1
|
Faustino M, Ferreira CMH, Pereira AM, Carvalho AP. Candida albicans: the current status regarding vaginal infections. Appl Microbiol Biotechnol 2025; 109:91. [PMID: 40210803 PMCID: PMC11985607 DOI: 10.1007/s00253-025-13478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Vaginal infections caused by Candida albicans are a significant global health concern due to their recurrence and negative impact on quality of life. This review examines the pathogenesis of C. albicans infections, emphasizing critical virulence factors such as biofilm formation, adherence, and phenotypic switching. Risk factors include immune system suppression, antibiotic use, and hormonal changes, all of which can lead to fungal overgrowth and infection. Current prevention and/or treatment strategies primarily rely on antifungal therapies, personal hygiene practices, and probiotics. However, challenges like antifungal resistance, recurrence, and limited treatment efficacy highlight the need for innovative approaches. Therefore, emerging methods such as novel antifungal agents, vaccines, and nanotechnology-based delivery systems offer promising advancements to improve infection control. Additionally, the immune system plays a key role in preventing C. albicans infections, with both innate and adaptive immunity acting to restrict fungal colonization and growth. Commercially available products, such as antifungal creams, vaginal probiotics, and hygiene solutions, are practical options but often lack long-term efficacy. Persistent challenges, including resistance, patient noncompliance, and restricted access to emerging therapies, hinder comprehensive prevention and treatment efforts. Thus, future research should focus on promoting interdisciplinary approaches, integrating personalized medicine, and enhancing healthcare accessibility. This review intends to present the current state of the art within the abovementioned issues and to enhance the understanding of the multifactorial nature of C. albicans infections and advanced prevention strategies, which are essential to reduce the burden of vaginal candidiasis worldwide and improve patient quality of life outcomes. KEY POINTS: • Candida albicans pathogenesis involves biofilms, adherence, and phenotypic switching. • Vaccines, nanotechnology, and new drugs offer improved prevention and treatment. • Addressing antifungal resistance and patient compliance is key for prevention success.
Collapse
Affiliation(s)
- Margarida Faustino
- Biorbis Unipessoal Lda, Rua Diogo Botelho 1327, 4169 - 005, Porto, Portugal.
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169 - 005, Porto, Portugal.
| | - Carlos M H Ferreira
- Biorbis Unipessoal Lda, Rua Diogo Botelho 1327, 4169 - 005, Porto, Portugal
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169 - 005, Porto, Portugal
| | - Ana Margarida Pereira
- CBMA (Center of Molecular and Enviromental Biology), Department of Biology, Universidade do Minho, Campus Gualtar, 4710 - 057, Braga, Portugal
- IB-S (Institute of Science and Innovation for Bio-Sustainability), Campus de Gualtar, Universidade do Minho, 4710 - 057, Braga, Portugal
| | - Ana P Carvalho
- Biorbis Unipessoal Lda, Rua Diogo Botelho 1327, 4169 - 005, Porto, Portugal
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169 - 005, Porto, Portugal
| |
Collapse
|
2
|
da Silva JL, Ikeda MAK, Albuquerque RC, de Almeida SR, Ferreira KS. Extracellular Vesicles from Dendritic Cells Protect Against Sporothrix brasiliensis Yeast Cells. Mycopathologia 2025; 190:35. [PMID: 40202614 DOI: 10.1007/s11046-025-00943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Sporotrichosis is an emerging subcutaneous mycotic zoonosis that affects the skin, lymphatic system, and other organs of humans and animals. Like other infectious fungal diseases, it becomes even more severe when it affects immunosuppressed patients. This infection has a global distribution and is endemic in some regions of Brazil and it is an important zoonotic public health problem. The disease is caused by a complex of at least four pathogenic species, including Sporothrix brasiliensis. The immunological response against these species has not yet been completely elucidated. Still, structures such as extracellular vesicles could carry important components that can contribute to the modulation and control of this significant infection. Thus, this work aims to analyze the participation of EVs from naïve dendritic cells and EVs from DCs previously primed with S. brasiliensis yeast and primed with EVs from the fungus in the immune response against experimental sporotrichosis in murine models. The groups that received EVs from DCs primed with S. brasiliensis or their EVs showed a significant decrease in fungal load compared to the negative control group. When we analyzed the cytokine profile in the skin of mice treated with EVs before infection, we observed an increase in IFN-ℽ, TNF-α, IL-17, and IL-10, mainly in animals previously treated with EVs from DCs cultivated with yeast cells. It is worth highlighting that all prophylactic protocols modulated and minimized fungal growth compared to the control; that is, EVs contributed to the control of the infection and acted in favor of the host, demonstrating a protective character.
Collapse
Affiliation(s)
- Jennifer Lacerda da Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Augusto Kazuo Ikeda
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Renata Chaves Albuquerque
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Spadari Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil.
- Faculdade de Ciências Farmacêuticas da, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Bhalla K, Sánchez León-Hing E, Huang YH, French V, Hu G, Wang J, Kretschmer M, Qu X, Moreira R, Foster EJ, Johnson P, Kronstad JW. Polyphosphatases have a polyphosphate-independent influence on the virulence of Cryptococcus neoformans. Infect Immun 2025; 93:e0007225. [PMID: 40071953 PMCID: PMC11977306 DOI: 10.1128/iai.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Cryptococcus neoformans, an invasive basidiomycete fungal pathogen, causes one of the most prevalent, life-threatening diseases in immunocompromised individuals and accounts for ~19% of AIDS-associated deaths. Therefore, understanding the pathogenesis of C. neoformans and its interactions with the host immune system is critical for developing therapeutics against cryptococcosis. Previous studies demonstrated that C. neoformans cells lacking polyphosphate (polyP), an immunomodulatory polyanionic storage molecule, display altered cell surface architecture but unimpaired virulence in a murine model of cryptococcosis. However, the relevance of cell surface changes and the role of hyperaccumulation of polyP in the virulence of C. neoformans remain unclear. Here we show that mutants with abundant polyP due to loss of the polyphosphatases Xpp1 and Epp1 are attenuated for virulence. The double mutant differed from the wild type during disease by demonstrating a higher fungal burden in disseminated organs at the experimental endpoint and by provoking an altered immune response. An analysis of triple mutants lacking the polyphosphatases and the Vtc4 protein for polyP synthesis also caused attenuated virulence in mice, thus suggesting an influence of Xpp1 and/or Epp1 independent of polyP levels. A more detailed characterization revealed that Xpp1 and Epp1 play multiple roles by contributing to the organization of the cell surface, virulence factor production, the response to stress, and mitochondrial function. Overall, we conclude that polyphosphatases have additional functions in the pathobiology of C. neoformans beyond an influence on polyP levels.IMPORTANCECryptococcus neoformans causes one of the most prevalent fungal diseases in people with compromised immune systems and accounts for ~19% of AIDS-associated deaths worldwide. The continual increase in the incidence of fungal infections and limited treatment options necessitate the development of new antifungal drugs and improved diagnostics. Polyphosphate (polyP), an under-explored biopolymer, functions as a storage molecule, modulates the host immune response, and contributes to the ability of some fungal and bacterial pathogens to cause disease. However, the role of polyP in cryptococcal disease remains unclear. In this study, we report that the polyphosphatase enzymes that regulate polyP synthesis and turnover contribute to the virulence of C. neoformans in a mouse model of cryptococcosis. The polyphosphatases influenced the survival of C. neoformans in macrophages and altered the host immune response. In addition, the mutants lacking the enzymes have changes in cell surface architecture and size, as well as defects in both mitochondrial function and the stress response. By using mutants defective in the polyphosphatases and polyP synthesis, we demonstrate that many of the phenotypic contributions of the polyphosphatases are independent of polyP.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez León-Hing
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria French
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jen Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaell Moreira
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - E. Johan Foster
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Homer CM, Voorhies M, Walcott K, Ochoa E, Sil A. Transcriptomic atlas throughout Coccidioides development reveals key phase-enriched transcripts of this important fungal pathogen. PLoS Biol 2025; 23:e3003066. [PMID: 40233121 PMCID: PMC12077801 DOI: 10.1371/journal.pbio.3003066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 05/14/2025] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Coccidioides spp. are highly understudied but significant dimorphic fungal pathogens that can infect both immunocompetent and immunocompromised people. In the environment, they grow as multicellular filaments (hyphae) that produce vegetative spores called arthroconidia. Upon inhalation by mammals, arthroconidia undergo a process called spherulation. They enlarge and undergo numerous nuclear divisions to form a spherical structure, and then internally segment until the spherule is filled with multiple cells called endospores. Mature spherules rupture and release endospores, each of which can form another spherule, in a process thought to facilitate dissemination. Spherulation is unique to Coccidioides, and its molecular determinants remain largely unknown. Here, we report the first high-density transcriptomic analyses of Coccidioides development, defining morphology-dependent transcripts and those whose expression is regulated by RYP1, a major regulator required for spherulation and virulence. Of approximately 9,000 predicted transcripts, we discovered 273 transcripts with consistent spherule-associated expression, 82 of which are RYP1-dependent, a set likely to be critical for Coccidioides virulence. ChIP-Seq revealed two distinct regulons of Ryp1: one shared between hyphae and spherules and the other unique to spherules. Spherulation regulation was elaborate, with the majority of 227 predicted transcription factors in Coccidioides displaying spherule-enriched expression. We identified provocative targets, including 20 transcripts whose expression is endospore-enriched and 14 putative secreted effectors whose expression is spherule-enriched, of which six are secreted proteases. To highlight the utility of these data, we selected a cluster of Ryp1-dependent, arthroconidia-associated transcripts and found that they play a role in arthroconidia cell wall biology, demonstrating the power of this resource in illuminating Coccidioides biology and virulence.
