1
|
Torabi S, Nahidi Y, Ghasemi SZ, Reihani A, Samadi A, Ramezanghorbani N, Nazari E, Davoudi S. Evaluation of skin cancer prevention properties of probiotics. GENES & NUTRITION 2025; 20:12. [PMID: 40410666 PMCID: PMC12101031 DOI: 10.1186/s12263-025-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/04/2025] [Indexed: 05/25/2025]
Abstract
Bacteria play a crucial role in human health and disease pathogenesis. In recent years, the therapeutic potential of probiotics has gained increasing attention, with studies suggesting their application in treating various diseases, including cancer. We evaluated clinical data supporting the use of oral and topical probiotics for skin malignancies by conducting a literature search in PubMed and Google Scholar. Although limited, clinical trials investigating probiotics in cancer prevention and treatment have shown promising results, particularly in controlling tumor progression and enhancing therapeutic outcomes. Emerging research suggests that probiotics may contribute to skin cancer prevention by modulating the gut and skin microbiomes, enhancing immune responses, exerting antioxidant and anti-inflammatory effects, and inducing apoptosis. Given their antiproliferative and pro-apoptotic effects on carcinoma cells, probiotic-based therapies may serve as potential cancer-preventive agents and adjunctive treatments during conventional therapies. Key findings from our review highlight the ability of probiotics to influence cancer progression through immune regulation, apoptosis induction, and modulation of inflammatory pathways. However, further well-designed clinical trials are needed to validate these findings and establish probiotics as a viable therapeutic approach in oncology.
Collapse
Affiliation(s)
- Shatila Torabi
- Department of Dermatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cutaneous Leishmaniasis Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Nahidi
- Department of Dermatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cutaneous Leishmaniasis Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Zahra Ghasemi
- Cutaneous Leishmaniasis Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Samadi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Nahid Ramezanghorbani
- Assistant Professor, Department of Development & Coordination Scientific Information and Publications, Deputy of Research & Technology, Ministry of Health & Medical Education, Tehran, Iran
| | - Elham Nazari
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical sciences, Shahid Beheshti university of medical sciences, Tehran, Iran
| | - Sima Davoudi
- Department of Dermatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cutaneous Leishmaniasis Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chen HL, Hu PY, Chen CS, Lin WH, Hsu DK, Liu FT, Meng TC. Gut colonization of Bacteroides plebeius suppresses colitis-associated colon cancer development. Microbiol Spectr 2025; 13:e0259924. [PMID: 39804065 PMCID: PMC11792494 DOI: 10.1128/spectrum.02599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. Bacteroides plebeius (B. plebeius) is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet. We found that mice orally administered with B. plebeius and fed a diet containing 1% seaweed developed a unique gut microbial composition. By linear discriminant analysis effect size analysis, we found that B. plebeius colonization increased the abundance of Blautia coccoides and reduced the abundance of Akkermansia sp. and Dubosiella sp. We also showed that colonization of B. plebeius suppressed the colon tumor development induced by azoxymethane/dextran sulfate sodium in specific-pathogen-free mice, coinciding with a reduced abundance of Muribaculaceae sp., Closteridale sp., and Bilophila sp. Moreover, B. plebeius colonization in gnotobiotic mice resulted in enhanced production of selected metabolites, including propionic, taurocholic, cholic, alpha-, and beta-muricholic, as well as ursodeoxycholic acids. Importantly, some of these metabolites show anti-inflammatory and tumor-suppressive effects. We conclude that B. plebeius is able to restructure the gut microbial community and produce beneficial metabolites, leading to inhibition of colitis-associated colon cancer development.IMPORTANCEThis work delves into the pivotal role of gut microbiota in suppressing the progression of colitis-associated colon cancer. By investigating the impact of Bacteroides plebeius that can be colonized in mouse gut by feeding the animal with seaweed diet, we unveil a novel mechanism through which this beneficial bacterium reshapes the gut microbial community and produces metabolites with anti-inflammatory and tumor-suppressive properties. Such findings underscore the potential of harnessing specific microbes, like B. plebeius shown in this study, to modulate the gut ecosystem and mitigate the risk of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei City, Taiwan
| | - Po-Yuan Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Chang-Shan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, California, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
- Department of Dermatology, Keck School of Medicine USC, University of Southern California, Los Angeles, California, USA
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
3
|
Pezeshki B, Abdulabbas HT, Alturki AD, Mansouri P, Zarenezhad E, Nasiri-Ghiri M, Ghasemian A. Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10462-0. [PMID: 39873952 DOI: 10.1007/s12602-025-10462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy. Probiotics employ various mechanisms to inhibit cancer initiation and progression. These include colonizing and protecting the gastrointestinal tract (GIT), producing metabolites, inducing apoptosis and autophagy, exerting anti-inflammatory properties, preventing metastasis, enhancing the effectiveness of immune checkpoint inhibitors (ICIs), promoting cancer-specific T cell infiltration, arresting the cell cycle, and exhibiting direct or indirect synergistic effects with anticancer drugs. Additionally, probiotics have been shown to activate tumor suppressor genes and inhibit pro-inflammatory transcription factors. They also increase reactive oxygen species production within cancer cells. Synergistic interactions between probiotics and various anticancer drugs, such as cisplatin, cyclophosphamide, 5-fluorouracil, trastuzumab, nivolumab, ipilimumab, apatinib, gemcitabine, tamoxifen, sorafenib, celecoxib and irinotecan have been observed. The combination of probiotics with anticancer drugs holds promise in overcoming drug resistance, reducing recurrence, minimizing side effects, and lowering treatment costs. In addition, fecal microbiota transplantation (FMT) and prebiotics supplementation has increased cytotoxic T cells within tumors. However, probiotics may leave some adverse effects such as risk of infection and gastrointestinal effects, antagonistic effects with drugs, and different responses among patients. These findings highlight insights for considering specific strains and engineered probiotic applications, preferred doses and timing of treatment, and personalized therapies to enhance the efficacy of cancer therapy. Accordingly, targeted interventions and guidelines establishment needs extensive randomized controlled trials as probiotic-based cancer therapy has not been approved by Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthanna, Iraq
| | - Ahmed D Alturki
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Samawah, Al-Muthanna, Iraq
| | - Pegah Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri-Ghiri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Samaha A, Maurice NW, Rizk SM, Senousy MA. Susceptibility of different mice species to chemical induction of colorectal cancer by 1,2-dimethylhydrazine. J Egypt Natl Canc Inst 2025; 37:2. [PMID: 39800835 DOI: 10.1186/s43046-024-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/21/2024] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH). This study aimed to investigate the induction receptivity of two commonly used mice species, C57BL/6 and BALB/c, to DMH-induced CRC. METHODS Both mice species were exposed to weekly intraperitoneal injections of DMH at a dose of 20 mg/kg body weight for 15 consecutive weeks. The response to DMH was evaluated by monitoring body weight gain, daily food intake, and gastrointestinal symptoms. At the end of exposure, histopathology of distal colon dissected from both species was analyzed. RESULTS Results revealed that C57BL/6 had a higher response to DMH compared to BALB/c. A significant decrease in body weight gain concomitant with severe diarrhea was observed in C57BL/6 receiving DMH compared to their controls, without any difference in food intake. Histopathology of distal colon revealed aberrant crypt foci and loss of goblet cells in DMH-exposed C57BL/6 mice. On the other hand, BALB/c mice displayed a normal and intact colon, with a normal weight gain pattern, and without any gastrointestinal symptoms. CONCLUSION In conclusion, C57BL/6 has a higher susceptibility toward chemical induction to CRC; therefore, it can be used to study CRC pathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020El Salam,, 11785, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11823, Egypt.
