1
|
Jin X, Meng L, Qi Z, Mi L. Transcriptomics and metabolomics analysis reveal the dietary copper deficiency and supplementation effects of liver gene expression and metabolite change in grazing sheep. BMC Genomics 2024; 25:220. [PMID: 38413895 PMCID: PMC10900733 DOI: 10.1186/s12864-024-10134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The appropriate mineral nutrients are essential for sheep growth and reproduction. However, traditional grazing sheep often experience mineral nutrient deficiencies, especially copper (Cu), due to inadequate mineral nutrients from natural pastures. RESULTS The results indicated that dietary Cu deficiency and supplementation significantly reduced and elevated liver concentration of Cu, respectively (p < 0.05). FOXO3, PLIN1, ACTN2, and GHRHR were identified as critical genes using the weighted gene co-expression network analysis (WGCNA), quantitative real-time polymerase chain reaction (qRT-PCR), and receiver operating characteristic curve (ROC) validation as potential biomarkers for evaluating Cu status in grazing sheep. Combining these critical genes with gene functional enrichment analysis, it was observed that dietary Cu deficiency may impair liver regeneration and compromise ribosomal function. Conversely, dietary Cu supplementation may enhance ribosomal function, promote lipid accumulation, and stimulate growth and metabolism in grazing sheep. Metabolomics analysis indicated that dietary Cu deficiency significantly decreased the abundance of metabolites such as cholic acid (p < 0.05). On the other hand, dietary Cu supplementation significantly increased the abundance of metabolites such as palmitic acid (p < 0.05). Integrative analysis of the transcriptome and metabolome revealed that dietary Cu deficiency may reduce liver lipid metabolism while Cu supplementation may elevate it in grazing sheep. CONCLUSIONS The Cu content in diets may have an impact on hepatic lipid metabolism in grazing sheep. These findings provide new insights into the consequences of dietary Cu deficiency and supplementation on sheep liver and can provide valuable guidance for herders to rationalize the use of mineral supplements.
Collapse
Affiliation(s)
- Xiwei Jin
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Lingbo Meng
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Zhi Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Lan Mi
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China.
| |
Collapse
|
2
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM, Casais M. Copper in Gynecological Diseases. Int J Mol Sci 2023; 24:17578. [PMID: 38139406 PMCID: PMC10743751 DOI: 10.3390/ijms242417578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Collapse
Affiliation(s)
- Rocío A. Conforti
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - María B. Delsouc
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marilina Casais
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| |
Collapse
|
3
|
Schwenger KJP, Ghorbani Y, Rezaei K, Fischer SE, Jackson TD, Okrainec A, Allard JP. Relationship between dietary intake components and hepatic fibrosis in those with obesity before and 1 year after bariatric surgery. Nutrition 2023; 114:112095. [PMID: 37437418 DOI: 10.1016/j.nut.2023.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease is highly prevalent in the bariatric population but not all patients develop liver fibrosis. Considering that fibrosis may affect clinical outcomes, it is important to assess and treat contributing factors. In this population, it is not clear whether dietary intake is a contributor. The objective was to determine the relationship between dietary intake components and liver fibrosis before and 1 y after Roux-en-Y gastric bypass (RYGB). METHODS This was a prospective cross-sectional (n = 133) study conducted between 2013 and 2022. In addition, a subgroup of 44 patients were followed for 1 y post-RYGB. Anthropometrics, biochemical measurements, and 3-d food records and liver biopsies were obtained presurgery and, in a subgroup of patients, as for the cohort, 1 y post-RYGB. RESULTS In the cross-sectional study, 78.2% were female, with a median age of 48 y and body mass index of 46.8 kg/m2; 33.8% had type 2 diabetes mellitus and 57.1% had metabolic syndrome. In a multivariate analysis, age (odds ratio; 95% CI) (1.076; 1.014-1.141), alanine transaminase (1.068; 1.025-1.112), calorie intake (1.001; 1.000-1.002), and dietary copper (0.127; 0.022-0.752) were independently associated with fibrosis (<0.05). At 1 y post-RYGB, no independent risk factors were associated with persistent fibrosis. CONCLUSIONS In bariatric patients before surgery, higher age, alanine transaminase, and total calorie and lower copper intakes were independent risk factors associated with liver fibrosis. These relationships were no longer observed after RYGB, likely due to the effect of surgery on weight and similar postsurgery diet among patients.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kuorosh Rezaei
- Toronto General Hospital, University Health Network, Toronto, Canada
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Liu T, Liu Y, Zhang F, Gao Y. Copper homeostasis dysregulation promoting cell damage and the association with liver diseases. Chin Med J (Engl) 2023:00029330-990000000-00652. [PMID: 37284739 DOI: 10.1097/cm9.0000000000002697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/08/2023] Open