Collapse
Affiliation(s)
- Christina M. Homer
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Elena Ochoa
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub – San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Pegoraro FB, Mangrich-Rocha RMV, Weber SH, de Farias MR, Schmidt EMDS. Application of Principal Component Analysis as a Prediction Model for Feline Sporotrichosis. Vet Sci 2025; 12:32. [PMID: 39852907 PMCID: PMC11768719 DOI: 10.3390/vetsci12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Sporotrichosis is a worldwide zoonotic disease that is spreading and causing epidemics in large urban centers. Cats are the most susceptible species to develop the disease, which could cause significant systemic lesions. The aim was to investigate and to identify predictive indicators of disease progression by correlations between the blood profile (hematological and biochemical analytes) and cutaneous lesion patterns of 70 cats diagnosed with Sporothrix brasiliensis. The higher occurrence in male cats in this study could be related to being non-neutered and having access to open spaces. Principal component analysis (PCA) with two principal components, followed by binary logistic regression, and binary logistic regression analysis, with independent variables and backward elimination modeling, were performed to evaluate hematological (n = 56) and biochemical (n = 34) analytes, including red blood cells, hemoglobin, hematocrit, leukocytes, segmented neutrophils, band neutrophils, eosinophils, lymphocytes, monocytes, total plasma protein, albumin, urea, creatinine, and alanine aminotransferase. Two logistic regression models (PCA and independent variables) were employed to search for a predicted model to correlate fixed (isolated) and disseminated cutaneous lesion patterns. Total plasma protein concentration may be assessed during screening diagnosis as it has been recognized as an independent predictor for the dissemination of cutaneous lesion patterns, with the capability of serving as a predictive biomarker to identify the progression of cutaneous lesions induced by S. brasiliensis infections in cats.
Collapse
Affiliation(s)
- Franco Bresolin Pegoraro
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Campus Botucatu, São Paulo 18618-687, Brazil;
| | | | - Saulo Henrique Weber
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (S.H.W.); (M.R.d.F.)
| | - Marconi Rodrigues de Farias
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (S.H.W.); (M.R.d.F.)
| | | |
Collapse
|
6
|
Medhasi S, Sangphech N, Permpalung N, Torvorapanit P, Plongla R, Worasilchai N. Functional characterization of macrophages and change of Th1/Th2 balance in patients with pythiosis after Pythium insidiosum antigen immunotherapy. Sci Rep 2024; 14:27363. [PMID: 39521871 PMCID: PMC11550834 DOI: 10.1038/s41598-024-78756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
There has been limited research into the role of the Pythium insidiosum antigen (PIA) in modulating immune response in patients with pythiosis. This study investigated the balance of T helper type 2 (Th2) and T helper type 1 (Th1) responses after receiving PIA immunotherapy in patients with pythiosis. Next, the phagocytic activity and phagocytic index of IFN-γ primed PIA-treated macrophages were examined. Furthermore, the phagocytosis of infective P. insidiosum zoospores by macrophages was investigated. This work showed that the PIA vaccine induced Th1 response and M1 macrophages in patients with vascular pythiosis who survived and those with localized pythiosis. Phagocytic activity and phagocytic index were increased considerably in localized pythiosis patients compared to vascular pythiosis patients with hematological diseases. IFN-γ priming of PIA-treated macrophages against P. insidiosum zoospores enhanced the phagocytic activity and phagocytic index in vascular and localized pythiosis patients. Macrophages engulfed P. insidiosum zoospores, but the zoospores continued germination, resulting in macrophage death. Overall, our results suggest that PIA can modulate the immune responses, contributing to higher levels of Th1-type cytokine and potentially improving the survival of patients with vascular pythiosis. This study is the first to uncover that P. insidiosum zoospores can survive within macrophages.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand
| | - Naunpun Sangphech
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Nitipong Permpalung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
7
|
Onatsko N, Karam I, Thida A, Attia H, Bhamidipati D, Hamadi R, Gupta R, Preet M. Pleural Marginal Zone Lymphoma Masquerading as Metastatic Adenocarcinoma of the Lung. Cureus 2024; 16:e73462. [PMID: 39664121 PMCID: PMC11633847 DOI: 10.7759/cureus.73462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Extranodal marginal zone lymphoma (EMZL) is a rare subtype of non-Hodgkin's lymphoma characterized by the malignant transformation of lymphoid tissue at sites affected by chronic inflammation. Pleural marginal zone lymphoma (PMZL) is an infrequent manifestation of this condition. We report a case of PMZL co-occurring with primary lung adenocarcinoma. This case involves an 88-year-old female patient who presented to the emergency department with recurrent pleural effusions and symptoms suggestive of decompensated heart failure. A thoracentesis of the effusion revealed an aspergillus population. Throughout her hospitalization, the patient underwent multiple evaluations for malignancy; however, no conclusive findings emerged. Ultimately, PMZL and poorly differentiated primary adenocarcinoma of the lung were confirmed through random biopsies of the parietal pleura and lung opacities, respectively. The pleural pathology showed a monoclonal population of immunoglobulin G kappa, positive for cluster of differentiation (CD) markers CD20 and CD43. Consequently, she was treated with rituximab for PMZL, with plans to address the adenocarcinoma through stereotactic body radiation therapy (SBRT). Unfortunately, due to deconditioning from multiple hospitalizations and a pulmonary embolism, the patient chose comfort measures and subsequently passed away. Diagnosing PMZL can be challenging due to the absence of identifiable nodules. Reported cases have similarly required extensive investigations to reach a final diagnosis. While a direct correlation between chronic inflammation, frequent infectious pathogens, and the development of PMZL has yet to be established, a known association exists between EMZL and pathogens such as Helicobacter pylori in gastric involvement and Chlamydia psittaci in ocular adnexa. This report highlights the difficulties in obtaining a diagnosis for PMZL and examines the various mechanisms that may have contributed to this unusual finding.
