1
|
Shui W, Niu Y, Zhang C, Pan Q. Investigating the correlation between blood manganese concentrations and anemia in U.S. adults: a nationally representative study. Hematology 2025; 30:2460895. [PMID: 39977843 DOI: 10.1080/16078454.2025.2460895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The health implications of trace elements have become increasingly concerning, yet the connection between blood manganese levels and anemia remains insufficiently examined. This research endeavors to explore the potential linkage between blood manganese concentrations and anemia. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018, this study examines the correlation between blood manganese levels and anemia among U.S. adults, offering a comprehensive national perspective. The study included 11,300 adults aged 20 and above, with both blood manganese and hemoglobin levels measured. Generalized Additive Model (GAM) was applied to delineate smooth curves, and threshold effect analysis was performed to identify the inflection points of these curves. Subsequently, unconditional logistic regression was employed to assess the risk. RESULTS Our research involved a total of 11,300 individuals, among which 1,143 (10.1%) were identified with anemia. The curve fitting analysis indicated a U-shaped relationship between blood manganese levels and the risk of anemia. Specifically, when blood manganese levels were below 8.69 µg/L, increasing concentrations were linked to a decreased risk of anemia, with an adjusted OR of 0.838 (95% CI: 0.735-0.954), indicating a protective effect of this level of blood manganese against anemia. Conversely, when blood manganese levels were at or above 8.69 µg/L, further elevations were strongly associated with an increased risk of anemia, with the adjusted OR rising to 1.160 (95% CI: 1.124-1.196), suggesting that excessively high blood manganese levels significantly raised the risk of developing anemia. CONCLUSION This study provides novel insights into the association between blood manganese levels and anemia. Further extensive, population-based cohort studies are necessary to validate the causality and to uncover the intrinsic toxicological mechanisms.
Collapse
Affiliation(s)
- Wei Shui
- Department of General Practice, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanyuan Niu
- Department of General Practice, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Changran Zhang
- Department of General Practice, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qianying Pan
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Zaitseva NV, Zemlyanova МА, Gekht AB, Dedaev SI, Kol'dibekova YV, Peskova ЕV, Stepankov МS, Tinkov AA, Martins AC, Skalny AV, Aschner M. Neurotoxic effects of aluminum and manganese: From molecular to clinical effects. J Neurol Sci 2025; 473:123480. [PMID: 40233648 DOI: 10.1016/j.jns.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/25/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
The existing data demonstrate that aluminum (Al) and manganese (Mn) possess neurotoxic effects upon overexposure due to induction of neuronal oxidative stress and apoptosis, synaptic dysfunction and neurotransmitter metabolism, neuroinflammation, and cytoskeletal pathology. However, systematic evidence regarding contribution of these metals to development of neurological diseases are lacking. Therefore, in this review we provide a summary of the existing data on contribution of Al and Mn exposure to brain diseases and its symptoms. Causal relations were demonstrated for development of parkinsonism upon exposure to high doses of Mn, whereas Al overload is considered the key contributor to dialysis encephalopathy. Certain studies demonstrate that Al and Mn overexposure is associated with neurodegenerative diseases including Alzheimer's and Parkinson's diseases, as well as neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Although laboratory studies demonstrate the potential contribution of Al and Mn to molecular pathogenesis of these diseases, clinical findings supporting the causal role of metals is these pathologies are yet insufficient. Therefore, estimation of the contribution of these metals to neurological disorders is essential for development of more effective early diagnostics and prevention of diseases under exposure to adverse neurological effects of Al and Mn compounds.
Collapse
Affiliation(s)
- N V Zaitseva
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation.
| | - М А Zemlyanova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - A B Gekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation; Pirogov Russian Medical Research University, Moscow, Russian Federation
| | - S I Dedaev
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Yu V Kol'dibekova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - Е V Peskova
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - М S Stepankov
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russian Federation
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russian Federation; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russian Federation
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russian Federation; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Ahmadi S, Van Huizen R, Zoumenou R, Le Bot B, Ayotte P, Dumas P, Massougbodji A, Glorennec P, Bodeau-Livinec F. Iron deficiency in pregnancy and its association with blood lead and manganese levels in offspring in Benin, Sub-Saharan Africa. Early Hum Dev 2025; 205:106255. [PMID: 40239386 DOI: 10.1016/j.earlhumdev.2025.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION The impact of prenatal iron deficiency (ID) on offspring's blood lead level (BLL) and blood manganese level (BML) in infancy remains poorly understood. This study aimed to assess associations between prenatal ID and BLL/BML in offspring in Benin. We also investigated associations between infant ID and corresponding BLL and BML in infants. MATERIALS AND METHODS Data on hematological parameters, metal blood concentrations, and socioeconomic status were obtained from a prospective mother-child cohort study in Allada, Benin. Blood samples were collected during pregnancy (n = 501), at delivery (n = 501), and from 12-month-old infants (n = 501) to assess iron deficiency and haemoglobin concentration. Additionally, BML was analyzed for a subset of 12-month-old infants (n = 271), and BLL was determined for the full cohort of 12-month-old infants (n = 501). Associations between ID and metal concentrations were examined using logistic regressions. RESULTS Prenatal ID and IDA at the first and third antenatal care visit (ANC) were positively associated with infant BLL above 50 μg/L. Infants of mothers with prenatal ID and IDA had higher BLL. Moreover, prenatal ID and IDA at first and second ANC visits were positively associated with higher infant BML. In infancy, infants with ID and IDA had significantly higher BLL as compared to those without ID and IDA. Infant ID and IDA were positively associated with elevated BLL. CONCLUSION Elevated BLL and BML in infants were positively associated with ID and/or IDA prenatally during at least one ANC visit, while in infancy, infant ID and IDA were positively associated with elevated BLL only. Infants with ID and IDA showed higher BLL but not BML. This suggests that ID prenatally and during infancy may contribute to high blood lead concentrations in infants, which can lead to neurotoxicity. Treating ID and IDA is critical to prevent toxicity caused by high BLL in infants.
