1
|
Saadati F, Modarresi Chahardehi A, Jamshidi N, Jamshidi N, Ghasemi D. Coumarin: A natural solution for alleviating inflammatory disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100202. [PMID: 39398983 PMCID: PMC11470182 DOI: 10.1016/j.crphar.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Coumarin, a naturally occurring compound found in various plants, has a rich history of use in traditional medicine. Recent research has highlighted its anti-inflammatory properties, positioning it as a promising candidate for treating inflammatory disorders such as rheumatoid arthritis, asthma, and inflammatory bowel disease. This narrative review aims to comprehensively summarize the current knowledge regarding coumarin's pharmacological effects in alleviating inflammatory conditions by analyzing preclinical and clinical studies. The review focuses on elucidating the mechanisms through which coumarin exerts its anti-inflammatory effects, including its antioxidant activity, inhibiting pro-inflammatory cytokine production, and modulation of immune cell functions. Additionally, the paper addresses potential limitations of using coumarin, such as concerns about toxicity at high doses or with prolonged use. Before widespread clinical application, further investigation is needed to fully understand coumarin's potential benefits and risks.
Collapse
Affiliation(s)
- Farnoosh Saadati
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Negar Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Nazanin Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| |
Collapse
|
2
|
Yadav P, Singh SK, Datta S, Verma S, Verma A, Rakshit A, Bali A, Bhatti JS, Khurana A, Navik U. Therapeutic potential and pharmacological mechanism of visnagin. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:399-412. [PMID: 38797603 DOI: 10.1016/j.joim.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Visnagin is a furanochromone and one of the most important compound in the Ammi visnaga (L.) Lam (a synonym of Visnaga daucoides Gaertn.) plant, which is used to cure various ailments. Many investigations into the bioactive properties of visnagin have been studied to date. The literature on visnagin demonstrates its biological properties, including anti-inflammatory, anti-diabetic, and beneficial effects in cardiovascular and renal diseases. Moreover, visnagin improves sperm quality parameters, stimulates steroidogenesis, and increases serum gonadotropins and testosterone levels, while decreasing pro-inflammatory cytokines, oxidative damage, genomic instability, and it modulates apoptosis. Thus, visnagin has emerged as an exciting lead for further research, owing to its potential in various unmet clinical needs. The current review summarized its basic structure, pharmacokinetics, and pharmacological effects, focusing on its mechanisms of action. The review will help to understand the potential of visnagin as an alternative treatment strategy for several diseases and provide insight into research topics that need further exploration for visnagin's safe clinical use. Please cite this article as: Yadav P, Singh SK, Datta S, Verma S, Verma A, Rakshit A, Bali A, Bhatti JS, Khurana A, Navik U. Therapeutic potential and pharmacological mechanism of visnagin. J Integr Med. 2024; 22(4): 399-412.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5000, USA
| | - Saloni Verma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Aarti Verma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Arnab Rakshit
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Anjana Bali
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Amit Khurana
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Obeidat O, Obeidat A, Obeidat A, Ismail MF. Visnagin: A novel cardioprotective agent against anthracycline toxicity (Review). MEDICINE INTERNATIONAL 2024; 4:37. [PMID: 38799005 PMCID: PMC11117031 DOI: 10.3892/mi.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Doxorubicin (DOX), a cornerstone of cancer chemotherapy, is marred by its dose-dependent cardiotoxicity, leading to cardiomyopathy and heart failure. The epidemiology of DOX-related cardiotoxicity highlights its cumulative, progressive nature, with a significant impact on the health of patients. The pathophysiological mechanisms involve mitochondrial dysfunction, oxidative stress and disrupted calcium homeostasis in cardiomyocytes. Despite the search for effective cardioprotective strategies, current treatments offer limited efficacy. Visnagin emerges as a potential solution, known for its vasodilatory and anti-inflammatory properties, and recent studies suggest its cardioprotective efficacy against DOX-induced cardiotoxicity through mitochondrial protection, the modulation of key signaling pathways and the inhibition of apoptosis. The present review aimed to provide a comprehensive overview of the mechanisms of action of visnagin, as well as to provide experimental evidence, and potential integration into cancer treatment regimens, highlighting its promise as a novel therapeutic agent for managing cardiotoxicity in patients undergoing anthracycline chemotherapy.
Collapse
Affiliation(s)
- Omar Obeidat
- Graduate Medical Education Program, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Internal Medicine Residency Program, HCA Florida North Florida Hospital, Gainesville, FL 32605, USA
| | - Ali Obeidat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Abedallah Obeidat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohamed F. Ismail
- Graduate Medical Education Program, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Internal Medicine Residency Program, HCA Florida North Florida Hospital, Gainesville, FL 32605, USA
| |
Collapse
|
4
|
Qi X, Aiyasamy K, Alenezi SK, Alanazi IM, Alshammari MS, Ibrahim IAA. Anti-nociceptive and Anti-inflammatory Activities of Visnagin in Different Nociceptive and Inflammatory Mice Models. Appl Biochem Biotechnol 2024; 196:3441-3455. [PMID: 37659050 DOI: 10.1007/s12010-023-04677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Pain management has been a severe public health issue throughout the world. Acute pain if not treated at the appropriate time can lead to chronic pain that can cause psychological and social distress. Nothing can be more rewarding than treating pain successfully for a physician. However, the use of chemical NSAIDs and opiate drugs has taken a toll on the patients with their unavoidable side effects. This study intends to explore the potential to treat pain by inhibiting nociception and inflammation with a safer, non-addictive, effective, and low-cost alternative agent from a natural source, visnagin. In vivo studies have been conducted using male Swiss albino mice as models for this research. Nociception was induced using different chemical and thermal stimuli such as acetic acid, glutamate, capsaicin, and formalin. To check for the anti-inflammatory properties, carrageenan was used to induce inflammation and the activity was assayed using peritoneal cavity leukocyte infiltration analysis and pro-inflammatory cytokine level comparison with the supplementation of visnagin at three different dosages. The findings of this study revealed that the visnagin treatment effectively attenuated the acetic acid-induced writhing response, glutamate-induced paw licking numbers, capsaicin-induced pain response, and formalin-induced biphasic licking incidences in the experimental mice models. Furthermore, the visnagin treatment remarkably suppressed the carrageenan-induced inflammation in mice, which is evident from the decreased leukocytes, mononuclear, and polymorphonuclear cell numbers in the mice. The levels of cytokines such as TNF-α, IL-1β, and IL-6 were effectively reduced by the visnagin treatment in the experimental mice. The results of open field test proved that the visnagin showed a better locomotor movement in the experimental mice. These results provided evidence for the potential activity of the visnagin against inflammatory and nociceptive responses in the mice.