- Integrative Health Center, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020El Salam, 11785, Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020El Salam,, 11785, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed Samaha
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020El Salam,, 11785, Cairo, Egypt
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padua, Italy
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
5
|
Anwer M, Wei MQ. Harnessing the power of probiotic strains in functional foods: nutritive, therapeutic, and next-generation challenges. Food Sci Biotechnol 2024; 33:2081-2095. [PMID: 39130669 PMCID: PMC11315846 DOI: 10.1007/s10068-024-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
Functional foods have become an essential element of the diet in developed nations, due to their health benefits and nutritive values. Such food products are only called functional if they, "In addition to basic nutrition, have valuable effects on one or multiple functions of the human body, thereby enhancing general and physical conditions and/or reducing the risk of disease progression". Functional foods are currently one of the most extensively researched areas in the food and nutrition sciences. They are fortified and improved food products. Presently, probiotics are regarded as the most significant and commonly used functional food product. Diverse probiotic food products and supplements are used according to the evidence that supports their strength, functionality, and recommended dosage. This review provides an overview of the current functional food market, with a particular focus on probiotic microorganisms as pivotal functional ingredients. It offers insights into current research endeavors and outlines potential future directions in the field.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215 Australia
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ming Q. Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215 Australia
| |
Collapse
|
6
|
Razali FN, Teoh WY, Ramli MZ, Loo CY, Gnanaraj C. Role of prebiotics, probiotics, and synbiotics in the management of colonic disorders. ADVANCED DRUG DELIVERY SYSTEMS FOR COLONIC DISORDERS 2024:243-270. [DOI: 10.1016/b978-0-443-14044-0.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
8
|
Khaleel SM, Shanshal SA, Khalaf MM. The Role of Probiotics in Colorectal Cancer: A Review. J Gastrointest Cancer 2023; 54:1202-1211. [PMID: 36622515 DOI: 10.1007/s12029-022-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Globally, cancer is among the principal causes of death, and the incidence of colorectal cancer is increasing annually around the world, and it is currently ranked third most diagnosed cancer type. Despite the development in the treatment procedures for colorectal cancer including chemotherapy, surgery, immunotherapy and radiotherapy, the death rates from this cancer type are still elevated due to the adverse effects associated with treatment that may affect patients' quality of life. Recently, the global interest in probiotics research has grown with significant positive results. METHODS: This review discusses the role of probiotics in normal colorectal physiology and cancer. RESULTS Probiotics will become an essential part in the prevention and management of colorectal cancer in the near future as they are expected to provide a solution to the problems associated with cancer treatment. Probiotics' properties open the way for multiple effective uses in colorectal cancer prevention strategies. Additionally, probiotics can reduce the problems associated with chemotherapy and surgery when used synergistically. Probiotics can also increase the efficacy of chemotherapeutic medications. Targeted drug delivery and TRAIL collaboration techniques are other effective and promising methods that involve probiotics. CONCLUSIONS Probiotics have properties that make them useful in the management and prevention of colorectal cancer and can provide new avenue to reduce the occurrence of this malignancy and enhance the patients' quality of life.
Collapse
Affiliation(s)
- Shahad M Khaleel
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sadeel A Shanshal
- Department of Clinical Pharmacy, College of Pharmacy, University of Mosul, Mosul, Nineveh, Iraq.
| | - Musab M Khalaf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
9
|
Zeighamy Alamdary S, Halimi S, Rezaei A, Afifirad R. Association between Probiotics and Modulation of Gut Microbial Community Composition in Colorectal Cancer Animal Models: A Systematic Review (2010-2021). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3571184. [PMID: 37719797 PMCID: PMC10505085 DOI: 10.1155/2023/3571184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies and is considered the third major cause of mortality globally. Probiotics have been shown to protect against the CRC cascade in numerous studies. Aims The goal of this systematic review was to gather the preclinical studies that examined the impact of probiotics on the alteration of gut microbiota profiles (bacterial communities) and their link to colorectal carcinogenesis as well as the potential processes involved. Methods The search was performed using Scopus, Web of Science, and PubMed databases. Five parameters were used to develop search filters: "probiotics," "prebiotics," "synbiotics," "colorectal cancer," and "animal model." Results Of the 399 full texts that were screened, 33 original articles met the inclusion criteria. According to the current findings, probiotics/synbiotics could significantly attenuate aberrant crypt foci (ACF) formation, restore beneficial bacteria in the microbiota population, increase short-chain fatty acids (SCFAs), and change inflammatory marker expression. Conclusions The present systematic review results indicate that probiotics could modulate the gut microbial composition and immune regulation to combat/inhibit CRC in preclinical models. However, where the evidence is more limited, it is critical to transfer preclinical research into clinical data.
Collapse
Affiliation(s)
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Rezaei
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
de Oliveira CS, Baptistella MM, Siqueira AP, Carvalho MO, Ramos LF, Souto BS, de Almeida LA, Dos Santos EG, Novaes RD, Nogueira ESC, de Oliveira PF. Combination of vitamin D and probiotics inhibits chemically induced colorectal carcinogenesis in Wistar rats. Life Sci 2023; 322:121617. [PMID: 37003542 DOI: 10.1016/j.lfs.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
The modulation of inflammatory elements, cell differentiation and proliferation by vitamin D and the role of probiotics in the intestinal microbiota and immunogenic response have sparked interest in the application of both in chemotherapeutics and chemoprevention of colorectal tumors. AIMS The present study aimed to investigate the effects of isolated and/or combined treatment of vitamin D3 and probiotics on colorectal carcinogenesis. MAIN METHODS Pre-neoplastic lesions were induced with 1,2-dimethylhydrazine in the colon of Wistar rats, which were treated with probiotics and/or vitamin D in three different approaches (simultaneous, pre-, and post-treatment). We investigated the frequency of aberrant crypt foci (ACF) and aberrant crypt (AC) in the distal colon, fecal microbiome composition, gene and protein expression through immunohistochemical and RT-PCR assays, and general toxicity through water consumption and weight gain monitoring. KEY FINDINGS Results confirm the systemic safety of treatments, and show a protective effect of vitamin D and probiotics in all approaches studied, as well as in combined treatments, with predominance of different bacterial phyla compared to controls. Treated groups show different levels of Nrf2, GST, COX2, iNOS, β-catenin and PCNA expression. SIGNIFICANCE These experimental conditions explore the combination of vitamin D and probiotics supplementation at low doses over pathways involved in distinct stages of colorectal carcinogenesis, with results supporting its application in prevention and long-term strategies.