Collapse
Affiliation(s)
- Shukrullah Ahmadi
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Raymond Van Huizen
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Romeo Zoumenou
- Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, 75006 Paris, France
| | - Barbara Le Bot
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Pierre Ayotte
- Laboratoire de Toxicologie, Institut National de Santé Publique du Québec, Québec, QC G1V 5B3, Canada; Axe Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada.
| | - Pierre Dumas
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada.
| | | | - Philippe Glorennec
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Florence Bodeau-Livinec
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
4
|
Fang S, Clayton PT, Garg D, Yoganathan S, Zaki MS, Helgadottir EA, Palmadottir VK, Landry M, Gospe SM, Mankad K, Bonifati V, Sharma S, Tuschl K. Consensus of Expert Opinion for the Diagnosis and Management of Hypermanganesaemia With Dystonia 1 and 2. J Inherit Metab Dis 2025; 48:e70031. [PMID: 40320765 PMCID: PMC12050909 DOI: 10.1002/jimd.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Hypermanganesaemia with Dystonia 1 and 2 (HMNDYT1 and 2) are inherited, autosomal recessive disorders caused by pathogenic variants in the genes encoding the manganese transporters SLC30A10 and SLC39A14, respectively. Impaired hepatic and enterocytic manganese uptake (SLC39A14) and excretion (SLC30A10) lead to deposition of manganese in the basal ganglia resulting in childhood-onset dystonia-parkinsonism. HMNDYT1 is characterized by additional features due to manganese accumulation in the liver causing cirrhosis, polycythaemia, and depleted iron stores. High blood manganese levels and pathognomonic MRI brain appearances of manganese deposition resulting in T1 hyperintensity of the basal ganglia are diagnostic clues. Treatment is limited to chelation therapy and iron supplementation that can prevent disease progression. Due to their rarity, the awareness of the inherited manganese transporter defects is limited. Here, we provide consensus expert recommendations for the diagnosis and treatment of patients with HMNDYT1 and 2 in order to facilitate early diagnosis and optimize clinical outcome. These recommendations were developed through an evidence and consensus-based process led by a group of 13 international experts across the disciplines of metabolic medicine, neurology, hematology, genetics, and radiology, and address the clinical presentation, diagnostic investigations, principles of treatment, and monitoring of patients with HMNDYT1 and 2.
Collapse
Affiliation(s)
- Sherry Fang
- Department of Metabolic MedicineGreat Ormond Street Hospital for ChildrenLondonUK
| | - Peter T. Clayton
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Divyani Garg
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Sangeetha Yoganathan
- Paediatric Neurology Unit, Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Maha S. Zaki
- Department of Clinical GeneticsHuman Genetics and Genome Research Institute, National Research CentreCairoEgypt
| | | | | | - Maude Landry
- The Moncton Hospital, Horizon Health NetworkMonctonCanada
| | - Sidney M. Gospe
- Department of Neurology and PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Department of PediatricsDuke UniversityDurhamNorth CarolinaUSA
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital for ChildrenLondonUK
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center RotterdamRotterdamthe Netherlands
| | - Suvasini Sharma
- Department of PediatricsLady Hardinge Medical College and Associated Kalawati Saran Children's HospitalDelhiIndia
| | - Karin Tuschl
- Department of Metabolic MedicineGreat Ormond Street Hospital for ChildrenLondonUK
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| |
Collapse
|
5
|
Li Y, Peng JC, Fang YY, Qin LM, Aschner M, Jiang YM. Effects of Subchronic Manganese and Iron Exposure, Alone or in Combination, on Elemental Distribution in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04626-w. [PMID: 40261544 DOI: 10.1007/s12011-025-04626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Overexposure to manganese (Mn) or iron (Fe) may lead to neurological damage. The aim of this study was to investigate the effects of subchronic Mn and Fe exposure, alone or in combination, on the distribution of other elements and the relationship between Mn and Fe levels in whole blood and brain. Forty male Sprague-Dawley (SD) rats were divided into control, Mn-exposed, Fe-exposed, and combined Mn-Fe-exposed groups, with 10 rats assigned randomly to each group. The control, Mn-exposed, Fe-exposed group and the combined Mn-Fe-exposed groups were injected intraperitoneally with equal amounts of saline, 5 mg/kg MnCl2, 20 mg/kg FeSO4 or 5 mg/kg MnCl2+20 mg/kg FeSO4 once a day, 5 days a week for 8 weeks. The levels of Mn, Fe and other metallic elements [including barium (Ba), beryllium (Be), strontium (Sr), antimony (Sb), lead (Pb), vanadium (V) and copper (Cu)] in whole blood and brain tissue (including the globus pallidus, hippocampus, striatum and substantia nigra) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results of this study show that, in whole blood, Mn levels were increased (p < 0.05) in the Mn-exposed group, Fe levels were decreased in both the Fe-exposed (p < 0.05) and Mn-exposed groups (p < 0.01), and Sb levels were increased in both the Mn-exposed and combined Mn-Fe-exposed groups (p < 0.05). In the substantia nigra, the levels of Be (p < 0.01), Sr (p < 0.05), and Cu (p < 0.001) were increased in the Fe-exposed group; the levels of Cu were also significantly increased in the Mn-exposed group (p < 0.01) and the combined Mn-Fe-exposed group (p < 0.0001); the levels of V were decreased (p < 0.05) in the combined Mn-Fe-exposed group; and the levels of V were decreased in the Fe-exposed group (p < 0.01 ), Mn-exposed group (p < 0.05) and combined Mn-Fe-exposed group (p < 0.001) had decreased Ba levels. In the pallidum, Fe levels were increased in the Mn-Fe co-exposed group (p < 0.0001); Ba (p < 0.01) and Pb (p < 0.05) levels were decreased in the Fe-exposed group; Ba (p < 0.05) levels were decreased in the Mn-exposed group; and Ba levels were increased in the Mn-Fe co-exposed group (p < 0.05). In the hippocampus, Mn (p < 0.01), Cu (p < 0.05), Sb (p < 0.01), and V (p < 0.05) levels were increased in the Fe-exposed group; Mn levels were increased in the Mn-exposed group (p < 0.01) and the combined Mn-Fe-exposed group (p < 0.0001). In the striatum, Be levels were decreased in the Mn-Fe combined exposure group (p < 0.05). Mn and Fe levels in whole blood and brain tissue can reflect the accumulation of Mn and Fe. These measurements can serve as valuable predictive biomarkers for subchronic Mn or Fe exposure and combined Mn-Fe exposure. The interactions between Mn and Fe and the distribution and abnormalities of the essential metal elements in the central nervous system and other organs need to be further investigated.