Collapse
Affiliation(s)
- Nicole Onatsko
- Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Imad Karam
- Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Aye Thida
- Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Hagar Attia
- Pathology and Laboratory Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Dedipya Bhamidipati
- Internal Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Rachelle Hamadi
- Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Raavi Gupta
- Pathology and Laboratory Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| | - Mohan Preet
- Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA
| |
Collapse
|
8
|
Wang K, Espinosa V, Wang Y, Lemenze A, Kumamoto Y, Xue C, Rivera A. Innate cells and STAT1-dependent signals orchestrate vaccine-induced protection against invasive Cryptococcus infection. mBio 2024; 15:e0194424. [PMID: 39324785 PMCID: PMC11481872 DOI: 10.1128/mbio.01944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Fungal pathogens are underappreciated causes of significant morbidity and mortality worldwide. In previous studies, we determined that a heat-killed, Cryptococcus neoformans fbp1-deficient strain (HK-fbp1) is a potent vaccine candidate. We determined that vaccination with HK-fbp1 confers protective immunity against lethal Cryptococcosis in an interferon γ (IFNγ)-dependent manner. In this study, we set out to uncover cellular sources and relevant targets of the protective effects of IFNγ in response to the HK-fbp1 vaccine. We found that early IFNγ production peaks at day 3 and that monocytes and neutrophils are important sources of this cytokine after vaccination. Neutralization of IFNγ at day 3 results in impaired CCR2+ monocyte recruitment and reduced differentiation into monocyte-derived dendritic cells (Mo-DC). In turn, depletion of CCR2+ cells prior to immunization results in impaired activation of IFNγ-producing CD4 and CD8 T cells. Thus, monocytes are important targets of innate IFNγ and help promote further IFNγ production by lymphocytes. We employed monocyte-fate mapper and conditional STAT1 knockout mice to uncover that STAT1 activation in CD11c+ cells, including alveolar macrophages, Mo-DCs, and monocyte-derived macrophages (Mo-Mac) is essential for HK-fbp1 vaccine-induced protection. Altogether, our aggregate findings suggest critical roles for innate cells as orchestrators of vaccine-induced protection against Cryptococcus infection.IMPORTANCEThe number of patients susceptible to invasive fungal infections across the world continues to rise at an alarming pace yet current antifungal drugs are often inadequate. Immune-based interventions and novel antifungal vaccines hold the promise of significantly improving patient outcomes. In previous studies, we identified a Cryptococcus neoformans mutant strain (Fbp1-deficient) as a potent, heat-inactivated vaccine candidate capable of inducing homologous and heterologous antifungal protection. In this study, we used a combination of methods together with a cohort of conditional knockout mouse strains to interrogate the roles of innate cells in the orchestration of vaccine-induced antifungal protection. We uncovered novel roles for neutrophils and monocytes as coordinators of a STAT1-dependent cascade of responses that mediate vaccine-induced protection against invasive cryptococcosis. This new knowledge will help guide the future development of much-needed antifungal vaccines.
Collapse
Affiliation(s)
- Keyi Wang
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vanessa Espinosa
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Alexander Lemenze
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yosuke Kumamoto
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Amariliz Rivera
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
9
|
Homer CM, Voorhies M, Walcott K, Ochoa E, Sil A. Transcriptomic atlas of the morphologic development of the fungal pathogen Coccidioides reveals key phase-enriched transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618122. [PMID: 39463982 PMCID: PMC11507689 DOI: 10.1101/2024.10.13.618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Coccidioides spp. are highly understudied but significant dimorphic fungal pathogens that can infect both immunocompetent and immunocompromised people. In the environment, they grow as multicellular filaments (hyphae) that produce vegetative spores called arthroconidia. Upon inhalation by mammals, arthroconidia undergo a process called spherulation. They enlarge and undergo numerous nuclear divisions to form a spherical structure, and then internally segment until the spherule is filled with multiple cells called endospores. Mature spherules rupture and release endospores, each of which can form another spherule, in a process thought to facilitate dissemination. Spherulation is unique to Coccidioides and its molecular determinants remain largely unknown. Here, we report the first high-density transcriptomic analyses of Coccidioides development, defining morphology-dependent transcripts and those whose expression is regulated by Ryp1, a major regulator required for spherulation and virulence. Of approximately 9000 predicted transcripts, we discovered 273 transcripts with consistent spherule-associated expression, 82 of which are RYP1-dependent, a set likely to be critical for Coccidioides virulence. ChIP-Seq revealed 2 distinct regulons of Ryp1, one shared between hyphae and spherules and the other unique to spherules. Spherulation regulation was elaborate, with the majority of 227 predicted transcription factors in Coccidioides displaying spherule-enriched expression. We identified provocative targets, including 20 transcripts whose expression is endospore-enriched and 14 putative secreted effectors whose expression is spherule-enriched, of which 6 are secreted proteases. To highlight the utility of these data, we selected a cluster of RYP1-dependent, arthroconidia-associated transcripts and found that they play a role in arthroconidia cell wall biology, demonstrating the power of this resource in illuminating Coccidioides biology and virulence.
Collapse
|
10
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Oliveira MDA, de Almeida SR, Martins JO. Novel Insights into Sporotrichosis and Diabetes. J Fungi (Basel) 2024; 10:527. [PMID: 39194853 DOI: 10.3390/jof10080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Sporotrichosis is a type of zoonotic subcutaneous mycosis caused by different species of dimorphic fungus of the genus Sporothrix, and it is the most common form of subcutaneous mycosis in Latin America. Sporotrichosis is generally restricted to cutaneous and lymphatic tissue (i.e., localized forms), and involvement in the viscera (i.e., disseminated or disseminated cutaneous form) is uncommon, especially in the central nervous system. However, immunosuppression in individuals with diabetes mellitus can lead to the disseminated form of the disease due to a failure to eliminate the pathogen and poor infection treatment outcomes. Possible correlations between patients with diabetes and their greater susceptibility to disseminated cases of sporotrichosis include a decreased cytokine response after stimulation, increased oxidative stress, decreased chemotaxis, phagocytic activity, adhesion and rolling of neutrophils and monocytes/macrophages, and increased macrophage/monocyte and polymorphonuclear cell apoptosis. Therefore, this review highlights novel insights into diabetes and sporotrichosis by investigating how chronic inflammation affects and aggravates the infection, the possible causes of the greater susceptibility of Sporothrix sp. to hematogenous dissemination in immunocompromised patients, and the main alterations that this dissemination can cause.
Collapse
Affiliation(s)
- Mariana de Araujo Oliveira
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Sandro Rogério de Almeida
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
12
|
Sun Y, Chen F, Ma H, Wang D, Wang D, Zhang J, Jiang Z, Xia R, Tian T, Zhang W. Exploring the immune characteristions of CRKP pneumonia at single-cell level. Comput Biol Med 2024; 177:108574. [PMID: 38772102 DOI: 10.1016/j.compbiomed.2024.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
The immune dysregulation associated with carbapenem-resistant Klebsiella pneumoniae (CRKP) severity was investigated through single-cell RNA sequencing (scRNA-seq) of 5 peripheral blood samples from 3 patients with moderate and severe CRKP pneumonia. Additionally, scRNA-seq datasets from two individuals with COVID-19 were included for comparative analysis. The dynamic characterization and functional properties of each immune cell type were examined by delineating the transcriptional profiles of immune cells throughout the transition from moderate to severe conditions. Overall, most immune cells in CRKP patients exhibited a robust interferon-α response and inflammatory reaction compared to healthy controls, mirroring observations in COVID-19 patients. Furthermore, cell signatures associated with NK cells, macrophages, and monocytes were identified in CRKP progression including PTPRCAP for NK cells, C1QB for macrophages, and S100A12 for both macrophages and monocytes. In summary, this study offers a comprehensive scRNA-seq resource for illustrating the dynamic immune response patterns during CRKP progression, thereby shedding light on the associations between CRKP and COVID-19.