Abstract
ABSTRACT Copper plays an important role in many metabolic activities in the human body. Copper level in the human body is in a state of dynamic equilibrium. Recent research on copper metabolism has revealed that copper dyshomeostasis can cause cell damage and induce or aggravate some diseases by affecting oxidative stress, proteasome, cuprotosis, and angiogenesis. The liver plays a central role in copper metabolism in the human body. Research conducted in recent years has unraveled the relationship between copper homeostasis and liver diseases. In this paper, we review the available evidence of the mechanism by which copper dyshomeostasis promotes cell damage and the development of liver diseases, and identify the future research priorities.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | | | | | | |
Collapse
|
5
|
Zhang L, Yang Z, Yang M, Yang F, Wang G, Liu D, Li X, Yang L, Wang Z. Copper-induced oxidative stress, transcriptome changes, intestinal microbiota, and histopathology of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114136. [PMID: 36242823 DOI: 10.1016/j.ecoenv.2022.114136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is a common contaminant in aquatic environments, which could cause physiological dysfunction in aquatic organisms. However, few studies have comprehensively examined the impact of copper toxicity in freshwater fish over the past decade. In this research, the oxidative stress, liver transcriptome, intestinal microbiota, and histopathology of common carp (C. carpio) in response to Cu exposure were studied, by exposing juvenile carp to 0.2 mg/ml Cu2+ for 30 days. The results revealed that Cu2+ could induce significant changes in malondialdehyde (MDA) content and antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)) activity. The changes in antioxidant enzyme activities indicate that Cu can induce oxidative stress by generating reactive oxygen species (ROS) content. RNA-seq analysis of the liver identified 1069 differentially expressed genes (DEGs) after treatment with 2.0 mg/L Cu2+. Among the DEGs, 490 genes were upregulated and 579 genes were downregulated. GO functional enrichment analysis revealed that Cu could affect the fatty acid biosynthetic process, carnitine biosynthetic process, and activity of carboxylic acid transmembrane transporter. Meanwhile, the most significantly enriched KEGG pathway also included the lipid metabolism pathway. In addition, Cu2+ exposure increased bacterial richness and changed bacterial composition. At the phylum level, we found that the ratio of Bacteroidetes to Firmicutes was increased in the treatment carps, which can regulate intestinal epithelium function and reduce inflammation and immune responses. At the genus level, the abundances of 11 genera were significantly altered after exposure to Cu2+. The altered composition of the microbial community caused by Cu exposure may play a useful role in compensation of the intestinal lesions by Cu exposure. Furthermore, we found that Cu2+ exposure could cause histological alterations such as structural damage to the liver and intestines. The results of this research contribute to a better understanding of mechanisms related to Cu toxicity in fish.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China.
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dandan Liu
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
6
|
Tang CH, Shi SH, Lin CY, Wang WH. Lipid profiling differentiates the effect of ambient microenriched copper on a coral as an advanced tool for biomonitoring. MARINE POLLUTION BULLETIN 2022; 178:113650. [PMID: 35447438 DOI: 10.1016/j.marpolbul.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Copper can be beneficial or harmful to coral at environmentally relevant levels, making environmental monitoring a challenging. Membrane lipids make the cell a dynamic environment according to the circumstances; thus, the lipid profile should be indicative of an environmental/physiological state. To gain more insight into the copper effect on coral health and be a basis of biomonitoring, glycerophosphocholine profiling of coral exposed to microenriched copper levels was conducted in this study. The copper microenrichments resulted in a diacritical effect of decreasing carbonic anhydrase activity, following a supplementation effect, on coral lipid metabolism. Microdifferences in copper levels are critical to determine the coral metabolic state and were therefore included in this study. In addition, an excellent quantitative model correlating the coral lipid variation with the exposed copper levels or the induced physiological effect was obtained to demonstrate its performance for biomonitoring.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Shu-Han Shi
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Ching-Yu Lin
