1
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
2
|
Romaniello D, Dall'Olio L, Mazzeschi M, Francia A, Pagano F, Gelfo V, D'Uva G, Giampieri E, Lauriola M. NF-kB oscillation profiles decode response to anti-EGFR monoclonal antibodies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100219. [PMID: 39892619 DOI: 10.1016/j.slasd.2025.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
A direct connection between an inflammatory environment and cancer has been extensively proven over the years. We previously reported that the presence of interleukin 1 (IL-1) is responsible for the lack of response to monoclonal antibody targeting epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). Considering the driver role of NF-kB in controlling the expression of IL-1, herein, we investigate the dynamics of the oscillatory profile of the NF-kB response to monoclonal antibody, on the background of an inflammatory environment. NF-kB is a typical transcription factor that displays intrinsic oscillatory behavior, whose biological relevance in term for example of decoding response to monoclonal antibodies, remains unclear. Using live cell luciferase techniques, we recorded NF-kB activity over time in response to cetuximab (CTX) alone or in combination with IL-1 cytokines. Our results revealed an additive effect of these two agents on NF-kB activation, which was specific to CTX responsive cells. In contrast, CTX resistant cells did not display a significant change in the NF-kB profile under the IL-1 plus CTX combination. These results suggest an immediate interactive crosstalk between IL-1 and EGFR in the activation of NF-kB signaling pathway, which may lay the basis for the development of drug tolerant persister cells (DTP), leading to CTX resistance.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Lorenzo Dall'Olio
- Laboratory of Data Science and Bioinformatics, IRCSS Institute of Neurological Sciences, Bellaria Hospital, via Altura 3, 40139 Bologna, Italy
| | - Martina Mazzeschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Anna Francia
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Federica Pagano
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Enrico Giampieri
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
3
|
Guglietta S, Li X, Saxena D. Role of Fungi in Tumorigenesis: Promises and Challenges. ANNUAL REVIEW OF PATHOLOGY 2025; 20:459-482. [PMID: 39854185 DOI: 10.1146/annurev-pathmechdis-111523-023524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers. Some fungal species can promote tumorigenesis by triggering the complement system. However, in immunocompromised patients, fungi can also inhibit this activation and establish life-threatening infections. Interestingly, the interaction of the fungi and bacteria can also induce unique host immune responses. Recent breakthroughs and advancements in high-throughput sequencing of the gut and tumor mycobiomes are highlighting novel diagnostic and therapeutic opportunities for cancer. We discuss the latest developments in the field of cancer and the mycobiome and the potential benefits and challenges of antifungal therapies.
Collapse
Affiliation(s)
- Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Charleston, South Carolina, USA
| | - Xin Li
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Liao AQ, Wen J, Wei JC, Xu BB, Jin N, Lin HY, Qin XY. Syntheses, crystal structures of copper (II)-based complexes of sulfonamide derivatives and their anticancer effects through the synergistic effect of anti-angiogenesis, anti-inflammation, pro-apoptosis and cuproptosis. Eur J Med Chem 2024; 280:116954. [PMID: 39406115 DOI: 10.1016/j.ejmech.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Three novel copper(II)-based complexes Cu-1, Cu-2, and Cu-3 containing sulfamethoxazole or sulfamethazine ligand were obtained, and their single structures were characterized. Both Cu-1 and Cu-3 show a broad spectrum of cytotoxicity than Cu-2, and Cu-1 is more cytotoxic than Cu-3. What's interesting is that Cu-1 can exhibit obvious inhibitory effect on the growth of human triple-negative breast cancer in vivo and vitro through anti-proliferative, anti-angiogenic, anti-inflammatory, pro-apoptotic and cuproptotic synergistic effects. Though Cu-3 shows no significant cytotoxicity against MDA-MB-231 cells, it can significantly inhibit the growth of SKOV3 cells in vitro by down-regulating the expression of some key proteins in the VEGF/VEGFR2 signaling pathway and the expression of some pro-inflammatory cytokines, and by disrupting the balance of intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Juan Wen
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, 541001, China
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
5
|
Khan A, Zhang Y, Ma N, Shi J, Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther 2024; 31:1599-1610. [PMID: 39033218 DOI: 10.1038/s41417-024-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial-mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Ningna Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China.
| |
Collapse
|
6
|
Gao H, Li W, Xu S, Xu Z, Hu W, Pan L, Luo K, Xie T, Yu Y, Sun H, Huang L, Chen P, Wu J, Yang D, Li L, Luan S, Cao M, Chen P. Gasdermin D promotes development of intestinal tumors through regulating IL-1β release and gut microbiota composition. Cell Commun Signal 2024; 22:511. [PMID: 39434144 PMCID: PMC11492562 DOI: 10.1186/s12964-024-01890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
The interplay between gut microbiota and host is crucial for maintaining host health. When this balance is broken, various diseases can arise, including colorectal cancer (CRC). However, the mechanism by which gut microbiota and host interactions mediate CRC development remains unclear. Here, we found that Gasdermin D (GSDMD), an inflammasome effector responsible for forming membrane pores to mediate cell pyroptosis, was upregulated in both human and mouse intestinal tumor samples. GSDMD deficiency significantly suppressed intestinal tumor development in Apcmin/+ mice, a spontaneous CRC mouse model. Apcmin/+Gsdmd-/- mice exhibited reduced IL-1β release in the intestine, and the administration of recombinant mouse IL-1β partially restored intestinal tumor development in Apcmin/+Gsdmd-/- mice. Moreover, 16s rRNA sequencing showed a substantial increase in Lactobacillus abundance in the feces of Apcmin/+Gsdmd-/- mice compared to Apcmin/+ mice. Concurrently, Kynurenine (Kyn), a metabolite derived from host tryptophan (Trp) metabolism, was significantly decreased in the feces of Apcmin/+Gsdmd-/- mice, as shown by metabolite analysis. Additionally, Kyn levels were inversely correlated with Lactobacillus abundance. Furthermore, the administration of exogenous Kyn also promoted intestinal tumor development in Apcmin/+Gsdmd-/- mice. Thus, GSDMD promotes spontaneous CRC development through increasing IL-1β release and Kyn production. Our data suggest an association between GSDMD, gut microbiota, the host Trp/Kyn pathway, and CRC development.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Weilong Li
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Wenjun Hu
- Department of Anesthesiology, The 305 Hospital of Liberation Army of China (PLA), Beijing, 100036, China
| | - Litao Pan
- Department of Acupuncture and Massage, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518037, China
| | - Kewang Luo
- Department of Medical Laboratory, People's Hospital of Longhua, Shenzhen, Guangdong, 518110, China
| | - Ting Xie
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yeye Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huimin Sun
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Liwen Huang
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Peishan Chen
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Jinmei Wu
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Dexing Yang
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Lian Li
- Wuzhou Medical College, Wuzhou, Guangxi, 543199, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| |
Collapse
|
7
|
Long J, Liang X, Ao Z, Tang X, Li C, Yan K, Yu X, Wan Y, Li Y, Li C, Zhou M. Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater 2024; 188:27-47. [PMID: 39265673 DOI: 10.1016/j.actbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Inflammatory bowel disease (IBD) manifests as inflammation in the colon, rectum, and ileum, presenting a global health concern with increasing prevalence. Therefore, effective anti-inflammatory therapy stands as a promising strategy for the prevention and management of IBD. However, conventional nano drug delivery systems (NDDSs) for IBD face many challenges in targeting the intestine, such as physiological and pathological barriers, genetic variants, disease severity, and nutritional status, which often result in nonspecific tissue distribution and uncontrolled drug release. To address these limitations, stimulus-responsive NDDSs have received considerable attention in recent years due to their advantages in providing controlled release and enhanced targeting. This review provides an overview of the pathophysiological mechanisms underlying IBD and summarizes recent advancements in microenvironmental stimulus-responsive nanocarriers for IBD therapy. These carriers utilize physicochemical stimuli such as pH, reactive oxygen species, enzymes, and redox substances to deliver drugs for IBD treatment. Additionally, pivotal challenges in the future development and clinical translation of stimulus-responsive NDDSs are emphasized. By offering insights into the development and optimization of stimulus-responsive drug delivery nanoplatforms, this review aims to facilitate their application in treating IBD. STATEMENT OF SIGNIFICANCE: This review highlights recent advancements in stimulus-responsive nano drug delivery systems (NDDSs) for the treatment of inflammatory bowel disease (IBD). These innovative nanoplatforms respond to specific environmental triggers, such as pH reactive oxygen species, enzymes, and redox substances, to release drugs directly at the inflammation site. By summarizing the latest research, our work underscores the potential of these technologies to improve drug targeting and efficacy, offering new directions for IBD therapy. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective treatments for IBD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiang Long
- Department of Cardiology, Xuyong County People's Hospital, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuojin Ao
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao Tang
- College of Integrated Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Science and Technology Department, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
8
|
Karakitsios E, Dokoumetzidis A. A Meta-Analysis Methodology in Stan to Estimate Population Pharmacokinetic Parameters from Multiple Aggregate Concentration-Time Datasets: Application to Gevokizumab mPBPK Model. Pharmaceutics 2024; 16:1129. [PMID: 39339167 PMCID: PMC11434912 DOI: 10.3390/pharmaceutics16091129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the present study was to develop and evaluate the performance of a methodology to estimate the population pharmacokinetic (PK) parameters along with the inter-individual variabilities (IIVs) from patients' reported aggregate concentration-time data, in particular, mean plasma concentrations and their standard deviations (SDs) versus time, such as those often found in published graphs. This method was applied to the published data of gevokizumab, a novel monoclonal anti-interleukin-1β antibody, in order to estimate the drug's population pharmacokinetic (PopPK) parameters of a second-generation minimal physiologically based pharmacokinetic (mPBPK) model. Assuming this mPBPK model, a mixed effects approach was utilized to allow accounting for the random inter-group variability (IGV) that was assumed among different dosage groups. The entire analysis was performed using R software (Rstudio) and the Bayesian software tool RStan was used for the application of Bayesian priors on the parameters. Conclusively, the proposed method could be applied to monoclonal antibodies for which the second-generation mPBPK model has been proposed as well as to other drugs with different PK models when only a published graph with aggregate concentration-time data is available. In addition, the method could be used when multiple aggregate datasets from different sources need to be combined in a meta-analysis approach in order to estimate the PopPK parameters of a drug.