Collapse
Affiliation(s)
- Carolina S de Oliveira
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Biosciences Applied to Health, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Mariane M Baptistella
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Biosciences Applied to Health, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Alexia P Siqueira
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Michele O Carvalho
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Nutrition and Longevity, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Luiz Fernando Ramos
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Bianca S Souto
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Leonardo A de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Elda G Dos Santos
- Postgraduate Program in Biosciences Applied to Health, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rômulo D Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Ester S C Nogueira
- Animal Integrative Biology Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Pollyanna F de Oliveira
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Nutrition and Longevity, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil.
| |
Collapse
|
11
|
Noor S, Ali S, Riaz S, Sardar I, Farooq MA, Sajjad A. Chemopreventive role of probiotics against cancer: a comprehensive mechanistic review. Mol Biol Rep 2023; 50:799-814. [PMID: 36324027 DOI: 10.1007/s11033-022-08023-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Probiotics use different mechanisms such as intestinal barrier improvement, bacterial translocation and maintaining gut microbiota homeostasis to treat cancer. Probiotics' ability to induce apoptosis against tumor cells makes them more effective to treat cancer. Moreover, probiotics stimulate immune function through an immunomodulation mechanism that induces an anti-tumor effect. There are different strains of probiotics, but the most important ones are lactic acid bacteria (LAB) having antagonistic and anti-mutagenic activities. Live and dead probiotics have anti-inflammatory, anti-proliferative, anti-oxidant and anti-metastatic properties which are useful to fight against different diseases, especially cancer. The main focus of this article is to review the anti-cancerous properties of probiotics and their role in the reduction of different types of cancer. However, further investigations are in progress to improve the efficiency of probiotics in cancer treatment.
Collapse
Affiliation(s)
- Shehzeen Noor
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shumaila Riaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Iqra Sardar
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Sajjad
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
12
|
Prazdnova EV, Mazanko MS, Chistyakov VA, Bogdanova AA, Refeld AG, Kharchenko EY, Chikindas ML. Antimutagenic Activity as a Criterion of Potential Probiotic Properties. Probiotics Antimicrob Proteins 2022; 14:1094-1109. [PMID: 35028920 DOI: 10.1007/s12602-021-09870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. Besides, an antimutagenic activity can be associated with probiotics' broader systemic effects, such as geroprotective activity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant criterion for the selection of probiotic strains.
Collapse
Affiliation(s)
- Evgeniya V Prazdnova
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia. .,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.
| | - Maria S Mazanko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Evolutionary Biomedicine Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Aleksandr G Refeld
- Cell Biophysics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Evgeniya Y Kharchenko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
Inhibition of GABAAR or Application of Lactobacillus casei Zhang Alleviates Ulcerative Colitis in Mice: GABAAR as a Potential Target for Intestinal Epithelial Renewal and Repair. Int J Mol Sci 2022; 23:ijms231911210. [PMID: 36232509 PMCID: PMC9570049 DOI: 10.3390/ijms231911210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that the gamma−aminobutyric acid type A receptor (GABAAR) and Lactobacillus casei Zhang regulate colitis in a variety of ways, such as by participating in host immune and inflammatory responses, altering the gut microbiota, and influencing intestinal barrier function. However, not much is known about the mechanisms by which GABAAR and L. casei affect colon epithelial cell renewal and the interaction between GABAAR and L. casei during this process. To elucidate this, we established a dextran sulfate sodium (DSS)−induced model and measured the mouse body weights, colon length, the disease activity index (DAI), and histological scores. Our results indicated that inhibition of GABAAR alleviated the DSS−induced colitis symptoms, resulting in less weight loss and more intact colon tissue. Moreover, treatment with bicuculline (Bic, a GABAAR inhibitor) increased the levels of PCNA, β−catenin, and TCF4 in mice with colitis. Interestingly, open field test performances showed that inhibition of GABAAR also attenuated colitis−related anxiety−like behavior. By 16S RNA gene sequencing analysis, we showed that inhibition of GABAAR partially reversed the gut dysbacteriosis of DSS−induced mice and increased the abundance of beneficial bacteria. Additionally, L. casei Zhang supplementation inhibited the expression of GABAAR in mice with colitis, promoted the proliferation and renewal of colon epithelial cells, and alleviated anxiety−like behavior and intestinal microflora disorder in mice. Thus, GABAAR plays a key role in the beneficial effects of L. casei on DSS−induced colitis in mice.