Collapse
Affiliation(s)
- Xiaobing Qi
- Department of Anesthesiology, Inner Mongolia Baogang Hospital, No. 20, Shaoxian Road, Baotou City, 014010, China
| | - Kalaivani Aiyasamy
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Namakkal, 637205, Tiruchengode, India
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed S Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
5
|
Abo-Salem HM, Ali EA, Abdelmegeed H, El Souda SSM, Abdel-Aziz MS, Ahmed KM, Fawzy NM. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int J Biol Macromol 2024; 272:132631. [PMID: 38810852 DOI: 10.1016/j.ijbiomac.2024.132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A new series of chromone and furochromone-based sulfonamide Schiff's base derivatives 3-12 were synthesized and evaluated for their antimicrobial activity against S. aureus, E. coli, C. albicans, and A. niger using agar diffusion method. Compound 3a demonstrated potent antimicrobial activities with MIC values of 9.76 and 19.53 μg/mL against S. aureus, E. coli and C. albicans, which is 2-fold and 4-fold more potent than neomycin (MIC = 19.53, 39.06 μg/mL respectively). To improve the effectiveness of 3a, it was encapsulated into chitosan nanoparticles (CS-3aNPs). The CS-3aNPs size was 32.01 nm, as observed by transmission electron microscope (TEM) images and the zeta potential value was 14.1 ± 3.07 mV. Encapsulation efficiency (EE) and loading capacity (LC) were 91.5 % and 1.6 %, respectively as indicated by spectral analysis. The CS-3aNPs extremely inhibited bacterial growth utilizing the colony-forming units (CFU). The ability of CS-3aNPs to protect skin wounds was evaluated in vivo. CS-3aNPs showed complete wound re-epithelialization, hyperplasia of the epidermis, well-organized granulation tissue formation, and reduced signs of wound infection, as seen through histological assessment which showed minimal inflammatory cells in comparison with untreated wound. Overall, these findings suggest that CS-3aNPs has a positive impact on protecting skin wounds from infection due to their antimicrobial activity.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
6
|
Zhang Y, Jia D, Wu Y, Xu Y. Antipyretic and anti-inflammatory effects of inosine, an active component of Kangfuxin. Immunobiology 2024; 229:152812. [PMID: 38781756 DOI: 10.1016/j.imbio.2024.152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Kangfuxin has been widely recognized for its use in treating ulcerative conditions and mucositis, primarily due to its anti-inflammatory properties, which promote cell proliferation, granulation tissue growth, and angiogenesis. However, the exact mechanisms underlying these effects remain poorly understood. In this study, we employed high-throughput mass spectrometry to identify 11 compounds in Kangfuxin, including uracil, hypoxanthine, xanthine, inosine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, and lysine. Notably, the antipyretic and anti-inflammatory properties of inosine, one of these compounds, have not been well characterized. To address this gap, we induced fever in vivo using lipopolysaccharide (LPS) and conducted various experiments, including the analysis of endogenous mediators, inflammatory factors, quantitative polymerase chain reaction (QPCR), Western blotting, and hematoxylin and eosin (HE) staining. Our findings indicate that inosine significantly reduces LPS-induced fever, inhibits the expression of inflammatory factors, and alleviates the inflammatory response. These results suggest that inosine may serve as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| | - Daqi Jia
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District Chongqing, 401320, China.
| | - Yipeng Wu
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming 650032, China.
| |
Collapse
|
7
|
Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, Almuqrin AM, Aljowaie RM, Alkubaisi NA. Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals (Basel) 2024; 17:121. [PMID: 38256954 PMCID: PMC10819509 DOI: 10.3390/ph17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
For centuries, plants and their components have been harnessed for therapeutic purposes, with Ammi visnaga L. (Khella) being no exception to this rich tradition. While existing studies have shed light on the cytotoxic and antimicrobial properties of seed extracts, there remains a noticeable gap in research about the antimicrobial, antioxidant, and anticancer potential of root extracts. This study seeks to address this gap by systematically examining methanol extracts derived from the roots of A. visnaga L. and comparing their effects with those of seed extracts specifically against breast cancer cells. Notably, absent from previous investigations, this study focuses on the comparative analysis of the antimicrobial, antioxidant, and anticancer activities of both root and seed extracts. The methanol extract obtained from A. visnaga L. seeds demonstrated a notably higher level of total phenolic content (TPC) than its root counterpart, measuring 366.57 ± 2.86 and 270.78 ± 2.86 mg GAE/g dry weight of the dry extract, respectively. In the evaluation of antioxidant activities using the DPPH method, the IC50 values for root and seed extracts were determined to be 193.46 ± 17.13 μg/mL and 227.19 ± 1.48 μg/mL, respectively. Turning our attention to cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231), both root and seed extracts displayed similar cytotoxic activities, with IC50 values of 92.45 ± 2.14 μg/mL and 75.43 ± 2.32 μg/mL, respectively. Furthermore, both root and seed extracts exhibited a noteworthy modulation of gene expression, upregulating the expression of caspase and Bax mRNA levels while concurrently suppressing the expression of anti-apoptotic genes (Bcl-xL and Bcl-2), thereby reinforcing their potential as anticancer agents. A. visnaga L. seed extract outperforms the root extract in antimicrobial activities, exhibiting lower minimum inhibitory concentrations (MICs) of 3.81 ± 0.24 to 125 ± 7.63 μg/mL. This highlights the seeds' potential as potent antibacterial agents, expanding their role in disease prevention. Overall, this study underscores the diverse therapeutic potentials of A. visnaga L. roots and seeds, contributing to the understanding of plant-derived extracts in mitigating disease risks.