Collapse
Affiliation(s)
- Yajiao Sun
- Department of Respiratory Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Fuhui Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hui Ma
- Department of Respiratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315500, China
| | - Dongjie Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Dong Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jingwen Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhe Jiang
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Rongyao Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Tian Tian
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
13
|
Guérin A, Moncada-Vélez M, Jackson K, Ogishi M, Rosain J, Mancini M, Langlais D, Nunez A, Webster S, Goyette J, Khan T, Marr N, Avery DT, Rao G, Waterboer T, Michels B, Neves E, Iracema Morais C, London J, Mestrallet S, Quartier dit Maire P, Neven B, Rapaport F, Seeleuthner Y, Lev A, Simon AJ, Montoya J, Barel O, Gómez-Rodríguez J, Orrego JC, L’Honneur AS, Soudée C, Rojas J, Velez AC, Sereti I, Terrier B, Marin N, García LF, Abel L, Boisson-Dupuis S, Reis J, Marinho A, Lisco A, Faria E, Goodnow CC, Vasconcelos J, Béziat V, Ma CS, Somech R, Casanova JL, Bustamante J, Franco JL, Tangye SG. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024; 221:e20231044. [PMID: 38557723 PMCID: PMC10983808 DOI: 10.1084/jem.20231044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αβ T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Collapse
Affiliation(s)
- Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Andrea Nunez
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Webster
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, CT, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Birgitta Michels
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Esmeralda Neves
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cátia Iracema Morais
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Jonathan London
- Service of Internal Medicine, Diaconesse-Croix Saint Simon Hospital, Paris, France
| | - Stéphanie Mestrallet
- Department of Internal Medicine and Infectious Diseases, Manchester Hospital, Charleville-Mézières, France
| | - Pierre Quartier dit Maire
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Atar Lev
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Amos J. Simon
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jorge Montoya
- San Vicente de Paul University Hospital, Medellin, Colombia
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Julio Gómez-Rodríguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julio C. Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Anne-Sophie L’Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jessica Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Alejandra C. Velez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Nancy Marin
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Luis F. García
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Joel Reis
- Dermatology Service, University Hospital Center of Porto, Porto, Portugal
| | - Antonio Marinho
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Department of Clinical Immunology, University Hospital Center of Porto, Porto, Portugal
| | - Andrea Lisco
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilia Faria
- Allergy and Clinical Immunology Department, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Julia Vasconcelos
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Raz Somech
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
14
|
Cavallone IN, Belda W, de Carvalho CHC, Laurenti MD, Passero LFD. New Immunological Markers in Chromoblastomycosis-The Importance of PD-1 and PD-L1 Molecules in Human Infection. J Fungi (Basel) 2023; 9:1172. [PMID: 38132773 PMCID: PMC10744586 DOI: 10.3390/jof9121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The pathogenesis of chromoblastomycosis (CBM) is associated with Th2 and/or T regulatory immune responses, while resistance is associated with a Th1 response. However, even in the presence of IFN-γ, fungi persist in the lesions, and the reason for this persistence is unknown. To clarify the factors associated with pathogenesis, this study aimed to determine the polarization of the cellular immune response and the densities of cells that express markers of exhaustion in the skin of CBM patients. In the skin of patients with CBM, a moderate inflammatory infiltrate was observed, characterized primarily by the occurrence of histiocytes. Analysis of fungal density allowed us to divide patients into groups that exhibited low and high fungal densities; however, the intensity of the inflammatory response was not related to mycotic loads. Furthermore, patients with CBM exhibited a significant increase in the number of CD4+ and CD8+ cells associated with a high density of IL-10-, IL-17-, and IFN-γ-producing cells, indicating the presence of a chronic and mixed cellular immune response, which was also independent of fungal load. A significant increase in the number of PD-1+ and PD-L1+ cells was observed, which may be associated with the maintenance of the fungus in the skin and the progression of the disease.
Collapse
Affiliation(s)
- Italo N. Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, Brazil
| | - Walter Belda
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Caroline Heleno C. de Carvalho
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Marcia D. Laurenti
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Luiz Felipe D. Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
15
|
Matos GS, Fernandes CM, Del Poeta M. Role of sphingolipids in the host-pathogen interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159384. [PMID: 37673393 PMCID: PMC11218662 DOI: 10.1016/j.bbalip.2023.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
16
|
Rai G, Das S, Ansari MA, Singh PK, Dar SA, Gupta N, Sharma S, Ramachandran VG, Jain C. Implications of CD45RA and CD45RO T cell subsets in patients of chronic rhinosinusitis with nasal polyposis infected with Aspergillus flavus. Scand J Immunol 2023; 98:e13318. [PMID: 38441343 DOI: 10.1111/sji.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 03/07/2024]
Abstract
T cell subsets (CD4 and CD8) play a prominent role in the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). Colonization with Aspergillus flavus is recognized as a trigger for the growth of nasal polyps. The fungal proteins initiate the recruitment of T cells into the nasal mucosa, which contributes to the progression of nasal polyps. The study included 50 cases of CRSwNP and 50 healthy controls. Biopsies were subjected to KOH and culture for mycological investigation. We examined the changes in T helper (CD4+) and T cytotoxic (CD8+) in total T cells (CD3+) and expression of naive (CD45RA) and memory (CD45RO) cell markers in T cell subsets in peripheral blood mononuclear cells (PBMCs) challenged by A. flavus antigens in cases before and after treatment and in healthy controls by flow cytometry. Predominantly, A. flavus (86%) identified in nasal polyp biopsies of patients. An increased percentage of CD3+CD4+ T cells observed after A. flavus stimulation in patients when compared with healthy controls. The expression of CD4+CD45RA+ cells was significantly (P < .05) reduced in patients and increased CD4+CD45RO+ was observed upon stimulation with A. flavus in patients when compared with healthy control. Continuous exposure to inhaled fungal spores may induce aberrant immune responses to A. flavus spores, causing an allergic immunological reaction with high CD4+T cell responses, resulting in an unfavourable outcome. Elevated CD4+CD45RO+ T cells may transform the pathogenic response and highlight the chances of A. flavus reactive T cells involvement in prompting inflammation in CRSwNP.
Collapse
Affiliation(s)
- Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| | - Mohammad Ahmad Ansari
- Department of Microbiology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| | - Praveen Kumar Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Neelima Gupta
- Department of Otorhinolaryngology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| | | | - Charu Jain
- Department of Microbiology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
| |
Collapse
|
17
|
King J, Dambuza IM, Reid DM, Yuecel R, Brown GD, Warris A. Detailed characterisation of invasive aspergillosis in a murine model of X-linked chronic granulomatous disease shows new insights in infections caused by Aspergillus fumigatus versus Aspergillus nidulans. Front Cell Infect Microbiol 2023; 13:1241770. [PMID: 37724291 PMCID: PMC10505440 DOI: 10.3389/fcimb.2023.1241770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.
Collapse
Affiliation(s)
- Jill King
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of General Paediatrics, Royal Aberdeen Children’s Hospital, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M. Reid
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytometrics, University of Exeter, Exeter, United Kingdom
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adilia Warris
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
18
|
Gupta C, Das S, Gaurav V, Singh PK, Rai G, Datt S, Tigga RA, Pandhi D, Bhattacharya SN, Ansari MA, Dar SA. Review on host-pathogen interaction in dermatophyte infections. J Mycol Med 2023; 33:101331. [PMID: 36272379 DOI: 10.1016/j.mycmed.2022.101331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Dermatophytosis is a common superficial fungal infection of the skin and its appendages caused by dermatophytes. Recent times have witnessed a dynamic evolution of dermatophytes driven by their ecology, reproduction, pathogenicity and host immune response, influenced by population migration and socioeconomic status. Dermatophytes establish infection following successful adherence of arthroconidia to the surface of keratinized tissues. The proteolytic enzymes released during adherence and invasion not only ascertain their survival but also allow the persistence of infection in the host. While the cutaneous immune surveillance mechanism, after antigen exposure and presentation, leads to activation of T lymphocytes and subsequent clonal expansion generating effector T cells that differentially polarize to a predominant Th17 response, the response fails to eliminate the pathogen despite the presence of high levels of IFN-γ. In chronic dermatophytosis, antigens are a constant source of stimulus promoting a dysregulated Th17 response causing inflammation. The host-derived iTreg response fails to counterbalance the inflammation and instead polarizes to Th17 lineage, aggravating the chronicity of the infection. Increasing antifungal resistance and recalcitrant dermatophytosis has impeded the overall clinical remission. Human genetic research has the potential to generate knowledge to explore new therapeutic targets. The review focuses on understanding specific virulence factors involved in pathogenesis and defining the role of dysregulated host immune response against chronic dermatophytic infections for future management strategies.