Collapse
Affiliation(s)
- Yan Li
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
| | - Li-Mei Qin
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Venturelli F, Filippini T, Ferrari A, Paduano S, Marchesi I, Casali ME, Righi E, Bargellini A. Risk assessment of trace elements in human breastmilk in a Northern Italy population. J Trace Elem Med Biol 2025; 89:127641. [PMID: 40199038 DOI: 10.1016/j.jtemb.2025.127641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Breastfeeding is the main source of nutrition in newborns, thus risk assessment of dietary intake of trace elements represents a relevant public health topic. METHODS Using a cross-sectional study design, we recruited mother-infant pairs from women who gave birth between 2015 and 2017 at the Obstetrics and Gynecology Unit of the University Hospital of Modena, Northern Italy. We investigated sociodemographic and pregnancy characteristics of mothers and newborns and we collected human mature milk samples between 30 and 40 days after childbirth to evaluate content of trace elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn) using inductively coupled plasma mass spectrometry. We assessed the estimated dietary intake (EDI) of trace elements and compared results with both reference values suggested by main regulatory agencies. RESULTS In the 195 mother-infant pairs, the mean women age was 33.1 years, mainly resident in urban areas (80 %). As regards smoking status, 3.6 % and 31.3 % of women were current and former smokers. Median trace elements concentrations (in µg/L) were As: 0.09; Cd: 0.02, Cr: 0.09; Cu: 408.0; Fe: 265.25; Mn:2.48; Ni: 1.20; Pb: 0.02; Se: 11.14; Zn: 2264. We found a positive association with maternal age for Fe and Ni, and slightly higher concentrations of Cu, Fe, Ni and Se in mothers living in urban areas. Current smokers showed the highest concentrations of As, Cu, Fe, Mn, but the lowest of Se. Risk assessment comparing EDI with reference values from regulatory agencies showed generally adequate intake, and all median EDIs were below the upper levels. However, when considering 95th of EDIs, some elements demonstrated values closer to the corresponding upper limit, namely Zn, Pb, As, and Cu. CONCLUSIONS Our findings indicate a general safe dietary intake of the investigated trace elements, but highlight the need to strengthen the recommendations to avoid smoking during pregnancy and lactation and to continuously monitor human milk content to protect newborns.
Collapse
Affiliation(s)
- Francesco Venturelli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy; Epidemiology Unit, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of Berkeley, Berkeley, CA, USA
| | - Angela Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Elisabetta Casali
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy; Head Office, Modena University Hospital, Modena, Italy
| | - Elena Righi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
7
|
Frąckowiak J, Komorowicz I, Sajnóg A, Skrypnik K, Suliburska J, Hanć A. Do probiotics and iron supplementation have any impact on element distribution in rat kidneys? - bioimaging by laser ablation inductively coupled plasma mass spectrometry. Talanta 2025; 283:127112. [PMID: 39492141 DOI: 10.1016/j.talanta.2024.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the influence of multistrain probiotics and iron supplementation on the distribution and interaction of trace elements in the kidneys of Wistar rats using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) bioimaging. Forty 6-week-old female Wistar rats were divided into five groups, each fed an AIN-93 M diet with varying additions or deficiencies of iron and probiotics, which included a control, an iron-deficient diet, an iron-deficient diet with probiotics, an iron-deficient diet with iron supplementation, and an iron-deficient diet with both probiotics and iron supplementation. The obtained two-dimensional maps of the distribution of elements reveal distinct locations of Cu, Fe, Mn, and Zn in specific tissues of rat kidneys. Specifically, Cu and Fe were co-localized in the renal cortex, while Zn was mostly absent from regions where Cu and Fe accumulated. Fe supplementation alone increased Fe in the renal cortex, while probiotics enhanced this effect, suggesting a synergistic role in Fe absorption. The total content of elements in the kidneys of all groups was determined after digestion: Cu 13.3-24.7 mg kg-1, Fe 218-509 mg kg-1, Mn 0.87-1.29 mg kg-1, and Zn 28.6-40.1 mg kg-1. Competitive interactions among Cu, Fe, and Zn were observed, with probiotics modulating their concentrations and distribution, highlighting their role in trace element homeostasis. Our research provides insights into the interactions between dietary supplements, probiotics, and trace element distribution in kidneys, paving the way for targeted nutritional interventions. This study highlights the need for further research on trace element functions in organisms and their impact on health.
Collapse
Affiliation(s)
- Julia Frąckowiak
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Komorowicz
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Anetta Hanć
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
8
|
Ipek Y, Ghosh P, Mausbach WE, Jeyasingh PD. Spatiotemporal Variation in Dissolved, Bioavailable, and Particulate Elements and the Abundance of Harmful Algae in Grand Lake. ACS ES&T WATER 2024; 4:5492-5505. [PMID: 39698556 PMCID: PMC11650641 DOI: 10.1021/acsestwater.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
Harmful algal blooms (HABs) are often linked to the increased loading of limiting nutrients such as nitrogen and phosphorus. Little is known about the relevance of other biogenic elements, the supplies of which are spatiotemporally heterogeneous, on HABs. We measured the dissolved, bioavailable, and particulate concentrations of 26 elements at four locations draining different catchments of a large reservoir during three seasons, in addition to the total abundance of phytoplankton and % of cyanobacteria. Finally, we manipulated a key element (Fe) in microcosms to test its effect on the community. Phytoplankton abundance and community structure varied spatiotemporally, with minimal variation in N/P. The variation in environmental supplies of several other elements was correlated with phytoplankton abundance, as well as up to 3 orders of magnitude differences in cyanobacterial yield. Bioassays manipulating Fe impacted total phytoplankton as well as the abundance of cyanobacteria, with Fe-chelated treatments resulting in a significant decline in phytoplankton as well as cyanobacterial yield. In summary, we found substantial heterogeneity in elemental supplies that are relevant to the phytoplankton community. Exploring the relevance of the entire system of elements in the context of HABs may be more rewarding than studies emphasizing a subset of elements.