Collapse
Affiliation(s)
| | - Aristides Dokoumetzidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| |
Collapse
|
9
|
Wang D, Sun D, Wang X, Peng X, Ji Y, Tang L, He Q, Chen D, Yang Y, Zhou X, Xiong B, Ai J. Remodeling tumor-associated macrophage for anti-cancer effects by rational design of irreversible inhibition of mitogen-activated protein kinase-activated protein kinase 2. MedComm (Beijing) 2024; 5:e634. [PMID: 38988492 PMCID: PMC11233931 DOI: 10.1002/mco2.634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) emerges as a pivotal target in developing anti-cancer therapies. The limitations of ATP-competitive inhibitors, due to insufficient potency and selectivity, underscore the urgent need for a covalent irreversible MK2 inhibitor. Our initial analyses of The Cancer Genome Atlas database revealed MK2's overexpression across various cancer types, especially those characterized by inflammation, linking it to poor prognosis and highlighting its significance. Investigating MK2's kinase domain led to the identification of a unique cysteine residue, enabling the creation of targeted covalent inhibitors. Compound 11 was developed, demonstrating robust MK2 inhibition (IC50 = 2.3 nM) and high selectivity. It binds irreversibly to MK2, achieving prolonged signal suppression and reducing pathological inflammatory cytokines in macrophages. Furthermore, compound 11 or MK2 knockdown can inhibit the tumor-promoting macrophage M2 phenotype in vitro and in vivo. In macrophage-rich tumor model, compound 11 notably slowed growth in a dose-dependent manner. These findings support MK2 as a promising anticancer target, especially relevant in cancers fueled by inflammation or dominated by macrophages, and provide compound 11 serving as an invaluable chemical tool for exploring MK2's functions.
Collapse
Affiliation(s)
- Danyi Wang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Deqiao Sun
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Xiaoyan Wang
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Xia Peng
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yinchun Ji
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Lu Tang
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
- State Key Laboratory of Chemical BiologyShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
| | - Qichang He
- State Key Laboratory of Chemical BiologyShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
| | - Danqi Chen
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
- State Key Laboratory of Chemical BiologyShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
| | - Ye Yang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Xuan Zhou
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Bing Xiong
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
- State Key Laboratory of Chemical BiologyShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
| | - Jing Ai
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiP. R. China
| |
Collapse
|
10
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
11
|
Kim Y, Kim H, Ha Thi HT, Kim J, Lee YJ, Kim S, Hong S. Pellino 3 promotes the colitis-associated colorectal cancer through suppression of IRF4-mediated negative regulation of TLR4 signalling. Mol Oncol 2023; 17:2380-2395. [PMID: 37341064 PMCID: PMC10620127 DOI: 10.1002/1878-0261.13475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
The incidence of colitis-associated colorectal cancer (CAC) has increased due to a high-nutrient diet, increased environmental stimuli and inherited gene mutations. To adequately treat CAC, drugs should be developed by identifying novel therapeutic targets. E3 ubiquitin-protein ligase pellino homolog 3 (pellino 3; Peli3) is a RING-type E3 ubiquitin ligase involved in inflammatory signalling; however, its role in the development and progression of CAC has not been elucidated. In this study, we studied Peli3-deficient mice in an azoxymethane/dextran sulphate sodium-induced CAC model. We observed that Peli3 promotes colorectal carcinogenesis with increased tumour burden and oncogenic signalling pathways. Ablation of Peli3 reduced inflammatory signalling activation at the early stage of carcinogenesis. Mechanistic studies indicate that Peli3 enhances toll-like receptor 4 (TLR4)-mediated inflammation through ubiquitination-dependent degradation of interferon regulatory factor 4, a negative regulator of TLR4 in macrophages. Our study suggests an important molecular link between Peli3 and colonic inflammation-mediated carcinogenesis. Furthermore, Peli3 can be a therapeutic target in the prevention and treatment of CAC.
Collapse
Affiliation(s)
- Young‐Mi Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Hye‐Youn Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Huyen Trang Ha Thi
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Jooyoung Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Seong‐Jin Kim
- GILO InstituteGILO FoundationSeoulKorea
- Medpacto Inc.SeoulKorea
| | - Suntaek Hong
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| |
Collapse
|
12
|
Tom A, Jacob J, Mathews M, Rajagopal R, Alfarhan A, Barcelo D, Narayanankutty A. Synthesis of Bis-Chalcones and Evaluation of Its Effect on Peroxide-Induced Cell Death and Lipopolysaccharide-Induced Cytokine Production. Molecules 2023; 28:6354. [PMID: 37687181 PMCID: PMC10488834 DOI: 10.3390/molecules28176354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Plant secondary metabolites are important sources of biologically active compounds with wide pharmacological potentials. Among the different classes, the chalcones form integral pharmacologically active agents. Natural chalcones and bis-chalcones exhibit high antioxidant and anti-inflammatory properties in various experiments. Studies are also underway to explore more biologically active bis-chalcones by chemical synthesis of these compounds. In this study, the effects of six synthetic bis-chalcones were evaluated in intestinal epithelial cells (IEC-6); further, the anti-inflammatory potentials were studied in lipopolysaccharide-induced cytokine production in macrophages. The synthesized bis-chalcones differ from each other first of all by the nature of the aromatic cores (functional group substitution, and their position) and by the size of a central alicycle. The exposure of IEC-6 cells to peroxide radicals reduced the cell viability; however, pre-treatment with the bis-chalcones improved the cell viability in these cells. The mechanism of action was observed to be the increased levels of glutathione and antioxidant enzyme activities. Further, these bis-chalcones also inhibited the LPS-stimulation-induced inflammatory cytokine production in RAW 264.7 macrophages. Overall, the present study indicated the cytoprotective and anti-inflammatory abilities of synthetic bis-chalcones.
Collapse
Affiliation(s)
- Alby Tom
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 673008, Kerala, India;
| | - Jisha Jacob
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 680555, Kerala, India;
| | - Manoj Mathews
- PG and Research Department of Chemistry, St. Joseph’s College Devagiri (Autonomous), Calicut 680555, Kerala, India;
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Damia Barcelo
- Water and Soil Research Group, Department of Environmental Chemistry, Idaea-Csic, Jordi Girona 18-26, 08034 Barcelona, Spain;
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 673008, Kerala, India;
| |
Collapse
|
13
|
Dimitrijević JD, Solovjova N, Bukonjić AM, Tomović DL, Milinkovic M, Caković A, Bogojeski J, Ratković ZR, Janjić GV, Rakić AA, Arsenijevic NN, Milovanovic MZ, Milovanovic JZ, Radić GP, Jevtić VV. Docking Studies, Cytotoxicity Evaluation and Interactions of Binuclear Copper(II) Complexes with S-Isoalkyl Derivatives of Thiosalicylic Acid with Some Relevant Biomolecules. Int J Mol Sci 2023; 24:12504. [PMID: 37569878 PMCID: PMC10420076 DOI: 10.3390/ijms241512504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The numerous side effects of platinum based chemotherapy has led to the design of new therapeutics with platinum replaced by another transition metal. Here, we investigated the interactions of previously reported copper(II) complexes containing S-isoalkyl derivatives, the salicylic acid with guanosine-5'-monophosphate and calf thymus DNA (CT-DNA) and their antitumor effects, in a colon carcinoma model. All three copper(II) complexes exhibited an affinity for binding to CT-DNA, but there was no indication of intercalation or the displacement of ethidium bromide. Molecular docking studies revealed a significant affinity of the complexes for binding to the minor groove of B-form DNA, which coincided with DNA elongation, and a higher affinity for binding to Z-form DNA, supporting the hypothesis that the complex binding to CT-DNA induces a local transition from B-form to Z-form DNA. These complexes show a moderate, but selective cytotoxic effect toward colon cancer cells in vitro. Binuclear complex of copper(II) with S-isoamyl derivative of thiosalicylic acid showed the highest cytotoxic effect, arrested tumor cells in the G2/M phase of the cell cycle, and significantly reduced the expression of inflammatory molecules pro-IL-1β, TNF-α, ICAM-1, and VCAM-1 in the tissue of primary heterotopic murine colon cancer, which was accompanied by a significantly reduced tumor growth and metastases in the lung and liver.