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022; 14:nu14030700. [PMID: 35277059 PMCID: PMC8838622 DOI: 10.3390/nu14030700] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, iron mobilization, connective tissue crosslinking, antioxidant defense, melanin synthesis, blood clotting, and neuron peptide maturation. Increasing lines of evidence obtained from studies of cell culture, animals, and human genetics have demonstrated that dysregulation of copper metabolism causes heart disease, which is the leading cause of mortality in the US. Defects of copper homeostasis caused by perturbed regulation of copper chaperones or copper transporters or by copper deficiency resulted in various types of heart disease, including cardiac hypertrophy, heart failure, ischemic heart disease, and diabetes mellitus cardiomyopathy. This review aims to provide a timely summary of the effects of defective copper homeostasis on heart disease and discuss potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
8
|
Gottlieb A, Dev S, DeVine L, Gabrielson KL, Cole RN, Hamilton JP, Lutsenko S. Hepatic Steatosis in the Mouse Model of Wilson Disease Coincides with a Muted Inflammatory Response. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:146-159. [PMID: 34627751 PMCID: PMC8759043 DOI: 10.1016/j.ajpath.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Wilson disease (WND) is caused by inactivation of the copper transporter ATP7B and copper accumulation in tissues. WND presentations vary from liver steatosis to inflammation, fibrosis, and liver failure. Diets influence the liver phenotype in WND, but findings are inconsistent. To better understand the impact of excess calories on liver phenotype in WND, the study compared C57BL/6J Atp7b-/- and C57BL/6J mice fed for 12 weeks with Western diet or normal chow. Serum and liver metabolites, body fat content, liver histology, hepatic proteome, and copper content were analyzed. Wild-type and Atp7b-/- livers showed striking similarities in their responses to Western diet, most notably down-regulation of cholesterol biosynthesis, altered nuclear receptor signaling, and changes in cytoskeleton. Western diet increased body fat content and induced liver steatosis in males and females regardless of genotype; however, the effects were less pronounced in Atp7b-/- mice compared with those in the wild type mice. Although hepatic copper remained elevated in Atp7b-/- mice, liver inflammation was reduced. The diet diminished signaling by Rho GTPases, integrin, IL8, and reversed changes in cell cycle machinery and cytoskeleton. Overall, high calories decreased inflammatory response in favor of steatosis without improving markers of cell viability. Similar changes of cellular pathways during steatosis development in wild-type and Atp7b-/- mice explain histologic overlap between WND and non-alcoholic fatty liver disease despite opposite copper changes in these disorders.
Collapse
Affiliation(s)
- Aline Gottlieb
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren DeVine
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert N Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James P Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
9
|
Gong H, Yu Q, Yuan M, Jiang Y, Wang J, Huang P, Zhou J. The Relationship between Dietary Copper intake and Telomere Length in Hypertension. J Nutr Health Aging 2022; 26:510-514. [PMID: 35587764 DOI: 10.1007/s12603-022-1787-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND More indications proved that diet might be involved in the telomere length, a marker of biological aging and chronic diseases. Copper is widely viewed as one of the essential elements in the diet. Therefore, this study aimed to evaluate the relationship between telomere length and dietary copper intake in hypertension and provide a basis for guiding dietary copper intake in patients with hypertension. METHODS The data was collected from the National Health and Nutrition Examination Survey (NHANES) in 1999-2000 and 2001-2002. The relevance between telomere length and dietary copper intake in hypertension is assessed using a multivariable linear regression model. RESULTS We gathered 1,867 participants with hypertension with assessed telomere length and dietary copper intake. We found that one unit increasing log-transformed dietary copper intake in hypertension was significantly associated with longer telomere length base pair (bp) (β = 112.20, 95% confidence interval [CI]: 5.48, 218.92), after controlling for covariates, including age, sex, ethnicity, body mass index (BMI), physical activity, and taking medication for hypertension. For the age group, we found that one unit increasing log-transformed dietary copper in hypertension was associated with longer telomere length (β = 237.95, 95% CI: 114.39, 361.51) in the age group >45 years. The grouping was based on whether the participants take medication for hypertension. We found that one unit increasing log-transformed dietary copper in hypertension was associated with longer telomere length (β = 116.47, 95% CI: 0.72, 232.21) in the group that takes medication for hypertension. CONCLUSIONS This study demonstrates that dietary copper intake was associated with longer telomere length in patients with hypertension, which provides evidence for guiding dietary copper intake in patients with hypertension. However, further studies are needed to evaluate the effect of copper supplementation on telomere length in patients with hypertension in well-designed random control studies and prospective studies.