Collapse
|
14
|
Ghorbani E, Avan A, Ryzhikov M, Ferns G, Khazaei M, Soleimanpour S. Role of Lactobacillus strains in the management of colorectal cancer An overview of recent advances. Nutrition 2022; 103-104:111828. [PMID: 36162222 DOI: 10.1016/j.nut.2022.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
|
15
|
Liu Y, Qi X. Anti-inflammatory and Antioxidant Effect of Lycoperoside H against the 1,2-Dimethyl Hydrazine (DMH) Induced Colorectal Cancer in Rats. J Oleo Sci 2022; 71:1021-1029. [PMID: 35691840 DOI: 10.5650/jos.ess22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In many developed countries, colorectal cancer is a leading cause of morbidity and mortality and its etiology is familiar to be a grouping of nutritional and environmental factors, less physical activity and hereditary factors. Lycoperoside H (LH) is a steroidal alkaloid saponin commonly found in the tomato and exhibited the various pharmacological effects. The aim of the current study was to scrutinized the anticancer effect of LH against 1,2‑Dimethyl Hydrazine (DMH) induced colorectal cancer (CRC) in rats. Subcutaneous injection of DMH (20 mg/kg) was used for induction the CRC and rats were received the oral administration of LH (10, 20 and 40 mg/kg) for 16 weeks. At the end of the investigation, the tumor incidence, weight, and body weight were calculated. Antioxidant enzymes (phase I and II), inflammatory cytokines, lipids and inflammatory markers were all examined. DMH induced rats exhibited the increased tumor incidence, reduced body weight and LH treatment significantly (p < 0.001) suppressed the tumor incidence, and enhanced the body weight. LH treatment significantly (p < 0.001) boosted the level of SOD, GPx, GSH, CAT and suppressed the MDA level. LH treatment suppressed the level cytochrome b5 (Cyto b5), cytochrome P450 (Cyto P450) and boosted the level of glutathione S‑transferase (GST), uridine diphosphoglucuronyltransferase (UDP‑GT) in the liver and colon tissue. LH also decreased the level of cytokines includes interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α); inflammatory mediators like Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin (PGE2) and nuclear factor kappa B (NF-κB) in the hepatic and colon tissue. We can conclude that LH revealed the anticancer effect against the DMH induced CRC via suppression of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University
| | - Xin Qi
- Digestive Endoscopy Center, Dalian Central Hospital
| |
Collapse
|
16
|
Patra S, Sahu N, Saxena S, Pradhan B, Nayak SK, Roychowdhury A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front Microbiol 2022; 13:878297. [PMID: 35711771 PMCID: PMC9195627 DOI: 10.3389/fmicb.2022.878297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysbiosis/imbalance in the gut microbial composition triggers chronic inflammation and promotes colorectal cancer (CRC). Modulation of the gut microbiome by the administration of probiotics is a promising strategy to reduce carcinogenic inflammation. However, the mechanism remains unclear. Methods In this study, we presented a systematic network, meta-analysis, and molecular docking studies to determine the plausible mechanism of probiotic intervention in diminishing CRC-causing inflammations. Results We selected 77 clinical, preclinical, in vitro, and in vivo articles (PRISMA guidelines) and identified 36 probiotics and 135 training genes connected to patients with CRC with probiotic application. The meta-analysis rationalizes the application of probiotics in the prevention and treatment of CRC. An association network is generated with 540 nodes and 1,423 edges. MCODE cluster analysis identifies 43 densely interconnected modules from the network. Gene ontology (GO) and pathway enrichment analysis of the top scoring and functionally significant modules reveal stress-induced metabolic pathways (JNK, MAPK), immunomodulatory pathways, intrinsic apoptotic pathways, and autophagy as contributors for CRC where probiotics could offer major benefits. Based on the enrichment analyses, 23 CRC-associated proteins and 7 probiotic-derived bacteriocins were selected for molecular docking studies. Results indicate that the key CRC-associated proteins (e.g., COX-2, CASP9, PI3K, and IL18R) significantly interact with the probiotic-derived bacteriocins (e.g., plantaricin JLA-9, lactococcin A, and lactococcin mmfii). Finally, a model for probiotic intervention to reduce CRC-associated inflammation has been proposed. Conclusion Probiotics and/or probiotic-derived bacteriocins could directly interact with CRC-promoting COX2. They could modulate inflammatory NLRP3 and NFkB pathways to reduce CRC-associated inflammation. Probiotics could also activate autophagy and apoptosis by regulating PI3K/AKT and caspase pathways in CRC. In summary, the potential mechanisms of probiotic-mediated CRC prevention include multiple signaling cascades, yet pathways related to metabolism and immunity are the crucial ones.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shivam Saxena
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Saroj Kumar Nayak
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
- *Correspondence: Anasuya Roychowdhury /0000-0003-3735-3021
| |
Collapse
|
17
|
Gutiérrez‑Almeida C, Santerre A, León‑Moreno L, Aguilar‑García I, Castañeda‑Arellano R, Dueñas‑Jiménez S, Dueñas‑jiménez J. Proliferation and apoptosis regulation by G protein‑coupled estrogen receptor in glioblastoma C6 cells. Oncol Lett 2022; 24:217. [PMID: 35720489 PMCID: PMC9178726 DOI: 10.3892/ol.2022.13338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Coral Gutiérrez‑Almeida
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara, 44340 Jalisco, Mexico
| | - Anne Santerre
- Department of Cellular and Molecular Biology, University Center of Biological and Agricultural Sciences, University of Guadalajara, Zapopan, 45510 Jalisc, Mexico
| | - Lilia León‑Moreno
- Department of Neuroscience, University Center of Health Sciences, University of Guadalajara, Guadalajara, 44340 Jalisco, Mexico
| | - Irene Aguilar‑García
- Department of Neuroscience, University Center of Health Sciences, University of Guadalajara, Guadalajara, 44340 Jalisco, Mexico
| | - Rolando Castañeda‑Arellano
- Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Tonala, 45425 Jalisco, Mexico
| | - Sergio Dueñas‑Jiménez
- Department of Neuroscience, University Center of Health Sciences, University of Guadalajara, Guadalajara, 44340 Jalisco, Mexico
| | - Judith Dueñas‑jiménez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara, 44340 Jalisco, Mexico
| |
Collapse
|
18
|
Effect of a Diet Supplemented with Sphingomyelin and Probiotics on Colon Cancer Development in Mice. Probiotics Antimicrob Proteins 2022; 14:407-414. [PMID: 35112298 PMCID: PMC9076719 DOI: 10.1007/s12602-022-09916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Previous studies have reported that dietary sphingomyelin could inhibit early stages of colon cancer. Lactic acid-producing bacteria have also been associated with an amelioration of cancer symptoms. However, little is known about the potential beneficial effects of the combined administration of both sphingomyelin and lactic acid-producing bacteria. This article analyzes the effect of a diet supplemented with a combination of the probiotics Lacticaseibacillus casei and Bifidobacterium bifidum (108 CFU/ml) and sphingomyelin (0.05%) on mice with 1,2-dimethylhydrazine (DMH)-induced colon cancer. Thirty-six BALB/c mice were divided into 3 groups: one healthy group (group C) and two groups with DMH-induced cancer, one fed a standard diet (group D) and the other fed a diet supplemented with sphingomyelin and probiotics (DS). The number of aberrant crypt foci, marker of colon cancer development, was lower in the DS. The dietary supplementation with the synbiotic reversed the cancer-induced impairment of galactose uptake in enterocyte brush-border-membrane vesicles. These results confirm the beneficial effects of the synbiotic on the intestinal physiology of colon cancer mice and contribute to the understanding of the possible mechanisms involved.
Collapse
|
19
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Alterations in Faecal Microbiota and Elevated Levels of Intestinal IgA Following Oral Administration of Lacticaseibacillus casei in mice. Probiotics Antimicrob Proteins 2021; 15:524-534. [PMID: 34676502 DOI: 10.1007/s12602-021-09864-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 01/04/2023]
Abstract
The intestinal microbiota has been identified as a crucial regulator of the overall health, with studies describing its influence in a variety of disorders and developmental processes throughout the body. A widely accepted approach of influencing the microbiota and regulating its functionality in health or disease is the consumption of probiotics. In this study, we aimed to identify the impact of probiotic Lacticaseibacillus casei ATCC393 on the intestinal microbiota of mice and circulating soluble products of microbial origin or the immune system. Investigation of the gut microflora using next-generation sequencing analysis revealed alterations in the microbial populations following consumption of the probiotic. Abundance of taxa classified as Muribaculaceae was increased in lactobacilli-fed animals, while abundance of taxa classified as Lachnospiraceae and Oscillospiraceae was decreased. In addition, the composition of the intestinal microbiota was modified by the administration of L. casei, as evident by the clustering of test subjects when inspecting beta diversity, without however any significant effect on the alpha diversity of the animals. Finally, production of IgA in the intestinal lumen of mice that had received the microorganism was significantly increased, as was the concentration of lactic acid, while levels of acetic acid were noticeably lower in the L. casei group. The findings suggest that L. casei can be considered a potential candidate strain for the modulation of intestinal homeostasis and a component of dietary interventions aiming to improve overall health.