Collapse
Affiliation(s)
- Chhavi Gupta
- All India Institute of Medical Science, New Delhi, 110029, India; Present Address: Consultant Infectious Diseases, Fortis Hospital, Sector 62, Gautam Buddh Nagar, Noida, Uttar Pradesh, 201301, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India.
| | - Vishal Gaurav
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) and GTB Hospital, Delhi, 110095, India
| | - Praveen K Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Shyama Datt
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Richa A Tigga
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Deepika Pandhi
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) and GTB Hospital, Delhi, 110095, India
| | - Sambit N Bhattacharya
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) and GTB Hospital, Delhi, 110095, India
| | - Mohammad A Ansari
- Department of Microbiology, University College of Medical Sciences (University of Delhi), and GTB Hospital, Delhi, 110095, India
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| |
Collapse
|
19
|
Cunha MM, Pereira ABM, Lino RC, da Silva PR, Andrade-Silva LE, de Vito FB, de Souza HM, Silva-Vergara ML, Rogério AP. Effects of combination of Cryptococcus gattii and IFN-γ, IL-4 or IL-27 on human bronchial epithelial cells. Immunobiology 2023; 228:152312. [PMID: 36577248 DOI: 10.1016/j.imbio.2022.152312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Airway epithelial cells are crucial for the establishment of cryptococcosis. In experimental cryptococcosis, the Th2 immune response is associated with host susceptibility, while Th1 cells are associated with protection. The absence of IL-27 receptor alpha in mice favor the increase Cryptococcus neoformans burden in the lung. Here, we evaluated the effects of the combination of IL-4, IFN-γ or IL-27 with C. gattii on human bronchial epithelial cells (BEAS-2B). METHODS BEAS-2B were stimulated with IL-4, IFN-γ or IL-27 (100 ng/mL) and/or live yeast forms of C. gattii (multiplicities of infection (MOI) of 1-100) and vice-versa, as well as with heat-killed cells of C. gattii for 24 h. RESULTS None of the C. gattii MOIs had cytotoxic effects on BEAS-2B when compared to control. The cells stimulated by cytokines (IL-4, IFN-γ or IL-27) followed by live yeast forms of C. gattii (MOI of 100) infection and vice-versa demonstrated a reduction in IL-6, IL-8 and/or CCL2 production and activation of STAT6 (induced by IL-4) and STAT1 (induced by IL-27 or IFN-γ) when compared to cells stimulated with C. gattii, IL-4, IFN-γ or IL-27. In the combination of cytokines and heat-killed cells of C. gattii, no inhibition of these inflammatory parameters was observed. The growth of C. gattii was increased while the phagocytosis of live yeast forms of C. gattii in the BEAS-2B were reduced in the presence of IL-4, IFN-γ or IL-27. Conclusion The association of live yeast forms, but not heat-killed yeast forms, of C. gattii with IL-4, IFN-γ or IL-27 induced an anti-inflammatory effect.
Collapse
Affiliation(s)
- Maiara Medeiros Cunha
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Roberta Campos Lino
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Leonardo Euripedes Andrade-Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Mycology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Fernanda Bernadelli de Vito
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Hélio Moraes de Souza
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Mario Leon Silva-Vergara
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Mycology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Alexandre Paula Rogério
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA.
| |
Collapse
|
20
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
21
|
Abstract
Invasive fungal infections are emerging diseases that kill over 1.5 million people per year worldwide. With the increase of immunocompromised populations, the incidence of invasive fungal infections is expected to continue to rise. Vaccines for viral and bacterial infectious diseases have had a transformative impact on human health worldwide. However, no fungal vaccines are currently in clinical use. Recently, interest in fungal vaccines has grown significantly. One Candida vaccine has completed phase 2 clinical trials, and research on vaccines against coccidioidomycosis continues to advance. Additionally, multiple groups have discovered various Cryptococcus mutant strains that promote protective responses to subsequent challenge in mouse models. There has also been progress in antibody-mediated fungal vaccines. In this review, we highlight recent fungal vaccine research progress, outline the wealth of data generated, and summarize current research for both fungal biology and immunology studies relevant to fungal vaccine development. We also review technological advancements in vaccine development and highlight the future prospects of a human vaccine against invasive fungal infections.
Collapse
Affiliation(s)
- Amariliz Rivera
- Department of Pediatrics and Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA;
| | - Jennifer Lodge
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Current affiliation: Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA;
| |
Collapse
|
22
|
Sachdeva G, Das A. Communication between immune system and mycobiota impacts health and disease. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9218050 DOI: 10.1007/s43538-022-00082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gunjan Sachdeva
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
23
|
Bruno M, Davidson L, Koenen HJPM, van den Reek JMPA, van Cranenbroek B, de Jong EMGJ, van de Veerdonk FL, Kullberg BJ, Netea MG. Immunological effects of anti-IL-17/12/23 therapy in patients with psoriasis complicated by Candida infections. J Invest Dermatol 2022; 142:2929-2939.e8. [PMID: 35662644 DOI: 10.1016/j.jid.2022.05.1083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Biologics that block the T-helper-17 pathway are very effective in the treatment of psoriasis and other inflammatory diseases. However, interleukin-17 is also crucial for antifungal host defense, and clinical trial data suggest an increase in the incidence of Candida infections during IL-17 inhibitor (IL-17i) therapy. We investigated the innate and adaptive immune responses of psoriasis patients with a history of skin and/or mucosal candidiasis during IL-17i or IL-12/23i therapy, comparing those responses to healthy controls. Psoriasis patients with IL-17i showed significantly lower CD4+Th1-like (CCR6-CXCR3+CCR4-) and Th1Th17-like (CD4+CCR6+CXCR3+CCR4-) cell percentages. Patient cells stimulated with Candida albicans produced significantly lower IL-6 in the IL-12/23i group and IL-1β production in the IL-17i group, while the release of TNF-α and ROS was similar between patients and controls. IFN-γ and IL-10 production in response to several stimuli after 7 days was particularly decreased in patients receiving IL-17i therapy. Finally, after stimulation with the polarizing cytokines IL-1β and IL-23, the Th17 cytokine response was significantly lower in the IL-17i patient group. These innate and adaptive immune response defects can diminish antifungal host immune response and thereby increase susceptibility to candidiasis in patients treated with IL-17i or IL-12/23i.
Collapse
Affiliation(s)
- Mariolina Bruno
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Linda Davidson
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Radboud University Medical Center, the Netherlands
| | | | - Bram van Cranenbroek
- Laboratory Medical Immunology, Radboud University Medical Center, the Netherlands
| | - Elke M G J de Jong
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
25
|
Amin A, Vartanian A, Poladian N, Voloshko A, Yegiazaryan A, Al-Kassir AL, Venketaraman V. Root Causes of Fungal Coinfections in COVID-19 Infected Patients. Infect Dis Rep 2021; 13:1018-1035. [PMID: 34940403 PMCID: PMC8701102 DOI: 10.3390/idr13040093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected over 200 million people, causing over 4 million deaths. COVID-19 infection has been shown to lead to hypoxia, immunosuppression, host iron depletion, hyperglycemia secondary to diabetes mellitus, as well as prolonged hospitalizations. These clinical manifestations provide favorable conditions for opportunistic fungal pathogens to infect hosts with COVID-19. Interventions such as treatment with corticosteroids and mechanical ventilation may further predispose COVID-19 patients to acquiring fungal coinfections. Our literature review found that fungal coinfections in COVID-19 infected patients were most commonly caused by Aspergillus, Candida species, Cryptococcus neoformans, and fungi of the Mucorales order. The distribution of these infections, particularly Mucormycosis, was found to be markedly skewed towards low- and middle-income countries. The purpose of this review is to identify possible explanations for the increase in fungal coinfections seen in COVID-19 infected patients so that physicians and healthcare providers can be conscious of factors that may predispose these patients to fungal coinfections in order to provide more favorable patient outcomes. After identifying risk factors for coinfections, measures should be taken to minimize the dosage and duration of drugs such as corticosteroids, immunosuppressants, and antibiotics.
