PARP1, similar to Olaparib. We provide experimental evidences that (i) Wi-A and CAPE cause inactivation of PARP1-mediated DNA repair leading to accumulation of DNA damage and activation of apoptosis signaling by multiple ways, and (ii) a combination of Wi-A and CAPE offers selective toxicity and better potency to cancer cells.
Collapse
Affiliation(s)
- Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
| | - Jaspreet Kaur Dhanjal
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Jayarani F. Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
| | - Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Seyad Shefrin
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Yoshiyuki Ishida
- CycloChem Co. Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co. Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Sunil C. Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
14
|
Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front Oncol 2019; 9:541. [PMID: 31293975 PMCID: PMC6598430 DOI: 10.3389/fonc.2019.00541] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Caffeic acid (CA) is a phenolic compound synthesized by all plant species and is present in foods such as coffee, wine, tea, and popular medicines such as propolis. This phenolic acid and its derivatives have antioxidant, anti-inflammatory and anticarcinogenic activity. In vitro and in vivo studies have demonstrated the anticarcinogenic activity of this compound against an important type of cancer, hepatocarcinoma (HCC), considered to be of high incidence, highly aggressive and causing considerable mortality across the world. The anticancer properties of CA are associated with its antioxidant and pro-oxidant capacity, attributed to its chemical structure that has free phenolic hydroxyls, the number and position of OH in the catechol group and the double bond in the carbonic chain. Pharmacokinetic studies indicate that this compound is hydrolyzed by the microflora of colonies and metabolized mainly in the intestinal mucosa through phase II enzymes, submitted to conjugation and methylation processes, forming sulphated, glucuronic and/or methylated conjugates by the action of sulfotransferases, UDP-glucotransferases, and o-methyltransferases, respectively. The transmembrane flux of CA in intestinal cells occurs through active transport mediated by monocarboxylic acid carriers. CA can act by preventing the production of ROS (reactive oxygen species), inducing DNA oxidation of cancer cells, as well as reducing tumor cell angiogenesis, blocking STATS (transcription factor and signal translation 3) and suppression of MMP2 and MMP-9 (collagen IV metalloproteases). Thus, this review provides an overview of the chemical and pharmacological parameters of CA and its derivatives, demonstrating its mechanism of action and pharmacokinetic aspects, as well as a critical analysis of its action in the fight against hepatocarcinoma.
Collapse
Affiliation(s)
- Kaio Murilo Monteiro Espíndola
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Exact and Natural Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Roseane Guimarães Ferreira
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Luis Eduardo Mosquera Narvaez
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | | | - Agnes Hanna Machado da Silva
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Ana Gabrielle Bispo Silva
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Ana Paula Oliveira Vieira
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Marta Chagas Monteiro
- Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| |
Collapse
|
15
|
Rathee D, Lather V, Grewal AS, Dureja H. Enzymatic inhibitory activity of iridoid glycosides from Picrorrhiza kurroa against matrix metalloproteinases: Correlating in vitro targeted screening and docking. Comput Biol Chem 2018; 78:28-36. [PMID: 30497018 DOI: 10.1016/j.compbiolchem.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022]
Abstract
One specific group of MMPs; gelatinases A (MMP-2) and B (MMP-9) are of precise interest in view of the development and progression of cancer. In the current work, an attempt was made to investigate the enzymatic inhibitory activity of Kutkin (KT), Kutkoside (KS), and Picroside I (PS) by inhibition assay and to further check the downregulation of the expression of mRNA levels of MMP-2 and -9. Further in silico docking studies were performed to investigate the interaction of KT, KS and PS with MMP-2 and MMP-9. The results revealed a dose dependent cytotoxic activity of the compounds under investigation and showed a significant inhibition of MMP-9 in comparison to the activity against MMP-2. In addition, a considerable decrease in expression of mRNA levels (MMP-9) was observed in KT, KS, and PS-treated MDA-MB-231 and MDA-MB-435 cancer cells as was detected by reverse transcriptase polymerase chain reaction (semi-quantitative RT-PCR). The molecular docking studies between KT, KS, PS with MMPs revealed that KT, KS, PS occupied the active site of MMP-9 and showed better binding interactions in comparison to MMP-2. The binding energies of the complexes were -7.4, -7.1 and -7.2 kJ/mol for KT, KS and PS with MMP-9, respectively and -8.9, -8.0 and -8.0 kJ/mol for KT, KS and PS with MMP-2, respectively. The findings from the in vitro studies revealed that KT, KS and PS exhibited significant anti-proliferative effects on both MDA-MB-231 and MDA-MB-435 breast cancer cells. In addition, the results of inhibition assay showed that MMP-9 activity was significantly inhibited by KT, KS and PS and the results were consistent with in silico assay.
Collapse
Affiliation(s)
- Dharmender Rathee
- Department of Pharmaceutical Sciences, MaharshiDayanand University, Rohtak, Haryana, 124001, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida, 201313, U.P., India
| | - Ajmer Singh Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, 140401, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
16
|
Pedrosa VO, França FMG, Turssi CP, Amaral FLBD, Teixeira LN, Martinez EF, Basting RT. Effects of caffeic acid phenethyl ester application on dentin MMP-2, stability of bond strength and failure mode of total-etch and self-etch adhesive systems. Arch Oral Biol 2018; 94:16-26. [PMID: 29929070 DOI: 10.1016/j.archoralbio.2018.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Investigate the long-term effect of dentin pretreatment with 0.05 or 0.1% caffeic acid phenethyl ester (CAPE) on (1) bond strength of resin composite to dentin by a three-step etch-and-rinse (Adper Scotchbond Multipurpose/ ASB) or a two-step self-etch adhesive system (Clearfil SE Bond/ CSE), (2) their fracture mode, (3) the micromorphological features of the hybrid layer formed; and (4) the level of MMP-2 in dentin (after application, using a correlative immunoexpression/quantification approach). DESIGN Composite resin blocks were fabricated on 48 third molars (n = 6), according to the type of adhesive and treatment (control, CAPE 0.05% and CAPE 0.1%). Slices were obtained for scanning electron microscopy (SEM) evaluation, and sticks were fabricated for microtensile tests (24 h and 1 year). Aliquots of dentin powder were distributed (n = 12) according to the treatment and the MMP-2 concentration was determined by ELISA. RESULTS Tukey test showed that ASB groups presented higher BS in 24 h than CSE groups. ASB presented a reduction in BS values after 1-year. ASB and CSE presented no significant differences in BS after 1-year. CAPE had no effect on BS for both adhesive systems. The predominant failure mode for the ASB groups were adhesive; when 0.1% CAPE was applied there was a predominance of mixed fractures. Regarding the CSE group, 0.05% CAPE led to more adhesive failures, and the 0.1% concentration resulted in a higher number of cohesive failures in dentin. Higher MMP-2 concentrations were detected for the groups that did not undergo demineralization treatment, and the lowest values for the ASB groups treated with CAPE. SEM analysis showed no influence of pretreatment with CAPE. CONCLUSIONS CAPE did not influence the BS of the adhesives tested, or the micromorphology of the hybrid layer, irrespective of concentration or storage time. CAPE affected the fracture pattern at 24 h, depending on the concentration and the adhesive system used. Immunoassay analysis showed that CAPE 0.1% reduced the MMP-2 concentration in the ASB adhesive without affecting bond strength to dentin.