Collapse
Affiliation(s)
- H Gong
- Pan Huang, College of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, China, . Jianghua Zhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhou J, Liu C, Francis M, Sun Y, Ryu MS, Grider A, Ye K. The Causal Effects of Blood Iron and Copper on Lipid Metabolism Diseases: Evidence from Phenome-Wide Mendelian Randomization Study. Nutrients 2020; 12:E3174. [PMID: 33080795 PMCID: PMC7603077 DOI: 10.3390/nu12103174] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Blood levels of iron and copper, even within their normal ranges, have been associated with a wide range of clinical outcomes. The available epidemiological evidence for these associations is often inconsistent and suffers from confounding and reverse causation. This study aims to examine the causal clinical effects of blood iron and copper with Mendelian randomization (MR) analyses. Genetic instruments for the blood levels of iron and copper were curated from existing genome-wide association studies. Candidate clinical outcomes were identified based on a phenome-wide association study (PheWAS) between these genetic instruments and a wide range of phenotypes in 310,999 unrelated individuals of European ancestry from the UK Biobank. All signals passing stringent correction for multiple testing were followed by MR analyses, with replication in independent data sources where possible. We found that genetically predicted higher blood levels of iron and copper are both associated with lower risks of iron deficiency anemia (odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.67-0.85, p = 1.90 × 10-6 for iron; OR = 0.88, 95% CI: 0.78-0.98, p = 0.032 for copper), lipid metabolism disorders, and its two subcategories, hyperlipidemia (OR = 0.90, 95% CI: 0.85-0.96, p = 6.44 × 10-4; OR = 0.92, 95% CI: 0.87-0.98, p = 5.51 × 10-3) and hypercholesterolemia (OR = 0.90, 95% CI: 0.84-0.95, p = 5.34 × 10-4; OR = 0.93, 95% CI: 0.89-0.99, p = 0.022). Consistently, they are also associated with lower blood levels of total cholesterol and low-density lipoprotein cholesterol. Multiple sensitivity tests were applied to assess the presence of pleiotropy and the robustness of causal estimates. Regardless of the approaches, consistent evidence was obtained. Moreover, the unique clinical effects of each blood mineral were identified. Notably, genetically predicated higher blood iron is associated with an enhanced risk of varicose veins (OR = 1.28, 95% CI: 1.15-1.42, p = 4.34 × 10-6), while blood copper is positively associated with the risk of osteoarthrosis (OR = 1.07, 95% CI: 1.02-1.13, p = 0.010). Sex-stratified MR analysis further revealed some degree of sex differences in their clinical effects. Our comparative PheWAS-MR study of iron and copper comprehensively characterized their shared and unique clinical effects, highlighting their potential causal roles in hyperlipidemia and hypercholesterolemia. Given the modifiable nature of blood mineral status and the potential for clinical intervention, these findings warrant further investigation.
Collapse
Affiliation(s)
- Jingqi Zhou
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; (J.Z.); (C.L.); (Y.S.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Liu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; (J.Z.); (C.L.); (Y.S.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Michael Francis
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; (J.Z.); (C.L.); (Y.S.)
| | - Moon-Suhn Ryu
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Arthur Grider
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA;
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; (J.Z.); (C.L.); (Y.S.)
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
11
|
Rezaei M, Fakhri N, Pasdar Y, Moradinazar M, Najafi F. Modeling the risk factors for dyslipidemia and blood lipid indices: Ravansar cohort study. Lipids Health Dis 2020; 19:176. [PMID: 32723339 PMCID: PMC7388539 DOI: 10.1186/s12944-020-01354-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/23/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lipid disorder is one of the most important risk factors for chronic diseases. Identifying the factors affecting the development of lipid disorders helps reduce chronic diseases, especially Chronic Heart Disease (CHD). The aim of this study was to model the risk factors for dyslipidemia and blood lipid indices. METHODS This study was conducted based on the data collected in the initial phase of Ravansar cohort study (2014-16). At the beginning, all the 453 available variables were examined in 33 stages of sensitivity analysis by perceptron Artificial Neural Network (ANN) data mining model. In each stage, the variables that were more important in the diagnosis of dyslipidemia were identified. The relationship among the variables was investigated using stepwise regression. The data obtained were analyzed in SPSS software version 25, at 0.05 level of significance. RESULTS Forty percent of the subjects were diagnosed with lipid disorder. ANN identified 12 predictor variables for dyslipidemia related to nutrition and physical status. Alkaline phosphatase, Fat Free Mass (FFM) index, and Hemoglobin (HGB) had a significant relationship with all the seven blood lipid markers. The Waist Hip Ratio was the most effective variable that showed a stronger correlation with cholesterol and Low-Density Lipid (LDL). The FFM index had the greatest effect on triglyceride, High-Density Lipid (HDL), cholesterol/HDL, triglyceride/HDL, and LDL/HDL. The greatest coefficients of determination pertained to the triglyceride/HDL (0.203) and cholesterol/HDL (0.188) model with nine variables and the LDL/HDL (0.180) model with eight variables. CONCLUSION According to the results, alkaline phosphatase, FFM index, and HGB were three common predictor variables for all the blood lipid markers. Specialists should focus on controlling these factors in order to gain greater control over blood lipid markers.