Collapse
Affiliation(s)
- Jelena D. Dimitrijević
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
| | - Natalija Solovjova
- Academy of Applied Studies Belgrade, The College of Health Science, Cara Dušana 254, 11080 Belgrade, Serbia;
| | - Andriana M. Bukonjić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Dušan Lj. Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Mirjana Milinkovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
| | - Angelina Caković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Jovana Bogojeski
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Zoran R. Ratković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| | - Goran V. Janjić
- National Institute of the Republic of Serbia, Department of Chemistry, Technology and Metallurgy, University of Belgrade-Institute of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Aleksandra A. Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Nebojsa N. Arsenijevic
- Faculty of Medical Sciences, Department of Microbiology and Immunology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marija Z. Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
- Faculty of Medical Sciences, Department of Microbiology and Immunology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Jelena Z. Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Serbia, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (J.D.D.); (M.M.); (M.Z.M.); (J.Z.M.)
- Faculty of Medical Sciences, Department of Histology and Embryology, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gordana P. Radić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (A.M.B.); (D.L.T.)
| | - Verica V. Jevtić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovic 12, 34000 Kragujevac, Serbia; (A.C.); (J.B.); (Z.R.R.)
| |
Collapse
|
14
|
Guazelli CFS, Fattori V, Colombo BB, Ludwig IS, Vicente LG, Martinez RM, Georgetti SR, Urbano A, Casagrande R, Baracat MM, Verri WA. Development of trans-Chalcone loaded pectin/casein biodegradable microcapsules: Efficacy improvement in the management of experimental colitis. Int J Pharm 2023; 642:123206. [PMID: 37419432 DOI: 10.1016/j.ijpharm.2023.123206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Improved therapies for inflammatory bowel diseases are sorely needed. Novel therapeutic agents and the development of controlled release systems for targeted tissue delivery are interesting approaches to overcome these barriers. We investigated the activity of trans-chalcone (T) in acetic acid-induced colitis in mice and developed, characterized, and determined the therapeutic effect of pectin/casein polymer microcapsules containing T (MT) in a colitis mouse model. In vitro, compound release was achieved in simulated intestinal fluid but not in the simulated gastric fluid. In vivo, since T at the dose of 3 mg/kg but not 0.3 mg/kg ameliorated colitis, we next tested the effects of MT at 0.3 mg/kg (non-effective dose). MT, but not free T at 0.3 mg/kg, significantly improved colitis outcomes such as neutrophil recruitment, antioxidant capacity, cytokine production, and NF-kB activation. This translated into reduced macro and microscopic damage in the colon. T release from the microcapsules is mediated by a pH-dependent and pectinase-regulated mechanism that provide controlled and prolonged release of T. Moreover, MT lowered the required dose for T therapeutic effect, indicating that could be a suitable pharmaceutical approach to colitis treatment. This is the first demonstration that T or MT is effective at reducing the signs of colitis.
Collapse
Affiliation(s)
- Carla F S Guazelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Barbara B Colombo
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Isabela S Ludwig
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Laisa G Vicente
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Renata M Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Alexandre Urbano
- Departamento de Física, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
15
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
16
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
17
|
Abdelzaher WY, Ibrahim MA, Hassan M, El-Tahawy NFG, Fawzy MA, Hafez HM. Protective effect of eicosapentaenoic acid against estradiol valerate-induced endometrial hyperplasia via modulation of NF-κB/HIF-1α/VEGF signaling pathway in rats. Chem Biol Interact 2023; 373:110399. [PMID: 36774993 DOI: 10.1016/j.cbi.2023.110399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Early diagnosis and treatment of endometrial hyperplasia (EH) remains mandatory for endometrial cancer (EC) prevention. OBJECTIVE To study the possible protective effect of eicosapentaenoic acid (EPA) in EH - induced by estradiol valerate (EV) in rats. METHODS/MATERIALS Adult female Wistar rats were given EV with or without EPA for 10 days. The uterine changes were evaluated by both physical (weight index) and histopathological methods. The markers of oxidative stress (Uterine malondialdehyde (MDA) and serum total antioxidant capacity (TAC) as well as serum estradiol and progesterone levels, and apoptosis (uterine caspase-3) were determined. Immunohistochemical estimations of nuclear factor kappa B (NF-κB) and vascular endothelial growth factor (VEGF) in addition to hypoxia-inducible factor 1 alpha (HIF-1α) immunoblotting were measured in uterine tissue. KEY FINDINGS EV showed significant increase in uterine weight index that is accompanied with histopatholigical evidences of EH. Such changes were associated with significant alterations in oxidative stress markers, modulation of estradiol and progesterone serum levels, an increase in HIF-1α, NF-κB and VEGF immuno-expressions and a significant decrease in caspase-3. EPA, in either dose, showed significant amelioration in uterine weight index as well as in histopathological changes. Such effect was accompanied with significant improvement in the measured hormonal levels, oxidative stress, apoptosis, and inflammatory parameters. CONCLUSIONS EPA in the used doses provided biochemical and histopathological improvement in EV-induced EH via modulation of NF-κB/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
| | - Mohamed A Ibrahim
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Marwa Hassan
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Heba M Hafez
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
18
|
Younginger BS, Mayba O, Reeder J, Nagarkar DR, Modrusan Z, Albert ML, Byrd AL. Enrichment of oral-derived bacteria in inflamed colorectal tumors and distinct associations of Fusobacterium in the mesenchymal subtype. Cell Rep Med 2023; 4:100920. [PMID: 36706753 PMCID: PMC9975273 DOI: 10.1016/j.xcrm.2023.100920] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
While the association between colorectal cancer (CRC) features and Fusobacterium has been extensively studied, less is known of other intratumoral bacteria. Here, we leverage whole transcriptomes from 807 CRC samples to dually characterize tumor gene expression and 74 intratumoral bacteria. Seventeen of these species, including 4 Fusobacterium spp., are classified as orally derived and are enriched among right-sided, microsatellite instability-high (MSI-H), and BRAF-mutant tumors. Across consensus molecular subtypes (CMSs), integration of Fusobacterium animalis (Fa) presence and tumor expression reveals that Fa has the most significant associations in mesenchymal CMS4 tumors despite a lower prevalence than in immune CMS1. Within CMS4, the prevalence of Fa is uniquely associated with collagen- and immune-related pathways. Additional Fa pangenome analysis reveals that stress response genes and the adhesion FadA are commonly expressed intratumorally. Overall, this study identifies oral-derived bacteria as enriched in inflamed tumors, and the associations of bacteria and tumor expression are context and species specific.
Collapse
Affiliation(s)
- Brett S Younginger
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Oleg Mayba
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | - Jens Reeder
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | - Deepti R Nagarkar
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, Inc., South San Francisco, CA, USA
| | | | - Allyson L Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
19
|
Singh RD, Dholariya S, Shekher A, Avadhesh, Parchwani D, Gupta SC. Role of IL-1 gene polymorphisms in common solid cancers. MULTIFACETED ROLE OF IL-1 IN CANCER AND INFLAMMATION 2023:1-69. [DOI: 10.1016/b978-0-12-824273-5.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Candida tropicalis induces NLRP3 inflammasome activation via glycogen metabolism-dependent glycolysis and JAK-STAT1 signaling pathway in myeloid-derived suppressor cells to promote colorectal carcinogenesis. Int Immunopharmacol 2022; 113:109430. [DOI: 10.1016/j.intimp.2022.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/14/2022]
|
21
|
Wang K, Wu W, Wang Q, Yang L, Bian X, Jiang X, Lv L, Yan R, Xia J, Han S, Li L. The negative effect of Akkermansia muciniphila-mediated post-antibiotic reconstitution of the gut microbiota on the development of colitis-associated colorectal cancer in mice. Front Microbiol 2022; 13:932047. [PMID: 36312913 PMCID: PMC9614165 DOI: 10.3389/fmicb.2022.932047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The bidirectional relationship between colorectal cancer (CRC) and the gut microbiome has been well-documented. Here, we investigated the impact of Akkermansia muciniphila-mediated post-antibiotic gut microbial reconstitution on the development of colitis-associated CRC (CAC). The results showed that post-antibiotic replenishment of A. muciniphila worsened the tumorigenesis of CAC as indicated by increased number of large (>2 mm in diameter) tumors and both average and total tumor diameters. Measures of intestinal barrier function showed that post-antibiotic A. muciniphila gavage damaged the intestinal barrier as reflected by lower transcriptional levels of Tjp1, Ocln, Cdh1, and MUC2. Impaired gut barrier was followed by lipopolysaccharides (LPS) translocation as indicated by higher level of serum LPS-binding protein (LBP). The increased colonic mRNA levels of Il1b, Il6, and Tnfa and serum levels of IL-1β, IL-6, and TNF-α indicated that post-antibiotic A. muciniphila replenishment resulted in overactivated inflammatory environment in CAC. The analysis of the evolution of the microbial community during the progression of CAC showed that post-antibiotic supplementation of A. muciniphila led to a distinct microbial configuration when compared with other treatments characterized by enriched Firmicutes, Lachnospiraceae, and Ruminococcaceae, and depleted Bacteroidetes, which was accompanied by higher Firmicutes/Bacteroidetes (F/B) ratio. Furthermore, post-antibiotic A. muciniphila administration changed the bile acid (BA) metabolic profile as indicated by decreased concentrations of secondary BA (SBA), ω–murocholic acid (ωMCA), and murocholic acid (muroCA). In addition, the A. muciniphila supplementation after antibiotic pretreatment also impacted the metabolism of short-chain fatty acids (SCFAs) as evidenced by increased concentrations of acetic acid, propionic acid, butyric acid, and valeric acid. Our study surprisingly observed that A. muciniphila-mediated post-antibiotic reconstitution of the gut microbiota aggravated the CAC in mice. It might exert its effect by damaging the gut barrier, exacerbating inflammatory responses, disrupting the post-antibiotic recovery of the microbial community, and further influencing the metabolism of BA and SCFAs. These findings indicated that maintaining the homeostasis of intestinal microorganisms is more crucial to health than replenishing a single beneficial microbe, and probiotics should be used with caution after antibiotic treatment.