Collapse
Affiliation(s)
- Arman Amin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (N.P.); (A.V.); (A.Y.); (A.L.A.-K.)
| | - Artin Vartanian
- School of Medicine, St. George’s University, St. George’s 999166, Grenada;
| | - Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (N.P.); (A.V.); (A.Y.); (A.L.A.-K.)
| | - Alexander Voloshko
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (N.P.); (A.V.); (A.Y.); (A.L.A.-K.)
| | - Aram Yegiazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (N.P.); (A.V.); (A.Y.); (A.L.A.-K.)
| | - Abdul Latif Al-Kassir
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (N.P.); (A.V.); (A.Y.); (A.L.A.-K.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (A.A.); (N.P.); (A.V.); (A.Y.); (A.L.A.-K.)
- Correspondence:
| |
Collapse
|
26
|
Wang S, Zhang YR, Yu YB. The important role of fungi in inflammatory bowel diseases. Scand J Gastroenterol 2021; 56:1312-1322. [PMID: 34392745 DOI: 10.1080/00365521.2021.1963838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Dos Santos AR, Fraga-Silva TF, de Fátima Almeida-Donanzam D, Dos Santos RF, Finato AC, Soares CT, Lara VS, Almeida NLM, Andrade MI, de Arruda OS, de Arruda MSP, Venturini J. IFN-γ Mediated Signaling Improves Fungal Clearance in Experimental Pulmonary Mucormycosis. Mycopathologia 2021; 187:15-30. [PMID: 34716549 PMCID: PMC8555725 DOI: 10.1007/s11046-021-00598-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022]
Abstract
We established three immunocompetent murine models of pulmonary mucormycosis to determine the involvement of the adaptive immune response in host resistance in pulmonary mucormycosis, a rapidly fatal disease caused mainly by Rhizopus spp. Immunocompetent inbred (C57BL/6, BALB/c) and outbred (Swiss) strains of mice were inoculated with R. oryzae via the intratracheal route. The inoculation resulted in a disseminated infection that spread to the brain, spleen, kidney, and liver. After 7 and 30 days of R. oryzae infection, BALB/c mice showed the lowest fungal load and highest production of IFN-γ and IL-2 by splenocytes. Swiss mice showed a higher fungal load 30 days p.i. and was associated with a weak development of the Th-1 profile. To confirm our findings, R. oryzae-infected IFN-γ−/− mice were evaluated after 60 days, where the mice still showed viable fungi in the lungs. This study showed, for the first time, that pulmonary mucormycosis in three widely used mouse strains resulted in an acute fungal dissemination without immunosuppression whose outcome varies according to the genetic background of the mice. We also identified the partial role of IFN-γ in the efficient elimination of R. oryzae during pulmonary infection.
Collapse
Affiliation(s)
- Amanda Ribeiro Dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | - Thais Fernanda Fraga-Silva
- Departamento de Bioquimica e Imunologia, Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, São Paulo, SP, 14049-900, Brazil
| | - Débora de Fátima Almeida-Donanzam
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | | | - Angela Carolina Finato
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil
| | | | - Vanessa Soares Lara
- Faculdade de Odontologia de Bauru (FOB), Universidade de São Paulo (USP), Bauru, SP, 17012-901, Brazil
| | | | | | | | | | - James Venturini
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil. .,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
28
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
29
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
30
|
TRIM31 facilitates K27-linked polyubiquitination of SYK to regulate antifungal immunity. Signal Transduct Target Ther 2021; 6:298. [PMID: 34362877 PMCID: PMC8342987 DOI: 10.1038/s41392-021-00711-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase, which plays an essential role in both innate and adaptive immunity. However, the key molecular mechanisms that regulate SYK activity are poorly understood. Here we identified the E3 ligase TRIM31 as a crucial regulator of SYK activation. We found that TRIM31 interacted with SYK and catalyzed K27-linked polyubiquitination at Lys375 and Lys517 of SYK. This K27-linked polyubiquitination of SYK promoted its plasma membrane translocation and binding with the C-type lectin receptors (CLRs), and also prevented the interaction with the phosphatase SHP-1. Therefore, deficiency of Trim31 in bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) dampened SYK-mediated signaling and inhibited the secretion of proinflammatory cytokines and chemokines against the fungal pathogen Candida albicans infection. Trim31-/- mice were also more sensitive to C. albicans systemic infection than Trim31+/+ mice and exhibited reduced Th1 and Th17 responses. Overall, our study uncovered the pivotal role of TRIM31-mediated K27-linked polyubiquitination on SYK activation and highlighted the significance of TRIM31 in anti-C. albicans immunity.
Collapse
|
31
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
32
|
Dunne MR, Wagener J, Loeffler J, Doherty DG, Rogers TR. Unconventional T cells - New players in antifungal immunity. Clin Immunol 2021; 227:108734. [PMID: 33895356 DOI: 10.1016/j.clim.2021.108734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Life-threatening invasive fungal diseases (IFD) are increasing in incidence, especially in immunocompromised patients and successful resolution of IFD requires a variety of different immune cells. With the limited repertoire of available antifungal drugs there is a need for more effective therapeutic strategies. This review interrogates the evidence on the human immune response to the main pathogens driving IFD, with a focus on the role of unconventional lymphocytes e.g. natural killer (NK) cells, gamma/delta (γδ) T cells, mucosal associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILC). Recent discoveries and new insights into the roles of these novel lymphocyte groups in antifungal immunity will be discussed, and we will explore how an improved understanding of antifungal action by lymphocytes can inform efforts to improve antifungal treatment options.
Collapse
Affiliation(s)
- Margaret R Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland; Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | - Johannes Wagener
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
33
|
Initiation and Pathogenesis of Severe Asthma with Fungal Sensitization. Cells 2021; 10:cells10040913. [PMID: 33921169 PMCID: PMC8071493 DOI: 10.3390/cells10040913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth, and their ubiquity and small proteolytically active products make them pervasive allergens that affect humans and other mammals. The immunologic parameters surrounding fungal allergies are still not fully elucidated despite their importance given that a large proportion of severe asthmatics are sensitized to fungal allergens. Herein, we explore fungal allergic asthma with emphasis on mouse models that recapitulate the characteristics of human disease, and the main leukocyte players in the pathogenesis of fungal allergies. The endogenous mycobiome may also contribute to fungal asthma, a phenomenon that we discuss only superficially, as much remains to be discovered.