Collapse
Affiliation(s)
- Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Fetoon Alkhelaiwi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Abdulaziz M. Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| |
Collapse
|
8
|
Comparative study on the impacts of visnagin and its methoxy derivative khellin on human lymphocyte proliferation and Th 1/Th 2 balance. Pharmacol Rep 2023; 75:411-422. [PMID: 36745338 DOI: 10.1007/s43440-023-00452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Visnagin is a phenolic and natural compound in turmeric and fenugreek, and its anti-inflammatory effect has been indicated. Therefore, this study aimed to investigate and compare the anti-inflammatory properties of visnagin and its methoxy derivative khellin on human lymphocytes. METHODS Human lymphocytes were treated with khellin, visnagin (10, 30, and 100 µM), and dexamethasone (0.1 mM) in the presence of phytohemagglutinin (PHA). The levels of cell proliferation, nitric oxide (NO), glutathione (GSH), malondialdehyde (MDA), and MDA/GSH ratio were measured using biochemistry methods. Furthermore, the mRNA levels of interferon-γ (IFN-γ), interleukin (IL)-4, and IL-10 were assessed using real-time PCR, while IFN-γ/IL-4(Th1/Th2), IFN-γ/IL-10(Th1/Treg), and IL-4/IL-10(Th2/Treg) ratios were made by dividing their exact values. RESULTS In the PHA-stimulated group, GSH and IFN-γ/IL-4 levels were markedly diminished, but other variables were significantly elevated compared to the control group. Khellin and visnagin significantly declined the levels of cell proliferation, MDA, MDA/GSH ratio, and NO production. Khellin and visnagin concentration-dependently diminished IFN-γ and IL-4 levels and increased IL-10 levels compared to the PHA-stimulated group. Two higher concentrations of khellin and visnagin (30 and 100 μM) considerably diminished the IFN-γ, IFN-γ/IL-10, and IL-4/IL-10 values compared to the PHA-stimulated group. However, 100 µM of khellin and visnagin significantly increased GSH level compared to the PHA-stimulated group. CONCLUSIONS In PHA-stimulated lymphocytes, representing Th2 dominant allergic diseases, khellin and visnagin provides more specific anti-oxidant, anti-inflammatory, and immunomodulatory functions than dexamethasone. In addition, the effects of khellin were more prominent than visnagin.
Collapse
|
9
|
Amtaghri S, Qabouche A, Slaoui M, Eddouks M. Potential Antihypertensive Activity of the Aqueous Extract of Ammi visnaga and its Effect on ACE-2 in Rats. Cardiovasc Hematol Disord Drug Targets 2023; 23:277-284. [PMID: 38115615 DOI: 10.2174/011871529x255465231120055555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/19/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023]
Abstract
AIMS This work aimed to investigate the antihypertensive activity of Ammi visnaga. BACKGROUND The aqueous extract of Ammi visnaga has traditionally been used to treat hypertension in Morocco. OBJECTIVE The objective of this investigation was to evaluate the effect of Ammi visnaga aqueous extract (AVAE) on arterial blood pressure, systolic blood pressure (SBP), mean blood pressure (MBP), diastolic blood pressure (DBP), and heart rate (HR) in normotensive and hypertensive rats. In addition, the effect of the aqueous extract of Ammi visnaga on vasodilatation was assessed in isolated rat aortic rings with functional endothelium pre-contracted with epinephrine EP or KCl. METHODS AVAE was obtained, and its antihypertensive ability was pharmacologically investigated in L-NAME hypertensive and normotensive rats. The rats received oral AVAE at two selected doses of 70 and 140 mg/kg for six hours (acute experiment) and seven days (sub-chronic). Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. Moreover, the vasorelaxant activity of AESA was performed in thoracic aortic ring rats. In addition, the mechanisms of action involved in the vasorelaxant effect were studied. RESULTS AVAE lowered blood pressure only in L-Name-induced hypertensive rats. Furthermore, AVAE (0.375-1.375 mg/ml) showed a vasodilator effect in isolated aortic rats. In addition, not all of the medications used in our study were responsible for the signaling pathway. As a result, additional pharmaceuticals are required to confirm the mechanism of this signaling pathway. CONCLUSION The aqueous extract of Ammi visnaga exerts an interesting antihypertensive activity, which could be mediated through its vasorelaxant activity. The study supports its use as a medicinal plant against hypertension in Morocco.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
- Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Adil Qabouche
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Miloudia Slaoui
- Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
10
|
Tang Y, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. PHARMACEUTICAL BIOLOGY 2022; 60:479-490. [PMID: 35180016 PMCID: PMC8865097 DOI: 10.1080/13880209.2022.2039723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Acute pancreatitis (AP) is an acute abdominal inflammatory disease with episodes ranging from mild to fulminant symptoms which could include necrosis, systemic inflammation and multiple organ dysfunction. Increasing experimental evidence demonstrates that specific bioactive ingredients from natural plants have a favourable therapeutic effect on AP. OBJECTIVE The objective of this review is to summarize the protective effects and potential mechanisms of action of phytochemicals on the attenuation of AP. METHODS Experimental studies in vivo or in vitro between January 2016 and June 2021 were sought in PubMed and Web of Science using the following search terms: ('phytochemicals' OR 'medicinal plant' OR 'traditional medicine') AND ('pancreatitis' OR 'pancreatic damage' OR 'pancreatic injury'). Data concerning the basic characteristics of phytochemicals, therapeutic dose and potential molecular mechanisms related to AP were extracted in this study. RESULTS A total of 30 phytochemicals with potential therapeutic effects were reviewed and summarized systematically. According to their molecular pathways in AP, the underlying mechanisms of the phytochemicals were illustrated in detail. DISCUSSION AND CONCLUSIONS The phytochemicals with anti-inflammatory and antioxidant abilities may be efficient candidate drugs for AP treatment. Importantly, more preclinical investigations are needed to illustrate the efficacy of future phytochemicals.