Collapse
Affiliation(s)
- Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Lanjuan Li,
| |
Collapse
|
22
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Noureldein M, Nawfal R, Bitar S, Maxwell SS, Khurana I, Kassouf HK, Khuri FR, El-Osta A, Eid AA. Intestinal microbiota regulates diabetes and cancer progression by IL-1β and NOX4 dependent signaling cascades. Cell Mol Life Sci 2022; 79:502. [PMID: 36040503 PMCID: PMC11802975 DOI: 10.1007/s00018-022-04485-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Diabetes changes the host microbiota, a condition known as dysbiosis. Dysbiosis is an important factor for the pathogenesis of diabetes and colorectal cancer (CRC). We aimed at identifying the microbial signature associated with diabetes and CRC; and identifying the signaling mechanism altered by dysbiosis and leading to CRC progression in diabetes. MKR mice that can spontaneously develop type 2 diabetes were used. For CRC induction, another subset of mice was treated with azoxymethane and dextran sulfate sodium. To identify the role of microbiota, microbiota-depleted mice were inoculated with fecal microbial transplant from diabetic and CRC mice. Further, a mouse group was treated with probiotics. At the end of the treatment, 16S rRNA sequencing was performed to identify microbiota in the fecal samples. Blood was collected, and colons were harvested for molecular, anatomical, and histological analysis. Our results show that diabetes is associated with a microbial signature characterized by reduction of butyrate-forming bacteria. This dysbiosis is associated with gastrointestinal complications reflected by a reduction in colon lengths. These changes are reversed upon treatment with probiotics, which rectified the observed dysbiosis. Inoculation of control mice with diabetic or cancer microbiota resulted in the development of increased number of polyps. Our data also show that inflammatory cytokines (mainly interleukin (IL)-1β) and NADPH oxidase (NOX)4 are over-expressed in the colon tissues of diabetic mice. Collectively our data suggest that diabetes is associated with dysbiosis characterized by lower abundance of butyrate-forming bacteria leading to over-expression of IL-1β and NOX4 leading to gastrointestinal complications and CRC.
Collapse
Affiliation(s)
- Mohamed Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Rashad Nawfal
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sara Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Hala Kfoury Kassouf
- Department of Pathology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Fadlo R Khuri
- Department of Internal Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon.
- AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
24
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
25
|
Nagao-Kitamoto H, Kitamoto S, Kamada N. Inflammatory bowel disease and carcinogenesis. Cancer Metastasis Rev 2022; 41:301-316. [PMID: 35416564 DOI: 10.1007/s10555-022-10028-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer mortality worldwide. Colitis-associated colorectal cancer (CAC) is a subtype of CRC associated with inflammatory bowel disease (IBD). It is well known that individuals with IBD have a 2-3 times higher risk of developing CRC than those who do not, rendering CAC a major cause of death in this group. Although the etiology and pathogenesis of CAC are incompletely understood, animal models of chronic inflammation and human cohort data indicate that changes in the intestinal environment, including host response dysregulation and gut microbiota perturbations, may contribute to the development of CAC. Genomic alterations are a hallmark of CAC, with patterns that are distinct from those in sporadic CRC. The discovery of the biological changes that underlie the development of CAC is ongoing; however, current data suggest that chronic inflammation in IBD increases the risk of developing CAC. Therefore, a deeper understanding of the precise mechanisms by which inflammation triggers genetic alterations and disrupts intestinal homeostasis may provide insight into novel therapeutic strategies for the prevention of CAC.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
26
|
Scheurlen KM, Chariker JH, Kanaan Z, Littlefield AB, George JB, Seraphine C, Rochet A, Rouchka EC, Galandiuk S. The NOTCH4-GATA4-IRG1 axis as a novel target in early-onset colorectal cancer. Cytokine Growth Factor Rev 2022; 67:25-34. [PMID: 35941043 DOI: 10.1016/j.cytogfr.2022.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
27
|
Obata-Ninomiya K, de Jesus Carrion S, Hu A, Ziegler SF. Emerging role for thymic stromal lymphopoietin-responsive regulatory T cells in colorectal cancer progression in humans and mice. Sci Transl Med 2022; 14:eabl6960. [PMID: 35584230 DOI: 10.1126/scitranslmed.abl6960] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recruitment of regulatory T cells (Tregs) to tumors is a hallmark of cancer progression. Tumor-derived factors, such as the cytokine thymic stromal lymphopoietin (TSLP), can influence Treg function in tumors. In our study, we identified a subset of Tregs expressing the receptor for TSLP (TSLPR+ Tregs) that were increased in colorectal tumors in humans and mice and largely absent in adjacent normal colon. This Treg subset was also found in the peripheral blood of patients with colon cancer but not in the peripheral blood of healthy control subjects. Mechanistically, we found that this Treg subset coexpressed the interleukin-33 (IL-33) receptor [suppressor of tumorigenicity 2 (ST2)] and had high programmed cell death 1 (PD-1) and cytotoxic lymphocyte-associated antigen 4 (CTLA-4) expression, regulated in part by the transcription factor Mef2c. Treg-specific deletion of TSLPR, but not ST2, was associated with a reduction in tumor number and size with concomitant increase in TH1 cells in tumors in chemically induced mouse models of colorectal cancer. Therapeutic blockade of TSLP using TSLP-specific monoclonal antibodies effectively inhibited the progression of colorectal tumors in this mouse model. Collectively, these data suggest that TSLP controls the progression of colorectal cancer through regulation of tumor-specific Treg function and represents a potential therapeutic target that requires further investigation.
Collapse
Affiliation(s)
| | | | - Alex Hu
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
28
|
Pereira JFS, Bessa C, Matos P, Jordan P. Pro-Inflammatory Cytokines Trigger the Overexpression of Tumour-Related Splice Variant RAC1B in Polarized Colorectal Cells. Cancers (Basel) 2022; 14:cancers14061393. [PMID: 35326545 PMCID: PMC8946262 DOI: 10.3390/cancers14061393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumours are now known to develop more quickly when the tumour cell mass is located in a tissue that shows signs of chronic inflammation. Under such conditions, inflammatory cells from the surrounding tumour microenvironment provide survival signals to which cancer cells respond. We have previously found that some colorectal tumours overexpress the protein RAC1B that sustains tumour cell survival. Here we used a colon mucosa-like in vitro cell model and found that the presence of cancer-associated fibroblasts and pro-inflammatory macrophages stimulated colorectal cells to increase their RAC1B levels. Under these conditions, the secreted survival signals were analysed, and interleukin-6 identified as the main trigger for the increase in RAC1B levels. The results contribute to understand the tumour-promoting effect of inflammation at the molecular level. Abstract An inflammatory microenvironment is a tumour-promoting condition that provides survival signals to which cancer cells respond with gene expression changes. One example is the alternative splicing variant Rat Sarcoma Viral Oncogene Homolog (Ras)-Related C3 Botulinum Toxin Substrate 1 (RAC1)B, which we previously identified in a subset of V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF)-mutated colorectal tumours. RAC1B was also increased in samples from inflammatory bowel disease patients or in an acute colitis mouse model. Here, we used an epithelial-like layer of polarized Caco-2 or T84 colorectal cancer (CRC) cells in co-culture with fibroblasts, monocytes or macrophages and analysed the effect on RAC1B expression in the CRC cells by RT-PCR, Western blot and confocal fluorescence microscopy. We found that the presence of cancer-associated fibroblasts and M1 macrophages induced the most significant increase in RAC1B levels in the polarized CRC cells, accompanied by a progressive loss of epithelial organization. Under these conditions, we identified interleukin (IL)-6 as the main trigger for the increase in RAC1B levels, associated with Signal Transducer and Activator of Transcription (STAT)3 activation. IL-6 neutralization by a specific antibody abrogated both RAC1B overexpression and STAT3 phosphorylation in polarized CRC cells. Our data identify that pro-inflammatory extracellular signals from stromal cells can trigger the overexpression of tumour-related RAC1B in polarized CRC cells. The results will help to understand the tumour-promoting effect of inflammation and identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Joana F. S. Pereira
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Cláudia Bessa
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
29
|
Zhong R, Zhang F, Yang Z, Li Y, Xu Q, Lan H, Lang S, Cyganek L, Burgermeister E, El-Battrawy I, Zhou X, Akin I, Borggrefe M. Regulation of Ion Channel Function in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Cancer Cell Secretion Through DNA Methylation. Front Cardiovasc Med 2022; 9:839104. [PMID: 35265687 PMCID: PMC8899119 DOI: 10.3389/fcvm.2022.839104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cardiac dysfunction including arrhythmias appear frequently in patients with cancers, which are expected to be caused mainly by cardiotoxic effects of chemotherapy. Experimental studies investigating the effects of cancer cell secretion without chemotherapy on ion channel function in human cardiomyocytes are still lacking. Methods The human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three healthy donors were treated with gastrointestinal (GI) cancer (AGS and SW480 cells) medium for 48 h. The qPCR, patch-clamp, western blotting, immunostaining, dot blotting, bisulfite sequence, and overexpression of the ten-eleven translocation (TET) enzyme were performed for the study. Results After treated with cancer cell secretion, the maximum depolarization velocity and the action potential amplitude were reduced, the action potential duration prolonged, peak Na+ current, and the transient outward current were decreased, late Na+ and the slowly activating delayed rectifier K+ current were increased. Changes of mRNA and protein level of respective channels were detected along with altered DNA methylation level in CpG island in the promoter regions of ion channel genes and increased protein levels of DNA methyltransferases. Phosphoinositide 3-kinase (PI3K) inhibitor attenuated and transforming growth factor-β (TGF-β) mimicked the effects of cancer cell secretion. Conclusions GI cancer cell secretion could induce ion channel dysfunction, which may contribute to occurrence of arrhythmias in cancer patients. The ion channel dysfunction could result from DNA methylation of ion channel genes via activation of TGF-β/PI3K signaling. This study may provide new insights into pathogenesis of arrhythmia in cancer patients.