Collapse
Affiliation(s)
- Vivianne Oliveira Pedrosa
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Fabiana Mantovani Gomes França
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Cecilia Pedroso Turssi
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Flávia Lucisano Botelho do Amaral
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Lucas Novaes Teixeira
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Elizabeth Ferreira Martinez
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Roberta Tarkany Basting
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| |
Collapse
|
17
|
Shapla UM, Raihan J, Islam A, Alam F, Solayman N, Gan SH, Hossen S, Khalil I. Propolis: The future therapy against Helicobacter pylori-mediated gastrointestinal diseases. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Phytochemicals in Skin Cancer Prevention and Treatment: An Updated Review. Int J Mol Sci 2018; 19:ijms19040941. [PMID: 29565284 PMCID: PMC5979545 DOI: 10.3390/ijms19040941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/16/2023] Open
Abstract
Skin is the largest human organ, our protection against various environmental assaults and noxious agents. Accumulation of these stress events may lead to the formation of skin cancers, including both melanoma and non-melanoma skin cancers. Although modern targeted therapies have ameliorated the management of cutaneous malignancies, a safer, more affordable, and more effective strategy for chemoprevention and treatment is clearly needed for the improvement of skin cancer care. Phytochemicals are biologically active compounds derived from plants and herbal products. These agents appear to be beneficial in the battle against cancer as they exert anti-carcinogenic effects and are widely available, highly tolerated, and cost-effective. Evidence has indicated that the anti-carcinogenic properties of phytochemicals are due to their anti-oxidative, anti-inflammatory, anti-proliferative, and anti-angiogenic effects. In this review, we discuss the preventive potential, therapeutic effects, bioavailability, and structure–activity relationship of these selected phytochemicals for the management of skin cancers. The knowledge compiled here will provide clues for future investigations on novel oncostatic phytochemicals and additional anti-skin cancer mechanisms.
Collapse
|
19
|
Propolis and Its Potential to Treat Gastrointestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2035820. [PMID: 29736177 PMCID: PMC5875067 DOI: 10.1155/2018/2035820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
There are a number of disorders that affect the gastrointestinal tract. Such disorders have become a global emerging disease with a high incidence and prevalence rates worldwide. Inflammatory and ulcerative processes of the stomach or intestines, such as gastritis, ulcers, colitis, and mucositis, afflict a significant proportion of people throughout the world. The role of herbal-derived medicines has been extensively explored in order to develop new effective and safe strategies to improve the available gastrointestinal therapies that are currently used in the clinical practice. Studies on the efficacy of propolis (a unique resinous aromatic substance produced by honeybees from different types of species of plants) are promising and propolis has been effective in the treatment of several pathological conditions. This review, therefore, summarizes and critiques the contents of some relevant published scientific papers (including those related to clinical trials) in order to demonstrate the therapeutic value of propolis and its active compounds in the treatment and prevention of gastrointestinal diseases.
Collapse
|
20
|
Sonoki H, Tanimae A, Furuta T, Endo S, Matsunaga T, Ichihara K, Ikari A. Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells. J Nutr Biochem 2018; 56:205-214. [PMID: 29597147 DOI: 10.1016/j.jnutbio.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hiroyuki Sonoki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Asami Tanimae
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu 502-0071, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
21
|
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Jastrzębska-Stojko Ż, Stojko R, Wojtyczka RD, Stojko J. Migration Rate Inhibition of Breast Cancer Cells Treated by Caffeic Acid and Caffeic Acid Phenethyl Ester: An In Vitro Comparison Study. Nutrients 2017; 9:nu9101144. [PMID: 29048370 PMCID: PMC5691760 DOI: 10.3390/nu9101144] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
One of the deadliest cancers among women is a breast cancer. Research has shown that two natural substances occurring in propolis, caffeic acid (CA) and caffeic acid phenethyl ester (CAPE), have significant anticancer effects. The purpose of our in vitro study was to compare cytotoxic activity and migration rate inhibition using CA and CAPE (doses of 50 and 100 µm) against triple-negative, MDA-MB-231 breast adenocarcinoma line cells, drawn from Caucasian women. Viability was measured by XTT-NR-SRB assay (Tetrazolium hydroxide-Neutral Red-Sulforhodamine B) for 24 h and 48 h periods. Cell migration for wound healing assay was taken for 0 h, 8 h, 16 h, and 24 h periods. CAPE displayed more than two times higher cytotoxicity against MDA-MB-231 cells. IC50 values for the XTT assay were as follows: CA for 24 h and 48 h were 150.94 µM and 108.42 µM, respectively, while CAPE was 68.82 µM for 24 h and 55.79 µM for 48 h. For the NR assay: CA was 135.85 µM at 24 h and 103.23 µM at 48 h, while CAPE was 64.04 µM at 24 h and 53.25 µM at 48 h. For the SRB assay: CA at 24 h was 139.80 µM and at 48 h 103.98 µM, while CAPE was 66.86 µM at 24 h and 47.73 µM at 48 h. Both agents suspended the migration rate; however, CAPE displayed better activity. Notably, for the 100 µM CAPE dose, motility of the tested breast carcinoma cells was halted.
Collapse
Affiliation(s)
- Agata Kabała-Dzik
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Anna Rzepecka-Stojko
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Robert Kubina
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Żaneta Jastrzębska-Stojko
- Department of Anesthesiology and Intensive Care, Prof. K. Gibiński University Clinical Center, Medical University of Silesia in Katowice, Ceglana 35, 40-514 Katowice, Poland.
| | - Rafał Stojko
- Department of Women Health, School of Health Sciences, Medical University of Silesia in Katowice, Medyków 12, 40-752 Katowice, Poland.
| | - Robert Dariusz Wojtyczka
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
22
|
Wang J, Mahajani M, Jackson SL, Yang Y, Chen M, Ferreira EM, Lin Y, Yan Y. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Metab Eng 2017; 44:89-99. [PMID: 28943460 DOI: 10.1016/j.ymben.2017.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caffeic acid derived phenethyl esters or amides remain enigmatic, limiting their bio-based production. Herein, product-directed design of biosynthetic schemes allowed the development of thermodynamically favorable pathways for these compounds via acyltransferase (ATF) mediated trans-esterification. Production based screening identified a microbial O-ATF from Saccharomyces cerevisiae and a plant N-ATF from Capsicum annuum capable of forming caffeic acid derived esters and amides, respectively. Subsequent combinatorial incorporation of caffeic acid with various aromatic alcohol or amine biosynthetic pathways permitted the de novo bacterial production of a panel of caffeic acid derived phenethyl esters or amides in Escherichia coli for the first time. Particularly, host strain engineering via systematic knocking out endogenous caffeoyl-CoA degrading thioesterase and pathway optimization via titrating co-substrates enabled production enhancement of five caffeic acid derived phenethyl esters and amides, with titers ranging from 9.2 to 369.1mg/L. This platform expanded the capabilities of bacterial production of high-value natural aromatic esters and amides from renewable carbon source via tailoring non-natural biosynthetic pathways.
Collapse
Affiliation(s)
- Jian Wang
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | | | - Sheneika L Jackson
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Yaping Yang
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Mengyin Chen
- BiotecEra Inc., 220 Riverbend Rd., Athens, GA 30602, USA
| | - Eric M Ferreira
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Yuheng Lin
- BiotecEra Inc., 220 Riverbend Rd., Athens, GA 30602, USA.