Collapse
|
34
|
Etchecopaz A, Toscanini MA, Gisbert A, Mas J, Scarpa M, Iovannitti CA, Bendezú K, Nusblat AD, Iachini R, Cuestas ML. Sporothrix Brasiliensis: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina. J Fungi (Basel) 2021; 7:jof7030170. [PMID: 33652625 PMCID: PMC7996880 DOI: 10.3390/jof7030170] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sporotrichosis, caused by Sporothrix schenckii and related species, is the most frequent implantation mycosis in Latin America. In Argentina, over the last 8 years, there have been 0.16 new cases per month of feline sporotrichosis in 2011, increasing to 0.75 cases per month in 2019 and involving zoonotic transmission to humans. Molecular identification by polymerase chain reaction (PCR) detected Sporothrix brasiliensis in these feline and zoonotic outbreaks. This study will focus on different feline and human sporotrichosis outbreaks caused by S. brasiliensis in Argentina during 2011–2019. We will address the sources of infection and environmental hotspots, as well as the application of several treatment strategies for improving the pharmacotherapy of the different clinical forms of the disease. Finally, we will provide a detailed summary of the clinical aspects and new advances in host–pathogen interactions, virulence factors and immune response, focusing on state-of-the-art diagnostic tools and potential vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Etchecopaz
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - María A. Toscanini
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Amelia Gisbert
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Javier Mas
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Miguel Scarpa
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - Cristina A. Iovannitti
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Karla Bendezú
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Alejandro D. Nusblat
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Ricardo Iachini
- Instituto de Zoonosis «Luis Pasteur», Buenos Aires C1405 DCD, Argentina;
| | - María L. Cuestas
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
- Correspondence: ; Tel.: +54-11-59509500 (ext. 2176/77)
| |
Collapse
|
35
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
36
|
Jiang L, Stärkel P, Fan JG, Fouts DE, Bacher P, Schnabl B. The gut mycobiome: a novel player in chronic liver diseases. J Gastroenterol 2021; 56:1-11. [PMID: 33151407 PMCID: PMC7819863 DOI: 10.1007/s00535-020-01740-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome (bacteria, fungi, viruses, and archaea) is a complex and diverse ecosystem. It plays an important role in human health, but is involved in several intestinal and extraintestinal diseases. Most research to date has focused on the role of bacteria, while studies focusing on fungi (also referred to as "mycobiome" or "fungome") are still in its infancy. In this review, we focus on the existing literature available about the gut mycobiome with an emphasis on compositional mycobiome changes associated with liver diseases, the impact on pathogenesis of disease, and its potential use as therapeutic targets. We also provide insights into current methodologies of studying mycobiome, and we highlight the interkingdom interactions in the context of disease and how they affect health of the host. Herein, by focusing on the gut mycobiome, this review provides novel insights and directions for liver research.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Peter Stärkel
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
37
|
The sino-nasal warzone: transcriptomic and genomic studies on sino-nasal aspergillosis in dogs. NPJ Biofilms Microbiomes 2020; 6:51. [PMID: 33184275 PMCID: PMC7665010 DOI: 10.1038/s41522-020-00163-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
We previously showed that each dog with chronic non-invasive sino-nasal aspergillosis (SNA) was infected with a single genotype of Aspergillus fumigatus. Here, we studied the transcriptome of this fungal pathogen and the canine host within the biofilm resulting from the infection. We describe here transcriptomes resulting from natural infections in animal species with A. fumigatus. The host transcriptome showed high expression of IL-8 and alarmins, uncontrolled inflammatory reaction and dysregulation of the Th17 response. The fungal transcriptome showed in particular expression of genes involved in secondary metabolites and nutrient acquisition. Single-nucleotide polymorphism analysis of fungal isolates from the biofilms showed large genetic variability and changes related with adaptation to host environmental factors. This was accompanied with large phenotypic variability in in vitro stress assays, even between isolates from the same canine patient. Our analysis provides insights in genetic and phenotypic variability of Aspergillus fumigatus in biofilms of naturally infected dogs reflecting in-host adaptation. Absence of a Th17 response and dampening of the Th1 response contributes to the formation of a chronic sino-nasal warzone.
Collapse
|
38
|
Molecularly Distinct NLRP3 Inducers Mediate Diverse Ratios of Interleukin-1 β and Interleukin-18 from Human Monocytes. Mediators Inflamm 2020; 2020:4651090. [PMID: 33144845 PMCID: PMC7599400 DOI: 10.1155/2020/4651090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Inflammasomes cleave and activate interleukin- (IL-) 1β and IL-18 which have both shared and unique biological functions. IL-1β is an important mediator of the acute phase response to infections and tissue damage, whereas IL-18 takes part in activation and tailoring of the adaptive immune response. While IL-1β has served as the prototypic indicator of inflammasome activation, few studies have compared the potential differences in IL-1β and IL-18 production during inflammasome activation. Since these cytokines partake in different immune pathways, the involvement of inflammasome activity in different conditions needs to be described beyond IL-1β production alone. To address a potential heterogeneity in inflammasome functionality, ATP, chitosan, or silica oxide (SiO2) were used to induce NLRP3 inflammasome activation in THP-1 cells and the subsequent outcomes were quantified. Despite using doses of the inflammasome inducers yielding similar release of IL-1β, SiO2-stimulated cells showed a lower concentration of released IL-18 compared to ATP and chitosan. Hence, the cells stimulated with SiO2 responded with a distinctly different IL-18 : IL-1β ratio. The difference in the IL-18 : IL-1β ratio for SiO2 was constant over different doses. While all downstream responses were strictly dependent on a functional NLRP3 inflammasome, the differences did not depend on the level of gene expression, caspase-1 activity, or pyroptosis. We suggest that the NLRP3 inflammasome response should be considered a dynamic process, which can be described by taking the ratio between IL-1β and IL-18 into account and moving away from an on/off perspective of inflammasome activation.
Collapse
|
39
|
Nishikaku AS, Soldá MV, Ricci G, Ponzio V, Pagliari C, Medina-Pestana JO, de Franco MF, Colombo AL. Correlation between clinical outcome and tissue inflammatory response in kidney transplant recipients with cryptococcosis. Pathog Dis 2020; 78:5908379. [PMID: 32945853 DOI: 10.1093/femspd/ftaa054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is the second most common invasive fungal infection reported in renal transplant recipients. Tissue granulomatous inflammation is necessary to contain Cryptococcus infection. This study aims to analyze the granuloma patterns and in situ expression of regulatory T (Treg) immune response in tissue samples from 12 renal transplant recipients with cryptococcosis. Fungal isolates were molecularly identified as Cryptococcus neoformans species complex. A detailed characterization of granulomas in tissue samples from 12 kidney transplant recipients with cryptococcosis was described by checking six lung and six skin biopsies by conventional histology and for immunohistochemical detection of CD4 and Treg markers: forkhead box P3 (FoxP3), interleukin (IL)-10 and transforming-growth factor (TGF)-β. Granulomas were classified as compact, loose or mixed. Patients with mixed (n = 4) and compact (n = 3) granulomatous inflammation patterns were associated with a better prognosis and presented a higher number of CD4+FoxP3+T cells compared to the group of patients with loose granulomas. In counterpart, three out of five patients with loose granulomas died with cryptococcosis. We suggest that Treg may have a protective role in the tissue response to Cryptococcus infection given its association with compact and mixed granulomas in patients with better clinical outcomes.
Collapse
Affiliation(s)
- Angela S Nishikaku
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcel V Soldá
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Giannina Ricci
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Ponzio
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Hospital do Rim, Fundação Oswaldo Ramos, Universidade Federal de São Paulo, SP, Brazil
| | - Carla Pagliari
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José O Medina-Pestana
- Hospital do Rim, Fundação Oswaldo Ramos, Universidade Federal de São Paulo, SP, Brazil
| | - Marcello F de Franco
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
41
|
Corrêa-Moreira D, De Luca PM, Romeo O, C Menezes R, Paes RA, Oliveira RZ, de Moraes AM, de L Neto RG, Moraes Borba CD, E de Oliveira MM. Tregs in the immune response of BALB/c mice experimentally infected with species of the Sporothrix genus. Future Microbiol 2020; 15:1217-1225. [PMID: 33026880 DOI: 10.2217/fmb-2020-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Sporotrichosis occurs through contact with contaminated soil and plant. However, the incidence of sporotrichosis as a zoonotic epidemic has increased, particularly in Rio de Janeiro. Aim: In this work, we decided to evaluate some T-cell phenotypes involved in the immune response. Materials & methods: We used flow cytometry to quantify TCD4+ and TCD8+ and Treg from immunocompetent and immunosuppressed mice infected with Sporothrix species with different levels of virulence and pathogenicity. Results: It was demonstrated the predominance of TCD4+ over the TCD8+ cells in both groups, inoculated with all the species, and percentages of Treg observed in infected immunocompetent mice. Conclusion: This regulatory phenotype can be associated with a protective immunity in the initial periods of infection.
