1
|
He Q, Wang Z, Wang Y, Zhu M, Liang Z, Zhang K, Xu Y, Chen G. Characteristic changes in astrocyte properties during astrocyte-to-neuron conversion induced by NeuroD1/Ascl1/Dlx2. Neural Regen Res 2025; 20:1801-1815. [PMID: 39104117 PMCID: PMC11688565 DOI: 10.4103/nrr.nrr-d-23-01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00030/figure1/v/2024-08-05T133530Z/r/image-tiff Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors--NeuroD1, Ascl1, and Dlx2--in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore, we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4 (astrocyte endfeet signal), CX43 (gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into pre-existing neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.
Collapse
Affiliation(s)
- Qing He
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhen Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuchen Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Mengjie Zhu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhile Liang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kanghong Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuge Xu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Han B, Bao MY, Sun QQ, Wang RN, Deng X, Xing K, Yu FL, Zhang Y, Li YB, Li XQ, Chai NN, Ma GX, Yang YN, Tian MY, Zhang Q, Li X, Zhang Y. Nuclear receptor PPARγ targets GPNMB to promote oligodendrocyte development and remyelination. Brain 2025; 148:1801-1816. [PMID: 39756479 DOI: 10.1093/brain/awae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025] Open
Abstract
Myelin injury occurs in brain ageing and in several neurological diseases. Failure of spontaneous remyelination is attributable to insufficient differentiation of oligodendrocyte precursor cells (OPCs) into mature myelin-forming oligodendrocytes in CNS demyelinated lesions. Emerging evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) is the master gatekeeper of CNS injury and repair and plays an important regulatory role in various neurodegenerative diseases. Although studies demonstrate positive effects of PPARγ in oligodendrocyte ontogeny in vitro, the cell-intrinsic role of PPARγ and the molecular mechanisms involved in the processes of OPC development and CNS remyelination in vivo are poorly understood. Here, we identify PPARγ as an enriched transcription factor in the dysfunctional OPCs accumulated in CNS demyelinated lesions. Its expression increases during OPC differentiation and myelination and is closely related to the process of CNS demyelination/remyelination. Administration of pharmacological agonists of PPARγ not only promotes OPC differentiation and CNS myelination, but also causes a significant increase in remyelination in both cuprizone- and lysophosphatidylcholine-induced demyelination models. In contrast, the attenuation of PPARγ function, either through the specific knockout of PPARγ in oligodendrocytes in vivo or through its inhibition in vitro, leads to decreased OPC maturation, hindered myelin generation and reduced therapeutic efficacy of PPARγ agonists. At a mechanistic level, PPARγ induces myelin repair by directly targeting glycoprotein non-metastatic melanoma protein B (GPNMB), a novel regulator that drives OPCs to differentiate into oligodendrocytes, promotes myelinogenesis in the developing CNS of postnatal mice and enhances remyelination in mice with lysophosphatidylcholine-induced demyelination. In conclusion, our evidence reveals that PPARγ is a positive regulator of endogenous OPC differentiation and CNS myelination/remyelination and suggests that PPARγ and/or its downstream sensor (GPNMB) might be a candidate pharmacological target for regenerative therapy in the CNS.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qing-Qing Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Rui-Ning Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Deng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Kun Xing
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yue-Bo Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiu-Qing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Na-Nan Chai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gai-Xin Ma
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Baumann N, Wagener RJ, Javed A, Conti E, Abe P, Lopes A, Sansevrino R, Lavalley A, Magrinelli E, Szalai T, Fuciec D, Ferreira C, Fièvre S, Fouassier A, D'Amico D, Harschnitz O, Jabaudon D. Regional differences in progenitor metabolism shape brain growth during development. Cell 2025:S0092-8674(25)00405-2. [PMID: 40300602 DOI: 10.1016/j.cell.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Mammals have particularly large forebrains compared with other brain parts, yet the developmental mechanisms underlying this regional expansion remain poorly understood. Here, we provide a single-cell-resolution birthdate atlas of the mouse brain (www.neurobirth.org), which reveals that while hindbrain neurogenesis is transient and restricted to early development, forebrain neurogenesis is temporally sustained through reduced consumptive divisions of ventricular zone progenitors. This atlas additionally reveals region-specific patterns of direct and indirect neurogenesis. Using single-cell RNA sequencing, we identify evolutionarily conserved cell-cycle programs and metabolism-related molecular pathways that control regional temporal windows of proliferation. We identify the late neocortex-enriched mitochondrial protein FAM210B as a key regulator using in vivo gain- and loss-of-function experiments. FAM210B elongates mitochondria and increases lactate production, which promotes progenitor self-replicative divisions and, ultimately, the larger clonal size of their progeny. Together, these findings indicate that spatiotemporal heterogeneity in mitochondrial function regulates regional progenitor cycling behavior and associated clonal neuronal production during brain development.
Collapse
Affiliation(s)
- Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Robin J Wagener
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Awais Javed
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Eleonora Conti
- Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Philipp Abe
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
| | - Andrea Lopes
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Adrien Lavalley
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Elia Magrinelli
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Timea Szalai
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Fuciec
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Clothilde Ferreira
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sabine Fièvre
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland; Université Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
4
|
Liu H, Yuan Y, Li J, Lan Z, Dai Z, Li G, Xiao K, Pu Y, He C, Qin S, Su Z. Establishment of an efficient and economical method for primary oligodendrocyte progenitor cell culture from neonatal mouse brain. Brain Res 2025; 1853:149519. [PMID: 40023233 DOI: 10.1016/j.brainres.2025.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The primary culture of oligodendrocyte progenitor cells (OPCs) provides an indispensable tool for characterizing their biological properties and myelin repair potential. However, the current OPC preparation methods are mainly limited to rat tissues, and it remains a substantial challenge for replicating the primary culture from mouse tissues to generate large quantities of high-quality OPCs. Here, we describe a protocol to successfully establish highly enriched OPC cultures from the cerebral cortex of mice at the age of neonatal 3 days. OPCs were isolated and purified from the bed layer of astrocytes by shaking for 6 h at 250 rpm. Using this protocol, mouse OPCs can be easily produced in bulk and economically without the need for specific cell-surface antibodies and equipment. These mouse OPC cultures were identified by immunocytochemical, immunobloting and RNA-seq analysis. Furthermore, they could be expanded in vitro and differentiate into mature oligodendrocytes. We propose this method as a viable and affordable protocol to obtain mouse OPC culture, which should significantly facilitate studies on OPC lineage progression and their application in myelin-related disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China; Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Jiali Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zhida Lan
- Department of Anatomy, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Guanyu Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Kouwei Xiao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
5
|
Zacher AC, Grabinski M, Console-Meyer L, Felmy F, Pätz-Warncke C. Oligodendrocyte arrangement, identification and morphology in the developing superior olivary complex. Front Cell Neurosci 2025; 19:1561312. [PMID: 40226299 PMCID: PMC11985757 DOI: 10.3389/fncel.2025.1561312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oligodendrocytes provide myelination, metabolic and developmental support for neurons and circuits. Within the auditory superior olivary complex (SOC), relevant for sound localization and spectro-temporal integration, oligodendrocytes are fundamental for fast neuronal communication and accurate timing of sound signals. Despite their important role in function and development, an assessment of their developmental arrangement and morphology is missing for the SOC. Here, immunofluorescence labeling and single cell electroporation was used to quantify their distribution, identification and morphology between postnatal day (P) 5 and ~ P54 in the SOC of Mongolian gerbils (Meriones unguiculatus). Oligodendrocytes show developmental, region-specific accumulations, redistributions and density profiles. Their identification by Olig2 and SOX10 appears age specific, while myelinating oligodendrocytes are detected by co-labeling with S100 irrespective of age. Comparison of oligodendrocyte density and identification between mature gerbil and Etruscan shrew (Suncus etruscus), revealed species-specific differences. Morphologically, the number of myelinating processes decreased, while process length, diameter and coverage area of oligodendrocytes increased during development. Together, oligodendrocyte developmental alterations occur at moments of SOC circuit refinement supporting functions beyond myelination.