Collapse
Affiliation(s)
- Rujia Zhong
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Feng Zhang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhen Yang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingrui Li
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Qiang Xu
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siegfried Lang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Elke Burgermeister
- Second Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
- *Correspondence: Xiaobo Zhou
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Mannheim, Germany
| |
Collapse
|
30
|
Bruchard M, Geindreau M, Perrichet A, Truntzer C, Ballot E, Boidot R, Racoeur C, Barsac E, Chalmin F, Hibos C, Baranek T, Paget C, Ryffel B, Rébé C, Paul C, Végran F, Ghiringhelli F. Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nat Immunol 2022; 23:262-274. [DOI: 10.1038/s41590-021-01120-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022]
|
31
|
Oncogenic Mutation BRAF V600E Changes Phenotypic Behavior of THLE-2 Liver Cells through Alteration of Gene Expression. Int J Mol Sci 2022; 23:ijms23031548. [PMID: 35163468 PMCID: PMC8836259 DOI: 10.3390/ijms23031548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
The accumulation of mutations in cancer driver genes, such as tumor suppressors or proto-oncogenes, affects cellular homeostasis. Disturbances in the mechanism controlling proliferation cause significant augmentation of cell growth and division due to the loss of sensitivity to the regulatory signals. Nowadays, an increasing number of cases of liver cancer are observed worldwide. Data provided by the International Cancer Genome Consortium (ICGC) have indicated many alterations within gene sequences, whose roles in tumor development are not well understood. A comprehensive analysis of liver cancer (virus-associated hepatocellular carcinoma) samples has identified new and rare mutations in B-Raf proto-oncogene (BRAF) in Japanese HCC patients, as well as BRAF V600E mutations in French HCC patients. However, their function in liver cancer has never been investigated. Here, using functional analysis and next generation sequencing, we demonstrate the tumorigenic effect of BRAF V600E on hepatocytes (THLE-2 cell line). Moreover, we identified genes such as BMP6, CXCL11, IL1B, TBX21, RSAD2, MMP10, and SERPIND1, which are possibly regulated by the BRAF V600E-mediated, mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. Through several functional assays, we demonstrate that BRAF L537M, D594A, and E648G mutations alone are not pathogenic in liver cancer. The investigation of genome mutations and the determination of their impact on cellular processes and functions is crucial to unraveling the molecular mechanisms of liver cancer development.
Collapse
|
32
|
Zhang Z, Chen Y, Zheng Y, Wang L, Shen S, Yang G, Yang Y, Wang T. Quxie Capsule Alleviates Colitis-associated Colorectal Cancer Through Modulating the Gut Microbiota and Suppressing A. fumigatus-induced Aerobic Glycolysis. Integr Cancer Ther 2022; 21:15347354221138534. [PMID: 36412281 PMCID: PMC9706055 DOI: 10.1177/15347354221138534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
AIM Quxie capsule (QX), a compound of 21 kinds of Traditional Chinese Medicine (TCM) herbs, has been used to treat patients with metastatic colorectal cancer (mCRC) and could suppress the growth of colon cancer. However, the mechanisms of QX inhibiting colorectal cancer remain unclear. In current study, we attempted to determine the anti-colorectal cancer (CRC) effects of QX and the mechanisms of QX in alleviating colorectal cancer. METHODS A colitis-associated colon cancer (CAC) model was established by intraperitoneally injecting mice with AOM followed by 3 cycles of 2% DSS in water. During establishment of CAC model, we orally gavaged mice with QX. Hematoxylin and eosin (H&E) and immunohistochemistry were performed to assess lesion of the colonic tumors. The expression of pro-inflammatory cytokines in colonic tumors was measured by qPCR. The proportion of immune cells in colonic tumors was analyzed by flow cytometry. Internal transcribed spacer (ITS) sequencing and 16S rRNA gene sequencing were performed to detect intestinal microbiota. The expression of glycolytic related enzymes, lactate production, and extracellular acidification rate (ECAR) were used to assess the level of aerobic glycolysis. RESULTS QX markedly inhibited intestinal tumorigenesis by decreasing the expression of pro-inflammatory cytokines and the proportion of myeloid-derived suppressor cells (MDSCs), and increasing the proportion of CD8+ T cells in colon tumors. Fecal microbiota sequencing revealed that QX increased the relative abundances of intestinal symbiotic probiotics, such as, Lactobacillus, Bifidobacterium and Faecalibacterium genera. What's more, opportunistic pathogens, Bacteroides genera and Aspergillus-Aspergillus fumigatus, exhibited remarkably reduced abundances in mice treated with QX compared with untreated CAC mice. Further experiments showed that QX significantly reduced glycolysis of colon tumor and suppressed A. fumigatus-induced glycolytic metabolism of colon cancer cells. CONCLUSIONS QX alleviates the development of CRC at least in part through modulating intestinal microbiota and reducing A. fumigatus-induced aerobic glycolysis of colon cancer cells.
Collapse
Affiliation(s)
- Zhiyong Zhang
- The State Key Laboratory of
Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing
University, Nanjing, China
- Jiangsu Key Laboratory of Molecular
Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing,
China
| | - Yuxi Chen
- The State Key Laboratory of
Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing
University, Nanjing, China
- Jiangsu Key Laboratory of Molecular
Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing,
China
| | - Yaojun Zheng
- The State Key Laboratory of
Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing
University, Nanjing, China
- Jiangsu Key Laboratory of Molecular
Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing,
China
| | - Lei Wang
- Clinical Cancer Center of Xiyuan
Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sunan Shen
- The State Key Laboratory of
Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing
University, Nanjing, China
- Jiangsu Key Laboratory of Molecular
Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing,
China
| | - Geliang Yang
- Department of Medicine, Shanghai
Clinical Research Center, Shanghai, China
| | - Yufei Yang
- Clinical Cancer Center of Xiyuan
Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Wang
- The State Key Laboratory of
Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing
University, Nanjing, China
- Jiangsu Key Laboratory of Molecular
Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing,
China
| |
Collapse
|
33
|
Daghestani MH, Ambreen K, Hakami HH, Omair MA, Saleem AM, Aleisa NA, AlNeghery LM, Amin MH, Alobaid HM, Omair MA, Hassen LM. Venom of the desert black snake Walterinnesia aegyptia enhances anti-tumor immunity via its beneficial modulatory effects on pro- and anti-tumorigenic inflammatory mediators in cultured colon cancer cells. Toxicol Res (Camb) 2021; 10:1116-1128. [PMID: 34956615 DOI: 10.1093/toxres/tfab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
The role of inflammation in colon cancer is understood as a well-accepted factor that has the tendency to release multiple pro- and anti-tumorigenic inflammatory mediators. Inflammation-induced increased expression of anti-tumorigenic inflammatory mediators and decreased expression of pro-tumorigenic inflammatory mediators encourage beneficial inflammatory effects in terms of powerful anti-tumor immunity. The present study aims to screen the beneficial inflammatory effects of Walterinnesia aegyptia venom via determining its modulatory tendency on the expression of 40 pro- and anti-tumorigenic inflammatory mediators (cytokines/growth factors/chemokines) in LoVo human colon cancer cell line. LoVo-cells were treated with varying doses of crude venom of W. aegyptia. Cell viability was checked utilizing flow cytometry, and IC50 of venom was determined. Venom-induced inflammatory effects were evaluated on the expression of 40 different inflammatory mediators (12 anti-tumorigenic cytokines, 11 pro-tumorigenic cytokines, 7 pro-tumorigenic growth factors, 9 pro-tumorigenic chemokines and 1 anti-tumorigenic chemokine) in treated LoVo-cells [utilizing enzyme-linked immunosorbent assay (ELISA)] and compared with controls. Treatment of venom induced significant cytotoxic effects on inflamed LoVo-cells. IC50 treatment of venom caused significant modulations on the expression of 22 inflammatory mediators in treated LoVo-cells. The beneficial modulatory effects of venom were screened via its capability to significantly increase the expression of five powerful anti-tumorigenic mediators (IL-9, IL-12p40, IL-15, IL-1RA and Fractalkine) and decrease the expression of four major pro-tumorigenic mediators (IL-1β, VEGF, MCP-1 and MCP-3). Walterinnesia aegyptia venom-induced beneficial modulations on the expression of nine crucial pro/anti-tumorigenic inflammatory mediators can be effectively used to enhance powerful anti-tumor immunity against colon cancer.