Collapse
|
21
|
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML, Santerre A. Immunomodulatory Effect of Lactobacillus casei in a Murine Model of Colon Carcinogenesis. Probiotics Antimicrob Proteins 2021; 12:1012-1024. [PMID: 31797281 DOI: 10.1007/s12602-019-09611-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously reported beneficial effects of the probiotic strain Lactobacillus casei 393 in hindering colon carcinogenesis in a 1,2-dimethylhydrazine (DMH)-induced BALB/c mouse model of colon cancer. In the present study, we investigated the effect of preventive administration of L. casei 393 on the levels of selected pro- and anti-inflammatory circulating cytokines, as well as subpopulations of splenic T cells. The resulting experimental data on IFNγ, TNFα, IL-10, and colon histological features demonstrated that administration of L. casei 2 weeks before DMH treatment impaired the pro-inflammatory effect of DMH, while maintaining the levels of the three cytokines as well as colon histology; it also modulated splenic CD4+, CD8+, and NK T cell subpopulations. The preventive administration of L. casei to DMH-treated mice increased IL-17A synthesis and Treg percentages, further indicating a tumor-protecting role. Together, the results suggest that the colon-cancer-protective properties of L. casei 393 involve the dampening of inflammation through cytokine homeostasis and the maintenance of a healthy T cell subpopulation dynamic. For these reasons, probiotics such as L. casei may contribute to the health of the host as they promote optimal control of the immune response. Further, they may be used as prophylactic agents in combination with standard therapies against colon cancer.
Collapse
Affiliation(s)
- Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Carretera a Reforma Km15.5 s/n, Ra ElGuieno 2ª Sección, 86280, Villahermosa, Tabasco, México
| | - María Luisa Pita-López
- Departamento de Ciencias Básicas para la Salud, CIBIMEC, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, CP4900, Cd. Guzmán, Guadalajara, Jalisco, México
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México.
| |
Collapse
|
22
|
Probiotics: A Promising Candidate for Management of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133178. [PMID: 34202265 PMCID: PMC8268640 DOI: 10.3390/cancers13133178] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the World's third most frequently diagnosed cancer type. It accounted for about 9.4% mortality out of the total incidences of cancer in the year 2020. According to estimated facts by World Health Organization (WHO), by 2030, 27 million new CRC cases, 17 million deaths, and around 75 million people living with the disease will appear. The facts and evidence that establish a link between the intestinal microflora and the occurrence of CRC are quite intuitive. Current shortcomings of chemo- and radiotherapies and the unavailability of appropriate treatment strategies for CRC are becoming the driving force to search for an alternative approach for the prevention, therapy, and management of CRC. Probiotics have been used for a long time due to their beneficial health effects, and now, it has become a popular candidate for the preventive and therapeutic treatment of CRC. The probiotics adopt different strategies such as the improvement of the intestinal barrier function, balancing of natural gut microflora, secretion of anticancer compounds, and degradation of carcinogenic compounds, which are useful in the prophylactic treatment of CRC. The pro-apoptotic ability of probiotics against cancerous cells makes them a potential therapeutic candidate against cancer diseases. Moreover, the immunomodulatory properties of probiotics have created interest among researchers to explore the therapeutic strategy by activating the immune system against cancerous cells. The present review discusses in detail different strategies and mechanisms of probiotics towards the prevention and treatment of CRC.
Collapse
|
23
|
Dadfarma N, Nowroozi J, Kazemi B, Bandehpour M. Identification of the effects of acid-resistant Lactobacillus casei metallopeptidase gene under colon-specific promoter on the colorectal and breast cancer cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:506-513. [PMID: 34094033 PMCID: PMC8143706 DOI: 10.22038/ijbms.2021.53015.11950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Anti-tumor effects of Lactobacilli as normal flora have been described. In a previous study, we identified a protein isolated from the bacterium Lactobacillus casei ATCC 39392 in acidic pH conditions named metallopeptidase. Therefore, we decided to evaluate the effect of the recombinant plasmid coding metallopeptidase protein on the inhibition, proliferation, or apoptosis of the colorectal and breast cancer cell lines. MATERIALS AND METHODS Identified metallopeptidase gene of L. casei under the specific colon cancer promoter was transferred to the Human SW480 and MDA-MB231 cells. Cell viability was evaluated in these two cancer cell lines via MTT assay, apoptotic changes, and expression level of p53 and MAP2K1 genes in comparison with healthy blood cells as a control group. RESULTS Viability of SW480 and MDA-MB231 cells was identified at 25% and 7%, respectively. An increase in apoptotic cell death in the SW480 cell line was observed as revealed by Tunnel staining. The expression assay of TP53 and MAP2K1 genes showed that MPL protein altered gene expression in a cell type-specific manner. Tunnel analyses showed that the pronounced cytotoxic effect of pEGFP-C2/MPL plasmid on SW480 cells was mediated through apoptosis. CONCLUSION These results suggest that endogenous recombinant MPL under colon specific promoter inhibits the proliferation of SW480 colorectal cancer cells by increase in MAP2K1 and P53 activation. L. casei metallopeptidase under the same circumstances could not affect the growth rate and viability of MDA-MB231 breast cancer cells in vitro.
Collapse
Affiliation(s)
- Narges Dadfarma
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jamileh Nowroozi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Tang G, Zhang L. Update on Strategies of Probiotics for the Prevention and Treatment of Colorectal Cancer. Nutr Cancer 2020; 74:27-38. [PMID: 33356609 DOI: 10.1080/01635581.2020.1865420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, with the further research on probiotics, probiotics may become an indispensable part in the prevention and treatment of colorectal cancer (CRC) in the future. As one of the most common cancer, the incidence of CRC is still rising in developing countries. Nowadays, there are lacking in prevention methods with low side effect. Surgery and chemotherapy, as the main treatment of CRC, bring many complications and affect the quality of life of patients. Probiotics has provided new ideas to solve these problems. Probiotics have anti-inflammatory, immune-enhancing, tumor-suppressing and other beneficial effects. Probiotics may provide some safe and effective prevention strategies for CRC. In addition, probiotics can also reduce the complications of surgery and chemotherapy, and improve the effectiveness of chemotherapy. Target administration with probiotics or probiotics cooperated with TRAIL to treat CRC. This article aims to review the mechanisms of probiotics for the prevention and treatment of CRC, as well as specific ways to use probiotics, in order to provide more new strategies for the prevention and treatment of CRC in the future, and reduce the incidence of and improve the quality of life of patients.