Collapse
Affiliation(s)
- Alina Carola Zacher
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Melissa Grabinski
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Laura Console-Meyer
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | | |
Collapse
|
6
|
Zhang H, Bi F, Zhao P, Cui H, Tao X, Zhang J, Li C, Cao Y, Wang N, Li H. Longan Aril polysaccharides ameliorate cognitive impairment in AD mice via restoration of the immune phagocytosis of microglia. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119464. [PMID: 39923958 DOI: 10.1016/j.jep.2025.119464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) belongs to the category of "forgetfulness" or "dementia" in traditional Chinese medicine, and is often caused by deficiency of five zang-viscera. Longan Aril (the aril of Dimocarpus longan Lour., LA) possesses properties beneficial for heart and spleen health, blood nourishment, and mind tranquility, suggesting its potential as a treatment for AD. This study aimed to investigate the therapeutic effects of Longan Aril polysaccharides (LAPs), a primary active constituent of LA, on lipopolysaccharides (LPS) and amyloid β-peptide (Aβ) induced immune tolerance in AD mice. Further, BV2 cells were employed to explore the mechanism of LAPs in improving immune tolerance. MATERIAL AND METHODS LAPs were prepared by water extraction and alcohol precipitation. The monosaccharide composition was determined by high-performance liquid chromatography (HPLC). An AD mouse model of immune tolerance was established by intraperitoneal (i.p) injection of LPS combined with intracerebroventricular (ICV) injection of Aβ25-35. The LAPs group mice received LAPs (1.4 g/kg) daily for 40 days. The anti-AD efficacy and mechanism of LAPs in vivo was evaluated by the Y maze, Morris water maze, Degenerating Neurons Stain (FJC staining), hematoxylin-eosin (H&E) staining, Nissl staining, measurements of lactate, tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) secretion levels, immunofluorescence and western blot. Furthermore, the mechanism of LAPs in improving the function of immune-tolerant BV2 cells was explored in vitro using lactic acid kits, ELISA kits, and western blot. The phagocytic function of BV2 cells was evaluated by the fluorescent dye Alexa Fluor 488 labeled Aβ (AF448-Aβ). RESULTS LAPs contained five monosaccharides. LAPs improved cognitive function and increased the number of Nissl bodies, lactate secretion, the IL-10 content, the relative fluorescence intensity of the IBA1 and AXL proteins, and the protein expression levels of AXL, Mertk, Glut1, HK2, PI3K, p-Akt/Akt, p-mTOR/mTOR and HIF-1α of immune-tolerant AD mice. LAPs also reduced the TNF-α content, and the protein expression level of CD68 in immune-tolerant AD mice. In vitro, LAPs elevated the IL-10 content and protein expression levels of PI3K, Akt, p-Akt, and HIF-1α, while reducing lactate secretion and the TNF-α content in immune-tolerant BV2 cells. LAPs promoted the phagocytic activity of BV2 cells, and their effects are completely inhibited by 2-DG and partially inhibited by BAY and Rapa. CONCLUSIONS LAPs can enhance the cognitive abilities of immune-tolerant AD mice and diminish their pathological damage. The mechanism involves the regulation of glycolysis and the PI3K/Akt/mTOR/HIF-1α signaling pathway to promote microglial immune phagocytosis.
Collapse
Affiliation(s)
- Han Zhang
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Fangxin Bi
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Peng Zhao
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Herong Cui
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojun Tao
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jianghua Zhang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Chang Li
- Dalian Center for Certification and Food and Drug Control, Dalian, 116081, China
| | - Yang Cao
- Dalian Huaxin Physicochemical Testing Centre Ltd., Dalian, 116600, China
| | - Nan Wang
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hongyan Li
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
7
|
Gao Y, Sun M, Fu T, Wang Z, Jiang X, Yang L, Liang XG, Liu G, Tian Y, Yang F, Li J, Li Z, Li X, You Y, Ding C, Wang Y, Ma T, Zhang Z, Xu Z, Chen B, Yang Z. NOTCH, ERK, and SHH signaling respectively control the fate determination of cortical glia and olfactory bulb interneurons. Proc Natl Acad Sci U S A 2025; 122:e2416757122. [PMID: 39999176 PMCID: PMC11892625 DOI: 10.1073/pnas.2416757122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
During cortical development, radial glial cells (neural stem cells) initially are neurogenic, generating intermediate progenitor cells that exclusively produce glutamatergic pyramidal neurons. Next, radial glial cells generate tripotential intermediate progenitor cells (Tri-IPCs) that give rise to cortical astrocytes and oligodendrocytes, and olfactory bulb interneurons. The molecular mechanisms underlying the transition from cortical neurogenesis to gliogenesis, and the subsequent fate determination of cortical astrocytes, oligodendrocytes, and olfactory bulb interneurons, remain unclear. Here, we report that extracellular signal-regulated kinase (ERK) signaling plays a fundamental role in promoting cortical gliogenesis and the generation of Tri-IPCs. Additionally, sonic hedgehog-smoothened-glioma-associated oncogene homolog (SHH-SMO-GLI) activator signaling has an auxiliary function to ERK during these processes. We further demonstrate that, from Tri-IPCs, NOTCH signaling is crucial for the fate determination of astrocytes, while ERK signaling plays a prominent role in oligodendrocyte fate specification, and SHH signaling is required for the fate determination of olfactory bulb interneurons. We provide evidence suggesting that this mechanism is conserved in both mice and humans. Finally, we propose a unifying principle of mammalian cortical gliogenesis.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Mengge Sun
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Tongye Fu
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Ziwu Wang
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Xin Jiang
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Lin Yang
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Xiaoyi G. Liang
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA95064
| | - Guoping Liu
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Yu Tian
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Feihong Yang
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Jialin Li
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Zhenmeiyu Li
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Xiaosu Li
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Yan You
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Chaoqiong Ding
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Tong Ma
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Zhuangzhi Zhang
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Zhejun Xu
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA95064
| | - Zhengang Yang
- Department of Neurology, Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| |
Collapse
|
8
|
Chen H, Yang G, Xu DE, Du YT, Zhu C, Hu H, Luo L, Feng L, Huang W, Sun YY, Ma QH. Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner. Neurosci Bull 2025; 41:374-390. [PMID: 39283565 PMCID: PMC11876512 DOI: 10.1007/s12264-024-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 12/08/2024] Open
Abstract
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, China
| | - Yu-Tong Du
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Das S, Shaw AK, Das Sarma S, Koval M, Das Sarma J, Maulik M. Neurotropic Murine β-Coronavirus Infection Causes Differential Expression of Connexin 47 in Oligodendrocyte Subpopulations Associated with Demyelination. Mol Neurobiol 2025; 62:3428-3445. [PMID: 39292341 PMCID: PMC11790745 DOI: 10.1007/s12035-024-04482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Gap junctions (GJs) play a crucial role in the survival of oligodendrocytes and myelination of the central nervous system (CNS). In this study, we investigated the spatiotemporal changes in the expression of oligodendroglial GJ protein connexin 47 (Cx47), its primary astroglial coupling partner, Cx43, and their association with demyelination following intracerebral infection with mouse hepatitis virus (MHV). Neurotropic strains of MHV, a β-coronavirus, induce an acute encephalomyelitis followed by a chronic demyelinating disease that shares similarities with the human disease multiple sclerosis (MS). Our results reveal that Cx47 GJs are persistently lost in mature oligodendrocytes, not only in demyelinating lesions but also in surrounding normal appearing white and gray matter areas, following an initial loss of astroglial Cx43 GJs during acute infection. At later stages after viral clearance, astroglial Cx43 GJs re-emerge but mature oligodendrocytes fail to fully re-establish GJs with astrocytes due to lack of Cx47 GJ expression. In contrast, at this later demyelinating stage, the increased oligodendrocyte precursor cells appear to exhibit Cx47 GJs. Our findings further highlight varying degrees of demyelination in distinct spinal cord regions, with the thoracic cord showing the most pronounced demyelination. The regional difference in demyelination correlates well with dynamic changes in the proportion of different oligodendrocyte lineage cells exhibiting differential Cx47 GJ expression, suggesting an important mechanism of progressive demyelination even after viral clearance.