Collapse
Affiliation(s)
- Mansour Rezaei
- Professor of Biostatistics, Biostatistics Department, Social Development and Health Promotion Research Center, Kermanshah University of medical sciences, Kermanshah, Iran
| | - Negin Fakhri
- Master of Biostatistics, Student's research committee, Faculty of Health, Kermanshah University of medical sciences, Kermanshah, Iran.
| | - Yahya Pasdar
- Nutritional Sciences Department, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradinazar
- Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farid Najafi
- Professor of Epidemiology, Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Zhu Y, He B, Xiao Y, Chen Y. Iron metabolism and its association with dyslipidemia risk in children and adolescents: a cross-sectional study. Lipids Health Dis 2019; 18:50. [PMID: 30755213 PMCID: PMC6371579 DOI: 10.1186/s12944-019-0985-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Information on the association between iron metabolism and dyslipidaemia in children is limited. Thus, this study aims to evaluate the iron metabolic status of children with different body mass index (BMI) and to examine the association between iron metabolism and dyslipidaemia risk. Method In total, 1866 children and adolescents aged 7–18 were enrolled in this study, including 912 boys and 954 girls. In this cross-sectional study, parameters for anthropometry, lipids and iron metabolism including transferrin, soluble transferrin receptor (sTfR), ferritin and serum iron (SF) were evaluated. Data regarding demographic characteristics, diet, and physical activity were collected by self-reported questionnaires. Results The prevalence of dyslipidaemia and iron deficiency in children and adolescents increased based on BMI categories (both P < 0.05) and were 58.3 and 8.9% in subjects with obesity, respectively. The lowest SF and the highest ferritin levels were observed in subjects who were obese (both P < 0.001). Subjects with dyslipidaemia had lower SF, transferrin and sTfR levels by different BMI categories, and those who were obese had higher ferritin levels (all P < 0.05). Most importantly, higher concentrations of transferrin and sTfR were related to lower dyslipidaemia risk (OR for transferrin: 0.49, 95% CI: 0.33–0.71; OR for sTfR: 0.68, 95% CI: 0.46–0.99). Conclusions A downward trend in SF level by BMI categories and the highest ferritin level in subjects with obesity suggested that iron storage was associated with BMI in children and adolescents. Moreover, an inverse relationship was observed between transferrin and sTfR concentrations and dyslipidaemia risk in children with different BMI.
Collapse
Affiliation(s)
- Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, and Global Health Institute (SGHI), Sun Yat-sen University, No.74 Zhongshan Road II, Guangzhou, 510080, Guangdong Province, China
| | - Baoting He
- Department of Maternal and Child Health, School of Public Health, and Global Health Institute (SGHI), Sun Yat-sen University, No.74 Zhongshan Road II, Guangzhou, 510080, Guangdong Province, China
| | - Yunjun Xiao
- Department of Nutrition and Food Hygiene, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yajun Chen
- Department of Maternal and Child Health, School of Public Health, and Global Health Institute (SGHI), Sun Yat-sen University, No.74 Zhongshan Road II, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
13
|
Lee SH, Kim MJ, Kim YS, Chun H, Won BY, Lee JH, Han K, Rim KS, Park KC. Low hair copper concentration is related to a high risk of nonalcoholic fatty liver disease in adults. J Trace Elem Med Biol 2018; 50:28-33. [PMID: 30262292 DOI: 10.1016/j.jtemb.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022]
Abstract
Copper, an essential micronutrient, is required for lipid metabolism, mitochondrial function, iron metabolism, and antioxidant defense. Copper deficiency has been linked to alterations in lipid metabolism and various metabolic processes of the liver, including nonalcoholic fatty liver disease (NAFLD); however, most of these studies relied on copper measurements in the blood or tissues. In this study, we investigated the association between hair copper concentration and NAFLD in Korean adults, independent of metabolic syndrome status. Clinical and laboratory parameters, including factors of metabolic syndrome, were analyzed in 751 Korean adults divided into quintiles, according to hair copper concentration. Lower hair copper concentration was significantly correlated with higher body mass index, waist circumference, blood pressure, and lower levels of high-density lipoprotein cholesterol. Subjects with NAFLD showed significantly lower hair copper concentrations, and the risk of NAFLD was significantly higher for the lower hair copper quintile groups even after adjusting for metabolic syndrome-related factors. Overall, this study suggests that lower hair copper concentration could be associated with NAFLD, independent of metabolic syndrome factors.