Collapse
Affiliation(s)
- Yetkin Ipek
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Parna Ghosh
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | | - Punidan D. Jeyasingh
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
9
|
Thunberg P, Wastensson G, Lidén G, Adjeiwaah M, Tellman J, Bergström B, Fornander L, Lundberg P. Welding techniques and manganese concentrations in blood and brain: Results from the WELDFUMES study. Neurotoxicology 2024; 105:121-130. [PMID: 39326638 DOI: 10.1016/j.neuro.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
This study used whole-brain mapping to investigate the effect of different welding processes on manganese (Mn) accumulation in the brain. Exposure measurements were performed at the welders' workplaces about 3 weeks before a magnetic resonance imaging (MRI) examination. The welders were categorized into three main groups based on welding method, and the T1-relaxation rate (R1) was measured using quantitative MRI (qMRI). Welders using shielded metal arc welding (SMAW) were found to have lower accumulations of total Mn in clusters encompassing white matter, thalamus, putamen, pallidum, and substantia nigra compared with welders using inert gas tungsten arc welding (GTAW) or continuous consumable electrode arc welding (CCEAW). A positive correlation was found between Mn in red blood cells (Mn-RBC) and R1 in a region encompassing pre-and post-central gyri. The results of this study show that the accumulation of free, bound, or compartmentalized Mn ions in the brain differed depending on the welding method used. These differences were predominately located in the basal ganglia but were also found in regions encompassing white matter. The level of Mn-RBC was correlated to the deposition of Mn in the left primary somatosensory and motor cortex and may therefore be linked to neurological and neurobehavioral symptoms.
Collapse
Affiliation(s)
- Per Thunberg
- Center for Experimental and Biomedical Imaging in Örebro (CEBIO), Örebro University, Örebro, Sweden; Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Gunilla Wastensson
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Göran Lidén
- Department of Environment Science, Stockholm University, Stockholm, Sweden
| | - Mary Adjeiwaah
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jens Tellman
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bernt Bergström
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Region Örebro County, Sweden
| | - Louise Fornander
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Sweden
| | - Peter Lundberg
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Gnocchi KG, Passos LS, Pereira TM, Coppo GC, de Souza LA, Teixeira BC, Chippari-Gomes AR. Biochemical changes and bioaccumulation of manganese in Astyanax lacustris (Teleostei: Characidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:677-682. [PMID: 38809386 DOI: 10.1007/s10646-024-02765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Major tailings dam failures have occurred recently around the world and resulted in severe environmental impacts, such as metal contamination. Manganese is a metal highly associated with mining activities, largely detected in mining dam collapses. This metal is considered necessary for different organisms, but it can be toxic and cause oxidative stress and genetic damage in fishes. In this study, we investigated the toxic effects of manganese on Astyanax lacustris, by exposing the fish individually to different concentrations of this metal (2.11, 5.00, and 10.43 mg/L) for 96 h. To assess the effects of manganese, we used biochemical biomarkers (glutathione S-transferase, catalase, and acetylcholinesterase enzyme activity) and the manganese bioaccumulation in different tissues (liver and gills). The obtained data showed that only at concentrations of 5.00 mg/L and 10.43 mg/L the activity of glutathione S-transferase differed significantly. Additionally, the acetylcholinesterase activity in the brain tissue was inhibited. The highest level of manganese bioaccumulation was observed in the liver and branchial tissue. Overall, we concluded that high concentrations of manganese may cause physiological changes in Astyanax lacustris.
Collapse
Affiliation(s)
- Karla Giavarini Gnocchi
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil.
| | - Letícia Alves de Souza
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Barbara Chisté Teixeira
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Adriana Regina Chippari-Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Comissário José Dantas de Melo, 21 Boa Vista, Vila Velha, ES, 29102-770, Brazil
| |
Collapse
|
11
|
Gouaref I, Otmane A, Makrelouf M, Abderrhmane SA, Haddam AEM, Koceir EA. Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction. Int J Mol Sci 2024; 25:9288. [PMID: 39273236 PMCID: PMC11395650 DOI: 10.3390/ijms25179288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The coexistence of SAH with T2DM is a common comorbidity. In this study, we investigated the link between altered plasma antioxidant trace elements (ATE: manganese, selenium, zinc, and copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile, which is modified during SAH-T2DM association compared to the healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of total SFA, palmitic acid, arachidonic acid, and PUFA ω6/PUFA ω3; drop in tandem of PUFA/SFA and EPA + DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA rise, concurrent drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitant enhancement of Cu, Mn, and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitant rise of ApoB100/ApoA1, Ox-LDL, tHcy, and Lp(a)), and inflammation (higher of Hs-CRP, fibrinogen and ferritin). Our study opens to new therapeutic targets and to better dietary management, such as to establishing dietary ATE and PUFA ω6/PUFA ω3 or PUFA/SFA reference values for atherosclerotic risk prevention in hypertensive/diabetic patients.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| | - Amel Otmane
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Mohamed Makrelouf
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache (ex. HCA de Aïn Naâdja), Algiers 16208, Algeria
| | - Ali El Mahdi Haddam
- Diabetology Unit, University Hospital Center, Mohamed Lamine Debaghine, Algiers I-University, Bab El Oued, Algiers 16000, Algeria
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| |
Collapse
|
12
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
13
|
Zahoor SM, Ishaq S, Ahmed T. Neurotoxic effects of metals on blood brain barrier impairment and possible therapeutic approaches. VITAMINS AND HORMONES 2024; 126:1-24. [PMID: 39029969 DOI: 10.1016/bs.vh.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Exposure to neurotoxic and heavy metals (Pb2+, As3+, Mn2+, Cd2+, etc) has increased over time and has shown to negatively affect brain health. Heavy metals can cross the blood brain barrier (BBB) in various ways including receptor or carrier-mediated transport, passive diffusion, or transport via gaps in the endothelial cells of the brain. In high concentrations, these metals have been shown to cause structural and functional impairment to the BBB, by inducing oxidative stress, ion dyshomeostasis, tight junction (TJ) loss, astrocyte/pericyte damage and interference of gap junctions. The structural and functional impairment of the BBB results in increased BBB permeability, which ultimately leads to accumulation of these heavy metals in the brain and their subsequent toxicity. As a result of these effects, heavy metals are correlated with various neurological disorders. The pathological effects of these heavy metals can be effectively mitigated via chelation. In addition, it is possible to treat the associated disorders by counteracting the molecular mechanisms associated with the brain and BBB impairment.