Collapse
Affiliation(s)
- Yao Tang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- CONTACT Zhenning Liu Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, China
| |
Collapse
|
11
|
Tian Q, Yin H, Li J, Jiang J, Ren B, Liu J. Neuroprotective, Anti-inflammatory Effect of Furanochrome, Visnagin Against Middle Cerebral Ischemia-Induced Rat Model. Appl Biochem Biotechnol 2022; 194:5767-5780. [PMID: 35819694 DOI: 10.1007/s12010-022-04009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
In recent years, the medical field had significantly progressed to a greater extent which was evidenced with increased life expectancy and decreased mortality rate. Due to the growth of medical field, numerous communicable diseases are prevented and eradicated, whereas the non-communicable disease incidence has been increased globally. One such non-communicable disease which threatens the global population is stroke. Stroke tends to be the second leading cause of death and disability in older population. In lower- and middle-income countries, increased incidence rate of stroke was also evidenced in younger population which is alarming. Lifestyle changes, poor physical activity, stress, consumption of alcohol, oral contraception, and smoking tend to be the causative agents of stroke. Since thrombus formation is the major pathology of stroke, drugs were targeted to thrombolysis. Currently thrombolytic, antiplatelet, and anticoagulant therapies were given for the stroke patients. But the recovery rate of stroke patients with available drugs is very slow. Hence, it is a need of today to discover a drug with increased recovery rate and decreased or nil side effects. Phytochemicals are the best options to treat such non-communicable chronic diseases. Visnagin is one such compound which is used to regulate blood pressure, treat kidney stones, tumors of bile duct, renal colic, and whooping cough. It possesses anti-inflammatory, neuroprotective, and cardioprotective properties; it was also proven to treat epileptic seizures. In this study, the anti-ischemic effect of a furanochrome visnagin was assessed in in vivo rat model. Middle cerebral ischemic/reperfusion was induced in healthy male Sprague Dawley rats and treated with different concentrations of visnagin. The neuroprotective effect of visnagin against cerebral ischemia-induced rats was assessed by analyzing the neurological score, brain edema, infract volume, and Evans blue leakage. The anti-inflammatory property of visnagin was assessed by quantifying proinflammatory cytokines in serum and brain tissues of cerebral ischemia-induced rats. Prostaglandin E-2, COX-2, and NFκ-β were estimated to assess the anti-ischemic effect of visnagin. Histopathological analysis with H&E staining was performed to confirm the neuroprotective effect of visnagin against cerebral ischemia. Our results authentically confirm that visnagin has prevented the inflammation in brain region of cerebral ischemia-induced rats. The neurological scoring and the quantification of PGE-2, COX-2, and NFκ-β prove the anti-ischemic effect of visnagin. Furthermore, the histopathological analysis of hippocampal region provides evidence to the neuroprotective effect of visnagin against cerebral ischemia. Overall, our study confirms visnagin as a potent alternative drug to treat stroke.
Collapse
Affiliation(s)
- Qiangyuan Tian
- Department of Cerebrovascular Diseases Center, Linyi Traditional Chinese Medical Hospital, No. 211, Jiefang Road, Lanshan District, Linyi City, 276003, Shandong Province, China.
| | - Hua Yin
- Department of Cerebrovascular Diseases Center, Linyi Traditional Chinese Medical Hospital, No. 211, Jiefang Road, Lanshan District, Linyi City, 276003, Shandong Province, China
| | - Jisen Li
- Department of Cerebrovascular Diseases Center, Linyi Traditional Chinese Medical Hospital, No. 211, Jiefang Road, Lanshan District, Linyi City, 276003, Shandong Province, China
| | - Jinggong Jiang
- Department of Cerebrovascular Diseases Center, Linyi Traditional Chinese Medical Hospital, No. 211, Jiefang Road, Lanshan District, Linyi City, 276003, Shandong Province, China
| | - Binbin Ren
- Department of Cerebrovascular Diseases Center, Linyi Traditional Chinese Medical Hospital, No. 211, Jiefang Road, Lanshan District, Linyi City, 276003, Shandong Province, China
| | - Junhui Liu
- Department of Cerebrovascular Diseases Center, Linyi Traditional Chinese Medical Hospital, No. 211, Jiefang Road, Lanshan District, Linyi City, 276003, Shandong Province, China
| |
Collapse
|
12
|
Qi Q, Wang Q, Wang Z, Gao W, Gong X, Wang L. Visnagin inhibits cervical cancer cells proliferation through the induction of apoptosis and modulation of PI3K/AKT/mTOR and MAPK signaling pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Gurram S, Anchi P, Panda B, Tekalkar SS, Mahajan RB, Godugu C. Amelioration of experimentally induced inflammatory arthritis by intra-articular injection of visnagin. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100114. [PMID: 35992378 PMCID: PMC9389203 DOI: 10.1016/j.crphar.2022.100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | | | | | | | - Chandraiah Godugu
- Corresponding author. Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Balanagar, Hyderabad, Telangana State, India.
| |
Collapse
|
14
|
The Anti-Arthritic Efficacy of Khellin Loaded in Ascorbyl Decanoate Nanovesicles after an Intra-Articular Administration. Pharmaceutics 2021; 13:pharmaceutics13081275. [PMID: 34452236 PMCID: PMC8399539 DOI: 10.3390/pharmaceutics13081275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis is the most widespread joint-affecting disease. The management of persistent pain remains inadequate and demands new therapeutic strategies. In this study, we explored the pain relieving and protective properties of a single intra-articular (i.a.) injection of khellin loaded in nanovesicles (K-Ves) based on ascorbyl decanoate plus phosphatidylcholine in a rat model of osteoarthritis (OA) induced by monosodium iodoacetate (MIA) treatment. The developed nanovesicles (approximately 136 nm) had a narrow size distribution (PdI 0.26), a good recovery (about 80%) and a worthy encapsulation efficiency (about 70%) with a ζ-potential of about −40 mV. The stability of K-Ves was assessed in simulated synovial fluid. Seven days after the articular damage with MIA, both K-Ves and a suspension of khellin (K, 50 μL) were i.a. injected. K-Ves significantly counteracted MIA-induced hypersensitivity to mechanical noxious (paw pressure test) and non-noxious stimuli (von Frey test) and significantly reduced the postural unbalance related to spontaneous pain (incapacitance test) and the motor alterations (beam balance test) 7 and 14 days after the i.a. injection. K was partially active only on day 7 after the treatment. The histology emphasized the improvement of several morphological factors in MIA plus K-Ves-treated animals. In conclusion, K-Ves could be successfully used for the local treatment of osteoarthritis.