Collapse
Affiliation(s)
- Soo-Hyun Lee
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Moon-Jong Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Hyejin Chun
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Bo Youn Won
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Joo-Ho Lee
- Department of Internal Medicine, Division of Hepatology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Kunhee Han
- Department of Family Medicine, Seoul Metropolitan Seonam Hospital, Seoul 08049, Republic of Korea
| | - Kyu-Sung Rim
- Health Promotion Center, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Kyung-Chae Park
- Health Promotion Center, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea.
| |
Collapse
|
14
|
Lin Z, Gao H, Wang B, Wang Y. Dietary Copper Intake and Its Association With Telomere Length: A Population Based Study. Front Endocrinol (Lausanne) 2018; 9:404. [PMID: 30105003 PMCID: PMC6077216 DOI: 10.3389/fendo.2018.00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/29/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Telomere is regarded as the fundamental aspect of cellular aging and copper is recognized as one of the most essential trace elements. The role of dietary copper intake in telomere length maintenance is seldom examined. This study aims to investigate if telomere length is to be associated with daily dietary copper intake. Methods: We used epidemiological data from a large national population-based health and nutrition survey. Dietary intake was assessed during the 24-h period before the interview date when blood sample was collected. Telomere length was measured from blood leukocyte using PCR method. The relationship between telomere length and dietary copper intake was assessed using multivariable linear regression models. We also examined if obesity, measured by body mass index, could modify the observed association. Results: There are 7,324 participants had both leukocyte telomere length measured and dietary copper intake assessed, around 48.0% of them were men. Telomere length was longer in women than that in men (1.05 ± 0.26 vs. 1.00 ± 0.26 T/S ratio), while dietary copper intake was less in women than that in men (1.12 ± 0.80 vs. 1.51 ± 1.61 mg). After controlling for age, sex, ethnicity, physical activity, current smoking status, hypertension, cardiovascular diseases, and body mass index in the multivariable linear regression models, one unit increase of log-transformed dietary copper intake was significantly associated with longer telomere length (β = 0.02, 95% confidence interval: 0.01, 0.04). We did not find a significant sex difference for this association. Conclusions: Dietary copper intake was significantly associated telomere length.The role of copper in human health might be involved in biological aging process.
Collapse
|
15
|
Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-Alcoholic Fatty Liver Disease and Nutritional Implications: Special Focus on Copper. Nutrients 2017; 9:E1137. [PMID: 29057834 PMCID: PMC5691753 DOI: 10.3390/nu9101137] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excess lipids in hepatocytes, due to excessive fatty acid influx from adipose tissue, de novo hepatic lipogenesis, in addition to excessive dietary fat and carbohydrate intake. Chronic hepatic lipid overload induces mitochondrial oxidative stress and cellular damage leading the development of NAFLD into a more severe liver disease condition, non-alcoholic steato-hepatitis (NASH). In turn, this can progress to cirrhosis and hepatocellular carcinoma (HCC). Among others, copper is one of the main bio-metals required for the preponderance of the enzymes involved in physiological redox reactions, which primarily occurs during mitochondrial respiration. Thus, copper homeostasis could be considered a target point for counteracting the progression of NAFLD. Accordingly, many diseases are correlated to unbalanced copper levels and, actually, some clinical trials are examining the use of copper chelating agents. Currently, no pharmacological interventions are approved for NAFLD, but nutritional and lifestyle modifications are always recommended. Fittingly, antioxidant food agents recognized to improve NAFLD and its complications have been described in the literature to bind copper. Therefore, this review describes the role of nutrition in the development and progression of NAFLD with a particular focus on copper and copper-binding antioxidant compounds against NAFLD.
Collapse
Affiliation(s)
| | | | - Gino Iannucci
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00185 Rome, Italy.
| | | | | |
Collapse
|
16
|
Morrell A, Tallino S, Yu L, Burkhead JL. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 2017; 69:263-270. [PMID: 28271632 PMCID: PMC5619695 DOI: 10.1002/iub.1613] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017.