Collapse
Affiliation(s)
- Saba Mehak Zahoor
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sara Ishaq
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
14
|
Gonzalez-Cuyar LF, Nelson G, Nielsen SS, Dlamini WW, Keyser-Gibson A, Keene CD, Paulsen M, Criswell SR, Senini N, Sheppard L, Samy S, Simpson CD, Baker MG, Racette BA. Olfactory tract/bulb metal concentration in Manganese-exposed mineworkers. Neurotoxicology 2024; 102:96-105. [PMID: 38582332 PMCID: PMC12108453 DOI: 10.1016/j.neuro.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.
Collapse
Affiliation(s)
- Luis F Gonzalez-Cuyar
- University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA.
| | - Gill Nelson
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Rd, Parktown 2193, South Africa; Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Wendy W Dlamini
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA; Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Amelia Keyser-Gibson
- University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA
| | - C Dirk Keene
- University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA
| | - Michael Paulsen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Susan R Criswell
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Natalie Senini
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA; Department of Biostatistics, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Shar Samy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Marissa G Baker
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Brad A Racette
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Rd, Parktown 2193, South Africa; Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Fang YY, Teng MJ, Peng JC, Zheng XW, Mo YQ, Ho TT, Lin JJ, Luo JJ, Aschner M, Jiang YM. Combined exposure to manganese and iron decreases oxidative stress-induced nerve damage by increasing Nrf2/HO-1/NQO1 expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115853. [PMID: 38128313 DOI: 10.1016/j.ecoenv.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Manganese (Mn) and iron (Fe) are essential trace elements for humans, yet excessive exposure to Mn or Fe can accumulate in the central nervous system (CNS) and cause neurotoxicity. The purpose of this study was to investigate the effects of Mn and Fe exposure, alone or in combination, on inducing oxidative stress-induced neurological damage in rat cortical and SH-SY5Y cells, and to determine whether combined exposure to these metals increases their individual toxicity. METHODS SH-SY5Y cells and male Sprague-Dawley rats were used to observe the effects of oxidative stress-induced neurological damage induced by exposure to manganese and iron alone or in combination. To detect the expression of anti-oxidative stress-related proteins, Nrf2, HO-1, and NQO1, and the apoptosis-related proteins, Bcl2 and Bax, and the neurological damage-related protein, α-syn. To detect reactive oxygen species generation and apoptosis. To detect the expression of the rat cortical protein Nrf2. To detect the production of proinflammatory cytokines. RESULTS We demonstrate that juvenile developmental exposure to Mn and Fe and their combination impairs cognitive performance in rats by inducing oxidative stress causing neurodegeneration in the cortex. Mn, Fe, and their combined exposure increased the expression of ROS, Bcl2, Bax, and α-syn, activated the inflammatory factors IL-6 and IL-12, inhibited the activities of SOD and GSH, and induced oxidative stress-induced neurodegeneration both in rats and SH-SY5Y cells. Combined Mn-Fe exposure attenuated the oxidative stress induced by Mn and Fe exposure alone by increasing the expression of antioxidant factors Nrf2, HO-1, and NQO1. CONCLUSION In both in vivo and in vitro studies, manganese and iron alone or in combination induced oxidative stress, leading to neuronal damage. In contrast, combined exposure to manganese and iron mitigated the oxidative stress induced by exposure to manganese and iron alone by increasing the expression of antioxidant factors. Therefore, studies to elucidate the main causes of toxicity and establish the molecular mechanisms of toxicity should help to develop more effective therapeutic modalities in the future.
Collapse
Affiliation(s)
- Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Meng-Jun Teng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Xiao-Wei Zheng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Ya-Qi Mo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Thanh-Tung Ho
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Jun-Jie Lin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Jing-Jing Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning 530021, China.
| |
Collapse
|
16
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Bornhorst J, Cubadda F, Dopter A, FitzGerald R, de Sesmaisons Lecarré A, das Neves Ferreira P, Fabiani L, Horvath Z, Matijević L, Naska A. Scientific opinion on the tolerable upper intake level for manganese. EFSA J 2023; 21:e8413. [PMID: 38075631 PMCID: PMC10704406 DOI: 10.2903/j.efsa.2023.8413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews of the literature of human and animal data were conducted to assess evidence regarding excess manganese intake (including authorised manganese salts) and the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available human and animal studies support neurotoxicity as a critical effect, however, data are not sufficient and suitable to characterise a dose-response relationship and identify a reference point for manganese-induced neurotoxicity. In the absence of adequate data to establish an UL, estimated background dietary intakes (i.e. manganese intakes from natural dietary sources only) observed among high consumers (95th percentile) were used to provide an indication of the highest level of intake where there is reasonable confidence on the absence of adverse effects. A safe level of intake of 8 mg/day was established for adults ≥ 18 years (including pregnant and lactating women) and ranged between 2 and 7 mg/day for other population groups. The application of the safe level of intake is more limited than an UL because the intake level at which the risk of adverse effects starts to increase is not defined.