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
23
|
Menezes JCJMDS, Edraki N, Kamat SP, Khoshneviszadeh M, Kayani Z, Mirzaei HH, Miri R, Erfani N, Nejati M, Cavaleiro JAS, Silva T, Saso L, Borges F, Firuzi O. Long Chain Alkyl Esters of Hydroxycinnamic Acids as Promising Anticancer Agents: Selective Induction of Apoptosis in Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7228-7239. [PMID: 28718636 DOI: 10.1021/acs.jafc.7b01388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is the major cause of morbidity and mortality worldwide. Hydroxycinnamic acids (HCAs) are naturally occurring compounds and their alkyl esters may possess enhanced biological activities. We evaluated C4, C14, C16, and C18 alkyl esters of p-coumaric, ferulic, sinapic, and caffeic acids (19 compounds) for their cytotoxic activity against four human cancer cells and also examined their effect on cell cycle alteration and apoptosis induction. The tetradecyl (1c) and hexadecyl (1d) esters of p-coumaric acid and tetradecyl ester of caffeic acid (4c), but not the parental HCAs, were selectively effective against MOLT-4 (human lymphoblastic leukemia) cells with IC50 values of 0.123 ± 0.012, 0.301 ± 0.069 and 1.0 ± 0.1 μM, respectively. Compounds 1c, 1d, and 4c significantly increased apoptotic cells in sub-G1 phase and activated the caspase-3 enzyme in MOLT-4 cells. Compound 1c was 15.4 and 23.6 times more potent than doxorubicin and cisplatin, respectively, against the drug resistant MES-SA-DX5 uterine sarcoma cells. These p-coumarate esters were several times less effective against NIH/3T3 fibroblast cells. Docking studies showed that 1c may cause cytotoxicity by interaction with carbonic anhydrase IX. In conclusion, long chain alkyl esters of p-coumaric acid are promising scaffolds for selective apoptosis induction in cancer cells.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Department of Chemistry & QOPNA, University of Aveiro , 3810-193 Aveiro, Portugal
- Department of Chemistry, Goa University , Taleigao 403 206 Goa India
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
| | | | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
| | - Zahra Kayani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
| | - Hossein Hadavand Mirzaei
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO) , Karaj, Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
| | - Nasrollah Erfani
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Maryam Nejati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
| | - José A S Cavaleiro
- Department of Chemistry & QOPNA, University of Aveiro , 3810-193 Aveiro, Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007 Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer″, Sapienza University of Rome , Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007 Porto, Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz, 71345-1149 Iran
| |
Collapse
|
24
|
Khan MN, Lane ME, McCarron PA, Tambuwala MM. Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology 2017; 26:561-569. [PMID: 28528363 PMCID: PMC5859149 DOI: 10.1007/s10787-017-0364-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022]
Abstract
Background Inhibition of the nuclear factor kappa beta (NF-κβ) pathway has been proposed as a therapeutic target due to its key role in the expression of pro-inflammatory genes, including pro-inflammatory cytokines, chemokines, and adhesion molecules. Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, and has been reported as a specific inhibitor of NF-κβ. However, the impact of CAPE on levels of myeloperoxidases (MPO) and pro-inflammatory cytokines during inflammation is not clear. The aims of this study were to investigate the protective efficacy of CAPE in the mouse model of colitis and determine its effect on MPO activity, pro-inflammatory cytokines levels, and intestinal permeability. Method Dextran sulphate sodium was administered in drinking water to induce colitis in C57/BL6 mice before treatment with intraperitoneal administration of CAPE (30 mg kg−1 day−1). Disease activity index (DAI) score, colon length and tissue histology levels of MPO, pro-inflammatory cytokines, and intestinal permeability were observed. Results CAPE-treated mice had lower DAI and tissue inflammation scores, with improved epithelial barrier protection and significant reduction in the level of MPO and pro-inflammatory cytokines. Conclusion Our results show that CAPE is effective in suppressing inflammation-triggered MPO activity and pro-inflammatory cytokines production while enhancing epithelial barrier function in experimental colitis. Thus, we conclude that CAPE could be a potential therapeutic agent for further clinical investigations for treatment of inflammatory bowel diseases in humans. Electronic supplementary material The online version of this article (doi:10.1007/s10787-017-0364-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammed N Khan
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Majella E Lane
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Paul A McCarron
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
25
|
Yuan X, Huang H, Huang Y, Wang J, Yan J, Ding L, Zhang C, Zhang L. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes. Exp Biol Med (Maywood) 2017; 242:930-938. [PMID: 28440735 DOI: 10.1177/1535370217694435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce the expression of a variety of antioxidant and detoxification genes. Recently, increasing evidence has revealed roles for Nrf2 in glucose, lipid, and energy metabolism; however, the exact functions of Nrf2 in hepatocyte biology are largely unclear. In the current study, the transient knockdown of Nrf2 via siRNA transfection enhanced the glucose uptake of fasting AML12 hepatocytes to 325.3 ± 11.1% ( P < 0.05) of that of untransfected control cells. The impacts of Nrf2 knockdown (NK) on the antioxidant system, inflammatory response, and glucose metabolism were then examined in AML12 cells under both high-glucose (33 mmol/L) and low-glucose (4.5 mmol/L) conditions. NK lowered the gene and protein expression of the anti-oxidases heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 and increased p-eukaryotic initiation factor-2αS51, p-nuclear factor-κB p65S276, and its downstream proinflammatory factors, including interleukin-1 beta, tumor necrosis factor-α, matrix metalloproteinase 2, and matrix metalloproteinase 9, at the protein level. NK also altered the protein expression of fibroblast growth factor 21, glucose transporter type 4, insulin-like growth factor 1, forkhead box protein O1, p-AKTS473, and p-GSK3α/βY279/Y216, which are involved in glucose uptake, glycogenesis, and gluconeogenesis in AML12 cells. Our results provide a comprehensive understanding of the central role of Nrf2 in the regulation of glucose metabolism in AML12 hepatocytes, in addition to its classical roles in the regulation of redox signaling, endoplasmic reticulum stress and proinflammatory responses, and support the potential of Nrf2 as a therapeutic target for the prevention and treatment of obesity and other associated metabolic syndromes. Impact statement Increasing evidence supports the complexity of Nrf2 functions beyond the antioxidant and detoxification response. Previous in vivo studies employing either Nrf2-knockout or Nrf2-activated mice have achieved a similar endpoint: protection against an obese and insulin-resistant phenotype that includes impaired lipogenesis and gluconeogenesis in the liver. These apparently paradoxical observations led us to evaluate the impact of Nrf2 in liver cells in the absence of any influence from the systemic environment, including changes in the secretion of adipokines and proinflammatory cytokines by adipose tissues. In the present study, Nrf2 knockdown was sufficient to induce fundamental changes in the glucose metabolism of AML12 hepatocytes in addition to its classical cytoprotective functions. We also discuss similarities and differences between our in vitro study and previous in vivo studies, which may be helpful to dissect and better understand in vivo data that represents the culmination of both local and systemic alterations.
Collapse
Affiliation(s)
- Xiaoyang Yuan
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huijing Huang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Huang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinli Wang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinhua Yan
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Ding
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute on Aging, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
26
|
Fraser SP, Hemsley F, Djamgoz MBA. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int J Biochem Cell Biol 2015; 71:111-118. [PMID: 26724521 DOI: 10.1016/j.biocel.2015.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Caffeic acid phenethyl ester, derived from natural propolis, has been reported to have anti-cancer properties. Voltage-gated sodium channels are upregulated in many cancers where they promote metastatic cell behaviours, including invasiveness. We found that micromolar concentrations of caffeic acid phenethyl ester blocked voltage-gated sodium channel activity in several invasive cell lines from different cancers, including breast (MDA-MB-231 and MDA-MB-468), colon (SW620) and non-small cell lung cancer (H460). In the MDA-MB-231 cell line, which was adopted as a 'model', long-term (48 h) treatment with 18 μM caffeic acid phenethyl ester reduced the peak current density by 91% and shifted steady-state inactivation to more hyperpolarized potentials and slowed recovery from inactivation. The effects of long-term treatment were also dose-dependent, 1 μM caffeic acid phenethyl ester reducing current density by only 65%. The effects of caffeic acid phenethyl ester on metastatic cell behaviours were tested on the MDA-MB-231 cell line at a working concentration (1 μM) that did not affect proliferative activity. Lateral motility and Matrigel invasion were reduced by up to 14% and 51%, respectively. Co-treatment of caffeic acid phenethyl ester with tetrodotoxin suggested that the voltage-gated sodium channel inhibition played a significant intermediary role in these effects. We conclude, first, that caffeic acid phenethyl ester does possess anti-metastatic properties. Second, the voltage-gated sodium channels, commonly expressed in strongly metastatic cancers, are a novel target for caffeic acid phenethyl ester. Third, more generally, ion channel inhibition can be a significant mode of action of nutraceutical compounds.