Collapse
Affiliation(s)
- Soubhik Das
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, West Bengal, India
| | - Archana Kumari Shaw
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Subhajit Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Mahua Maulik
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, West Bengal, India.
| |
Collapse
|
11
|
Ma Q, Tian JL, Lou Y, Guo R, Ma XR, Wu JB, Yang J, Tang BJ, Li S, Qiu M, Duan S, Zhao JW, Zhang J, Xu ZZ. Oligodendrocytes drive neuroinflammation and neurodegeneration in Parkinson's disease via the prosaposin-GPR37-IL-6 axis. Cell Rep 2025; 44:115266. [PMID: 39913287 DOI: 10.1016/j.celrep.2025.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease and is difficult to treat due to its elusive mechanisms. Recent studies have identified a striking association between oligodendrocytes and PD progression, yet how oligodendrocytes regulate the pathogenesis of PD is still unknown. Here, we show that G-protein-coupled receptor 37 (GPR37) is upregulated in oligodendrocytes of the substantia nigra and that prosaposin (PSAP) secretion is increased in parkinsonian mice. The released PSAP can induce interleukin (IL)-6 upregulation and secretion from oligodendrocytes via a GPR37-dependent pathway, resulting in enhanced neuroinflammation, dopamine neuron degeneration, and behavioral deficits. GPR37 deficiency in oligodendrocytes prevents neurodegeneration in multiple PD models. Finally, the hallmarks of the PSAP-GPR37-IL-6 axis are observed in patients with PD. Thus, our results reveal that dopaminergic neurons interact with oligodendrocytes via secreted PSAP, and our findings identify the PSAP-GPR37-IL-6 axis as a driver of PD pathogenesis and a potential therapeutic target that might alleviate PD progression in patients.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China.
| | - Jin-Lan Tian
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China
| | - Yao Lou
- Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Ran Guo
- Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian-Bin Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Yang
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Bing-Jie Tang
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Anesthesiology and Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shumin Duan
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Zhang
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Department of Pathology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou 310002, China
| | - Zhen-Zhong Xu
- Department of Anesthesiology of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 311100, China.
| |
Collapse
|
12
|
Moreno-Rodriguez M, Perez SE, Malek-Ahmadi M, Mufson EJ. APOEε4 alters ApoE and Fabp7 in frontal cortex white matter in prodromal Alzheimer's disease. J Neuroinflammation 2025; 22:25. [PMID: 39885546 PMCID: PMC11783964 DOI: 10.1186/s12974-025-03349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
The ApoE ε4 allele (APOEε4) is a major genetic risk factor for sporadic Alzheimer's disease (AD) and is linked to demyelination and cognitive decline. However, its effects on the lipid transporters apolipoprotein E (ApoE) and fatty acid-binding protein 7 (Fabp7), which are crucial for the maintenance of myelin in white matter (WM) during the progression of AD remain underexplored. To evaluate the effects of APOEε4 on ApoE, Fabp7 and myelin in the WM of the frontal cortex (FC), we examined individuals carrying one ε4 allele that came to autopsy with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and mild to moderate AD compared with non-carrier counterparts. ApoE, Fabp7 and Olig2 immunostaining was used to visualize cells, whereas myelin basic protein (MBP) immunocytochemistry and luxol fast blue (LFB) histochemistry of myelin in the WM of the FC were combined with quantitative morphometry. We observed increased numbers of ApoE-positive astrocytes in the WM of both NCI and MCI APOEε4 carriers compared with non-carriers, whereas Fabp7-positive cells were elevated only in AD. Conversely, Olig2 cell counts and MBP immunostaining decreased in MCI APOEε4 carriers compared to non-carriers, while LFB levels were higher in NCI APOEε4 carriers compared to non-carriers. Although no correlations were found between ApoE, Fabp7, and cognitive status, LFB measurements were positively correlated with perceptual speed, global cognition, and visuospatial scores in APOEε4 carriers across clinical groups. The present findings suggest that the ε4 allele compromises FC myelin homeostasis by disrupting the lipid transporters ApoE, Fabp7 and myelination early in the onset of AD. These data support targeting cellular components related to WM integrity as possible treatments for AD.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | | | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| |
Collapse
|
13
|
Jara C, Torres AK, Park-Kang HS, Sandoval L, Retamal C, Gonzalez A, Ricca M, Valenzuela S, Murphy MP, Inestrosa NC, Tapia-Rojas C. Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis. Neurotox Res 2025; 43:3. [PMID: 39775210 DOI: 10.1007/s12640-024-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand. Loss of hippocampal function in aging is related to neuronal damage, where mitochondrial impairment is critical. Synaptic and mitochondrial dysfunction are early events in aging; both are regulated reciprocally and contribute to age-associated memory loss together. We previously showed that prolonged treatment with Curcumin or Mitoquinone (MitoQ) improves mitochondrial functions in aged mice, exerting similar neuroprotective effects. Curcumin has been described as an anti-inflammatory and antioxidant compound, and MitoQ is a potent antioxidant directly targeting mitochondria; however, whether Curcumin exerts a direct impact on the mitochondria is unclear. In this work, we study whether Curcumin could have a mechanism similar to MitoQ targeting the mitochondria. We utilized hippocampal slices of 4-6-month-old C57BL6 mice to assess the cellular changes induced by acute Curcumin treatment ex-vivo compared to MitoQ. Our results strongly suggest that both compounds improve the synaptic structure, oxidative state, and energy production in the hippocampus. Nevertheless, Curcumin and MitoQ modify mitochondrial function differently; MitoQ improves the mitochondrial bioenergetics state, reducing ROS production and increasing ATP generation. In contrast, Curcumin reduces mitochondrial calcium levels and prevents calcium overload related to mitochondrial swelling. Thus, Curcumin is described as a new regulator of mitochondrial calcium homeostasis and could be used in pathological events involving calcium deregulation and excitotoxicity, such as aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
| | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Avenida Los Flamencos, Punta Arenas, 01364, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Alfonso Gonzalez
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Micaela Ricca
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Sebastián Valenzuela
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Avenida Los Flamencos, Punta Arenas, 01364, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile.
| |
Collapse
|
14
|
Markusson S, Raasakka A, Schröder M, Sograte‐Idrissi S, Rahimi AM, Asadpour O, Körner H, Lodygin D, Eichel‐Vogel MA, Chowdhury R, Sutinen A, Muruganandam G, Iyer M, Cooper MH, Weigel MK, Ambiel N, Werner HB, Zuchero JB, Opazo F, Kursula P. Nanobodies against the myelin enzyme CNPase as tools for structural and functional studies. J Neurochem 2025; 169:e16274. [PMID: 39655780 PMCID: PMC11629607 DOI: 10.1111/jnc.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, and its loss in mice and humans causes neurodegeneration. Additionally, CNPase is frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognising the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibres and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional studies on myelin formation, dynamics, and disease, including high-resolution imaging of nerve tissue.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of BiomedicineUniversity of BergenBergenNorway
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | | | - Shama Sograte‐Idrissi
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - Amir Mohammad Rahimi
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - Ommolbanin Asadpour
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - Henrike Körner
- Department for Neuroimmunology and Multiple Sclerosis ResearchUniversity of Göttingen Medical CenterGöttingenGermany
| | - Dmitri Lodygin
- Department for Neuroimmunology and Multiple Sclerosis ResearchUniversity of Göttingen Medical CenterGöttingenGermany
| | - Maria A. Eichel‐Vogel
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Gopinath Muruganandam
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologieBrusselsBelgium
- Department of Bioengineering Sciences, Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Manasi Iyer
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Madeline H. Cooper
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Maya K. Weigel
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Nicholas Ambiel
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Hauke B. Werner
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - J. Bradley Zuchero
- Neurosurgery DepartmentStanford University School of MedicineStanfordCaliforniaUSA
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
- Institute of Neuro‐ and Sensory PhysiologyUniversity Medical Center GöttingenGöttingenGermany
- NanoTag Biotechnologies GmbHGöttingenGermany
| | - Petri Kursula
- Department of BiomedicineUniversity of BergenBergenNorway
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
15
|