Collapse
Affiliation(s)
- Maha H Daghestani
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Khushboo Ambreen
- Department of Biotechnology, Integral University, Lucknow, India
| | - Hana H Hakami
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Omair
- Division of Rheumatology, Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz M Saleem
- Department of Surgery, Medical College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia A Aleisa
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Lina M AlNeghery
- Department of Biology, College of Science, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohannad H Amin
- College of Dentistry, Riyadh ELM University, Riyadh, Saudi Arabia
| | - Hussah M Alobaid
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Omair
- Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lena M Hassen
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Ma J, Liang W, Qiang Y, Li L, Du J, Pan C, Chen B, Zhang C, Chen Y, Wang Q. Interleukin-1 receptor antagonist inhibits matastatic potential by down-regulating CXCL12/CXCR4 signaling axis in colorectal cancer. Cell Commun Signal 2021; 19:122. [PMID: 34930323 PMCID: PMC8686544 DOI: 10.1186/s12964-021-00804-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the co-operative role of CXCR4/CXCL12 axis and IL-1Ra in metastatic processes mechanism by interactions between colorectal cancer cells and stromal cells in their microenvironment. METHODS Expression of IL-1α, interleukin-1 receptor type I (IL-1 RI), CXCL12 and CXCR4 mRNA and proteins were determined by RT-PCR and Western blot. The effect of secreted level of CXCL12 by IL-1Ra on fibroblasts was measured by ELISA. CXCL12 regulate metastatic potential of colorectal cancer was evaluated by proliferation, invasion and angiogenesis assays, respectively, in which invasion and angiogenesis assays used an in vitro system consisting of co-cultured colorectal cells and stromal cells. RESULTS IL-1α was expressed in high liver metastatic colorectal cancer cell lines (HT-29 and WiDr). The colorectal cancer cell-derived IL-1α and rIL-1α significantly promoted CXCL12 expression by fibroblasts, and this enhancing effect can be significantly inhibited by IL-1Ra (P < 0.01). CXCL12 not only enhanced the migration and proliferation of human umbilical vein endothelial cells, but also significantly enhanced angiogenesis (P < 0.01). Furthermore, the high liver-metastatic colorectal cancer cell line (HT-29), which secretes IL-1α, significantly enhanced angiogenesis compared to the low liver-metastatic cell line (CaCo-2), which does not produce IL-1α (P < 0.01). On the contrary, IL-1Ra can significantly inhibit migration, proliferation and angiogenesis (P < 0.01). CONCLUSION Autocrine IL-1α and paracrine CXCL12 co-enhances the metastatic potential of colorectal cancer cells; IL-1Ra can inhibit the metastatic potential of colorectal cancer cells via decrease IL-1α/CXCR4/CXCL12 signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Wanqing Liang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Yaosheng Qiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou University, No. 1 Donggangxi Road, Chengguan District, Lanzhou, 730000 Gansu China
| | - Lei Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Jun Du
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Chengwu Pan
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Bangling Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Chensong Zhang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Yuzhong Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| | - Qingkang Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Road, Longzihu District, Bengbu, 233000 Anhui China
| |
Collapse
|
35
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
36
|
Esmaeilzadeh A, Bahmaie N, Nouri E, Hajkazemi MJ, Zareh Rafie M. Immunobiological Properties and Clinical Applications of Interleukin-38 for Immune-Mediated Disorders: A Systematic Review Study. Int J Mol Sci 2021; 22:12552. [PMID: 34830435 PMCID: PMC8625918 DOI: 10.3390/ijms222212552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Exponential growth in the usage of "cytokines" (as seroimmunobiomarkers) has facilitated more accurate prognosis, early diagnosis, novel, and efficient immunotherapeutics. Numerous studies have reported immunopathophysiological and immunopathological processes of interleukin-38 (IL-38). Therefore, in this systematic review article, the authors aimed to present an updated comprehensive overview on the immunobiological mechanisms, diagnostic, and immune gene-based therapeutic potentials of IL-38. According to our inclusion and exclusion criteria, a total of 216 articles were collected from several search engines and databases from the January 2012 to July 2021 time interval by using six main keywords. Physiologic or pathologic microenvironments, optimal dosage, and involved receptors affect the functionalities of IL-38. Alterations in serum levels of IL-38 play a major role in the immunopathogenesis of a wide array of immune-mediated disorders. IL-38 shows anti-inflammatory activities by reduction or inhibition of pro-inflammatory cytokines, supporting the therapeutic aspects of IL-38 in inflammatory autoimmune diseases. According to the importance of pre-clinical studies, it seems that manipulation of the immune system by immunomodulatory properties of IL-38 can increase the accuracy of diagnosis, and decipher optimal clinical outcomes. To promote our knowledge, more collaboration is highly recommended among laboratory scientists, internal/infectious diseases specialists, oncologists, immunologists, diseases-specific biomarkers scientists, and basic medical researchers.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Immunotherapy Research & Technology Group, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Nazila Bahmaie
- Department of Allergy and Immunology, Faculty of Medicine, Graduate School of Health Science, Near East University (NEU), Nicosia 99138, Cyprus;
- Pediatric Ward, Department of Allergy and Immunology, Near East University affiliated Hospital, Nicosia 99138, Cyprus
- Serology and Immunology Ward, Clinical Diagnosis Laboratory, Private Baskent Hospital, Nicosia 99138, Cyprus
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Elham Nouri
- School of Paramedicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
- Shahid Beheshti University Affiliated Hospital, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Mohammad Javad Hajkazemi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| | - Maryam Zareh Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| |
Collapse
|
37
|
Yan X, Zhou Q, Zhu H, Liu W, Xu H, Yin W, Zhao M, Jiang X, Ren C. The clinical features, prognostic significance, and immune heterogeneity of CD37 in diffuse gliomas. iScience 2021; 24:103249. [PMID: 34755091 PMCID: PMC8564053 DOI: 10.1016/j.isci.2021.103249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/14/2021] [Accepted: 10/07/2021] [Indexed: 10/30/2022] Open
Abstract
Diffuse glioma is the most prevalent and malignant brain tumor. The function and significance of CD37 in diffuse gliomas remain largely unknown. Here, we showed CD37 was abnormally expressed in diverse cancers, especially glioma by pan-cancer differential expression analysis. In addition, we found CD37 was upregulated in higher grade and IDH or IDH1-wildtype gliomas, which was further validated by qPCR and IHC. Survival analysis revealed CD37 served as an independent indicator for unfavorable prognosis of patients with diffuse gliomas. Functional enrichment analysis revealed CD37 was associated with immunological processes. Moreover, immune infiltration analyses suggested gliomas with high-expression CD37 had greater infiltration of M2 macrophages and neutrophils, and lower NK cell abundance. CD37 was closely correlated to immune checkpoint molecules, including CD276, CD80, CD86, and PD-L2. Our results indicated CD37 is an independent prognostic factor and plays an immunosuppressive role in diffuse gliomas. Targeting CD37 could be a promising immunotherapeutic strategy for diffuse gliomas.
Collapse
Affiliation(s)
- Xuejun Yan
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Hongjuan Xu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha 410008, China
| |
Collapse
|
38
|
Vekic J, Zeljkovic A, Stefanovic A, Giglio RV, Ciaccio M, Rizzo M. Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents. Int J Mol Sci 2021; 22:12409. [PMID: 34830295 PMCID: PMC8622770 DOI: 10.3390/ijms222212409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (J.V.); (A.Z.); (A.S.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (J.V.); (A.Z.); (A.S.)
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (J.V.); (A.Z.); (A.S.)
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (R.V.G.); (M.C.)