Collapse
Affiliation(s)
- Scott P Fraser
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK.
| | - Faye Hemsley
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre (BRC), Cyprus International University, Haspolat, Lefkosa, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
27
|
Kosova F, Kurt FO, Olmez E, Tuğlu I, Arı Z. Effects of caffeic acid phenethyl ester on matrix molecules and angiogenetic and anti-angiogenetic factors in gastric cancer cells cultured on different substrates. Biotech Histochem 2015; 91:38-47. [DOI: 10.3109/10520295.2015.1072769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Shi Y, Guo L, Shi L, Yu J, Song M, Li Y. Caffeic Acid Phenethyl Ester inhibit Hepatic Fibrosis by Nitric Oxide Synthase and Cystathionine Gamma-Lyase in Rats. Med Sci Monit 2015; 21:2774-80. [PMID: 26378818 PMCID: PMC4578650 DOI: 10.12659/msm.895272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Our aim was to study the effect of caffeic acid phenethyl ester (CAPE) on iNOS and cystathionine gamma-lyase (CSE) of hepatic fibrosis rat, and discuss the anti-hepatic fibrosis mechanism of caffeic acid phenethyl ester. Material/Methods We observed changes of NO and H2S in serum of hepatic fibrosis rats. Enzyme-linked immunosorbent assay was used to test OD value of iNOS and CSE in serum of each. The expressions of iNOS and CSE protein in the liver were also detected by immunohistochemistry. Results Compared with the model group, the expression of NO and iNOS was decreased obviously and the level of H2S and CSE was increased in the CAPE group. Conclusions CAPE has the effect of anti-hepatic fibrosis, which can be realized through adjusting the expression level of iNOS and CSE.
Collapse
Affiliation(s)
- Yan Shi
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Li Guo
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Lu Shi
- Weihai Wengdeng City Center Hospital, Weihai, Shandong, China (mainland)
| | - Jinyang Yu
- Weihai Wengdeng City Center Hospital, Weihai, Shandong, China (mainland)
| | - Min Song
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Yana Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China (mainland)
| |
Collapse
|
29
|
Saeed F, Ahmad RS, Arshad MU, Niaz B, Batool R, Naz R, Ansar Rasul Suleria H. Propolis to Curb Lifestyle Related Disorders: An Overview. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2012.745131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Vilela PDGF, de Oliveira JR, de Barros PP, Leão MVP, de Oliveira LD, Jorge AOC. In vitro effect of caffeic acid phenethyl ester on matrix metalloproteinases (MMP-1 and MMP-9) and their inhibitor (TIMP-1) in lipopolysaccharide-activated human monocytes. Arch Oral Biol 2015; 60:1196-202. [PMID: 26058005 DOI: 10.1016/j.archoralbio.2015.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 03/24/2015] [Accepted: 04/16/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The role of matrix metalloproteinases (MMPs) in tissue degradation has become evident in many diseases and great interest therefore exists in the pharmacological control of the activity of these enzymes. This study evaluated the effect of caffeic acid phenethyl ester (CAPE) on the production of MMPs and their inhibitor (TIMP) in monocytes activated by lipopolysaccharide (LPS). DESIGN The human monocytic cell line (THP-1) was treated with non-cytotoxic concentrations of CAPE (10 and 60μM) combined with 1μg/mL of LPS. The gene expression of MMP-1, MMP-9 and TIMP-1 was evaluated by quantitative real-time polymerase chain reaction. The protein secretion into the culture medium was assessed via enzyme-linked immunosorbent assay and the gelatinolytic activity of MMP-9 by zymography. RESULTS CAPE, especially at the highest concentration, down-regulated MMP-1 and MMP-9 gene expression but up-regulated the gene expression of TIMP-1. Furthermore, CAPE reduced the secreted protein level of MMP-1 and MMP-9 as well as the gelatinolytic activity of MMP-9. CONCLUSION CAPE was able to inhibit the gene expression, production and the activity of MMPs induced by LPS and also increased the gene expression of TIMP-1. The present observations suggest that CAPE exerted a positive effect on the regulatory mechanism between MMPs and TIMP, which is important for the control of different diseases.
Collapse
Affiliation(s)
- Polyana das Graças Figueiredo Vilela
- Laboratory of Microbiology and Immunology, Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ. Estadual Paulista, UNESP, São José dos Campos, SP, Brazil.
| | - Jonatas Rafael de Oliveira
- Laboratory of Microbiology and Immunology, Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ. Estadual Paulista, UNESP, São José dos Campos, SP, Brazil.
| | - Patrícia Pimentel de Barros
- Laboratory of Microbiology and Immunology, Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ. Estadual Paulista, UNESP, São José dos Campos, SP, Brazil.
| | | | - Luciane Dias de Oliveira
- Laboratory of Biochemistry and Pharmacology, Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ. Estadual Paulista, UNESP, São José dos Campos, SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- Laboratory of Microbiology and Immunology, Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ. Estadual Paulista, UNESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
31
|
Caffeic Acid phenethyl ester and ethanol extract of propolis induce the complementary cytotoxic effect on triple-negative breast cancer cell lines. Molecules 2015; 20:9242-62. [PMID: 26007182 PMCID: PMC6272161 DOI: 10.3390/molecules20059242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy of breast cancer could be improved by bioactive natural substances, which may potentially sensitize the carcinoma cells’ susceptibility to drugs. Numerous phytochemicals, including propolis, have been reported to interfere with the viability of carcinoma cells. We evaluated the in vitro cytotoxic activity of ethanol extract of propolis (EEP) and its derivative caffeic acid phenethyl ester (CAPE) towards two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T, by implementation of the MTT and lactate dehydrogenase (LDH) assays. The morphological changes of breast carcinoma cells were observed following exposure to EEP and CAPE. The IC50 of EEP was 48.35 µg∙mL−1 for MDA-MB-23 cells and 33.68 µg∙mL−1 for Hs578T cells, whereas the CAPE IC50 was 14.08 µM and 8.01 µM for the MDA-MB-231 and Hs578T cell line, respectively. Here, we report that propolis and CAPE inhibited the growth of the MDA-MB-231 and Hs578T lines in a dose-dependent and exposure time-dependent manner. EEP showed less cytotoxic activity against both types of TNBC cells. EEP and, particularly, CAPE may markedly affect the viability of breast cancer cells, suggesting the potential role of bioactive compounds in chemoprevention/chemotherapy by potentiating the action of standard anti-cancer drugs.