Zhang Y, Peng Z, Guo M, Wang Y, Liu J, Liu Y, Li M, Wei T, Li P, Zhao Y, Wang Y. TET3-facilitated differentiation of human umbilical cord mesenchymal stem cells into oligodendrocyte precursor cells for spinal cord injury recovery. J Transl Med 2024; 22:1118. [PMID: 39707356 DOI: 10.1186/s12967-024-05929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood. This study aimed to explore the TET3-mediated one-step induction of HUCMSCs into OPCs. METHODS In vitro, HUCMSCs were induced into OPCs following TET3 overexpression. Changes of methylation and hydroxymethylation during differentiation were monitored, mechanisms involved in the TET3-driven HUCMSC differentiation into OPCs were identified by RNA sequencing. Methylation levels in NG2 and PDGFRA promoter region were detected using Bisulfite Polymerase Chain Reaction (BSP).In vivo, therapeutic effects of iOPCs were evaluated through a rat Allen's SCI model. RESULTS The in vitro analysis confirmed that TET3 enhances HUCMSC differentiation into OPCs, validitied by specific marker expression. The induced OPCs (iOPCs) exhibited methylation and hydroxymethylation patterns similar to native OPCs. BSP analysis demonstrated that TET3 overexpression significantly reduced CpG island methylation in the NG2 and PDGFRA promoter regions. RNA sequencing revealed that TET3 induces iOPCs to express a series of genes essential for OPC formation while inhibiting the signaling pathways that hinder OPC development. In a rat model of SCI, TET3-overexpressing HUCMSCs appear to have the potential to differentiate into iOPCs in vivo, suppressed secondary injury, and promoted functional recovery. The therapeutic effects of iOPCs on SCI were superior to those of standard mesenchymal stem cell treatments. CONCLUSIONS Our study demonstrated that TET3-mediated demethylation reshapes the methylation patterns of HUCMSCs, enabling their efficient one-step conversion into OPCs and significantly reducing the time required for cell preparation. This approach offers a potential strategy for early intervention in SCI. In an SCI model, TET3-induced OPCs contributed to spinal cord repair, providing novel insights into cell therapy strategies for SCI through the lens of methylation regulation.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Zhibin Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Man Guo
- Department of Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Yangyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Jingsong Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yishu Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Mi Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Tianli Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Pengfei Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yingwei Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yansong Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
16
|
Hattori K, Makishima K, Suma S, Abe Y, Suehara Y, Sakamoto T, Kurita N, Ishii R, Matsuoka R, Matsuda M, Tsurubuchi T, Nishikawa R, Tanaka S, Mukasa A, Narita Y, Ichimura K, Nagane M, Takano S, Mathis BJ, Ishikawa E, Matsubara D, Chiba S, Sakata‐Yanagimoto M. Association between microenvironment-related genes and prognosis of primary central nervous system lymphoma. EJHAEM 2024; 5:1201-1214. [PMID: 39691244 PMCID: PMC11647707 DOI: 10.1002/jha2.1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
Background Primary central nervous system lymphoma (PCNSL) is a rare lymphoid malignancy. Systemic profiling of the PCNSL tumor microenvironment (TME) was previously conducted through gene expression analysis. We investigated the prognostic impact of TME on survival to establish novel prognostic biomarkers in PCNSL patients. Methods We analyzed expression levels of 770 neuroinflammation-related (NFR) genes via NanoString nCounter technology in tumor samples from 30 PCNSL patients. Genes related to the "recurrence group (RG)" or "non-recurrence group (NRG)" were identified and validated using whole transcriptomic analysis of an independent PCNSL cohort (n = 30). Results Forty-five of 770 NFR genes were highly expressed in the RG (3-year overall survival (OS, 22.2%), compared with the NRG group (3-year OS 66.7%). Signatures related to glial cells were enriched in the RG-associated gene set. Multivariate analysis revealed that high expressions of TUBB4A (p = 0.028, HR: 3.88), S100B (p = 0.046, HR: 3.093), and SLC6A1 (p = 0.034, HR: 3.765) were significantly related to death. Expression levels of these three genes were also significantly associated with poor OS in the validation cohort. Immunohistochemical staining against TUBB4A, S100B, and proteins specific to glial cells (GFAP, OLIG2, and CD68) revealed significantly higher positivity in RG glial cells. Conclusion These data suggest that TME-related genes play a crucial role in the pathogenesis of PCNSL, complementing the well-known involvement of the NF-kB signaling pathway. TME targeting, especially glial cell-specific proteins, may thus open new and complementary avenues of therapy for all stages of PCNSL.
Collapse
Affiliation(s)
- Keiichiro Hattori
- Department of HematologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | | | - Sakurako Suma
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Yoshiaki Abe
- Department of HematologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Yasuhito Suehara
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Tatsuhiro Sakamoto
- Department of HematologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Naoki Kurita
- Department of HematologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Ryota Ishii
- Department of BiostatisticsInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Ryota Matsuoka
- Department of PathologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Masahide Matsuda
- Department of NeurosurgeryInstitute of Clinical MedicineUniversity of TsukubaTsukubaJapan
| | - Takao Tsurubuchi
- Department of NeurosurgeryInstitute of Clinical MedicineUniversity of TsukubaTsukubaJapan
| | - Ryo Nishikawa
- Department of Neuro‐Oncology/NeurosurgerySaitama Medical University International Medical CenterSaitamaJapan
| | - Shota Tanaka
- Department of NeurosurgeryGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Akitake Mukasa
- Department of NeurosurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro‐OncologyNational Cancer Center HospitalTokyoJapan
| | - Koichi Ichimura
- Department of Brain Disease Translational ResearchJuntendo University Graduate School of MedicineTokyoJapan
| | - Motoo Nagane
- Department of NeurosurgeryKyorin University Faculty of MedicineTokyoJapan
| | - Shingo Takano
- Department of NeurosurgeryInstitute of Clinical MedicineUniversity of TsukubaTsukubaJapan
| | - Bryan J. Mathis
- Department of Cardiovascular SurgeryInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Eiichi Ishikawa
- Department of NeurosurgeryInstitute of Clinical MedicineUniversity of TsukubaTsukubaJapan
| | - Daisuke Matsubara
- Department of PathologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Shigeru Chiba
- Department of HematologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Mamiko Sakata‐Yanagimoto
- Department of HematologyInstitute of MedicineUniversity of TsukubaTsukubaJapan
- Department of HematologyUniversity of Tsukuba HospitalTsukubaJapan
- Division of Advanced Hemato‐OncologyTransborder Medical Research CenterUniversity of TsukubaTsukubaJapan
| |
Collapse
|
17
|
Horiuchi M, Watanabe S, Komine O, Takahashi E, Kaneko K, Itohara S, Shimada M, Ogi T, Yamanaka K. ALS-linked mutant TDP-43 in oligodendrocytes induces oligodendrocyte damage and exacerbates motor dysfunction in mice. Acta Neuropathol Commun 2024; 12:184. [PMID: 39605053 PMCID: PMC11603663 DOI: 10.1186/s40478-024-01893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Nuclear clearance and cytoplasmic aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and its pathogenic mechanism is mediated by both loss-of-function and gain-of-toxicity of TDP-43. However, the role of TDP-43 gain-of-toxicity in oligodendrocytes remains unclear. To investigate the impact of excess TDP-43 on oligodendrocytes, we established transgenic mice overexpressing the ALS-linked mutant TDP-43M337V in oligodendrocytes through crossbreeding with Mbp-Cre mice. Two-step crossbreeding of floxed TDP-43M337V and Mbp-Cre mice resulted in the heterozygous low-level systemic expression of TDP-43M337V with (Cre-positive) or without (Cre-negative) oligodendrocyte-specific overexpression of TDP-43M337V. Although Cre-negative mice also exhibit subtle motor dysfunction, TDP-43M337V overexpression in oligodendrocytes aggravated clasping signs and gait disturbance accompanied by myelin pallor in the corpus callosum and white matter of the lumbar spinal cord in Cre-positive mice. RNA sequencing analysis of oligodendrocyte lineage cells isolated from whole brains of 12-month-old transgenic mice revealed downregulation of myelinating oligodendrocyte marker genes and cholesterol-related genes crucial for myelination, along with marked upregulation of apoptotic pathway genes. Immunofluorescence staining showed cleaved caspase 3-positive apoptotic oligodendrocytes surrounded by activated microglia and astrocytes in aged transgenic mice. Collectively, our findings demonstrate that an excess amount of ALS-linked mutant TDP-43 expression in oligodendrocytes exacerbates motor dysfunction in mice, likely through oligodendrocyte dysfunction and neuroinflammation. Therefore, targeting oligodendrocyte protection, particularly through ameliorating TDP-43 pathology, could represent a potential therapeutic approach for ALS.
Collapse
Affiliation(s)
- Mai Horiuchi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Eiki Takahashi
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kumi Kaneko
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
- Department of Neuroscience and Pathobiology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan.