Collapse
|
15
|
Ajarem JS, Hegazy AK, Allam GA, Allam AA, Maodaa SN, Mahmoud AM. Effect of Visnagin on Altered Steroidogenesis and Spermatogenesis, and Testicular Injury Induced by the Heavy Metal Lead. Comb Chem High Throughput Screen 2021; 24:758-766. [PMID: 32957877 DOI: 10.2174/1386207323999200918124639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lead (Pb) is an environmental pollutant causing serious health problems, including impairment of reproduction. Visnagin (VIS) is a furanochromone with promising antioxidant and anti-inflammatory effects; however, its protective efficacy against Pb toxicity has not been investigated. OBJECTIVE This study evaluated the protective effect of VIS on Pb reproductive toxicity, impaired steroidogenesis and spermatogenesis, oxidative stress and inflammation. METHODS Rats received VIS (30 or 60 mg/kg) and 50 mg/kg lead acetate for 3 weeks and blood and testes samples were collected. RESULTS Pb intoxication impaired the pituitary-testicular axis (PTA) manifested by the decreased serum levels of gonadotropins and testosterone. Pb decreased sperm count, motility and viability, increased sperm abnormalities, and downregulated the steroidogenesis markers StAR, CYP17A1, 3β-HSD and 17β-HSD in the testis of rats. VIS significantly increased serum gonadotropins and testosterone, alleviated sperm parameters and upregulated steroidogenesis. In addition, VIS decreased pro-inflammatory cytokines, testicular lipid peroxidation and DNA fragmentation, downregulated Bax, and enhanced antioxidants and Bcl-2. CONCLUSION These results demonstrate the protective effect of VIS against Pb reproductive toxicity in rats. VIS improved serum gonadotropins and testosterone, enhanced steroidogenesis and spermatogenesis, and attenuated oxidative injury, inflammation and apoptosis. Therefore, VIS is a promising candidate for the protection against Pb-induced reproduction impairment.
Collapse
Affiliation(s)
- Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad K Hegazy
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Gamal A Allam
- Immunology Section, Department of Microbiology, College of Medicine, Taif University, Taif 21974, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
16
|
Fu HR, Li XS, Zhang YH, Feng BB, Pan LH. Visnagin ameliorates myocardial ischemia/reperfusion injury through the promotion of autophagy and the inhibition of apoptosis. Eur J Histochem 2020; 64. [PMID: 32909422 PMCID: PMC7482183 DOI: 10.4081/ejh.2020.3131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/30/2020] [Indexed: 01/31/2023] Open
Abstract
Visnagin is a furanochromone and one of the main compounds of Ammi visnaga L. that had been used to treat nephrolithiasis in Ancient Egypt. Nowadays, visnagin was widely used to treat angina pectoris, urolithiasis and hypertriglyceridemia. The potential mechanisms of visnagin involved in inflammation and cardiovascular disease were also identified. But the protective effect of visnagin on myocardial ischemia/reperfusion injury has not been confirmed. Our aim was, for the first time, to investigate the potential protective effect of visnagin on cardiac function after myocardial ischemia-reperfusion injury in a rat model, and to identify its underlying mechanism involving the inhibition of apoptosis and induction of autophagy. Thirty SD rats were randomly divided into sham group, ischemia/reperfusion group (IR), ischemia/reperfusion with visnagin (IR + visnagin) group. Myocardial ischemia/Reperfusion injury model was established. Hemodynamic measurements and echocardiography were used to analyze cardiac function, TUNEL staining and caspase activity, LC3 dots were detected with immunofluorescence staining, LC3 expression was evaluated by western blot analysis, transmission electron microscopy (TEM) was used to detect autophagosomes. Compared with the sham group and visnagin group, the cardiac dysfunction, LC3II, autophagy flow in the IR+ visnagin group increased significantly (P<0.01), but the activity of caspase-3 and caspase-9 and the apoptotic in the IR + visnagin group decreased significantly (P<0.01). In conclusion, visnagin may play a protective role in ischemia/reperfusion injury by inducing autophagy and reducing apoptosis.
Collapse
Affiliation(s)
- Hai-Rong Fu
- Department of Basic Medicine, Three Gorges Medical College, Chongqing.
| | - Xiao-Shan Li
- Department of Basic Medicine, Three Gorges Medical College, Chongqing.
| | - Yong-Hui Zhang
- Department of Basic Medicine, Three Gorges Medical College, Chongqing.
| | - Bin-Bin Feng
- Department of Pharmacy, Three Gorges Medical College, Chongqing.
| | - Lian-Hong Pan
- Center for Natural Anti-tumor Medicine Engineering, Three Gorges Medical College, Chongqing.
| |
Collapse
|
17
|
Al-Joufi F. Prevention of Metabolic, Redox and Lipid Biosynthesis Alterations by Visnagin in High Cholesterol-Fed Rats. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.398.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
19
|
Khalil N, Bishr M, Desouky S, Salama O. Ammi Visnaga L., a Potential Medicinal Plant: A Review. Molecules 2020; 25:molecules25020301. [PMID: 31940874 PMCID: PMC7024292 DOI: 10.3390/molecules25020301] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 01/07/2023] Open
Abstract
Ammi visnaga L. (Visnaga daucoides Gaertn., Family Apiaceae), also known as Khella Baldi or toothpick weed, is an annual or biennial herb indigenous to the Mediterranean region of North Africa, Asia, and Europe. The plant is known to have been used in traditional medicine a long time ago. Nowadays, it is used in modern medicine to treat many aliments such as renal colic and coronary insufficiency, and is used as an antioxidant, antifungal, and antibacterial, with a larvicidal effect on mosquito larvae. Peer-reviewed studies show that these pharmacological activities are due its valuable chemical constituents that include mainly essential oil, polyphenolic compounds including flavonoids, as well as γ-pyrones, represented mainly by khellin and visnagin. Its essential oil is reported to have antiviral, antibacterial, and larvicidal effects, while its flavonoid content is responsible for its antioxidant activity. Its γ-pyrone content has a powerful effect on facilitating the passage of kidney stones and relieving renal colic, in addition to having a relaxant effect on smooth muscle including that of the coronary arteries. The current review represents the progress in research on A. visnaga in terms of either its chemistry or biological activities. This review represents scientific support material for the use of the plant by the pharmaceutical industry.