Collapse
|
32
|
Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:206439. [PMID: 26106433 PMCID: PMC4461776 DOI: 10.1155/2015/206439] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/13/2023]
Abstract
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Collapse
|
33
|
Chen YY, Lu HF, Hsu SC, Kuo CL, Chang SJ, Lin JJ, Wu PP, Liu JY, Lee CH, Chung JG, Chang JB. Bufalin inhibits migration and invasion in human hepatocellular carcinoma SK-Hep1 cells through the inhibitions of NF-kB and matrix metalloproteinase-2/-9-signaling pathways. ENVIRONMENTAL TOXICOLOGY 2015; 30:74-82. [PMID: 23949904 DOI: 10.1002/tox.21896] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Metastasis plays an important role in mortality of cancer patients. Migration and invasion are the major characteristics of tumor metastasis. The induction of matrix metalloproteinases (MMPs) such as MMP-2 and -9 are particularly important for the invasiveness of various cancer cells. Bufalin, a class of toxic steroids, was purified from the skin glands of Bufo gargarizans or Bufo melanostictus; it is known to inhibit proliferation of human cancer cells. In this study, we investigated the antiinvasive mechanisms of bufalin in the human hepatocellular cancer cell line SK-Hep1. Bufalin significantly reduced serum-induced cell invasion and migration. Furthermore, bufalin markedly inhibited MMP-2 and -9 activity, mRNA expression and protein levels in SK-Hep1 cells. Bufalin attenuated phosphoinisitide-3-kinase (PI3K) and phosphorylation of AKT which was associated with reduced levels of nuclear factor kappa B (NF-κB). Bufalin also suppressed protein levels of FAK and Rho A, VEGF, MEKK3, MKK7, and uPA and it diminished NF-κB translocation. Based on these observations, we propose that bufalin is acts as an antiinvasive agent by inhibiting MMP-2 and -9 and involving PI3K/AKT and NF-κB pathways. Bufalin is a potential therapeutic agent that may have efficacy in preventing the invasion and metastasis of malignant liver tumors.
Collapse
Affiliation(s)
- Ya-Yin Chen
- Department of Chinese-Western Medicine Integration, Chung Shan Medical University Hospital, Taichung, 402, Taiwan, ROC; School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Agbarya A, Ruimi N, Epelbaum R, Ben-Arye E, Mahajna J. Natural products as potential cancer therapy enhancers: A preclinical update. SAGE Open Med 2014; 2:2050312114546924. [PMID: 26770737 PMCID: PMC4607199 DOI: 10.1177/2050312114546924] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/18/2014] [Indexed: 12/23/2022] Open
Abstract
Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.
Collapse
Affiliation(s)
- Abed Agbarya
- Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Nili Ruimi
- Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Epelbaum
- Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Eran Ben-Arye
- Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Integrative Oncology Program, The Oncology Service, Lin Medical center, Clalit Health Services, Haifa and Western Galilee District, Israel
| | - Jamal Mahajna
- Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Nutritional Sciences, Tel-Hai College, Kiryat Shmona, Israel
| |
Collapse
|
35
|
Chiang HM, Chen CW, Lin TY, Kuo YH. N-Phenethyl caffeamide and photodamage: protecting skin by inhibiting type I procollagen degradation and stimulating collagen synthesis. Food Chem Toxicol 2014; 72:154-61. [PMID: 25019243 DOI: 10.1016/j.fct.2014.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/19/2014] [Accepted: 07/04/2014] [Indexed: 01/31/2023]
Abstract
Skin is mainly damaged by genetic and environmental factors such as ultraviolet (UV) light and pollutants. UV light is a well-known factor that causes various types of skin damage and premature aging. Reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases that break down type I collagen. This study investigated the antioxidant and antiphotodamage activity and mechanisms of N-phenethyl caffeamide (K36) in human skin fibroblasts. The results indicated that K36 demonstrated strong 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, which dose-dependently reduced the production of UVB-induced intracellular ROS in human dermal fibroblasts. K36 prevented UVB-irradiation-induced type I collagen degradation by inhibiting the expression of matrix metalloproteins-1, -3, and -9 and the phosphorylation of mitogen-activated protein (MAP) kinases. Furthermore, K36 elevated collagen synthesis in skin fibroblasts by inhibiting UVB-induced Smad7 overexpression. K36 downregulated the expression of the transcription factor, activator protein-1 (AP-1). Our results indicated that K36 exhibited antioxidant properties and prevented skin collagen degradation caused by UV exposure and the stimulation of collagen synthesis, which suggests the potential use of K36 in preventing photodamage.
Collapse
Affiliation(s)
- Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Chien-Wen Chen
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan
| | - Tzu-Yu Lin
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
36
|
Ho YJ, Lee AS, Chen WP, Chang WL, Tsai YK, Chiu HL, Kuo YH, Su MJ. Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2014; 13:98. [PMID: 24923878 PMCID: PMC4065079 DOI: 10.1186/1475-2840-13-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Caffeic acid phenethyl ester (CAPE) has been shown to protect the heart against ischemia/reperfusion (I/R) injury by various mechanisms including its antioxidant effect. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic acid phenethyl amide (CAPA), on I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats. METHODS Type 1 diabetes mellitus was induced in Sprague-Dawley rats by a single intravenous injection of 60 mg/kg STZ. To produce the I/R injury, the left anterior descending coronary artery was occluded for 45 minutes, followed by 2 hours of reperfusion. CAPA was pretreated intraperitoneally 30 minutes before reperfusion. An analog devoid of the antioxidant property of CAPA, dimethoxyl CAPA (dmCAPA), and a nitric oxide synthase (NOS) inhibitor (Nω-nitro-l-arginine methyl ester [l-NAME]) were used to evaluate the mechanism involved in the reduction of the infarct size following CAPA-treatment. Finally, the cardioprotective effect of chronic treatment of CAPA was analyzed in diabetic rats. RESULTS Compared to the control group, CAPA administration (3 and 15 mg/kg) significantly reduced the myocardial infarct size after I/R, while dmCAPA (15 mg/kg) had no cardioprotective effect. Interestingly, pretreatment with a NOS inhibitor, (L-NAME, 3 mg/kg) eliminated the effect of CAPA on myocardial infarction. Additionally, a 4-week CAPA treatment (1 mg/kg, orally, once daily) started 4 weeks after STZ-induction could effectively decrease the infarct size and ameliorate the cardiac dysfunction by pressure-volume loop analysis in STZ-induced diabetic animals. CONCLUSIONS CAPA, which is structurally similar to CAPE, exerts cardioprotective activity in I/R injury through its antioxidant property and by preserving nitric oxide levels. On the other hand, chronic CAPA treatment could also ameliorate cardiac dysfunction in diabetic animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ming-Jai Su
- Department of Pharmacology, College of Medicine, National Taiwan University, 11F, No, 1, Sec, 1, Jen-Ai Road, Taipei 10051, Taiwan.
| |
Collapse
|
37
|
Abstract
Propolis, a waxy substance produced by the honeybee, has been adopted as a form of folk medicine since ancient times. It has a wide spectrum of alleged applications including potential anti-infection and anticancer effects. Many of the therapeutic effects can be attributed to its immunomodulatory functions. The composition of propolis can vary according to the geographic locations from where the bees obtained the ingredients. Two main immunopotent chemicals have been identified as caffeic acid phenethyl ester (CAPE) and artepillin C. Propolis, CAPE, and artepillin C have been shown to exert summative immunosuppressive function on T lymphocyte subsets but paradoxically activate macrophage function. On the other hand, they also have potential antitumor properties by different postulated mechanisms such as suppressing cancer cells proliferation via its anti-inflammatory effects; decreasing the cancer stem cell populations; blocking specific oncogene signaling pathways; exerting antiangiogenic effects; and modulating the tumor microenvironment. The good bioavailability by the oral route and good historical safety profile makes propolis an ideal adjuvant agent for future immunomodulatory or anticancer regimens. However, standardized quality controls and good design clinical trials are essential before either propolis or its active ingredients can be adopted routinely in our future therapeutic armamentarium.