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Aichi, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan.
| |
Collapse
|
18
|
He Y, Xu Z, He Y, Liu J, Li J, Wang S, Xiao L. Preventing production of new oligodendrocytes impairs remyelination and sustains behavioural deficits after demyelination. Biochem Biophys Res Commun 2024; 733:150592. [PMID: 39213705 DOI: 10.1016/j.bbrc.2024.150592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Damage to oligodendrocytes (OLs) and myelin sheaths (demyelination) has been shown to be associated with numerous neurological and psychiatric disorders. Remyelination is a rare and reliable regenerative response that occurs in the central nervous system (CNS). It is generally believed that OL progenitor cells (OPCs) are the cell source to generate new OLs to remyelinate the demyelinated axons. However, several recent studies have argued that pre-existing mature OLs that survive within the demyelinated area are responsible for remyelination. Here, by conditional knock-out (KO) of a transcription factor gene that is essential for OPC differentiation, namely myelin regulatory factor (Myrf), to block the production of adult new OLs and examined its effect on remyelination after cuprizone (CPZ)-induced demyelination. We found that OPCs specific Myrf cKO mice show dramatic impairment in remyelination after 4 weeks of recovery from 5 weeks of CPZ diet and they leave over significant behavioral deficits such as anxiety-like behavior, decreased motor skills, and impaired memory compared to control mice that have recovered for the same time. Our data support the idea that OPCs are the major cell sources for myelin regeneration, suggesting that targeting the activation of OPCs and promoting their differentiation to boost new OLs production is critical for therapeutic intervention for demyelinating diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zhengtao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Junhong Liu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
19
|
Cai Y, Zhao Z, Shi M, Zheng M, Gong L, He M. Embryonic origins of forebrain oligodendrocytes revisited by combinatorial genetic fate mapping. eLife 2024; 13:RP95406. [PMID: 39259216 PMCID: PMC11390105 DOI: 10.7554/elife.95406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Multiple embryonic origins give rise to forebrain oligodendrocytes (OLs), yet controversies and uncertainty exist regarding their differential contributions. We established intersectional and subtractional strategies to genetically fate map OLs produced by medial ganglionic eminence/preoptic area (MGE/POA), lateral/caudal ganglionic eminences (LGE/CGE), and dorsal pallium in the mouse brain. We found that, contrary to the canonical view, LGE/CGE-derived OLs make minimum contributions to the neocortex and corpus callosum, but dominate piriform cortex and anterior commissure. Additionally, MGE/POA-derived OLs, instead of being entirely eliminated, make small but sustained contribution to cortex with a distribution pattern distinctive from those derived from the dorsal origin. Our study provides a revised and more comprehensive view of cortical and white matter OL origins, and established valuable new tools and strategies for future OL studies.
Collapse
Affiliation(s)
- Yuqi Cai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Zhirong Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mingyue Shi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mingfang Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ling Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
20
|
Fu YW, Jin SY, Li JT, Li XW, Gao TM, Yang JM. Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression. Glia 2024; 72:1646-1662. [PMID: 38801194 DOI: 10.1002/glia.24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.
Collapse
Affiliation(s)
- Yi-Wen Fu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Ting Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
22
|
Loganathan N, Lieu CV, Belsham DD. Immortalization and Characterization of GFAP-expressing Glial Cells from the Adult Mouse Hypothalamus, Cortex, and Brain Stem. Neuroscience 2024; 551:43-54. [PMID: 38788830 DOI: 10.1016/j.neuroscience.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The generation of astrocyte cell lines from the hypothalamus is key to study glial involvement in hypothalamic physiology, including energy homeostasis. As such, we immortalized astrocytes from the hypothalamus of an adult male CD-1 mouse using SV40 T-antigen to generate the mHypoA-Ast1 cell line. A comparative approach was taken with two other murine GFAP-expressing cell lines that were also generated in this study: a mixed glial cell line from the cortex (mCortA-G1) and an oligodendrocyte cell line from the brainstem (mBstA-Olig1), as well as an established microglial cell line (IMG). mHypoA-Ast1 cells express GFAP, alongside other astrocytic markers such as Aldh1l1, Aqp4, Glt1 and S100b, and express low levels of microglial, ependymal and oligodendrocyte markers. 100 ng/mL lipopolysaccharide (LPS) elevated mRNA levels of Il6, Il1b, Tnfα and Cxcl5 in mHypoA-Ast1 cells after 4 h, while 50 μM palmitate increased Il6 and Chop mRNA, demonstrating the ability of these cells to respond to inflammatory and nutrient signals. Interestingly, co-culture of mHypoA-Ast1 cells with mHypoE-N46 hypothalamic neuronal cells prevented the palmitate-mediated increase in orexigenic neuropeptide Agrp mRNA in mHypoE-N46 cells, suggesting that this cell line can alter neuronal responses to nutrients. In conclusion, we report mHypoA-Ast1 cells representing a functional astrocyte cell line from the adult mouse brain that can be used to study the complex interactions of hypothalamic cells, as well as dysregulation that may occur in disease states, providing a key tool for neuroendocrine research.
Collapse
Affiliation(s)
- Neruja Loganathan
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Calvin V Lieu
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Departments of Physiology, University of Toronto, Toronto, ON, Canada; Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024; 18:1425525. [PMID: 39027325 PMCID: PMC11256909 DOI: 10.3389/fnins.2024.1425525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology Isidro Espinosa de los Reyes (INPer), Mexico City, Mexico
| | | | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
24
|
Markusson S, Raasakka A, Schröder M, Sograte-Idrissi S, Rahimi AM, Asadpour O, Körner H, Lodygin D, Eichel-Vogel MA, Chowdhury R, Sutinen A, Muruganandam G, Iyer M, Cooper MH, Weigel MK, Ambiel N, Werner HB, Zuchero JB, Opazo F, Kursula P. Nanobodies against the myelin enzyme CNPase as tools for structural and functional studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595513. [PMID: 38826303 PMCID: PMC11142274 DOI: 10.1101/2024.05.25.595513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcel Schröder
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shama Sograte-Idrissi
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Amir Mohammad Rahimi
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Ommolbanin Asadpour
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Henrike Körner
- Department for Neuroimmunology and Multiple Sclerosis Research, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Dmitri Lodygin
- Department for Neuroimmunology and Multiple Sclerosis Research, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Maria A. Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Göttingen, Germany
| | - Risha Chowdhury
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Manasi Iyer
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H. Cooper
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Maya K. Weigel
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Göttingen, Germany
| | - J. Bradley Zuchero
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079 Göttingen, Germany
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
25
|
Viaene AN. A role for immunohistochemical stains in perinatal brain autopsies. J Neuropathol Exp Neurol 2024; 83:345-356. [PMID: 38441171 PMCID: PMC11029462 DOI: 10.1093/jnen/nlae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Identification of central nervous system injury is a critical part of perinatal autopsies; however, injury is not always easily identifiable due to autolysis and immaturity of the developing brain. Here, the role of immunohistochemical stains in the identification of perinatal brain injury was investigated. Blinded semiquantitative scoring of injury was performed on sections of frontal lobe from 76 cases (51 liveborn and 25 stillborn) using H&E, GFAP, Iba-1, and β-APP stains. Digital image analysis was used to quantify GFAP and Iba-1 staining. Commonly observed pathologies included diffuse white matter gliosis (DWMG) and white matter necrosis (WMN). DWMG scores were very similar on H&E and GFAP stains for liveborn subjects. For stillborn subjects, DWMG scores were significantly higher on GFAP stain than H&E. β-APP was needed for identification of WMN in 71.4% of stillborn subjects compared to 15.4% of liveborn subjects. Diffuse staining for Iba-1 within cortex and white matter was positively correlated with subject age. Staining quantification on digital image analysis was highly correlated to semiquantitative scoring. Overall, GFAP and β-APP stains were most helpful in identifying white matter injury not seen on H&E in stillborn subjects. Immunostains may therefore be warranted as an integral part of stillborn brain autopsies.