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy; (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University Hospital, 90100 Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| |
Collapse
|
39
|
Preterm infant meconium microbiota transplant induces growth failure, inflammatory activation, and metabolic disturbances in germ-free mice. Cell Rep Med 2021; 2:100447. [PMID: 34841294 PMCID: PMC8606908 DOI: 10.1016/j.xcrm.2021.100447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/17/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Preterm birth may result in adverse health outcomes. Very preterm infants typically exhibit postnatal growth restriction, metabolic disturbances, and exaggerated inflammatory responses. We investigated the differences in the meconium microbiota composition between very preterm (<32 weeks), moderately preterm (32–37 weeks), and term (>37 weeks) human neonates by 16S rRNA gene sequencing. Human meconium microbiota transplants to germ-free mice were conducted to investigate whether the meconium microbiota is causally related to the preterm infant phenotype in an experimental model. Our results indicate that very preterm birth is associated with a distinct meconium microbiota composition. Fecal microbiota transplant of very preterm infant meconium results in impaired growth, altered intestinal immune function, and metabolic parameters as compared to term infant meconium transplants in germ-free mice. This finding suggests that measures aiming to minimize the long-term adverse consequences of very preterm birth should be commenced during pregnancy or directly after birth. Very preterm neonates exhibit a distinct meconium microbiota composition Human meconium microbiota is transplanted to germ-free mice in this study Preterm transplant induces growth restriction, inflammation, and altered metabolism Initial gut microbiota may be causally related to complications of prematurity
Collapse
|
40
|
Cao H, Cheng HS, Wang JK, Tan NS, Tay CY. A 3D physio-mimetic interpenetrating network-based platform to decode the pro and anti-tumorigenic properties of cancer-associated fibroblasts. Acta Biomater 2021; 132:448-460. [PMID: 33766799 DOI: 10.1016/j.actbio.2021.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) biomaterials with physiologically relevant and experimentally tractable biomechanical features are important platforms to advance our understanding of the influence of tissue mechanics in disease progression. Herein, an interpenetrating network (IPN) of collagen and alginate 3D culture system with tunable extracellular microstructure and mechanics is exploited as a tumor stroma proxy to study phenotypic plasticity of colorectal cancer-associated fibroblasts (CAF). In combination with Next Generation Sequencing (NGS) data analysis, we demonstrated that tuning the storage modulus of the IPN hydrogel between 49 and 419 Pa can trigger a reversible switch between an inflammatory (i-state, α-SMAlowIL-6high) and myofibroblastic (m-state, α-SMAhighIL-6low) state in CAF that is dependent on the polymer network confinement effect and ROS-HIF1-α mechanotransduction signaling axis. Secretome from m-state CAF upregulated several epithelial-mesenchymal-transition (EMT) transcripts and induced robust scattering in DLD-1, HCT116, and SW480 human colorectal adenocarcinoma, while the EMT-inducing capacity is muted in i-state CAF, suggestive of an anti-tumorigenic role. Our findings were further validated through Gene Expression Profiling Interactive Analysis (GEPIA), which showed that cytokines secreted at higher levels by i-state CAF are correlated (p < 0.05) with good overall colorectal cancer patient survival. Therefore, 3D network density and spatial cellular confinement are critical biophysical determinants that can profoundly influence CAF states, paracrine signaling, and EMT-inducing potential. STATEMENT OF SIGNIFICANCE: The communication between cancer cells and cancer-associated fibroblasts (CAF) contributes to tumor metastasis. CAF represent a diverse population of cellular subsets that can either promote or restrain tumor progression. However, the origin and cause of CAF heterogeneity remain elusive, limiting CAF-directed therapies for clinical use. We studied the dynamic phenotypes of CAF using a 3D physio-mimetic culture platform consisting of an interpenetrating collagen-alginate network. Combined with transcriptomic stratification and correlative analysis using cancer patient dataset, we showed phenotypic interconversion between inflammatory and myofibroblastic states, with anti- and pro-tumorigenic functions, in human colorectal CAF. This multidisciplinary study reveals the functional diversity of colorectal CAF caused by biophysical cues. The finding will influence the development of new CAF biomarkers and cancer therapies.
Collapse
|
41
|
Sudo G, Aoki H, Yamamoto E, Takasawa A, Niinuma T, Yoshido A, Kitajima H, Yorozu A, Kubo T, Harada T, Ishiguro K, Kai M, Katanuma A, Yamano HO, Osanai M, Nakase H, Suzuki H. Activated macrophages promote invasion by early colorectal cancer via an interleukin 1β-serum amyloid A1 axis. Cancer Sci 2021; 112:4151-4165. [PMID: 34293235 PMCID: PMC8486202 DOI: 10.1111/cas.15080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Submucosal invasion and lymph node metastasis are important issues affecting treatment options for early colorectal cancer (CRC). In this study, we aimed to unravel the molecular mechanism underlying the invasiveness of early CRCs. We performed RNA‐sequencing (RNA‐seq) with poorly differentiated components (PORs) and their normal counterparts isolated from T1 CRC tissues and detected significant upregulation of serum amyloid A1 (SAA1) in PORs. Immunohistochemical analysis revealed that SAA1 was specifically expressed in PORs at the invasive front of T1b CRCs. Upregulation of SAA1 in CRC cells promoted cell migration and invasion. Coculture experiments using CRC cell lines and THP‐1 cells suggested that interleukin 1β (IL‐1β) produced by macrophages induces SAA1 expression in CRC cells. Induction of SAA1 and promotion of CRC cell migration and invasion by macrophages were inhibited by blocking IL‐1β. These findings were supported by immunohistochemical analysis of primary T1 CRCs showing accumulation of M1‐like/M2‐like macrophages at SAA1‐positive invasive front regions. Moreover, SAA1 produced by CRC cells stimulated upregulation of matrix metalloproteinase‐9 in macrophages. Our data suggest that tumor‐associated macrophages at the invasive front of early CRCs promote cancer cell migration and invasion through induction of SAA1 and that SAA1 may be a predictive biomarker and a useful therapeutic target.
Collapse
Affiliation(s)
- Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayano Yoshido
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
42
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
43
|
Erdur E, Yildirim OA, Poyraz K, Aslan F, Yıldız F, Kömek H. The role of inflammatory parameters in predicting disease recurrence in patients with stage IIA colon cancer with no high-risk features. Postgrad Med 2021; 133:694-700. [PMID: 34030576 DOI: 10.1080/00325481.2021.1934493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We aimed to investigate the roles of inflammatory parameters, including neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ratio (LMR), and C-reactive protein/albumin ratio (CAR), in predicting disease recurrence in patients with stage IIA (T3N0M0) high microsatellite instability and microsatellite-stable colon cancer who had no risk factors associated with relapse. MATERIALS AND METHODS We evaluated 155 patients with colon cancer followed in 3 hospitals in Turkey between February 2009 and March 2020. These patients had stage IIA disease and had no risk factors associated with relapse. None of the patients received adjuvant chemotherapy. NLR, PLR, LMR, and CAR parameters were retrospectively obtained from laboratory results at the time of diagnosis, and their associations with disease recurrence were assessed. RESULTS Over a median follow-up period of 38 months (range: 4-98 months), 11 of the 155 patients experienced relapse or developed metastases. Multivariate Cox analyses revealed that NLRs of ≥3.12 (hazard ratio [HR]: 0.041, 95% confidence interval [CI]: 0.048-0.826, p = 0.006) and CARs of ≥0.027 (HR: 0.199, 95% CI: 0.004-0.404, p = 0.026) were independent prognostic markers predicting relapse. The median 5-year recurrence-free survival rate of patients with NLRs of ≥3.12 at the time of diagnosis was 88.0%; this rate was 100% in patients with NLRs of <3.12 (p < 0.001). Similarly, the median 5-year recurrence-free survival rate of patients with CARs of ≥0.027 at the time of diagnosis was 84.7%; this rate was 95.7% in patients with CARs of <0.027 (p = 0.016). CONCLUSION In this study, NLR and CAR were found to be independent prognostic markers predicting disease recurrence in patients with stage IIA colon cancer who did not receive adjuvant chemotherapy due to low clinical risk.
Collapse
Affiliation(s)
- Erkan Erdur
- Department of Internal Medicine, Division of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Ozgen Ahmet Yildirim
- Department of Internal Medicine, Division of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Kerem Poyraz
- Department of Radiation Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Ferit Aslan
- Medical Oncology Department, Medical Park Ankara Hospital, Ankara, Turkey
| | - Fatih Yıldız
- Medical Oncology, Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Halil Kömek
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
44
|
Zhu L, Song Y, Liu H, Wu M, Gong H, Lan H, Zheng X. Gut microbiota regulation and anti-inflammatory effect of β-carotene in dextran sulfate sodium-stimulated ulcerative colitis in rats. J Food Sci 2021; 86:2118-2130. [PMID: 33884622 DOI: 10.1111/1750-3841.15684] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
β-Carotene displays antioxidant and anti-inflammatory activities and prevents the development of cancer. Ulcerative colitis (UC) is a kind of inflammatory bowel disease that is accompanied by a certain risk of colon cancer. However, the role of β-carotene in the modulation of gut microbiota and UC improvement is unclear. In this research, the properties of β-carotene on anti-inflammatory and the composition of gut microbiota were evaluated in a rat model of UC induced by dextran sulfate sodium (DSS). The results revealed that β-carotene significantly (p < 0.05) decreased the severity of colitis in rats, as assessed using body weight (6.00 ± 1.73%), colon length (22.23 ± 0.53%), and disease activity index, and improved the structure of the colon damaged. Moreover, colonic levels of proinflammatory cytokines were significantly lower following β-carotene supplementation. β-Carotene intervention also lowered the expression levels of phosphorylated p65 (0.60 ± 0.02), p38 (0.57 ± 0.00), Erk (0.63 ± 0.04), and JNK (0.70 ± 0.00). The result of the relative abundance of gut microbiota showed that DSS administration significantly changed the microbial structure at the phylum and genus levels of rats. Furthermore, β-carotene treatment significantly increased the abundance of Faecalibacterium, the levels of which negatively correlated with the levels of inflammatory cytokines. Faecalibacterium may be a potential target in the alleviation of DSS-induced UC. β-Carotene can alleviate DSS-induced UC through the regulation of gut microbiota. This study provides a reference for the rational use of β-carotene in the treatment of UC. PRACTICAL APPLICATION: β-Carotene can relieve ulcerative colitis and regulate the gut microbiota; the nutritional intervention of β-carotene enhancing animal health.