Collapse
|
38
|
Omene C, Kalac M, Wu J, Marchi E, Frenkel K, O’Connor OA. Propolis and its Active Component, Caffeic Acid Phenethyl Ester (CAPE), Modulate Breast Cancer Therapeutic Targets via an Epigenetically Mediated Mechanism of Action. JOURNAL OF CANCER SCIENCE & THERAPY 2013; 5:334-342. [PMID: 24466386 PMCID: PMC3898618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Alternative remedies for cancer treatment is a multi-billion dollar industry. In particular, breast cancer (BC) patients use alternative and natural remedies more frequently than patients with other malignancies. Propolis is an example of a honeybee-produced naturopathic formulation, contents of which differ by geographic location. It is readily available, affordable, and in use safely since ancient times globally. Caffeic acid phenethyl ester (CAPE) is a major active component in propolis and is thought to be responsible for its varied properties, including antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory and anticancer. CAPE is effective in many models of human cancer, including BC as we have previously shown. CAPE affects genes associated with tumor cell growth and survival, angiogenesis and chemoresistance. We demonstrate that these are related in part to CAPE's role as a histone deacetylase inhibitor, a class of drugs designated as epigenetic agents that modulate the activities of oncogenes and tumor suppressor genes. CAPE and propolis, cause an accumulation of acetylated histone proteins in MCF-7 (ER+) and MDA-MB-231 (ER-/PR-/Her2-) cells with associated decreases in ER and PR in MCF-7 cells, and upregulation of ER and decrease in EGFR in MDA-231 cells. In addition, these products reduced activated phosphorylated Her2 protein in SKBR3 (Her2 +) cells. Interestingly, propolis, when normalized for CAPE content, appears to be more potent than CAPE alone similarly to the greater effects of complete foods than isolated components. These data provide a potential mechanistic basis for one of the oldest naturopathic agents used in medicine and cancer treatment.
Collapse
Affiliation(s)
- Coral Omene
- Department of Medicine, NYU School of Medicine, New York, USA
- NYU Cancer Institute, NYU School of Medicine, New York, USA
| | - Matko Kalac
- Department of Medicine, NYU School of Medicine, New York, USA
- NYU Cancer Institute, NYU School of Medicine, New York, USA
| | - Jing Wu
- Department of Environmental Medicine, NYU School of Medicine, New York, USA
| | - Enrica Marchi
- Department of Medicine, NYU School of Medicine, New York, USA
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA
| | - Krystyna Frenkel
- Department of Environmental Medicine, NYU School of Medicine, New York, USA
- NYU Cancer Institute, NYU School of Medicine, New York, USA
| | - Owen A O’Connor
- Department of Medicine, NYU School of Medicine, New York, USA
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA
| |
Collapse
|
39
|
Tolba MF, Esmat A, Al-Abd AM, Azab SS, Khalifa AE, Mosli HA, Abdel-Rahman SZ, Abdel-Naim AB. Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life 2013; 65:716-29. [PMID: 23847086 DOI: 10.1002/iub.1188] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/14/2013] [Indexed: 11/09/2022]
Abstract
Evidence is growing for the beneficial role of selective estrogen receptor modulators (SERM) in prostate diseases. Caffeic acid phenethyl ester (CAPE) is a promising component of propolis that possesses SERM activity. This study aimed at investigating the modulatory impact of CAPE on docetaxel (DOC) and paclitaxel (PTX) cytotoxicity in prostate cancer cells and exploring the possible underlying mechanisms for this chemomodulation. CAPE significantly increased DOC and PTX potency in PC-3, DU-145 and LNCaP prostate cancer cells. Combination index calculations showed synergistic interaction of CAPE/DOC and CAPE/PTX cotreatments in all the tested cell lines. Subsequent mechanistic studies in PC-3 cells indicated that cyclin D1 and c-myc were significantly reduced in the combined treatment groups with concurrent increase in p27kip. DNA-ploidy analysis indicated a significant increase in the percentage of cells in pre-G1 in CAPE/DOC and CAPE/PTX cotreatments. Decreased Bcl-2/Bax ratio together with increased caspase-3 activity and protein abundance were observed in the same groups. Estrogen receptor-β (ER-β) and its downstream tumor suppressor forkhead box O1 levels were significantly elevated in CAPE and combination groups compared to DOC or PTX-alone. ER-α and insulin-like growth factor-1 receptor protein abundance were reduced in the same groups. CAPE significantly reduced AKT, ERK and ER-α (Ser-167) phosphorylation in PC-3 cells. CAPE-induced inhibition of AKT phosphorylation was more prominent (1.7-folds higher) in cells expressing ER-α such as PC-3 compared to LNCaP. In conclusion, CAPE enhances the antiproliferative and cytotoxic effects of DOC and PTX in prostate cancer cells. This can be, at least partly, attributed to CAPE augmentation of DOC and PTX proapoptotic effects in addition to CAPE-induced alterations in ER-α and ER-β abundance.
Collapse
Affiliation(s)
- Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ho YJ, Chen WP, Chi TC, Chang Chien CC, Lee AS, Chiu HL, Kuo YH, Su MJ. Caffeic acid phenethyl amide improves glucose homeostasis and attenuates the progression of vascular dysfunction in Streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2013; 12:99. [PMID: 23829275 PMCID: PMC3706244 DOI: 10.1186/1475-2840-12-99] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/30/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glucose intolerance and cardiovascular complications are major symptoms in patients with diabetes. Many therapies have proven beneficial in treating diabetes in animals by protecting the cardiovascular system and increasing glucose utilization. In this study, we evaluated the effects of caffeic acid phenethyl amide (CAPA) on glucose homeostasis and vascular function in streptozotocin (STZ)-induced type 1 diabetic rats. METHODS Diabetes (blood glucose levels > 350 mg/dL), was induced in Wistar rats by a single intravenous injection of 60 mg/kg STZ. Hypoglycemic effects were then assessed in normal and type 1 diabetic rats. In addition, coronary blood flow in Langendorff-perfused hearts was evaluated in the presence or absence of nitric oxide synthase (NOS) inhibitor. The thoracic aorta was used to measure vascular response to phenylephrine. Finally, the effect of chronic treatment of CAPA and insulin on coronary artery flow and vascular response to phenylephrine were analyzed in diabetic rats. RESULTS Oral administration of 0.1 mg/kg CAPA decreased plasma glucose in normal (32.9 ± 2.3% decrease, P < 0.05) and diabetic rats (11.8 ± 5.5% decrease, P < 0.05). In normal and diabetic rat hearts, 1-10 μM CAPA increased coronary flow rate, and this increase was abolished by 10 μM NOS inhibitor. In the thoracic aorta, the concentration/response curve of phenylephrine was right-shifted by administration of 100 μM CAPA. Coronary flow rate was reduced to 7.2 ± 0.2 mL/min at 8 weeks after STZ-induction. However, 4 weeks of treatment with CAPA (3 mg/kg, intraperitoneal, twice daily) started at 4 weeks after STZ induction increased flow rate to 11.2 ± 0.5 mL/min (P < 0.05). In addition, the contractile response induced by 1 μM phenylephrine increased from 6.8 ± 0.6 mN to 11.4 ± 0.4 mN (P < 0.05) and 14.9 ± 1.4 mN (P < 0.05) by insulin (1 IU/kg, intraperitoneal) or CAPA treatment, respectively. CONCLUSIONS CAPA induced hypoglycemic activity, increased coronary blood flow and vascular response to phenylephrine in type 1 diabetic rats. The increase in coronary blood flow may result from endothelial NOS activation. However, the detailed cellular mechanisms need to be further evaluated.