Collapse
Affiliation(s)
- Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Marinova D, Ivanov M, Yamashima T, Tonchev A. Quantity, distribution and phenotype of newly generated cells in the intact spinal cord of adult macaque monkeys. Heliyon 2024; 10:e28856. [PMID: 38596108 PMCID: PMC11002253 DOI: 10.1016/j.heliyon.2024.e28856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The existence of proliferating cells in the intact spinal cord, their distribution and phenotype, are well studied in rodents. A limited number of studies also address the proliferation after spinal cord injury, in non-human primates. However, a detailed description of the quantity, distribution and phenotype of proliferating cells at different anatomical levels of the intact adult non-human primate spinal cord is lacking at present. In the present study, we analyzed normal spinal cord tissues from adult macaque monkeys (Macaca fuscata), infused with Bromo-2'-deoxyuridine (BrdU), and euthanized at 2h, 2 weeks, 5 weeks and 10 weeks after BrdU. We found a significantly higher density of BrdU + cells in the gray matter of cervical segments as compared to thoracic or lumbar segments, and a significantly higher density of proliferating cells in the posterior as compared to the anterior horn of the gray matter. BrdU + cells exhibited phenotype of microglia or endothelial cells (∼50%) or astroglial and oligodendroglial cells (∼40%), including glial progenitor phenotypes marked by the transcription factors Sox9 and Sox10. BrdU + cells also co-expressed other transcription factors known for their involvement in embryonic development, including Emx2, Sox1, Sox2, Ngn1, Olig1, Olig2, Olig3. In the central canal, BrdU + cells were located along the dorso-ventral axis and co-labeled for the markers Vimentin and Nestin. These results reveal the extent of cellular plasticity in the spinal cord of non-human primates under normal conditions.
Collapse
Affiliation(s)
- D. Marinova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Marin Drinov str. 55, Medical University, Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University, Varna, Bulgaria
| | - M.N. Ivanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Marin Drinov str. 55, Medical University, Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University, Varna, Bulgaria
| | - T. Yamashima
- Departnent of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Takara-machi 13-1, Kanazawa, Japan
| | - A.B. Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Marin Drinov str. 55, Medical University, Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University, Varna, Bulgaria
| |
Collapse
|
27
|
Ishibashi S, Kamei N, Tsuchikawa Y, Nakamae T, Akimoto T, Miyaki S, Adachi N. Myelin-Specific microRNA-23a/b Cluster Deletion Inhibits Myelination in the Central Nervous System during Postnatal Growth and Aging. Genes (Basel) 2024; 15:402. [PMID: 38674338 PMCID: PMC11049049 DOI: 10.3390/genes15040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.
Collapse
Affiliation(s)
- Shigeki Ishibashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Yuji Tsuchikawa
- Orthopedics and Micro-Surgical Spine Center, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima 731-0293, Japan;
| | - Toshio Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| |
Collapse
|
28
|
Holota R, Dečmanová V, Alexovič Matiašová A, Košuth J, Slovinská L, Pačut L, Tomori Z, Daxnerová Z, Ševc J. Cleaved caspase-3 is present in the majority of glial cells in the intact rat spinal cord during postnatal life. Histochem Cell Biol 2024; 161:269-286. [PMID: 37938347 PMCID: PMC10912154 DOI: 10.1007/s00418-023-02249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Cell death is an essential process that occurs during the development of the central nervous system. Despite the availability of a wide range of commercially produced antibodies against various apoptotic markers, data regarding apoptosis in intact spinal cord during postnatal development and adulthood are mostly missing. We investigated apoptosis in rat spinal cord at different stages of ontogenesis (postnatal days 8, 29, and 90). For this purpose, we applied immunofluorescent detection of two widely used apoptotic markers, cleaved caspase-3 (cC3) and cleaved poly(ADP-ribose) polymerase (cPARP). Surprisingly, we found significant discrepancy between the number of cC3+ cells and PARP+ cells, with a ratio between 500:1 and 5000:1 in rat spinal cord at all postnatal time points. The majority of cC3+ cells were glial cells and did not exhibit an apoptotic phenotype. In contrast with in vivo results, in vitro analysis of primary cell cultures derived from neonatal rat spinal cord and treated with the apoptotic inductor staurosporine revealed a similar onset of occurrence of both cC3 and cPARP in cells subjected to apoptosis. Gene expression analysis of spinal cord revealed elevated expression of the Birc4 (XIAP), Birc2, and Birc5 (Survivin) genes, which are known potent inhibitors of apoptosis. Our data indicate that cC3 is not an exclusive marker of apoptosis, especially in glial cells, owing its possible presence in inhibited forms and/or its participation in other non-apoptotic roles. Therefore, cPARP appears to be a more appropriate marker to detect apoptosis.
Collapse
Affiliation(s)
- R Holota
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - V Dečmanová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - A Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic.
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - L Slovinská
- Associated Tissue Bank, Faculty of Medicine, P. J. Šafárik University in Košice and L. Pasteur University Hospital, Tr. SNP 1, 04011, Košice, Slovak Republic
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 04001, Košice, Slovak Republic
| | - L Pačut
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - Z Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovak Republic
| | - Z Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - J Ševc
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| |
Collapse
|
29
|
Paterno R, Vu T, Hsieh C, Baraban SC. Host brain environmental influences on transplanted medial ganglionic eminence progenitors. Sci Rep 2024; 14:3610. [PMID: 38351191 PMCID: PMC10864292 DOI: 10.1038/s41598-024-52478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Interneuron progenitor transplantation can ameliorate disease symptoms in a variety of neurological disorders. The strategy is based on transplantation of embryonic medial ganglionic eminence (MGE) progenitors. Elucidating how host brain environment influences the integration of interneuron progenitors is critical for optimizing this strategy across different disease states. Here, we systematically evaluated the influence of age and brain region on survival, migration, and differentiation of transplant-derived cells. We find that early postnatal MGE transplantation yields superior survival and more extensive migratory capabilities compared to transplantation during the juvenile or adult stages. MGE progenitors migrate more widely in the cortex compared to the hippocampus. Maturation to interneuron subtypes is regulated by age and brain region. MGE progenitors transplanted into the dentate gyrus sub-region of the early postnatal hippocampus can differentiate into astrocytes. Our results suggest that the host brain environment critically regulates survival, spatial distribution, and maturation of MGE-derived interneurons following transplantation. These findings inform and enable optimal conditions for interneuron transplant therapies.
Collapse
Affiliation(s)
- Rosalia Paterno
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA.