Collapse
Affiliation(s)
- Gang Tang
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Linyu Zhang
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Chronic stress decreases ornithine decarboxylase expression and protects against 1,2-dimethylhydrazine-induced colon carcinogenesis. Mol Biol Rep 2020; 47:9429-9439. [PMID: 33259012 DOI: 10.1007/s11033-020-06022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
Biological response to stress depends on the type, timing, and severity of the stressor. Acute stressful environments may positively activate molecular and cellular mechanisms to favor adaptation; however, chronic stress is often associated with detrimental health effects. Colon cancer (CC) is one of the leading causes of death associated with cancer and has been mentioned as a stress-related disease. In the present work, the effect of chronic stress on the initial phase of CC was evaluated, and special emphasis was placed on ornithine decarboxylase (ODC) expression and polyamines for their role in hyperproliferative diseases. BALB/c mice (n = 5/group) were administered the pro-carcinogen 1,2-dimethylhydrazine (DMH) for 8 weeks (20 mg/kg body weight/week) to induce colon carcinogenesis, and then exposed for 4 weeks to two physical stressors: restraint and forced-swimming. Distal colon inflammatory lesions and histomorphological changes were evaluated by hematoxylin-eosin staining; plasma corticosterone levels, colon ODC expression, and urinary polyamines were determined by competitive ELISA, RT-qPCR, Western Blot, and HPLC, respectively. The short-term exposure to DMH triggered colon inflammation, initiated colon carcinogenesis and increased ODC expression; meanwhile, the exposure to chronic stress activated the hypothalamic-pituitary-adrenal (HPA) axis, elicited the production of plasmatic corticosterone, and decreased ODC expression. The exposure of DMH-treated mice to chronic stress counteracted the inflammatory effect of DMH and maintained ODC homeostasis. In early phase of carcinogenesis, the exposure of DMH-treated mice to chronic stress had a positive effect against colon inflammation and maintained ODC homeostasis. The cross-talk between corticosterone, ODC expression, and inflammation in a tumor environment is discussed.
Collapse
|
26
|
Brasiel PGDA, Dutra Luquetti SCP, Peluzio MDCG, Novaes RD, Gonçalves RV. Preclinical Evidence of Probiotics in Colorectal Carcinogenesis: A Systematic Review. Dig Dis Sci 2020; 65:3197-3210. [PMID: 31960202 DOI: 10.1007/s10620-020-06062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer, the second major cause of cancer deaths, imposes a major health burden worldwide. There is growing evidence that supports that the use of probiotics is effective against various diseases, especially in gastrointestinal diseases, including the colorectal cancer, but the differences between the strains, dose, and frequency used are not yet clear. AIMS To perform a systematic review to compile the results of studies carried out in animal models and investigated the effect of probiotics on colorectal carcinogenesis. METHODS Studies were selected in PubMed/MEDLINE and Scopus according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search filters were developed using three parameters: probiotics, colorectal cancer, and animal model. RESULTS From a structured search, we discovered 34 original articles and submitted them to a risk of bias analysis using SYRCLE's tool. The studies show a great diversity of models, most were conducted in rats (55.8%) and used 1,2 dimethylhydrazine as the drug to induce colorectal carcinogenesis (61.7%). The vast majority of trials investigated Lactobacillus (64%) and Bifidobacterium (29.4%) strains. Twenty-six (86.6%) studies found significant reduction in lesions or tumors in the animals that received probiotics. The main methodological limitation was the insufficient amount of information for the adequate reproducibility of the trials, which indicated a high risk of bias due to incomplete characterization of the experimental design. CONCLUSIONS The different probiotics' strains showed anti-carcinogenic effect, reduced the development of lesions and intestinal tumors, antioxidant and immunomodulatory activity, and reduced fecal bacterial enzymes.
Collapse
Affiliation(s)
| | | | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
27
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
28
|
Lorenzana-Martínez G, Santerre A, Andrade-González I, Bañuelos-Pineda J. Effects of Hibiscus sabdariffa calyces on spatial memory and hippocampal expression of BDNF in ovariectomized rats. Nutr Neurosci 2020; 25:670-680. [PMID: 32787648 DOI: 10.1080/1028415x.2020.1804095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian hypofunction is characterized by decay in brain-derived neurotrophic factor (BDNF), a neurotrophin associated with cognitive and memory function. Hormone replacement therapy is the most common treatment to counteract the negative effects of ovarian insufficiency; however, this therapy may increase the odds of endometrial cancer, blood clots, stroke, and breast cancer. Therefore, a safer alternative to synthetic estrogens is needed. One possible candidate may be phytoestrogens. Hibiscus sabdariffa L. (Malvaceae) is a source of natural food colorants; the calyces and leaves of the plant are consumed in drinks and culinary preparations and are recognized for several health benefits related to their high content of anthocyanins. In the present study, we used an ovariectomized rat model to assess the phytoestrogenic effect of H. sabdariffa, and evaluated spatial memory and BDNF expression. Ninety-day-old female Wistar rats were randomly separated into six groups. Rats from four groups were ovariectomized and injected with a physiological dose of estradiol, or given, in drinking water, an extract prepared from calyces of H. sabdariffa at doses of 50 or 100 mg/kg body weight. Both Intact and Sham groups were included as controls. At day 42, short- and long-term memories were assessed by the Barnes maze test, and hippocampal BDNF expression was evaluated by RT-qPCR and Western blot. Ovariectomy significantly decreased memory performance and BDNF expression, compared with controls. However, administration of H. sabdariffa extract reversed the negative effect of ovariectomy on short- and long-term memory parameters and BDNF expression. A stronger effect was observed at a lower dose of the extract. In conclusion, the extract from H. sabdariffa acted as a phytoestrogen in ovariectomized rats, improving spatial memory performance and hippocampal BDNF expression. Based on these promising results, further clinical experimentation is recommended to study the benefits of H. sabdariffa as an alternative hormonal therapy in patients with ovarian hypofunction.
Collapse
Affiliation(s)
| | - Anne Santerre
- Laboratorio de Biomarcadores Moleculares en Biomedicina y Ecología, Universidad de Guadalajara, Zapopan, México
| | - Isaac Andrade-González
- Planta Piloto de Procesos Agroalimentarios, TecNM/Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, México
| | | |
Collapse
|
29
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
30
|
Seesaha PK, Chen X, Wu X, Xu H, Li C, Jheengut Y, Zhao F, Liu L, Zhang D. The interplay between dietary factors, gut microbiome and colorectal cancer: a new era of colorectal cancer prevention. Future Oncol 2020; 16:293-306. [PMID: 32067473 DOI: 10.2217/fon-2019-0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and its incidence is on the rise. Dietary intervention has emerged as an attractive strategy to curtail its occurrence and progression. Diet is known to influence the gut microbiome, as dietary factors and gut bacteria can act in concert to cause or protect from colorectal cancer. Several studies have presented evidence for such interactions and have pointed out the different ways by which the diet and gut microbiome can be altered to produce beneficial effects. This review article aims to summarize the interrelationship between diet, gut flora and colorectal cancer so that a better preventive approach can be applied.