Collapse
|
17
|
Hutchens S, Jursa TP, Melkote A, Grant SM, Smith DR, Mukhopadhyay S. Hepatic and intestinal manganese excretion are both required to regulate brain manganese during elevated manganese exposure. Am J Physiol Gastrointest Liver Physiol 2023; 325:G251-G264. [PMID: 37461848 PMCID: PMC10511180 DOI: 10.1152/ajpgi.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Manganese (Mn) is essential but neurotoxic at elevated levels. Under physiological conditions, Mn is primarily excreted by the liver, with the intestines playing a secondary role. Recent analyses of tissue-specific Slc30a10 or Slc39a14 knockout mice (SLC30A10 and SLC39A14 are Mn transporters) revealed that, under physiological conditions: 1) excretion of Mn by the liver and intestines is a major pathway that regulates brain Mn; and surprisingly, 2) the intestines compensate for loss of hepatic Mn excretion in controlling brain Mn. The unexpected importance of the intestines in controlling physiological brain Mn led us to determine the role of hepatic and intestinal Mn excretion in regulating brain Mn during elevated Mn exposure. We used liver- or intestine-specific Slc30a10 knockout mice as models to inhibit hepatic or intestinal Mn excretion. Compared with littermates, both knockout strains exhibited similar increases in brain Mn after elevated Mn exposure in early or later life. Thus, unlike physiological conditions, both hepatic and intestinal Mn excretion are required to control brain Mn during elevated Mn exposure. However, brain Mn levels of littermates and both knockout strains exposed to elevated Mn only in early life were normalized in later life. Thus, hepatic and intestinal Mn excretion play compensatory roles in clearing brain Mn accumulated by early life Mn exposure. Finally, neuromotor assays provided evidence consistent with a role for hepatic and intestinal Mn excretion in functionally modulating Mn neurotoxicity during Mn exposure. Put together, these findings substantially enhance understanding of the regulation of brain Mn by excretion.NEW & NOTEWORTHY This article shows that, in contrast with expectations from prior studies and physiological conditions, excretion of manganese by the intestines and liver is equally important in controlling brain manganese during human-relevant manganese exposure. The results provide foundational insights about the interorgan mechanisms that control brain manganese homeostasis at the organism level and have important implications for the development of therapeutics to treat manganese-induced neurological disease.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Thomas P Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Ashvini Melkote
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Stephanie M Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
18
|
Makevic V, Milovanovich ID, Popovac N, Janković S, Janković V, Stefanović S, Bukumiric Z, de Luka SR. Oligoelements in serum and intestinal tissue of pediatric IBD patients. J Trace Elem Med Biol 2023; 79:127239. [PMID: 37302217 DOI: 10.1016/j.jtemb.2023.127239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) develops through complex interplay of genetic, microbial, immune, and environmental factors. Trace elements alterations are commonly present in IBD and may have influence on IBD development. Heavy metal pollution is one of the major environmental issues nowadays and IBD incidence is rising in countries where industry starts to develop. Metals are implicated in processes that are connected to IBD pathogenesis. AIM The aim of this study was to investigate toxic and trace element levels in pediatric population of IBD patients both in serum and intestinal mucosa. MATERIALS AND METHODS This prospective study enrolled children newly diagnosed with IBD in University children's hospital in Belgrade. Concentrations of thirteen elements: Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Se and Zn in serum and intestinal mucosa of 17 newly diagnosed children with IBD (10 Crohn's disease (CD) and 7ulcerative colitis (UC)) and 10 controls were assessed using inductively coupled plasma mass spectrometry (ICP-MS). Intestinal mucosa samples were taken from terminal ileum and six different colon segments (cecum, ascending colon, colon transversum, descending and sigmoid colon and rectum). RESULTS The results demonstrated significant alterations in serum and intestinal mucosa concentrations of investigated elements. Serum iron was significantly decreased in IBD and CD group, compared to controls while serum Cu significantly differed between three investigated groups with highest concentration observed in CD children. Serum manganese was the highest in the UC subgroup. Terminal ileums of IBD patients contained significantly lower amount of Cu, Mg, Mn and Zn with Mn being significantly decreased also in CD patients compared to control. IBD patients' caecum contained significantly less Mg and Cu while colon transversum tissue samples from IBD and Crohn's patients contained significantly more chromium than controls. Moreover, sigmoid colon of IBD patients were poorer in Mg than controls (p < 0.05). Colon Al, As and Cd were significantly reduced in IBD, and UC children compared to control. Correlations of investigated elements in CD and UC groups were different from controls. Biochemical and clinical parameters showed correlation with element concentrations in intestines. CONCLUSION Sera of CD, UC and control children significantly differ in Fe, Cu and Mn levels. Serum manganese was the highest in the UC subgroup creating the most prominent and only significant difference between UC and CD subgroups. Terminal ileum of IBD patients contained significantly lower amount of majority of investigated essential trace elements and toxic elements were significantly reduced in colon of IBD and UC patients. Investigation of macro- and microelement alterations in children and adults has potential to further elucidate IBD pathogenesis.