| | - Thy Vu
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA
| | - Caroline Hsieh
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA
| |
Collapse
|
30
|
Zanardi A, Nardini I, Raia S, Conti A, Ferrini B, D'Adamo P, Gilberti E, DePalma G, Belloli S, Monterisi C, Coliva A, Rainone P, Moresco RM, Mori F, Zurlo G, Scali C, Natali L, Pancanti A, Giovacchini P, Magherini G, Tovani G, Salvini L, Cicaloni V, Tinti C, Tinti L, Lana D, Magni G, Giovannini MG, Gringeri A, Caricasole A, Alessio M. New orphan disease therapies from the proteome of industrial plasma processing waste- a treatment for aceruloplasminemia. Commun Biol 2024; 7:140. [PMID: 38291108 PMCID: PMC10828504 DOI: 10.1038/s42003-024-05820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Plasma-derived therapeutic proteins are produced through an industrial fractionation process where proteins are purified from individual intermediates, some of which remain unused and are discarded. Relatively few plasma-derived proteins are exploited clinically, with most of available plasma being directed towards the manufacture of immunoglobulin and albumin. Although the plasma proteome provides opportunities to develop novel protein replacement therapies, particularly for rare diseases, the high cost of plasma together with small patient populations impact negatively on the development of plasma-derived orphan drugs. Enabling therapeutics development from unused plasma fractionation intermediates would therefore constitute a substantial innovation. To this objective, we characterized the proteome of unused plasma fractionation intermediates and prioritized proteins for their potential as new candidate therapies for human disease. We selected ceruloplasmin, a plasma ferroxidase, as a potential therapy for aceruloplasminemia, an adult-onset ultra-rare neurological disease caused by iron accumulation as a result of ceruloplasmin mutations. Intraperitoneally administered ceruloplasmin, purified from an unused plasma fractionation intermediate, was able to prevent neurological, hepatic and hematological phenotypes in ceruloplasmin-deficient mice. These data demonstrate the feasibility of transforming industrial waste plasma fraction into a raw material for manufacturing of new candidate proteins for replacement therapies, optimizing plasma use and reducing waste generation.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Nardini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Sara Raia
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Barbara Ferrini
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia D'Adamo
- Mouse Behavior Facility, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe DePalma
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sara Belloli
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
| | - Cristina Monterisi
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Rainone
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Filippo Mori
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Giada Zurlo
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Carla Scali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Letizia Natali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Annalisa Pancanti
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | - Giulio Magherini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Greta Tovani
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | | | | | - Laura Tinti
- Toscana Life Sciences Foundation, Siena, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | | | - Andrea Caricasole
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
31
|
Paciello F, Pisani A, Rolesi R, Montuoro R, Mohamed-Hizam V, Boni G, Ripoli C, Galli J, Sisto R, Fetoni AR, Grassi C. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J Neuroinflammation 2024; 21:4. [PMID: 38178142 PMCID: PMC10765700 DOI: 10.1186/s12974-023-02996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giammarco Boni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Jacopo Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università Degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
32
|
Kozlenkov A, Vadukapuram R, Zhou P, Fam P, Wegner M, Dracheva S. Novel method of isolating nuclei of human oligodendrocyte precursor cells reveals substantial developmental changes in gene expression and H3K27ac histone modification. Glia 2024; 72:69-89. [PMID: 37712493 PMCID: PMC10697634 DOI: 10.1002/glia.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) generate differentiated mature oligodendrocytes (MOs) during development. In adult brain, OPCs replenish MOs in adaptive plasticity, neurodegenerative disorders, and after trauma. The ability of OPCs to differentiate to MOs decreases with age and is compromised in disease. Here we explored the cell specific and age-dependent differences in gene expression and H3K27ac histone mark in these two cell types. H3K27ac is indicative of active promoters and enhancers. We developed a novel flow-cytometry-based approach to isolate OPC and MO nuclei from human postmortem brain and profiled gene expression and H3K27ac in adult and infant OPCs and MOs genome-wide. In adult brain, we detected extensive H3K27ac differences between the two cell types with high concordance between gene expression and epigenetic changes. Notably, the expression of genes that distinguish MOs from OPCs appears to be under a strong regulatory control by the H3K27ac modification in MOs but not in OPCs. Comparison of gene expression and H3K27ac between infants and adults uncovered numerous developmental changes in each cell type, which were linked to several biological processes, including cell proliferation and glutamate signaling. A striking example was a subset of histone genes that were highly active in infant samples but fully lost activity in adult brain. Our findings demonstrate a considerable rearrangement of the H3K27ac landscape that occurs during the differentiation of OPCs to MOs and during postnatal development of these cell types, which aligned with changes in gene expression. The uncovered regulatory changes justify further in-depth epigenetic studies of OPCs and MOs in development and disease.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramu Vadukapuram
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Zhou
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Fam
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Li Q, Zhou B, Su M, Liao P, Lei F, Li X, Liao D, Zhang X, Jiang R. Visualization and Characterization of the Brain Regional Heterogeneity of Astrocyte-Astrocyte Structural Interactions by Using Improved Iontophoresis with Dual-Fluorescent Dyes. Brain Sci 2023; 13:1644. [PMID: 38137092 PMCID: PMC10741863 DOI: 10.3390/brainsci13121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Astrocytes are morphologically intricate cells and actively modulate the function of the brain. Through numerous fine processes, astrocytes come into contact with neurons, blood vessels, and other glia cells. Emerging evidence has shown that astrocytes exhibit brain regional diversity in their morphology, transcriptome, calcium signaling, and functions. However, little is known about the brain regional heterogeneity of astrocyte-astrocyte structural interaction. So far, the visualization and characterization of the morphological features of adjacent astrocytes have been difficult, and as a result, it is still well-accepted that astrocytes in the adult brain share non-overlapped territory. In contrast, employing an approach that combines viral labeling with dual-fluorescent dyes iontophoresis under brightfield and imaging using confocal microscopy allows for the efficient and specific labeling of adjacent astrocytes, enabling a comprehensive visualization of their fine processes and the degree of their territorial overlap. Our study in the hypothalamic regions of the brain revealed a marked spatial overlap among adjacent astrocytes, which differs from the conventional understanding based on more extensively studied regions, like the hippocampus. Additionally, we revealed the heterogeneity of the astrocyte-neuron ratio across brain regions and conducted an assessment of the photostability and labeling efficiency of fluorescent dyes used for labeling adjacent astrocytes. Our study provides new insights for studying the morphological heterogeneity of astrocytes across the central nervous system.
Collapse
Affiliation(s)
- Qingran Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengchan Su
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Lei
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Guo R, Han D, Song X, Gao Y, Li Z, Li X, Yang Z, Xu Z. Context-dependent regulation of Notch signaling in glial development and tumorigenesis. SCIENCE ADVANCES 2023; 9:eadi2167. [PMID: 37948517 PMCID: PMC10637744 DOI: 10.1126/sciadv.adi2167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
In the mammalian brain, Notch signaling maintains the cortical stem cell pool and regulates the glial cell fate choice and differentiation. However, the function of Notch in regulating glial development and its involvement in tumorigenesis have not been well understood. Here, we show that Notch inactivation by genetic deletion of Rbpj in stem cells decreases astrocytes but increases oligodendrocytes with altered internal states. Inhibiting Notch in glial progenitors does not affect cell generation but instead accelerates the growth of Notch-deprived oligodendrocyte progenitor cells (OPCs) and OPC-related glioma. We also identified a cross-talk between oligodendrocytes and astrocytes, with premyelinating oligodendrocytes secreting BMP4, which is repressed by Notch, to up-regulate GFAP expression in adjacent astrocytes. Moreover, Notch inactivation in stem cells causes a glioma subtype shift from astroglia-associated to OPC-correlated patterns and vice versa. Our study reveals Notch's context-dependent function, promoting astrocytes and astroglia-associated glioma in stem cells and repressing OPCs and related glioma in glial progenitors.
Collapse
Affiliation(s)
| | | | | | - Yanjing Gao
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenmeiyu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Fang M, Chen L, Tang T, Qiu M, Xu X. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Glia 2023; 71:2499-2510. [PMID: 37278537 DOI: 10.1002/glia.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
In the central nervous system, oligodendrocytes (OLs) produce myelin sheaths that provide trophic support to neuronal axons and increase the propagation speed of action potential. OLs are constantly generated from OL precursor cells (OPCs) throughout life span. The production of myelinating OLs consists of three canonical stages: OPCs, newly-formed OLs (NFOs), and mature myelinating OLs. Recently, single-cell RNA transcriptomic analyses identified a new population of oligodendroglial cells, namely differentiation committed OPCs (COPs). COPs represent a critical intermediate population between OPCs and NFOs, as revealed by specific expression of G-protein coupled receptor 17 (GPR17). The dysregulation of COPs leads to the remyelination failure in demyelinating diseases and impairs the replacement of lost myelin sheaths due to aging. Hence, understanding the development of COPs and their underlying regulatory network will be helpful in establishing new strategies for promoting myelin repair in demyelinating diseases. This review summarizes the current knowledge on the development and functions of COPs under both physiological and pathological conditions. Overall, COPs function as "checkpoints" to prevent inappropriate precocious OL differentiation and myelination through expressing distinct regulatory factors. Deepening our understanding of COPs may not only advance our knowledge of how OL lineage progresses during development, but also open the door to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
36
|
Mustapha O, Grochow T, Olopade J, Fietz SA. Neocortex neurogenesis and maturation in the African greater cane rat. Neural Dev 2023; 18:7. [PMID: 37833718 PMCID: PMC10571270 DOI: 10.1186/s13064-023-00175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Neocortex development has been extensively studied in altricial rodents such as mouse and rat. Identification of alternative animal models along the "altricial-precocial" spectrum in order to better model and understand neocortex development is warranted. The Greater cane rat (GCR, Thyronomys swinderianus) is an indigenous precocial African rodent. Although basic aspects of brain development in the GCR have been documented, detailed information on neocortex development including the occurrence and abundance of the distinct types of neural progenitor cells (NPCs) in the GCR are lacking. METHODS GCR embryos and fetuses were obtained from timed pregnant dams between gestation days 50-140 and their neocortex was analyzed by immunofluorescence staining using characteristic marker proteins for NPCs, neurons and glia cells. Data were compared with existing data on closely related precocial and altricial species, i.e. guinea pig and dwarf rabbit. RESULTS The primary sequence of neuro- and gliogenesis, and neuronal maturation is preserved in the prenatal GCR neocortex. We show that the GCR exhibits a relatively long period of cortical neurogenesis of 70 days. The subventricular zone becomes the major NPC pool during mid-end stages of neurogenesis with Pax6 + NPCs constituting the major basal progenitor subtype in the GCR neocortex. Whereas dendrite formation in the GCR cortical plate appears to initiate immediately after the onset of neurogenesis, major aspects of axon formation and maturation, and astrogenesis do not begin until mid-neurogenesis. Similar to the guinea pig, the GCR neocortex exhibits a high maturation status, containing neurons with well-developed dendrites and myelinated axons and astrocytes at birth, thus providing further evidence for the notion that a great proportion of neocortex growth and maturation in precocial mammals occurs before birth. CONCLUSIONS Together, this work has deepened our understanding of neocortex development of the GCR, of the timing and the cellular differences that regulate brain growth and development within the altricial-precocial spectrum and its suitability as a research model for neurodevelopmental studies. The timelines of brain development provided by this study may serve as empirical reference data and foundation in future studies in order to model and better understand neurodevelopment and associated alterations.