Collapse
Affiliation(s)
- Noha Khalil
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt;
- Correspondence: ; Tel.: +20-100-356-6515
| | - Mokhtar Bishr
- Arab Company for Pharmaceuticals and Medicinal Plants, (Mepaco-Medifood), El-Sharqiya 11361, Egypt;
| | - Samar Desouky
- Faculty of Pharmacy, Minia University, Al Minya 61519, Egypt;
| | - Osama Salama
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
20
|
Synthesis of 8-carbo substituted 2-(trifluoromethyl)-4H-furo[2,3-h]chromen-4-ones and their thienoangelicin derivatives. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2019.109395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Abu-Serie MM, Habashy NH, Maher AM. In vitro anti-nephrotoxic potential of Ammi visnaga, Petroselinum crispum, Hordeum vulgare, and Cymbopogon schoenanthus seed or leaf extracts by suppressing the necrotic mediators, oxidative stress and inflammation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:149. [PMID: 31238921 PMCID: PMC6593595 DOI: 10.1186/s12906-019-2559-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The kidney is an essential organ required by the body to perform several important functions. Nephrotoxicity is one of the most prevailing kidney complications that result from exposure to an extrinsic or intrinsic toxicant, which increase the need for the acquisition of proper remedies. Recently, natural remedies are gaining great attention owed to the fact that they have fewer side effects than most conventional drugs. METHODS The current study recorded a new therapeutic role of the well-known medicinal plants for kidney stones [Ammi visnaga (AVE), Petroselinum crispum (PCE), Hordeum vulgare (HVE), and Cymbopogon schoenanthus (CSE)]. Hence, the aqueous extracts of these plants examined against CCl4-induced toxicity in mammalian kidney (Vero) cells. RESULTS These extracts showed the presence of varying amounts of phenolic and triterpenoid compounds, as well as vitamin C. Owing to the antioxidant potential of these constituents, the extracts suppressed the CCl4-induced oxidative stress significantly (p < 0.05) by scavenging the reactive oxygen species and enhancing the cellular antioxidant indices. In addition, these extracts significantly (p < 0.05) reduced the CCl4-induced inflammation by inhibiting the gene expression of NF-кB, iNOS, and in turn the level of nitric oxide. Consequently, the morphological appearance of Vero cells, cellular necrosis, and the gene expression of kidney injury molecule-1 (a marker of renal injury) after these treatments were improved. The AVE improved CCl4-induced oxidative and inflammatory stress in Vero cells and showed a more potent effect than the commonly used alpha-Ketoanalogue drug (ketosteril) in most of the studied assays. CONCLUSION Thus, the studied plant extracts, especially AVE can be considered as promising extracts in the management of nephrotoxicity and other chronic diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, 21934 Egypt
| | - Noha H. Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | - Adham M. Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| |
Collapse
|
22
|
Pasari LP, Khurana A, Anchi P, Aslam Saifi M, Annaldas S, Godugu C. Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomed Pharmacother 2019; 112:108629. [PMID: 30798137 DOI: 10.1016/j.biopha.2019.108629] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis (AP) is an exocrine dysfunction of the pancreas where oxidative stress and inflammatory cytokines play a key role in induction and progression of the disease. Studies have demonstrated that antioxidant phytochemicals have been effective in improving pancreatitis condition, but there are no clinically approved drugs till date. Our study aims to assess the preventive activity of visnagin, a novel phytochemical isolated from Ammi visnaga against cerulein induced AP. Male Swiss albino mice were divided into six groups (n = 6, each group) comprising of normal control, cerulein control, seven day pre-treatment with visnagin at three dose levels; visnagin low dose (10 mg/kg), visnagin mid dose (30 mg/kg), visnagin high dose (60 mg/kg) and visnagin control (60 mg/kg). AP was induced by six injections of cerulein (50 μg/kg, i.p.) on the 7th day and the animals were sacrificed after 6 h of last cerulein dose. Various markers of pancreatic function, oxidative stress and inflammation were assessed. Visnagin was found to be effective in reducing plasma amylase and lipase levels, reduced cerulein induced oxidative stress. Visnagin dose dependently decreased the expression of IL-1β, IL-6, TNF-α and IL-17. It attenuated the levels of nuclear p65-NFκB. Visnagin improved the antioxidant defence by improving Nrf2 expression and halted pancreatic inflammation by suppressing NFκB and nitrotyrosine expression in the acinar cells. Further, it attenuated the expression of markers of multiple organ dysfunction syndrome and reduced inflammatory cytokines in lungs and intestine. Cumulatively, these findings indicate that visnagin has substantial potential to prevent cerulein induced AP.