Collapse
Affiliation(s)
- Austin Morrell
- University of Alaska Anchorage, Department of Biological Sciences Anchorage, Alaska
| | - Savannah Tallino
- University of Alaska Anchorage, Department of Biological Sciences Anchorage, Alaska
| | - Lei Yu
- University of Washington School of Medicine, Seattle, Washington
| | - Jason L. Burkhead
- University of Alaska Anchorage, Department of Biological Sciences Anchorage, Alaska
| |
Collapse
|
17
|
Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA) 1. Surg Obes Relat Dis 2016; 12:468-495. [DOI: 10.1016/j.soard.2016.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
|
18
|
Electrophysiological Indices in Sportsmen: Correlations with the Contents of Iron and Copper in the Organism. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Trefoil Factor 1 is involved in gastric cell copper homeostasis. Int J Biochem Cell Biol 2014; 59:30-40. [PMID: 25486181 DOI: 10.1016/j.biocel.2014.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 12/28/2022]
Abstract
Trefoil Factor 1 belongs to a group of small secreted proteins (the Trefoil Factor Family proteins), that are localized within the mucous granules and are expressed and secreted by epithelial cells that line mucous membranes. Trefoil factors are mainly expressed in the gastrointestinal tract, where they normally contribute to maintain the integrity of the mucosa. We recently demonstrated a selective binding ability of Trefoil Factor 1 for copper ions, through its carboxy-terminal tail, and we also observed that copper levels influence the equilibrium between the monomeric and homodimeric forms of Trefoil Factor 1, thus modulating its biological activity. Here we report that transcriptional regulation of Trefoil Factor 1 is also affected by copper levels, through the modulated binding of the copper-sensing transcription factor Sp1 onto the responsive elements present in the regulatory region of the gene. In addition we demonstrate that copper overload causes an accumulation of the trefoil protein in the Trans-Golgi Network and that Trefoil Factor 1 levels can influence copper excretion and copper related toxicity. These findings suggest that the protein might play a role in the overall complex mechanisms of copper homeostasis in the gastrointestinal tissues.
Collapse
|
20
|
Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Hepcidin and the iron enigma in HCV infection. Virulence 2014; 5:465-76. [PMID: 24626108 PMCID: PMC4063809 DOI: 10.4161/viru.28508] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An estimated 30-40% of patients with chronic hepatitis C have elevated serum iron, transferrin saturation, and ferritin levels. Clinical data suggest that iron is a co-morbidity factor for disease progression following HCV infection. Iron is essential for a number of fundamental metabolic processes in cells and organisms. Mammalian iron homeostasis is tightly regulated and this is maintained through the coordinated action of sensory and regulatory networks that modulate the expression of iron-related proteins at the transcriptional and/or posttranscriptional levels. Disturbances of iron homeostasis have been implicated in infectious disease pathogenesis. Viruses, similarly to other pathogens, can escape recognition by the immune system, but they need iron from their host to grow and spread. Hepcidin is a 25-aa peptide, present in human serum and urine and represents the key peptide hormone, which modulates iron homeostasis in the body. It is synthesized predominantly by hepatocytes and its mature form is released in circulation. In this review, we discuss recent advances in the exciting crosstalk of molecular mechanisms and cell signaling pathways by which iron and hepcidin production influences HCV-induced liver disease.
Collapse
Affiliation(s)
- Urania Georgopoulou
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Pelagia Foka
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece; Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Eirini Karamichali
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| |
Collapse
|
21
|
Copper promotes TFF1-mediated Helicobacter pylori colonization. PLoS One 2013; 8:e79455. [PMID: 24236136 PMCID: PMC3827375 DOI: 10.1371/journal.pone.0079455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/01/2013] [Indexed: 02/08/2023] Open
Abstract
The trefoil peptides (TFF1, TFF2 and TFF3) are a family of small highly conserved proteins that play an essential role in epithelial regeneration within the gastrointestinal tract, where they are mainly expressed. TFF1 expression is strongly induced after mucosal injury and it has been proposed that tff1 functions as a gastric tumor suppressor gene. Several studies confirm that tff1 expression is frequently lost in gastric cancer because of deletions, mutations or methylation of the tff1 promoter. Infection by Helicobacter pylori (H. pylori) results in chronic gastritis and it can lead to the development of gastric or duodenal ulcers. Moreover, it is known that there is a strong link to the development of gastric cancer. It has been shown that H. pylori interacts with the dimeric form of TFF1 and that the rough form of lipopolysaccharide mediates this interaction. We have previously reported that the carboxy-terminus of TFF1 is able to specifically bind copper ions (Cu) and that Cu binding favours the homodimerization of the peptide, thus enhancing its motogenic activity. Here, we report that the Cu-TFF1 cuprocomplex promotes adherence of H. pylori to epithelial cells. Adherence of H. pylori to gastric adenocarcinoma cells, AGS AC1 cells, induced to hyper-express TFF1 was enhanced compared to noninduced cells. Copper further promoted this interaction. A H. pylori mutant unable to bind TFF1 did not show enhanced infection of induced cells. Cu treatment induced a thickening of the mucus layer produced by the colorectal adenocarcinoma mucus secreting, goblet cells, HT29-E12 and promoted H. pylori colonisation. Finally, SPR analysis shows that the C-terminus of TFF1, involved in the binding of copper, is also able to selectively bind H. pylori RF-LPS.