Collapse
Affiliation(s)
- Oluwaseun Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - James Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
37
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
38
|
Dutta D, Pirolli NH, Levy D, Tsao J, Seecharan N, Wang Z, Xu X, Jia X, Jay SM. Differentiation state and culture conditions impact neural stem/progenitor cell-derived extracellular vesicle bioactivity. Biomater Sci 2023; 11:5474-5489. [PMID: 37367824 PMCID: PMC10529403 DOI: 10.1039/d3bm00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Extracellular vesicles (EVs) derived from neural progenitor/stem cells (NPSCs) have shown promising efficacy in a variety of preclinical models. However, NPSCs lack critical neuroregenerative functionality such as myelinating capacity. Further, culture conditions used in NPSC EV production lack standardization, limiting reproducibility challenging and potentially potency of the overall approach via lack of optimization. Here, we assessed whether oligodendrocyte precursor cells (OPCs) and immature oligodendrocytes (iOLs), which are further differentiated than NPSCs and which both give rise to mature myelinating oligodendrocytes, could yield EVs with neurotherapeutic properties comparable or superior to those from NPSCs. We additionally examined the effects of extracellular matrix (ECM) coating materials and the presence or absence of growth factors in cell culture on the ultimate properties of EVs. The data show that OPC EVs and iOL EVs performed similarly to NPSC EVs in cell proliferation and anti-inflammatory assays, but NPSC EVs performed better in a neurite outgrowth assay. Additionally, the presence of nerve growth factor (NGF) in culture was found to maximize NPSC EV bioactivity among the conditions tested. NPSC EVs produced under rationally-selected culture conditions (fibronectin + NGF) enhanced axonal regeneration and muscle reinnervation in a rat nerve crush injury model. These results highlight the need for standardization of culture conditions for neurotherapeutic NPSC EV production.
Collapse
Affiliation(s)
- Dipankar Dutta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Jeffrey Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Nicholas Seecharan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Zihui Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
39
|
Hong H, Guo C, Liu X, Yang L, Ren W, Zhao H, Li Y, Zhou Z, Lam SM, Mi J, Zuo Z, Liu C, Wang GD, Zhuo Y, Zhang YP, Li Y, Shui G, Zhang YQ, Xiong Y. Differential effects of social isolation on oligodendrocyte development in different brain regions: insights from a canine model. Front Cell Neurosci 2023; 17:1201295. [PMID: 37538851 PMCID: PMC10393781 DOI: 10.3389/fncel.2023.1201295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 08/05/2023] Open
Abstract
Social isolation (SI) exerts diverse adverse effects on brain structure and function in humans. To gain an insight into the mechanisms underlying these effects, we conducted a systematic analysis of multiple brain regions from socially isolated and group-housed dogs, whose brain and behavior are similar to humans. Our transcriptomic analysis revealed reduced expression of myelin-related genes specifically in the white matter of prefrontal cortex (PFC) after SI during the juvenile stage. Despite these gene expression changes, myelin fiber organization in PFC remained unchanged. Surprisingly, we observed more mature oligodendrocytes and thicker myelin bundles in the somatosensory parietal cortex in socially isolated dogs, which may be linked to an increased expression of ADORA2A, a gene known to promote oligodendrocyte maturation. Additionally, we found a reduced expression of blood-brain barrier (BBB) structural components Aquaporin-4, Occludin, and Claudin1 in both PFC and parietal cortices, indicating BBB disruption after SI. In agreement with BBB disruption, myelin-related sphingolipids were increased in cerebrospinal fluid in the socially isolated group. These unexpected findings show that SI induces distinct alterations in oligodendrocyte development and shared disruption in BBB integrity in different cortices, demonstrating the value of dogs as a complementary animal model to uncover molecular mechanisms underlying SI-induced brain dysfunction.
Collapse
Affiliation(s)
- Huilin Hong
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chao Guo
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xueru Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Ren
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhao
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Beijing Sinogene Biotechnology Co., Ltd., Beijing, China
| | - Zhongyin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Sin Man Lam
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jidong Mi
- Beijing Sinogene Biotechnology Co., Ltd., Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cirong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xiong
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Li JF, Hu WY, Chang HX, Bao JH, Kong XX, Ma H, Li YF. Astrocytes underlie a faster-onset antidepressant effect of hypidone hydrochloride (YL-0919). Front Pharmacol 2023; 14:1175938. [PMID: 37063256 PMCID: PMC10090319 DOI: 10.3389/fphar.2023.1175938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Major depression disorder (MDD) is a common and potentially life-threatening mental illness; however, data on its pathogenesis and effective therapeutic measures are lacking. Pathological changes in astrocytes play a pivotal role in MDD. While hypidone hydrochloride (YL-0919), an independently developed antidepressant, has shown rapid action with low side effects, its underlying astrocyte-specific mechanisms remain unclear.Methods: In our study, mice were exposed to chronic restraint stress (CRS) for 14 days or concomitantly administered YL-0919/fluoxetine. Behavioral tests were applied to evaluate the depression model; immunofluorescence and immunohistochemistry staining were used to explore morphological changes in astrocytes; astrocyte-specific RNA sequencing (RNA-Seq) analysis was performed to capture transcriptome wide alterations; and ATP and oxygen consumption rate (OCR) levels of primary astrocytes were measured, followed by YL-0919 incubation to appraise the alteration of energy metabolism and mitochondrial oxidative phosphorylation (OXPHOS).Results: YL-0919 alleviated CRS-induced depressive-like behaviors faster than fluoxetine and attenuated the number and morphologic deficits in the astrocytes of depressed mice. The changes of gene expression profile in astrocytes after CRS were partially reversed by YL-0919. Moreover, YL-0919 improved astrocyte energy metabolism and mitochondrial OXPHOS in astrocytes.Conclusion: Our results provide evidence that YL-0919 exerted a faster-onset antidepressant effect on CRS-mice possibly via astrocyte structural remodeling and mitochondria functional restoration.
Collapse
Affiliation(s)
- Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wen-Yu Hu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jin-Hao Bao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiang-Xi Kong
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| |
Collapse
|
41
|
Peng W, Liu X, Ma G, Wu Z, Wang Z, Fei X, Qin M, Wang L, Li Y, Zhang S, Xu M. Adenosine-independent regulation of the sleep-wake cycle by astrocyte activity. Cell Discov 2023; 9:16. [PMID: 36746933 PMCID: PMC9902472 DOI: 10.1038/s41421-022-00498-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/20/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior, and adenosine signaling is generally thought to be involved. Here we show multiple lines of evidence supporting that modulation of the sleep-wake behavior by astrocyte Ca2+ activity could occur without adenosine signaling. In the basal forebrain and the brainstem, two brain regions that are known to be essential for sleep-wake regulation, chemogenetically-induced astrocyte Ca2+ elevation significantly modulated the sleep-wake cycle. Although astrocyte Ca2+ level positively correlated with the amount of extracellular adenosine, as revealed by a genetically encoded adenosine sensor, we found no detectable change in adenosine level after suppressing astrocyte Ca2+ elevation, and transgenic mice lacking one of the major extracellular ATP-adenosine conversion enzymes showed similar extracellular adenosine level and astrocyte Ca2+-induced sleep modulation. Furthermore, astrocyte Ca2+ is dependent primarily on local neuronal activity, causing brain region-specific regulation of the sleep-wake cycle. Thus, neural activity-dependent astrocyte activity could regulate the sleep-wake behavior independent of adenosine signaling.
Collapse
Affiliation(s)
- Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaotong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaofa Wu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziyue Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Fei
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Meiling Qin
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lizhao Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shangha, China.
| |
Collapse
|