Collapse
Affiliation(s)
- Lakshmi Priya Pasari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Shivaraju Annaldas
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India.
| |
Collapse
|
23
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Khellinoflavanone, a Semisynthetic Derivative of Khellin, Overcomes Benzo[ a]pyrene Toxicity in Human Normal and Cancer Cells That Express CYP1A1. ACS OMEGA 2018; 3:8553-8566. [PMID: 31458985 PMCID: PMC6645225 DOI: 10.1021/acsomega.8b01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 05/08/2023]
Abstract
Cytochrome P450 family 1 (CYP1) enzymes catalyze the metabolic activation of environmental procarcinogens such as benzo[a]pyrene, B[a]P, into carcinogens, which initiates the process of carcinogenesis. Thus, stopping the metabolic activation of procarcinogens can possibly prevent the onset of cancer. Several natural products have been reported to show unique ability in inhibiting CYP1 enzymes. We found that khellin, a naturally occurring furanochromone from Ammi visnaga, inhibits CYP1A1 enzyme with an IC50 value of 4.02 μM in CYP1A1-overexpressing human HEK293 suspension cells. To further explore this natural product for discovery of more potent and selective CYP1A1 inhibitors, two sets of semisynthetic derivatives were prepared. Treatment of khellin with alkali results in opening of a pyrone ring, yielding khellinone (2). Claisen-Schmidt condensation of khellinone (2) with various aldehydes in presence of potassium hydroxide, at room temperature, provides a series of furanochalcones 3a-v (khellinochalcones). Treatment of khellinone (2) with aryl aldehydes in the presence of piperidine, under reflux, affords the flavanone series of compounds 4a-p (khellinoflavanones). The khellinoflavanone 4l potently inhibited CYP1A1 with an IC50 value of 140 nM in live cells, with 170-fold selectivity over CYP1B1 (IC50 for CYP1B1 = 23.8 μM). Compound 4l at 3× IC50 concentration for inhibition of CYP1A1 completely protected HEK293 cells from CYP1A1-mediated B[a]P toxicity. Lung cancer cells, A549 (p53+) and Calu-1 (p53-null), blocked in growth at the S-phase by B[a]P were restored into the cell cycle by compound 4l. The results presented herein strongly indicate the potential of these khellin derivatives for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S. Williams
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Vinay R. Sonawane
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Bhabatosh Chaudhuri
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Natural
Products Chemistry Division, Academy of Scientific & Innovative
Research, and Medicinal Chemistry Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
24
|
Supercritical fluid extraction of γ-Pyrones from Ammi visnaga L. fruits. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Fu H, Li X, Tan J. NIPAAm-MMA nanoparticle-encapsulated visnagin ameliorates myocardial ischemia/reperfusion injury through the promotion of autophagy and the inhibition of apoptosis. Oncol Lett 2018; 15:4827-4836. [PMID: 29552122 PMCID: PMC5840612 DOI: 10.3892/ol.2018.7922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
The main method for the treatment of acute myocardial infarction (AMI) is percutaneous coronary intervention; however percutaneous coronary intervention will induce ischemia/reperfusion (IR) injury, resulting in the loss of cardiac function and cardiomyocyte death. An effective drug to target this condition is necessary. N-isopropylacrylamide and methacrylic acid were used to synthesize drug delivery nanoparticles (NP) containing the natural compound visnagin for IR injury treatment. It was demonstrated that NP containing fluorescein isothiocyanate localized to the site of myocardial IR, and that NP-visnagin treatment induced cardioprotection, reducing the size of the MI and ameliorating cardiac dysfunction through the induction of autophagy and the inhibition of apoptosis. In the future, visnagin may be suitable as a drug for IR injury treatment, and NP may be an effective drug delivery system.
Collapse
Affiliation(s)
- Hairong Fu
- Department of Physiology, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Xiaoshan Li
- Department of Pathology, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Jiahua Tan
- Department of Physical Education, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| |
Collapse
|
26
|
Fu Y, Xin Z, Liu B, Wang J, Wang J, Zhang X, Wang Y, Li F. Platycodin D Inhibits Inflammatory Response in LPS-Stimulated Primary Rat Microglia Cells through Activating LXRα-ABCA1 Signaling Pathway. Front Immunol 2018; 8:1929. [PMID: 29375565 PMCID: PMC5767310 DOI: 10.3389/fimmu.2017.01929] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Platycodin D (PLD), an effective triterpenesaponin extracted from Platycodon grandiflorum, has been known to have anti-inflammatory effect. In the present study, we investigate the anti-inflammatory effects of PLD on LPS-induced inflammation in primary rat microglia cells. The results showed that PLD significantly inhibited LPS-induced ROS, TNF-α, IL-6, and IL-1β production in primary rat microglia cells. PLD also inhibited LPS-induced NF-κB activation. Furthermore, our results showed that PLD prevented LPS-induced TLR4 translocation into lipid rafts via disrupting the formation of lipid rafts by inducing cholesterol efflux. In addition, PLD could activate LXRα–ABCA1 signaling pathway which induces cholesterol efflux from cells. The inhibition of inflammatory cytokines by PLD could be reversed by SiRNA of LXRα. In conclusion, these results indicated that PLD prevented LPS-induced inflammation by activating LXRα–ABCA1 signaling pathway, which disrupted lipid rafts and prevented TLR4 translocation into lipid rafts, thereby inhibiting LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Zhuoyuan Xin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, First Hospital of Jilin University, Changchun, China
| | - Jiaxin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| |
Collapse
|
27
|
Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, Sosnovik DE, Shin JT, Haber DA, Berman JN, Chao W, Peterson RT. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med 2014; 6:266ra170. [PMID: 25504881 PMCID: PMC4360984 DOI: 10.1126/scitranslmed.3010189] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Doxorubicin is a highly effective anticancer chemotherapy agent, but its use is limited by its cardiotoxicity. To develop a drug that prevents this toxicity, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulates the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and found that visnagin (VIS) and diphenylurea (DPU) rescue the cardiac performance and circulatory defects caused by doxorubicin in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. VIS treatment improved cardiac contractility in doxorubicin-treated mice. Further, VIS and DPU did not reduce the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we found that VIS binds to mitochondrial malate dehydrogenase (MDH2), a key enzyme in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS' cardioprotective effects. Thus, VIS and DPU are potent cardioprotective compounds, and MDH2 is a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yan Liu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Aarti Asnani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Lin Zou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Victoria L Bentley