Collapse
Affiliation(s)
- Lingyu Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huilin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
45
|
Fouad MA, Salem SE, Osman AS, Badr DM, Hussein MM, Zekri AN, Hafez HF, Kamel MM, Shouman SA. Fluoropyrimdine therapy induced alterations in interleukins expression in colorectal cancer patients. Int J Immunopathol Pharmacol 2021; 35:20587384211008332. [PMID: 33832346 PMCID: PMC8040557 DOI: 10.1177/20587384211008332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study monitored the changes in the expression of inflammatory IL-6 and IL-1β during the treatment period of Fluoropyrimidine (FP) based therapy. RNA was extracted from the peripheral blood of 102 CRC patients before treatment with FP therapy, and from 48 and 32 patients after 3 and 6 months of treatment, respectively. The genetic transcription of IL-6 and IL-1β was determined by real time PCR. Patients were stratified according to their levels of IL-6 and IL-1β genes expression for subgroup and survival analyses. Baseline CRC patients showed overexpression of IL-6 and IL-1β compared to healthy control. FP therapy significantly induced IL-6 and IL-1β expression. Subgroup analysis showed that patients with right colon tumors had significant elevation in both IL-6 and IL-1β with FP therapy. FP therapy significantly induced IL-1β expression in patients ⩽45 years, smokers, with high baseline level of CA19.9, right colon tumors, low grade pathology, T3 tumors and positive lymph nodes. Survival analysis showed that baseline levels of interleukins expression had insignificant effect on overall survival and event free survival. FP therapy has an impact on the level of interleukins expression declared in certain clinicopathological subgroups of CRC patients, but without a prognostic significance on patients' survival.
Collapse
Affiliation(s)
- Mariam A Fouad
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| | - Salem E Salem
- Medical Oncology Department, National Cancer Institute, Cairo, Egypt
| | - Afaf S Osman
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Doaa M Badr
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| | - Marwa M Hussein
- Medical Oncology Department, National Cancer Institute, Cairo, Egypt
| | - Abdelrahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| | - Hafez F Hafez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| | - Mahmoud M Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| |
Collapse
|
46
|
Barone R, Caruso Bavisotto C, Rappa F, Gargano ML, Macaluso F, Paladino L, Vitale AM, Alfano S, Campanella C, Gorska M, Di Felice V, Cappello F, Venturella G, Marino Gammazza A. JNK pathway and heat shock response mediate the survival of C26 colon carcinoma bearing mice fed with the mushroom Pleurotus eryngii var. eryngii without affecting tumor growth or cachexia. Food Funct 2021; 12:3083-3095. [PMID: 33720221 DOI: 10.1039/d0fo03171b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Biomedicine, Neurosciences and advanced Diagnostics, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jung J, Lee YH, Fang X, Kim SJ, Kim SH, Kim DH, Song NY, Na HK, Baek JH, Surh YJ. IL-1β induces expression of proinflammatory cytokines and migration of human colon cancer cells through upregulation of SIRT1. Arch Biochem Biophys 2021; 703:108847. [PMID: 33766523 DOI: 10.1016/j.abb.2021.108847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
SIRT1 is a mammalian NAD+-dependent deacetylase, which is known to be involved in various physiological events, such as adaptive response to environmental stresses including caloric restriction, as well as in aging and cellular senescence. However, recent studies have revealed overexpression of SIRT1 in many different types of human malignancies, particularly colon cancer. Interleukin-1β (IL-1β) is a proinflammatory cytokine that plays a major role in invasiveness, stemness and progression of colon cancer. However, the interaction between IL-1β and SIRT1 in the tumor development and progression remains elusive. In this study, we found that IL-1β induces SIRT1 protein expression in human colon cancer HCT-116 cells. IL-1β-induced SIRT1 upregulation led to enhanced expression of mRNA transcripts of pro-inflammatory cytokines, IL-6 and IL-8 as well as that of IL-1β. Knockdown of SIRT1 prevented IL-1β-induced phosphorylation and nuclear accumulation of c-Jun. Furthermore, pharmacologic inhibition of SIRT1 abrogated clonogenicity and migrative capability of human colon cancer cells stimulated with IL-1β. In summary, IL-1β-induced SIRT1 upregulation stimulates production of proinflammatory cytokines via a nuclear accumulation of c-Jun, leadng to colon cancer growth and progression.
Collapse
Affiliation(s)
- Jaekyung Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yeon-Hwa Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xizhu Fang
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seong Hoon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do, South Korea
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
48
|
Leite CA, Mota JM, de Lima KA, Wanderley CW, Nascimento LA, Ferreira MD, Silva CMS, Colon DF, Sakita JY, Kannen V, Viacava PR, Begnami MD, Lima-Junior RCP, Cordeiro de Lima VC, Alves-Filho JC, Cunha FQ, Ribeiro RA. Paradoxical interaction between cancer and long-term postsepsis disorder: impairment of de novo carcinogenesis versus favoring the growth of established tumors. J Immunother Cancer 2021; 8:jitc-2019-000129. [PMID: 32376720 PMCID: PMC7223471 DOI: 10.1136/jitc-2019-000129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Previous data have reported that the growth of established tumors may be facilitated by postsepsis disorder through changes in the microenvironment and immune dysfunction. However, the influence of postsepsis disorder in initial carcinogenesis remains elusive. Methods In the present work, the effect of postsepsis on inflammation-induced early carcinogenesis was evaluated in an experimental model of colitis-associated colorectal cancer (CAC). We also analyzed the frequency and role of intestinal T regulatory cells (Treg) in CAC carcinogenesis. Results The colitis grade and the tumor development rate were evaluated postmortem or in vivo through serial colonoscopies. Sepsis-surviving mice (SSM) presented with a lower colonic DNA damage, polyp incidence, reduced tumor load, and milder colitis than their sham-operated counterparts. Ablating Treg led to restoration of the ability to develop colitis and tumor polyps in the SSM, in a similar fashion to that in the sham-operated mice. On the other hand, the growth of subcutaneously inoculated MC38luc colorectal cancer cells or previously established chemical CAC tumors was increased in SSM. Conclusion Our results provide evidence that postsepsis disorder has a dual effect in cancer development, inhibiting inflammation-induced early carcinogenesis in a Treg-dependent manner, while increasing the growth of previously established tumors.
Collapse
Affiliation(s)
- Caio Abner Leite
- A.C. Camargo Cancer Center, Sao Paulo, Brazil.,Center for Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, Brazil.,Cancer Institute of Ceara, Fortaleza, Brazil
| | - Jose Mauricio Mota
- Instituto do Cancer do Estado de Sao Paulo, University of Sao Paulo, Sao Paulo, Brazil
| | - Kalil Alves de Lima
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | - Juliana Yumi Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Ramos Viacava
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, Brazil .,Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ronaldo Albuquerque Ribeiro
- Cancer Institute of Ceara, Fortaleza, Brazil.,Federal University of Ceara, Faculty of Medicine, Fortaleza, Brazil
| |
Collapse
|
49
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Sambandam Y, Ramalingam S, Queimado L, Chaudhuri G, Ramachandran IK. Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach. Endocr Metab Immune Disord Drug Targets 2021; 21:67-76. [PMID: 32940190 DOI: 10.2174/1871530320666200917112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
The development of colorectal cancer (CRC) is a multistage process. The inflammation of
the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease
(CD) is often regarded as the initial trigger for the development of inflammation-associated CRC.
Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert
proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers,
including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be
oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles
during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of
miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown.
Consolidating the published results and offering perspective solutions to circumvent CRC, the current
review is focused on the role of miRNAs and their regulation in the development of CRC. We have
also discussed the model systems adapted by researchers to delineate the role of miRNAs in
inflammation-associated CRC.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603 203, Tamil Nadu, India
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | | |
Collapse
|
50
|
Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, Sota J, Dinarello CA. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021; 20:102763. [PMID: 33482337 DOI: 10.1016/j.autrev.2021.102763] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The interleukin (IL)-1 family member IL-1α is a ubiquitous and pivotal pro-inflammatory cytokine. The IL-1α precursor is constitutively present in nearly all cell types in health, but is released upon necrotic cell death as a bioactive mediator. IL-1α is also expressed by infiltrating myeloid cells within injured tissues. The cytokine binds the IL-1 receptor 1 (IL-1R1), as does IL-1β, and induces the same pro-inflammatory effects. Being a bioactive precursor released upon tissue damage and necrotic cell death, IL-1α is central to the pathogenesis of numerous conditions characterized by organ or tissue inflammation. These include conditions affecting the lung and respiratory tract, dermatoses and inflammatory skin disorders, systemic sclerosis, myocarditis, pericarditis, myocardial infarction, coronary artery disease, inflammatory thrombosis, as well as complex multifactorial conditions such as COVID-19, vasculitis and Kawasaki disease, Behcet's syndrome, Sjogren Syndrome, and cancer. This review illustrates the clinical relevance of IL-1α to the pathogenesis of inflammatory diseases, as well as the rationale for the targeted inhibition of this cytokine for treatment of these conditions. Three biologics are available to reduce the activities of IL-1α; the monoclonal antibody bermekimab, the IL-1 soluble receptor rilonacept, and the IL-1 receptor antagonist anakinra. These advances in mechanistic understanding and therapeutic management make it incumbent on physicians to be aware of IL-1α and of the opportunity for therapeutic inhibition of this cytokine in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.
| | - Serena Colafrancesco
- Dipartimento of Clinical Sciences (Internal Medicine, Anesthesia and Resuscitation, and Cardiology), Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Massimo Imazio
- University Division of Cardiology, Cardiovascular and Throracic Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Maria Cristina Maggio
- Department of Health Promotion, Maternal and Infantile Care, Department of Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|