Collapse
|
22
|
Davis MR, Rendina E, Peterson SK, Lucas EA, Smith BJ, Clarke SL. Enhanced expression of lipogenic genes may contribute to hyperglycemia and alterations in plasma lipids in response to dietary iron deficiency. GENES AND NUTRITION 2012; 7:415-25. [PMID: 22228222 DOI: 10.1007/s12263-011-0278-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022]
Abstract
Iron deficiency (ID) remains a public health concern affecting ~25% of the world's population. Metabolic consequences of ID include elevated plasma glucose concentrations consistent with increased reliance on glucose as a metabolic substrate, though the mechanisms controlling these responses remain unclear. To further characterize the metabolic response to ID, weanling male Sprague-Dawley rats were fed either a control (C; 40 mg Fe/kg diet) or iron-deficient (ID; 3 mg Fe/kg diet) diet or were pair-fed (PF) the C diet to the level of intake of the ID group for 21 days. In addition to reductions in hemoglobin, hematocrit, and plasma iron, the ID group also exhibited higher percent body fat and plasma triglycerides compared to the PF group. Steady-state levels of both plasma glucose and insulin increased 40 and 45%, respectively, in the ID group compared to the PF group. Plasma cortisol levels were decreased 67% in the ID group compared to the PF diet group. The systematic evaluation of the expression of genes involved in insulin signaling, glucose metabolism, and fatty acid metabolism in the liver and skeletal muscle revealed significant alterations in the expression of 48 and 52 genes in these tissues, respectively. A significant concurrent increase in lipogenic gene expression and decrease in gene expression related to β-oxidation in both the liver and skeletal muscle, in combination with differential tissue expression of genes involved in glucose metabolism, provides novel insight into the adaptive metabolic response in rodent models of severe iron deficiency anemia.
Collapse
Affiliation(s)
- McKale R Davis
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK, 74078, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tosco A, Monti MC, Fontanella B, Montefusco S, D’Andrea L, Ziaco B, Baldantoni D, Rio MC, Marzullo L. Copper binds the carboxy-terminus of trefoil protein 1 (TFF1), favoring its homodimerization and motogenic activity. Cell Mol Life Sci 2010; 67:1943-55. [PMID: 20213275 PMCID: PMC11115634 DOI: 10.1007/s00018-010-0309-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/29/2010] [Accepted: 02/09/2010] [Indexed: 12/20/2022]
Abstract
Trefoil protein 1 (TFF1) is a small secreted protein belonging to the trefoil factor family of proteins, that are present mainly in the gastrointestinal (GI) tract and play pivotal roles as motogenic factors in epithelial restitution, cell motility, and other incompletely characterized biological processes. We previously reported the up-regulation of TFF1 gene in copper deficient rats and the unexpected property of the peptide to selectively bind copper. Following the previous evidence, here we report the characterization of the copper binding site by fluorescence quenching spectroscopy and mass spectrometric analyses. We demonstrate that Cys58 and at least three Glu surrounding residues surrounding it, are essential to efficiently bind copper. Moreover, copper binding promotes the TFF1 homodimerization, thus increasing its motogenic activity in in vitro wound healing assays. Copper levels could then modulate the TFF1 functions in the GI tract, as well as its postulated role in cancer progression and invasion.
Collapse
Affiliation(s)
- Alessandra Tosco
- Division of Biomedicine “Arturo Leone”, Department of Pharmaceutical Sciences, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
| | - Maria Chiara Monti
- Division of Chemistry and Chemical Technologies “Luigi Gomez-Paloma”, Department of Pharmaceutical Sciences, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
| | - Bianca Fontanella
- Division of Biomedicine “Arturo Leone”, Department of Pharmaceutical Sciences, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
| | - Sandro Montefusco
- Division of Biomedicine “Arturo Leone”, Department of Pharmaceutical Sciences, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
| | - Luca D’Andrea
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Barbara Ziaco
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Marie-Christine Rio
- Department of Cancer Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Strasbourg, France
| | - Liberato Marzullo
- Division of Biomedicine “Arturo Leone”, Department of Pharmaceutical Sciences, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
| |
Collapse
|