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Min Yu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - You Wang
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kumar S Sarkar
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Matthew Dai
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Howard H Chen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - David E Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jordan T Shin
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. Department of Pediatrics, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Randall T Peterson
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
28
|
Pham MV, Cramer N. Rhodium(III)/Copper(II)-Promotedtrans-Selective Heteroaryl Acyloxylation of Alkynes: Stereodefined Access totrans-Enol Esters. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Pham MV, Cramer N. Rhodium(III)/Copper(II)-Promotedtrans-Selective Heteroaryl Acyloxylation of Alkynes: Stereodefined Access totrans-Enol Esters. Angew Chem Int Ed Engl 2014; 53:14575-9. [DOI: 10.1002/anie.201409450] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/15/2014] [Indexed: 01/09/2023]
|
30
|
Chen T, Gu J, Wang H, Yuan G, Chen L, Xu X, Xiao W. Semi-Preparative Scale Separation of Emodin from Plant Extract by Using Molecularly Imprinted Polymer as Stationary Phase. Chromatographia 2014. [DOI: 10.1007/s10337-014-2691-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Heisler J, Elvir L, Barnouti F, Charles E, Wolkow TD, Pyati R. Morphological Effects of Natural Products on Schizosaccharomyces pombe Measured by Imaging Flow Cytometry. NATURAL PRODUCTS AND BIOPROSPECTING 2014; 4:27-35. [PMID: 24660134 PMCID: PMC3956978 DOI: 10.1007/s13659-014-0004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 05/11/2023]
Abstract
ABSTRACT Gaining a full understanding of the mechanisms of action of natural products as therapeutic agents includes observing the effects of natural products on cellular morphology, because abnormal cellular morphology is an important aspect of cellular transformations that occur as part of disease states. In this study a set of natural products was examined in search of small molecules that influence the cylindrical morphology of fission yeast Schizosaccharomyces pombe. Imaging flow cytometry of large populations of S. pombe exposed to natural products captured cell images and revealed changes in mean length and aspect ratio of cells. Several natural products were found to alter S. pombe's morphology relative to control, in terms of elongating cells, shrinking them, or making them more round. These results may facilitate future investigations into methods by which cells establish and maintain specific shapes. GRAPHICAL ABSTRACT Gaining a full understanding of the mechanisms of action of natural products as therapeutic agents includes observing the effects of natural products on cellular morphology, because abnormal cellular morphology is an important aspect of cellular transformations that occur as part of disease states. In this study a set of natural products was examined in search of small molecules that influence the cylindrical morphology of fission yeast Schizosaccharomyces pombe. Imaging flow cytometry of large populations of S. pombe exposed to natural products captured cell images and revealed changes in mean length and aspect ratio of cells. Several natural products were found to alter S. pombe's morphology relative to control, in terms of elongating cells, shrinking them, or making them more round. These results may facilitate future investigations into methods by which cells establish and maintain specific shapes.
Collapse
Affiliation(s)
- Joel Heisler
- University of North Florida, Jacksonville, FL USA
| | | | | | | | - Tom D. Wolkow
- University of Colorado at Colorado Springs, Colorado Springs, CO USA
| | - Radha Pyati
- University of North Florida, Jacksonville, FL USA
| |
Collapse
|
32
|
Vrzal R, Frauenstein K, Proksch P, Abel J, Dvorak Z, Haarmann-Stemmann T. Khellin and visnagin differentially modulate AHR signaling and downstream CYP1A activity in human liver cells. PLoS One 2013; 8:e74917. [PMID: 24069365 PMCID: PMC3777991 DOI: 10.1371/journal.pone.0074917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/06/2013] [Indexed: 11/17/2022] Open
Abstract
Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1), which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE)-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Katrin Frauenstein
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Josef Abel
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | |
Collapse
|
33
|
Hadad GM, Badr JM, El-Nahriry K, Hassanean HA. Validated HPLC and HPTLC Methods for Simultaneous Determination of Colchicine and Khellin in Pharmaceutical Formulations. J Chromatogr Sci 2012; 51:258-65. [DOI: 10.1093/chromsci/bms135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
DNA binding, antiviral activities and cytotoxicity of new furochromone and benzofuran derivatives. Arch Pharm Res 2011; 34:1623-32. [PMID: 22076762 DOI: 10.1007/s12272-011-1006-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 10/15/2022]
Abstract
Bromination of visnagin (1) afforded 9-bromovisnagin (2) which on its alkaline hydrolysis afforded the 3-acetyl benzofuran derivative (3). The condensation of (3) with hydrazine hydrate, phenylhydrazine and/or hydroxylamine hydrochloride afforded the corresponding pyrazole derivatives (4a, b) and isoxazole derivative (4c). On the other hand, when compound 3 was condensed with some aromatic aldehydes, this yielded corresponding α, β-unsaturated keto derivatives (5a-e). Furthermore, when 1 was subjected to chlorosulfonation, the visnaginsulfonylchloride derivative 6 was afforded, which on amidation using morpholine, a sulonamido derivative (7) was obtained. Alkaline hydrolysis of the latter compound yielded 7-N-morpholinosulsamidobenzofuran (8) which was condensed with some aromatic aldehydes to yield the corresponding chalcone compounds (9a-e). Demethylation of visnagin afforded norvisnagin (10). The reaction of 10 with ethylbromoacetate in dry acetone yielded the ester benzopyran derivative (11) which reacted with hydrazine hydrate to afford the corresponding hydrazide derivative (12) and this was condensed with 3,4,5-trimethoxybenzaldehyde to give the corresponding hydrazone (13). A thaizolidinone derivative (14) was obtained by condensation of (13) with thioglycolic acid. Chloromethylation of norvisnagin afforded a 4-chloromethyl derivative (15) which reacted with different primary and secondary amines to yield the corresponding ethylamino derivative (16a, b). Moreover, mannich bases (16a, b) and (17a-c) were obtained by reacting norvisnagin with different primary and secondary amines in the presence of formalin but benzoylation of (16a, b) and (17a-c) afforded 4-oxybenzoyl derivative (18a-e). The prepared compounds were tested for their interaction with DNA; bromovisnagin 2 showed the highest affinity and compounds 6, 15, 8a, > 14, > 16b, 17a, and 16a showed moderate activity in decreasing potency. Moreover, compound 2 also was the most active as antiviral agent toward HS-I virus and compounds 6, 7, 15, 14, 16a, and 18a were found to be moderately active. CD(50) of the active compounds were also measured.
Collapse
|