Collapse
Affiliation(s)
- Yi-Jin Ho
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee WR, Chung CL, Hsiao CJ, Chou YC, Hsueh PJ, Yang PC, Jan JS, Cheng YW, Hsiao G. Suppression of matrix metalloproteinase-9 expression by andrographolide in human monocytic THP-1 cells via inhibition of NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:270-277. [PMID: 22244537 DOI: 10.1016/j.phymed.2011.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/14/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
There is much evidence indicating that human leukemic cells and monocytes/macrophages synthesize, and secrete, several matrix metalloproteinases (MMPs), and participate in the degradation of extracellular matrix components in tissue lesions. In this study, we investigated the effects and mechanisms of andrographolide, extracted from the herb Andrographis paniculata, on human monocytic MMPs expression and activation. Andrographolide (1-50 μM) exhibited concentration-dependent inhibition of MMP-9 activation, induced by either tumor necrosis factor-α (TNF-α), or lipopolysaccharide (LPS), in THP-1cells. In addition, andrographolide did not present an inhibitory effect on MMP-9 enzymatic activity at a concentration of 50 μM. By contrast, enzyme-linked immunosorbent assay (ELISA) showed that andrographolide partially affect TIMP-1 levels. Western blot analysis showed that both TNF-α, and LPS stimulators attenuated MMP-9 protein expression in a concentration-dependent manner. Using reverse transcription polymerase chain reaction (RT-PCR), we found that andrographolide suppressed expression of MMP-9 messenger RNA. Furthermore, we also found that andrographolide could significantly inhibit the degradation of inhibitor-κB-α (IκB-α) induced by TNF-α. We used electrophoretic mobility shift assay and reporter gene detection to show that andrographolide also markedly inhibited NF-κB signaling, anti-translocation and anti-activation. In conclusion, we demonstrate that andrographolide attenuates MMP-9 expression, and its main mechanism might involve the NF-κB signal pathway. These results provide new opportunities for the development of new anti-inflammatory and leukemic therapies.
Collapse
Affiliation(s)
- Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Dermatology, Taipei Medical University Hospital and Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, Taipei 11031, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 2012; 38:76-87. [DOI: 10.1016/j.ctrv.2011.03.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 03/03/2011] [Accepted: 03/13/2011] [Indexed: 02/07/2023]
|
43
|
Santos-Cruz LF, Ávila-Acevedo JG, Ortega-Capitaine D, Ojeda-Duplancher JC, Perdigón-Moya JL, Hernández-Portilla LB, López-Dionicio H, Durán-Díaz A, Dueñas-García IE, Castañeda-Partida L, García-Bores AM, Heres-Pulido ME. Verbascoside is not genotoxic in the ST and HB crosses of the Drosophila wing spot test, and its constituent, caffeic acid, decreases the spontaneous mutation rate in the ST cross. Food Chem Toxicol 2011; 50:1082-90. [PMID: 22197714 DOI: 10.1016/j.fct.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
Abstract
Verbascoside (VB) is a phenylpropanoid isolated from Buddleja species, some of which originate in Mexico, and was first described in the sixteenth century in the codices of Mexican traditional medicine. VB is present in alcohol extracts and is widely used in the north of Mexico as a sunscreen. VB absorbs UV-A and UV-B radiation and has high antioxidant and anti-inflammatory capacities. VB and its constituent caffeic acid (CA) were screened to determine their genotoxic activity using the Drosophila wing spot test. Third instar larvae (72±4 h) of the standard (ST) and high bioactivation (HB) crosses, with regulated and high levels of cytochrome P450s (Cyp450s), respectively, were exposed to VB or CA (0, 27, 57, 81, 135, and 173 mM). VB was not genotoxic at any of the concentrations tested in both crosses. The amount of VB residue as determined by HPLC in the adult flies that were fed with VB indicated a low metabolism of this compound, which explains the absence of genotoxicity. CA decreased the spontaneous frequencies of small and total spots and showed putative toxicity in the ST cross.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Genetic Toxicology, Biology, UNAM FES Iztacala, Av. Los Barrios No. 1, Los Reyes Iztacala, CP. 54090, Tlalnepantla, Estado de México, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barlak Y, Değer O, Çolak M, Karataylı SC, Bozdayı AM, Yücesan F. Effect of Turkish propolis extracts on proteome of prostate cancer cell line. Proteome Sci 2011; 9:74. [PMID: 22152088 PMCID: PMC3286392 DOI: 10.1186/1477-5956-9-74] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 12/07/2011] [Indexed: 11/23/2022] Open
Abstract
Background Propolis is a natural, resinous hive product that has several pharmacological activities. Its composition varies depending on the vegetation, climate, season and environmental conditions of the area from where it was collected. Surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF MS) is a proteomic approach which has been used in cancer proteomics studies. Prostate cancer is one of the most commonly diagnosed cancers in men. It has shown that nutritional supplements rich in polyphenolic compounds such as propolis play a significant role in prostate cancer chemoprevention. The aim of this study is to evaluate if protein expression profile in PC-3 prostate cancer cell lines could be differentiated when incubated with dimethyl sulfoxide and water extracts of Turkish propolis. Results The antioxidant potentials of dimethyl sulfoxide and water extracts of propolis were found in correlation with the amount of total phenolic compounds of them. Dimethyl sulfoxide and water extracts of propolis of 20 μg/mL reduced the cell viability to 24.5% and 17.7%, respectively. Statistically significant discriminatory peaks between control PC-3 cells and dimethyl sulfoxide extract of propolis-treated PC-3 cells were found to be the proteomic features at m/z 5143, 8703, 12661, 20184 and 32794, detected by CM10 ProteinChip, and the peak at m/z 3772, detected by Q10 ProteinChip. Between control PC-3 cells and water extract of propolis-treated PC-3 cells, statistically significant discriminatory peaks were found to be the proteomic features at m/z 15846, 16052 and 24658, detected by CM10 ProteinChip and the peaks at m/z 10348, 10899 and 11603, detected by Q10 ProteinChip. Conclusions It was concluded that dimethyl sulfoxide and water extracts of Turkish propolis may have anti-proliferative activity through differentiating protein expression profile in PC-3 prostate cancer cell lines along with their antioxidant capacity.
Collapse
Affiliation(s)
- Yaşam Barlak
- School of Health Sciences, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Orhan Değer
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Meltem Çolak
- School of Health Sciences, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Senem Ceren Karataylı
- Institute of Hepatology, Faculty of Medicine, Ankara University, Ankara, 06100, Turkey
| | | | - Fulya Yücesan
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| |
Collapse
|
45
|
Watanabe MAE, Amarante MK, Conti BJ, Sforcin JM. Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm Pharmacol 2011; 63:1378-86. [DOI: 10.1111/j.2042-7158.2011.01331.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
Propolis is a honeybee product used extensively in traditional medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer effects. Propolis exhibits a broad spectrum of biological activities because it is a complex mixture of natural substances. In this review, the antitumour effects of propolis extracts and its constituents (e.g. flavonoids, terpenes and caffeic acid phenethyl ester) are discussed.
Key findings
The effect of propolis on experimental carcinogenesis is discussed, as well as its possible mechanisms of action against tumours, involving apoptosis, cell cycle arrest and interference on metabolic pathways. Propolis seems to be efficient against different tumour cells both in vitro and in vivo, which suggests its potential in the development of new anticancer drugs.
Summary
Propolis extracts may be important economically and would allow a relatively inexpensive cancer treatment. Preclinical investigations are needed to further elucidate the benefits of propolis and its antitumour properties.