Collapse
Affiliation(s)
- Vedrana Makevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr Subotica1, 11000 Belgrade, Serbia.
| | | | - Nevena Popovac
- University Children's Hospital, Tiršova 10, 11000 Belgrade, Serbia.
| | - Saša Janković
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia.
| | - Vesna Janković
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia.
| | - Srdjan Stefanović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia.
| | - Zoran Bukumiric
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Dr Subotica 15, 11000 Belgrade, Serbia.
| | - Silvio R de Luka
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr Subotica1, 11000 Belgrade, Serbia.
| |
Collapse
|
19
|
Bouazza A, Fontaine E, Leverve X, Koceir EA. Interference of altered plasma trace elements profile with hyperhomocysteinemia and oxidative stress damage to insulin secretion dysfunction in Psammomys obesus: focus on the selenium. Arch Physiol Biochem 2023; 129:505-518. [PMID: 33171059 DOI: 10.1080/13813455.2020.1839501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The objective of this study is to investigate the relationship between altered plasma trace elements, particularly selenium (Se), with Hyper-homocysteinemia (HhCys) as a predictive factor of insulin secretion dysfunction. The study is carried out on adult Psammomys obesus, divided in 4 experimental groups: (I) Normoglycemic/Normoinsulinemic; (II) Normoglycemic/Hyperinsulinemic; (III) Hyperglycaemic/Hyperinsulinemic and (IV) Hyperglycaemic/Insulin deficiency with ketoacidosis. The data showed that a drastic depletion of Se plasma levels is positively correlated with HhCys (>15 µmol/L; p < .001), concomitantly with decreased GPx activity, GSH levels, and GSH/GSSG ratio in group IV both in plasma and liver. In contrast, SOD activity is increased (p ≤ .001) in group IV both in plasma and liver. However, plasma Cu and Mn levels increased, while plasma Zn levels decreased in group IV (p < .001). Our study confirms the increase of plasma hCys levels seemed to be a major contributing factor to antioxidant capacities and alters the availability of selenium metabolism by interference with homocysteine synthesis in the insulin secretion deficiency stage.
Collapse
Affiliation(s)
- Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Eric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Xavier Leverve
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
20
|
Huang A, Zhou W. Mn-based cGAS-STING activation for tumor therapy. Chin J Cancer Res 2023; 35:19-43. [PMID: 36910853 PMCID: PMC9992997 DOI: 10.21147/j.issn.1000-9604.2023.01.04] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/12/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapy has efficiently revolutionized the treatment of human neoplastic diseases. However, the overall responsive rate of current immunotherapy is still unsatisfactory, benefiting only a small proportion of patients. Therefore, significant attention has been paid to the modulation of tumor microenvironment (TME) for the enhancement of immunotherapy. Interestingly, recent studies have shown that cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) was initially found as an innate immune sensor to recognize cytoplasmic DNA (such as bacterial, viral, micronuclei, and mitochondrial). It is a promising signaling pathway to activate antitumor immune responses via type I interferon production. Notably, Mn2+ was found to be a critical molecule to sensitize the activation of the cGAS-STING pathway for better immunotherapy. This activation led to the development of Mn2+-based strategies for tumor immunotherapy via the activation of the cGAS-STING pathway. In this critical review, we aimed to summarize the recent progress of this field, focusing on the following three aspects. First, we briefly introduced the signaling pathway of cGAS-STING activation, and its regulation effect on the antitumor immunity cycle has been discussed. Along with this, several agonists of the cGAS-STING pathway were introduced with their potential as immunotherapeutic drugs. Then, the basic biological functions of Mn2+ have been illustrated, focusing on its critical roles in the cGAS-STING pathway activation. Next, we systematically reviewed the Mn2+-based strategies for tumor immunotherapy, which can be classified by the methods based on Mn2+ alone or Mn2+ combined with other therapeutic modalities. We finally speculated the future perspectives of the field and provided rational suggestions to develop better Mn2+-based therapeutics.
Collapse
Affiliation(s)
- Aiping Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.,Changsha Medical University, Academician Workstation, Changsha 410219, China
| |
Collapse
|
21
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
22
|
Jeyasingh PD, Sherman RE, Prater C, Pulkkinen K, Ketola T. Adaptation to a limiting element involves mitigation of multiple elemental imbalances. J R Soc Interface 2023; 20:20220472. [PMID: 36596454 PMCID: PMC9810419 DOI: 10.1098/rsif.2022.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
About 20 elements underlie biology and thus constrain biomass production. Recent systems-level observations indicate that altered supply of one element impacts the processing of most elements encompassing an organism (i.e. ionome). Little is known about the evolutionary tendencies of ionomes as populations adapt to distinct biogeochemical environments. We evolved the bacterium Serratia marcescens under five conditions (i.e. low carbon, nitrogen, phosphorus, iron or manganese) that limited the yield of the ancestor compared with replete medium, and measured the concentrations and use efficiency of these five, and five other elements. Both physiological responses of the ancestor, as well as evolutionary responses of descendants to experimental environments involved changes in the content and use efficiencies of the limiting element, and several others. Differences in coefficients of variation in elemental contents based on biological functions were evident, with those involved in biochemical building (C, N, P, S) varying least, followed by biochemical balance (Ca, K, Mg, Na), and biochemical catalysis (Fe, Mn). Finally, descendants evolved to mitigate elemental imbalances evident in the ancestor in response to limiting conditions. Understanding the tendencies of such ionomic responses will be useful to better forecast biological responses to geochemical changes.
Collapse
Affiliation(s)
- Punidan D. Jeyasingh
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Ryan E. Sherman
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Clay Prater
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Katja Pulkkinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
| |
Collapse
|
23
|
A GATA-type transcription factor SreA affects manganese susceptibility by regulating the expression of iron uptake-related genes. Fungal Genet Biol 2022; 163:103731. [PMID: 36087858 DOI: 10.1016/j.fgb.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023]
Abstract
SreA has been identified as a GATA-type transcription factor that represses iron uptake to avoid iron excess during iron sufficiency. However, knowledge about whether SreA also affects the homeostasis of other divalent metal ions is limited. In this study, by screening Aspergillus fumigatus transcription factor deletion mutant libraries, we demonstrate that the sreA deletion mutant shows the greatest tolerance to MnCl2 among the tested divalent metal ions. Fe and Mn stimuli are able to enhance the expression of SreA with the different time-dependent manner, while the expression of SreA contributes to Mn2+ tolerance. Lack of SreA results in abnormally increased expression of a series of siderophore biosynthesis genes and iron transport-related genes, especially under MnCl2 treatment. Further mechanistic exploration indicated that lack of SreA exacerbates abnormal iron uptake, and iron excess inhibits cellular Mn content; thus, deletion of sreA results in Mn tolerance. Thus, findings in this study have demonstrated a new unexplored function for the transcription factor SreA in regulation of the Mn2+ tolerance.