Collapse
Affiliation(s)
- Poshita Kumari Seesaha
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Chen
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Hongxia Xu
- Department of Nutrition, Third Military Medical University Daping Hospital & Research Institute of Surgery, Chongqing 400042, Sichuan, PR China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Yogesh Jheengut
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Fengjiao Zhao
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, PR China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| |
Collapse
|
31
|
Settanni CR, Quaranta G, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Oral supplementation with lactobacilli to prevent colorectal cancer in preclinical models. MINERVA GASTROENTERO 2019; 66:48-69. [PMID: 31760735 DOI: 10.23736/s1121-421x.19.02631-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is still a major threat for public health, as it is the third most common cancer in men and the second in women and it ranks second among tumors in terms of mortality. Evidence from the last decades emphasizes the complex role of gut microbial composition in CRC development. Historically, it is believed that dairy products, a source of lactobacilli and other lactic acid bacteria, are beneficial for human health and help in preventing CRC. We searched online literature for trials evaluating the preventive role of lactobacilli in CRC animal models. Most of selected studied assessed a relevant role of lactobacilli in preventing CRC and precursor lesions. Mechanisms through which this effect was achieved are supposed to regard immunomodulation, regulation of apoptosis, gut microbial modulation, genes expression, reduction of oxidative stress and others. Lactobacilli oral supplementation is reported to be effective in preventing CRC in animal models, even if the underlying mechanisms of action are still not fully understood.
Collapse
Affiliation(s)
- Carlo R Settanni
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Quaranta
- Institute of Microbiology, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
32
|
Genaro SC, Lima de Souza Reis LS, Reis SK, Rabelo Socca EA, Fávaro WJ. Probiotic supplementation attenuates the aggressiveness of chemically induced colorectal tumor in rats. Life Sci 2019; 237:116895. [PMID: 31610204 DOI: 10.1016/j.lfs.2019.116895] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
To evaluate the effect of a probiotic on the aggressiveness of a chemically induced colorectal tumor in rats. Twenty-five male Fisher 344 rats, 250 g, provided with feed and water ad libitum, were randomly divided into 5 groups (5 rats/group): GControl, no treatment; GTumor, tumor induction; GTumor+5FU, tumor induction, 5-Fluorouracil applied; GTumor+Prob, induction of the tumor, supplemented with probiotic; GTumor+5-FU+Prob, tumor induction, 5-Fluorouracil applied, supplemented with probiotic. For tumor induction 20 mg/kg of 1,2-dimethylhydrazine was applied intraperitoneally over 4 weeks, followed by an interval of 15 days, and then repeated for a further 4 weeks. Five weeks after the final dose of the carcinogen, treatment was initiated with 5-Fluorouracil (15 mg/kg, intraperitoneally/week) and a commercial probiotic (1 × 109 CFU, daily/gavage). Data were analyzed by One Way Variance Analysis and means compared by Dunnett's test. GraphPad Prism statistical software was used. The histopathological analyzes were evaluated by the chi-square test. A 5% type-I error was considered statistically significant. Compared with the GTumor, the GTumor+Prob (p < 0.0373) and GTumor+5-FU+Prob (p < 0.0003) demonstrated an attenuated effect on the aggressiveness of the colorectal tumor, with a reduction in the count of Aberrant Crypt foci; and a lower percentage of malignant neoplastic lesions in the GTumor+Prob (40% low grade tubular adenoma, 40% carcinoma in situ, 20% low grade adenocarcinoma) and GTumor+5-FU+Prob (40% low grade tubular adenoma and 60% carcinoma in situ). Probiotic supplementation has the potential to decrease the formation of aberrant crypts and ameliorate tumor malignancy, enhancing the antitumor effect of 5-Fluorouracil chemotherapy in colic segments.
Collapse
Affiliation(s)
- Sandra Cristina Genaro
- Postgraduate Program in Animal Science, University of West Paulist, Presidente Prudente, SP, Brazil; Faculty of Nutrition, University of West São Paulo, Presidente Prudente, SP, Brazil.
| | - Luis Souza Lima de Souza Reis
- Postgraduate Program in Animal Science, University of West Paulist, Presidente Prudente, SP, Brazil; Faculty of Veterinary Medicine, University of West São Paulo, Presidente Prudente, SP, Brazil.
| | - Sabrina Karen Reis
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, State University of Campinas, UNICAMP, Campinas-SP, Brazil.
| | - Eduardo Augusto Rabelo Socca
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, State University of Campinas, UNICAMP, Campinas-SP, Brazil.
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, State University of Campinas, UNICAMP, Campinas-SP, Brazil.