Collapse
Affiliation(s)
| | - Marla Karine Amarante
- Department of Pathological Sciences, Biological Science Center, University of Londrina, PR, Brazil
| | - Bruno José Conti
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | - José Maurício Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
46
|
Wu J, Omene C, Karkoszka J, Bosland M, Eckard J, Klein CB, Frenkel K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 2011; 308:43-53. [PMID: 21570765 PMCID: PMC3144783 DOI: 10.1016/j.canlet.2011.04.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) patients use alternative and natural remedies more than patients with other malignancies. Specifically, 63-83% use at least one type of alternative medicine and 25-63% use herbals and vitamins. Propolis is a naturopathic honeybee product, and CAPE (caffeic acid phenethyl ester), is a major medicinal component of propolis. CAPE, in a concentration dependent fashion, inhibits MCF-7 (hormone receptor positive, HR+) and MDA-231 (a model of triple negative BC (TNBC) tumor growth, both in vitro and in vivo without much effect on normal mammary cells and strongly influences gene and protein expression. It induces cell cycle arrest, apoptosis and reduces expression of growth and transcription factors, including NF-κB. Notably, CAPE down-regulates mdr-1 gene, considered responsible for the resistance of cancer cells to chemotherapeutic agents. Further, CAPE dose-dependently suppresses VEGF formation by MDA-231 cells and formation of capillary-like tubes by endothelial cells, implicating inhibitory effects on angiogenesis. In conclusion, our results strongly suggest that CAPE inhibits MDA-231 and MCF-7 human breast cancer growth via its apoptotic effects, and modulation of NF-κB, the cell cycle, and angiogenesis.
Collapse
Affiliation(s)
- Jing Wu
- Dept. of Environmental Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Coral Omene
- Dept. of Medicine, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Jerzy Karkoszka
- Dept. of Environmental Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Maarten Bosland
- Dept. of Environmental Medicine, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Jonathan Eckard
- Dept. of Environmental Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Catherine B. Klein
- Dept. of Environmental Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Krystyna Frenkel
- Dept. of Environmental Medicine, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
47
|
Omene CO, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs 2011; 30:1279-88. [PMID: 21537887 PMCID: PMC3388256 DOI: 10.1007/s10637-011-9667-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/31/2011] [Indexed: 01/27/2023]
Abstract
Cancer stem cells (CSC) are chemoresistant and implicated in tumor recurrence, metastasis and high patient mortality; thus substances impairing CSC activity, could be invaluable as novel cancer therapeutics. We previously showed that CAPE (caffeic acid phenethyl ester), a component of propolis, a honeybee product, inhibits growth of MDA-MB-231 (MDA-231) cells, mdr gene expression, NF-κB, EGFR, and VEGF. We hypothesized that CAPE also acts by interfering with CSC-mediated effects. We isolated breast CSC (bCSC) from MDA-231 cells, a model of human triple-negative breast cancer, and mouse xenografts. bCSC grow as mammospheres (MMS) and when dissociated into single cells, form MMS again, a sign of self-renewal. bCSC exhibited the characteristic CD44+/CD24-/low phenotype and generated progenitors in the presence of serum, a CSC trait responsible for regenerating tumor mass. CAPE caused dose-dependent bCSC self-renewal inhibition and progenitor formation. Clonal growth on soft agar was inhibited dose-dependently, but apoptosis was not induced as determined by Annexin-V/PI assay. Instead, bCSC were noted to significantly progress from a quiescent cell cycle state in G0/G1 (82%), S phase (12%) to a cycling state with an increase in S phase (41%) and subsequent decrease in G0/G1 (54%). Treatment of bCSC with CAPE (4.5-days) decreased CD44 levels by 95%, while another cell population containing 10-100-fold lower CD44 content concurrently increased. Results suggest that CAPE causes pronounced changes in bCSC characteristics manifested by inhibition of self renewal, progenitor formation, clonal growth in soft agar, and concurrent significant decrease in CD44 content, all signs of decreased malignancy potential.
Collapse
Affiliation(s)
- Coral O. Omene
- Department of Medicine, NYU School of Medicine, 550 First Avenue, BCD, Rm 556, New York, NY 10016 USA
- NYU Cancer Institute, NYU School of Medicine, 550 First Avenue, PHL-802, New York, NY 10016 USA
| | - Jing Wu
- Department of Environmental Medicine, NYU School of Medicine, 550 First Avenue, PHL-802, New York, NY 10016 USA
| | - Krystyna Frenkel
- Department of Environmental Medicine, NYU School of Medicine, 550 First Avenue, PHL-802, New York, NY 10016 USA
- NYU Cancer Institute, NYU School of Medicine, 550 First Avenue, PHL-802, New York, NY 10016 USA
| |
Collapse
|
48
|
Valente MJ, Baltazar AF, Henrique R, Estevinho L, Carvalho M. Biological activities of Portuguese propolis: protection against free radical-induced erythrocyte damage and inhibition of human renal cancer cell growth in vitro. Food Chem Toxicol 2010; 49:86-92. [PMID: 20934479 DOI: 10.1016/j.fct.2010.10.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 01/02/2023]
Abstract
This study reports for the first time the biological properties of Portuguese propolis. The antioxidant potential of propolis samples from Bornes (Northeast) and Fundão (Centre) regions of Portugal was evaluated by their ability to inhibit the 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis and lipid peroxidation in human erythrocytes. Bornes and Fundão propolis strongly protected the erythrocyte membrane from hemolysis (IC(50) of 6.3±0.7 and 10.4±2.7 μg/ml, respectively), in a time- and concentration-dependent manner. This effect was found to be significantly higher than that presented by ascorbic acid (IC(50) of 31.0±5.6 μg/ml). In addition, human erythrocytes treated with propolis extracts showed concentration-dependent decrease in levels of malondialdehyde, a breakdown product of lipid peroxidation. Propolis extracts were also assayed for their anticancer properties on human renal cell carcinoma (RCC). Primary cultures of normal and cancerous renal cells derived from RCC patients, in addition to A-498 cell line, were treated with propolis extracts (0-100 μg/ml). Cytotoxic and antiproliferative effects were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Propolis extracts exhibited selective toxicity against malignant cells compared to normal cells. In vitro RCC growth was strongly inhibited by Bornes and Fundão propolis in a concentration-dependent manner. Our results indicate that Portuguese propolis constitutes an excellent source of effective natural antioxidant and chemopreventive agents.
Collapse
Affiliation(s)
- Maria J Valente
- REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
49
|
Chou YC, Sheu JR, Chung CL, Chen CY, Lin FL, Hsu MJ, Kuo YH, Hsiao G. Nuclear-targeted inhibition of NF-kappaB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. Chem Biol Interact 2010; 184:403-12. [PMID: 20093109 DOI: 10.1016/j.cbi.2010.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 11/28/2022]
Abstract
Aberrant remodeling of the extracellular matrix occurs in many pathological processes, and its breakdown is mainly accomplished by matrix metalloproteinases (MMPs), which participate in the course of inflammation and tumor invasion. Nuclear factor-kappaB (NF-kappaB), a key transcription factor for the production of MMP-9, can be activated by various proinflammatory cytokines and promotes inflammation. In the present study, we investigated the intracellular mechanism for the inhibitory effects of an analogue of N-hydroxycinnamoylphenalkylamides, N-2-(4-bromophenyl) ethyl caffeamide (EK5), on tumor necrosis factor (TNF)-alpha stimulated expression of MMP-9 in a human monocytic cell line, THP-1. Our results show that TNF-alpha-induced expression of MMP-9 at both mRNA and protein levels was completely blocked by EK5 in a concentration-dependent (1-20microM) manner. We also found that EK5 markedly suppressed NF-kappaB signaling as detected by the NF-kappaB reporter gene assay but had no effects on the degradation of IkappaBalpha or translocation of NF-kappaB. Interestingly, chromatin immunoprecipitation results revealed that the association between p65 and MMP-9 promoter gene was completely abrogated by EK5, but the p65 phosphorylation was not affected. Overall, our findings suggest that EK5 inhibits MMP-9 production through the nuclear-targeted down-regulation of NF-kappaB signaling in human monocytic cells and this may provide a novel molecular basis of EK5 activity. Further studies are needed to verify its anti-inflammatory effects.
Collapse
Affiliation(s)
- Yung-Chen Chou
- Graduate Institute of Medical Sciences and Department of Pharmacology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110-31, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|