Collapse
Affiliation(s)
- Danielly Corrêa-Moreira
- Laboratory of Clinical Research in Dermatozoonosis in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory of Taxonomy, Biochemistry & Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paula M De Luca
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, University of Messina, Messina, Italy
| | - Rodrigo C Menezes
- Laboratory of Clinical Research in Dermatozoonosis in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rodrigo A Paes
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rosely Z Oliveira
- Laboratory of Mycology, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Aurea Ml de Moraes
- Laboratory of Taxonomy, Biochemistry & Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Reginaldo G de L Neto
- Department of Tropical Medicine, Federal University of Pernambuco, Pernambuco, Brazil
| | - Cintia de Moraes Borba
- Laboratory of Taxonomy, Biochemistry & Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Manoel Marques E de Oliveira
- Laboratory of Clinical Research in Dermatozoonosis in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Paulovičová E, Paulovičová L, Farkaš P, Karelin AA, Tsvetkov YE, Krylov VB, Nifantiev NE. Importance of Candida Antigenic Factors: Structure-Driven Immunomodulation Properties of Synthetically Prepared Mannooligosaccharides in RAW264.7 Macrophages. Front Cell Infect Microbiol 2019; 9:378. [PMID: 31788453 PMCID: PMC6856089 DOI: 10.3389/fcimb.2019.00378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence and prevalence of serious fungal infections is rising, especially in immunosuppressed individuals. Moreover, co-administration of antibiotics and immunosuppressants has driven the emergence of new multidrug-resistant pathogens. The significant increase of multidrug-resistant pathogens, together with their ability to form biofilms, is associated with morbidity and mortality. Research on novel synthetically prepared immunomodulators as potential antifungal immunotherapeutics is of serious interest. Our study demonstrated the immunobiological activity of synthetically prepared biotinylated mannooligosaccharides mimicking Candida antigenic factors using RAW264.7 macrophages. Macrophage exposure to the set of eight structurally different mannooligosaccharides induced a release of Th1, Th2, Th17, and Treg cytokine signature patterns. The observed immune responses were tightly associated with structure, dose, exposure time, and selected signature cytokines. The viability/cytotoxicity of the mannooligosaccharide formulas was assessed based on cell proliferation. The structure-based immunomodulatory activity of the formulas was evaluated with respect to the length, branching and conformation of the various formulas. Glycoconjugate formulas with terminal β-mannosyl-units tended to be more potent in terms of Candida relevant cytokines IL-12 p70, IL-17, GM-CSF, IL-6, and TNFα induction and cell proliferation, and this tendency was associated with structural differences between the studied glycoconjugate formulas. The eight tested mannooligosaccharide conjugates can be considered potential in vitro immunomodulative agents suitable for in vitro Candida diagnostics or prospectively for subcellular anti-Candida vaccine design.
Collapse
Affiliation(s)
- Ema Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Farkaš
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Shrestha U, Naik C, Huen A, Marshall K, Arivarasan K, McDyer J. Disseminated blastomycosis in coalworkers' pneumoconiosis. Proc (Bayl Univ Med Cent) 2019; 32:619-621. [PMID: 31656442 DOI: 10.1080/08998280.2019.1635412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022] Open
Abstract
Blastomyces dermatitidis is a thermally dimorphic fungus that can cause pulmonary, extrapulmonary, or disseminated infections. Though it can infect both immune-competent and immunocompromised hosts, the disease can be severe in immunocompromised hosts. Exposure to silica dust is associated with silicosis, and this is associated with impaired immunity and an increased risk of mycobacterial and fungal infections. The fungal infections commonly associated with pneumoconiosis are pulmonary aspergillosis, histoplasmosis, coccidioidomycosis, and cryptococcosis. However, there is a dearth of data on the association of pneumoconiosis and blastomycosis. Clinical deterioration and new cavitary lesions in patients with pneumoconiosis should alert clinicians of new pulmonary infection. Traditional sputum sampling may lead to poor diagnostic yield, because the organism is frequently surrounded by a fibrotic wall. Aggressive diagnostic testing with lung or skin biopsies may be warranted. We present the first reported case of disseminated blastomycosis in a patient with coalworkers' pneumoconiosis.
Collapse
Affiliation(s)
- Utsav Shrestha
- Department of Internal Medicine, University of Pittsburgh Medical Center, McKeesport ProgramPittsburghPennsylvania
| | - Chetan Naik
- Department of Pulmonary, Allergy and Critical Care, University of Pittsburgh Medical CenterPittsburghPennsylvania.,Center for Advanced Heart and Lung Disease, Baylor University Medical CenterDallasTexas
| | - Arthur Huen
- Department of Dermatology, University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Keely Marshall
- Department of Dermatology, University of Pittsburgh Medical CenterPittsburghPennsylvania
| | | | - John McDyer
- Department of Pulmonary, Allergy and Critical Care, University of Pittsburgh Medical CenterPittsburghPennsylvania
| |
Collapse
|
44
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
45
|
Schirbel A, Shouval DS, Hebecker B, Hube B, Sturm A, Werner L. Intestinal epithelial cells and T cells differentially recognize and respond toCandida albicansyeast and hypha. Eur J Immunol 2018; 48:1826-1837. [DOI: 10.1002/eji.201847586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/26/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Anja Schirbel
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Campus Mitte; Universitätsmedizin Berlin; Germany
| | - Dror S. Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Israel
- Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Infection Biology; Hans Knoell Institute; Jena Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology; University of Aberdeen
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Infection Biology; Hans Knoell Institute; Jena Germany
- Friedrich Schiller University; Jena Germany
| | - Andreas Sturm
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Campus Mitte; Universitätsmedizin Berlin; Germany
- Department of Gastroenterology; DRK Kliniken Berlin Westend. Akademisches Lehrkrankenhaus der Charité; Berlin Germany
| | - Lael Werner
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Campus Mitte; Universitätsmedizin Berlin; Germany
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Israel
- Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
46
|
Jundt JS, Wong ME, Tatara AM, Demian NM. Invasive Cutaneous Facial Mucormycosis in a Trauma Patient. J Oral Maxillofac Surg 2018; 76:1930.e1-1930.e5. [DOI: 10.1016/j.joms.2018.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 12/23/2022]
|
47
|
Batista-Duharte A, Téllez-Martínez D, Roberto de Andrade C, Portuondo DL, Jellmayer JA, Polesi MC, Carlos IZ. Sporothrix brasiliensis induces a more severe disease associated with sustained Th17 and regulatory T cells responses than Sporothrix schenckii sensu stricto in mice. Fungal Biol 2018; 122:1163-1170. [PMID: 30449354 DOI: 10.1016/j.funbio.2018.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Little is known about the differences in the CD4+ T-cell response induced by Sporothrix schenckii and Sporothrix brasiliensis, the most virulent species that cause sporotrichosis. Here, the helper (Th) and regulatory T cells (Tregs) responses were evaluated comparatively in a murine model of sporotrichosis on days 7, 21 and 35 after subcutaneous infection with either S. schenckii or S. brasiliensis conidia. The fungal load was measured at the site of infection, as well as in the liver and spleen. The Th1/Th17/Tregs responses were analyzed in the spleen, while the level of IL-2, IL-4, IL-6, TNF-alpha, IFN-ɣ, IL-17A and IL-10 cytokines were measured at the local site of infection on 24 h postinfections and in sera on the indicated days. S. brasiliensis caused a longer-lasting infection in the skin and chronic systemic dissemination associated to more severe granulomatous lesions. Similar Th1/Th1-Th17/Tregs responses were induced by both S. brasiliensis and S. schenckii on 7th and 21st d.p.i but on 35 d.p.i a reduction of Th1 and Th1-Th17 cells, associated to higher values of Th17/Tregs cells was observed only in S. brasiliensis-infected mice. In summary, S. brasiliensis caused a more severe disease associated with sustained Th17/Tregs responses than S. schenckii in mice.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Cleverton Roberto de Andrade
- São Paulo State University (UNESP), School of Dentistry, Department of Physiology & Pathology, Araraquara, SP, Brazil
| | - Deivys Leandro Portuondo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Juliana Aparecida Jellmayer
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Marisa Campos Polesi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
48
|
Rai G, Das S, Ansari MA, Singh PK, Gupta N, Sharma S, Akhter N, Ramachandran VG, Haque S, Dar SA. Phenotypic and functional profile of Th17 and Treg cells in allergic fungal sinusitis. Int Immunopharmacol 2018; 57:55-61. [DOI: 10.1016/j.intimp.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|
49
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of Controlling Invasive Fungal Infections Using CD8 + T Cells. Front Immunol 2018; 8:1939. [PMID: 29358941 PMCID: PMC5766637 DOI: 10.3389/fimmu.2017.01939] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.
Collapse
Affiliation(s)
- Pappanaicken R. Kumaresan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thiago Aparecido da Silva
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|