| |
Collapse
|
33
|
Ali MS, Hussein RM, Gaber Y, Hammam OA, Kandeil MA. Modulation of JNK-1/ β-catenin signaling byLactobacillus casei, inulin and their combination in 1,2-dimethylhydrazine-induced colon cancer in mice. RSC Adv 2019; 9:29368-29383. [PMID: 35528422 PMCID: PMC9071812 DOI: 10.1039/c9ra04388h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a complex disease that involves numerous genetic alterations that change the normal colonic mucosa into invasive adenocarcinoma. In the current study, the protective effects of inulin (prebiotic), Lactobacillus casei (L. casei, probiotic) and their combination (synbiotic) on 1,2-dimethylhydrazine (DMH)-induced colon cancer in male Swiss mice were evaluated. Animals were divided into: Control group, DMH-treated group, DMH plus inulin, DMH plus L. casei and DMH plus inulin plus L. casei-treated groups. Fecal microbiome analysis, biochemical measurements, histopathological examination of the colon tissues, immunostaining and Western blotting analysis of β-catenin, GSK3β and JNK-1 were performed. The prebiotic-, probiotic- and synbiotic-treated groups showed decreased levels of carcinoembryonic antigen and a lower number of aberrant crypt foci compared to the DMH-treated group with the synbiotic group exhibiting a superior effect. Furthermore, all treatments showed a body weight-reducing effect. Administration of inulin, L. casei or their combination increased the expression level of phospho-JNK-1 while they decreased the expression level of β-catenin and phospho-GSK3β. Remarkably, L. casei treatment resulted in enrichment of certain beneficial bacterial genera i.e. Akkermansia and Turicibacter. Therefore, administration of L. casei and inulin as a synbiotic combination protects against colon cancer in mice. The lactobacillus casei and inulin modulate the expression of JNK-1, GSK3β and β-catenin proteins and enrich the beneficial bacteria to protect from colon cancer in mice.![]()
Collapse
Affiliation(s)
- Mohammed S. Ali
- Department of Biochemistry
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Rasha M. Hussein
- Department of Biochemistry
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Yasser Gaber
- Department of Pharmaceutics and Pharmaceutical Technology
- College of Pharmacy
- Mutah University
- Al-Karak
- Jordan
| | - Olfat A. Hammam
- Pathology Department
- Theodor Bilharz Research Institute
- 12411 Giza
- Egypt
| | - Mohamed A. Kandeil
- Department of Biochemistry
- Faculty of Veterinary Medicine
- Beni-Suef University
- Egypt
| |
Collapse
|
34
|
Shi X, Zhu M, Kang Y, Yang T, Chen X, Zhang Y. Wnt/β-catenin signaling pathway is involved in regulating the migration by an effective natural compound brucine in LoVo cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:85-92. [PMID: 30097126 DOI: 10.1016/j.phymed.2018.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/19/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Colorectal cancer remains the third most common malignancies and migration is one of the main factors for its high mortality rate. Brucine, a natural plant alkaloid, has been proved to possess a variety of pharmacological functions including anti-tumor activities. PURPOSE The aim of this study was to investigate the inhibitory effect of brucine on the colorectal cancer and the underlying mechanism. METHODS In this study, colony formation assay and transwell assay were used to investigate the effect of brucine on LoVo cells viability and migration. Immunofluorescence assay, western blot assay and Gelatin zymography assay were used to study the mechanism of brucine. Xenograft model in nude mice was induced to investigate the in vivo effect of brucine on LoVo cells. RESULTS Brucine could significantly decrease the viability, inhibit the colony formation and induce the apoptosis of LoVo cells. Brucine could also suppress the migration of LoVo cells in a dose-dependent manner. Western blot analysis elucidated that the inhibition of migration was associated with the decreasing expression of matrix metalloproteinases including MMP2, MMP3 and MMP9. Moreover, we found that treatment of brucine could downregulate the expression of Frizzled-8, Wnt5a, APC and GSNK1A1, and increase the expression of AXIN1. Meanwhile, brucine also decreased the phosphorylation level of LRP5/6 and GSK3β, and increased the level of p-β-catenin. Xenografted model in nude mice study also revealed that oral administration of brucine could inhibit the growth and migration of LoVo cells by activating the expression of AXIN1 and p-β-catenin. CONCLUSION Brucine could suppress the migration of the colorectal cancer in vitro and in vivo and the effect was associated with the inhibition of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xianpeng Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi 710061, PR China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi 710061, PR China
| | - Yuan Kang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi 710061, PR China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi 710061, PR China
| | - Xia Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi 710061, PR China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
35
|
Abstract
The skin supports a delicate ecosystem of microbial elements. Although the skin typically acts as a barrier, these microbes interact with the internal body environment and imbalances from the "healthy" state that have been linked to several dermatologic diseases. Understanding the changes in microbial flora in disease states allows for the potential to treat by restoring equilibrium. With the rising popularity of holistic and natural consumerism, prebiotics, probiotics, symbiotic, and other therapies are under study to find alternative treatments to these skin disorders through manipulation or supplementation of the microbiome.
Collapse
Affiliation(s)
- Shenara Musthaq
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Anna Mazuy
- Early Clinical Evaluation Department, Galderma-Nestlé Skin Health R&D, Les Templiers, Sophia Antipolis, France
| | - Jeannette Jakus
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY.
| |
Collapse
|
36
|
Song H, Wang W, Shen B, Jia H, Hou Z, Chen P, Sun Y. Pretreatment with probiotic Bifico ameliorates colitis-associated cancer in mice: Transcriptome and gut flora profiling. Cancer Sci 2018; 109:666-677. [PMID: 29288512 PMCID: PMC5834773 DOI: 10.1111/cas.13497] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Individuals with inflammatory bowel disease are at high risk of developing colitis‐associated cancer (CAC). Strategies to block the process from inflammatory bowel disease to CAC should be considered. In the experiment, we aim to explore the chemopreventive efficacy of the probiotic cocktail Bifico and its potential mechanism in azoxymethane and dextran sodium sulphate‐induced CAC in mice. Oral pretreatment of Bifico was adopted to evaluate its protective effect. The colorectums of 35 C57BL/6 mice were collected and examined for the degree of inflammation and tumorigenesis. Comparative 16S rRNA sequencing was carried out to observe Bifico‐target alterations in gene expression and microbiota structure. We found that pretreatment of Bifico alleviated intestinal inflammation and reduced tumor formation. Furthermore, we identified a subset of genes as potential targets of Bifico treatment, including CXCL1,CXCL2,CXCL3, and CXCL5, which are all ligands of C‐X‐C motif receptor 2 (CXCR2). The 16S rRNA sequencing showed that Bifico decreased the abundance of genera Desulfovibrio, Mucispirillum, and Odoribacter, and a bloom of genus Lactobacillus was detected. Notably, we found that an abundance of these Bifico‐target taxa was significantly associated with the expression of CXCR2 ligand genes. Our studies indicate that Bifico, given orally, can ameliorate CAC in mice through intervening with the possible link between Desulfovibrio, Mucispirillum, Odoribacter, Lactobacillus, and CXCR2 signaling.
Collapse
Affiliation(s)
- Huan Song
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiyi Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Endoscopy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Bo Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Jia
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Zununi Vahed S, Barzegari A, Rahbar Saadat Y, Goreyshi A, Omidi Y. Leuconostoc mesenteroides-derived anticancer pharmaceuticals hinder inflammation and cell survival in colon cancer cells by modulating NF-κB/AKT/PTEN/MAPK pathways. Biomed Pharmacother 2017; 94:1094-1100. [PMID: 28821160 DOI: 10.1016/j.biopha.2017.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 01/16/2023] Open
Abstract
Promising results from different studies on the effect of probiotics in cancer prevention and therapy have so far been reported. However, the molecular mechanism of the interaction of probiotics with cancer cells is yet to be fully understood. In the present study, Leuconostoc mesenteroides was isolated from traditional dairy products, and its probiotic characteristics were determined. HT-29 cells were treated with conditioned-medium of designated bacteria and the cell apoptosis was studied at cellular and molecular level using DAPI staining, flow cytometry, DNA ladder assays, and real-time quantitative-PCR (q-PCR). Based on our findings, L. mesenteroides promoted apoptosis in colon cancer cell line by upregulation of MAPK1, Bax, and caspase 3, and downregulation of AKT, NF-κB, Bcl-XL expressions and some key oncomicroRNAs such as miRNA-21 and miRNA-200b significantly (p≤0.03). The results indicated the likelihood of the examined probiotic as an alternative or complementary treatment modality in signaling-targeted cancer therapy.
Collapse
Affiliation(s)
- Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Ali Goreyshi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|