Collapse
|
24
|
Diessl J, Berndtsson J, Broeskamp F, Habernig L, Kohler V, Vazquez-Calvo C, Nandy A, Peselj C, Drobysheva S, Pelosi L, Vögtle FN, Pierrel F, Ott M, Büttner S. Manganese-driven CoQ deficiency. Nat Commun 2022; 13:6061. [PMID: 36229432 PMCID: PMC9563070 DOI: 10.1038/s41467-022-33641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.
Collapse
Affiliation(s)
- Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Carmela Vazquez-Calvo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Drobysheva
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
25
|
Akingbade GT, Ijomone OM, Imam A, Aschner M, Ajao MS. D-Ribose-LCysteine attenuates manganese-induced cognitive and motor deficit, oxidative damage, and reactive microglia activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103872. [PMID: 35513219 DOI: 10.1016/j.etap.2022.103872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/21/2023]
Abstract
Due to overexposure, manganese (Mn) accumulation in the brain can trigger the inhibition of glutathione synthesis and lead to increased generation of reactive oxygen species (ROS) and oxidative stress. D-Ribose-L-Cysteine (RibCys) has been demonstrated to effectively support glutathione synthesis to scavenge ROS and protect cells from oxidative damage. In the present study, we examined the effects of RibCys on weight changes, cognitive and motor associated activities, oxidative stress markers, striatal and cortical histology, and microglia activation following Mn exposure. Rats were exposed to either saline, Mn or/and RibCys for two weeks. The Mn exposed rats received RibCys either as pre-, co-, or post-treatments. Mn caused a significant decrease in weight, memory and motor activities, increased lactate dehydrogenase level, overexpression of IBA1 reflecting microglia activation, and distortion of the neuronal cytoarchitecture of the striatum and motor cortex, respectively. Interventions with RibCys mitigated Mn-induced neurotoxic events. Our novel study demonstrates that RibCys effectively ameliorates the neurotoxicity following Mn treatment and maybe a therapeutic strategy against the neurological consequences of Mn overexposurec.
Collapse
Affiliation(s)
- Grace T Akingbade
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria; The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Nigeria; Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA.
| | - Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Nigeria; Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria.
| |
Collapse
|
26
|
Prado-Rico JM, Lee EY, Wang EW, Yanosky JD, Kong L, Chen H, Navas-Acien A, Du G, Lewis MM, Mailman RB, Huang X. Higher R2* in the Red Nucleus Is Associated With Lead Exposure in an Asymptomatic Welder Cohort. Toxicol Sci 2022; 187:345-354. [PMID: 35357496 PMCID: PMC9154244 DOI: 10.1093/toxsci/kfac035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lead is a nonessential metal and may be a coexposure in welding fumes. Preclinical data indicate lead may affect iron regulation. The current study investigated blood lead concentrations and their association with brain iron accumulation in workers with chronic welding fume exposure, with a focus on iron-rich subcortical regions of the cerebellum and basal ganglia. Occupational exposure, whole blood metal, and brain MRI data were obtained from 29 controls and 42 welders. R2* (1/T2*) and R1 (T1 relaxation rate) values were used to estimate brain iron and manganese content, respectively. Blood metals and brain R2* (in the red nucleus [RN], dentate nucleus, caudate, putamen, globus pallidus, and substantia nigra) were compared between groups. Associations between brain R2* values and exposure metrics were tested within each group, and analyses were adjusted for potential confounders. Welders had significantly higher levels of whole blood lead, manganese, iron, and copper. Welders also had higher R2* RN (p = .002), but not R1. A 2nd-order polynomial modeled the association between R2* RN and a long-term welding exposure metric. In welders, but not controls, R2* RN was associated positively with whole blood lead (r = 0.54, p = .003), and negatively with whole blood manganese (r = -0.43, p = .02). Higher blood Pb and lower blood Mn independently accounted for variance in high RN R2*. Together, these data suggest that higher RN R2* values may mark lead exposure in welders. Because lead is a known neurotoxicant, additional studies are warranted to confirm this finding, and ascertain its scientific and public/occupational health implications.
Collapse
Affiliation(s)
- Janina Manzieri Prado-Rico
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Eun-Young Lee
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ernest W Wang
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Lan Kong
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Hairong Chen
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, New York, USA
| | - Guangwei Du
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Mechelle M Lewis
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Richard B Mailman
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Xuemei Huang
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
- Department of Radiology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| |
Collapse
|
27
|
Liu Y, Hu J, Tang R, Guo H, Chen Q, Qiu J, Liu Y, Tan R, Zhong X. Association between the blood manganese (Mn) and hemoglobin in patients undergoing maintenance hemodialysis. J Trace Elem Med Biol 2022; 71:126947. [PMID: 35176578 DOI: 10.1016/j.jtemb.2022.126947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Manganese (Mn) and iron metabolism are closely related. Iron metabolism disorders often lead to anemia in patients undergoing maintenance hemodialysis (MHD). Here, we aimed to investigate the relationship between blood Mn and hemoglobin (Hb) in patients undergoing MHD. METHODS Patients undergoing MHD in September 2019 were included in a cross-sectional study. Clinical and demographic data and blood samples were collected before hemodialysis sessions, and blood levels of Mn were measured by inductively coupled plasma mass spectrometry. Both multivariable linear and binary logistic regression analyses were performed to study the relationship between the blood Mn and Hb. RESULTS A total of 144 patients undergoing MHD were enrolled in the study. The patients had a mean age of 64.33 ± 13.39 years, median vintage of 33.50 (16.25-57.50) months. Among them, 66 were females (45.8%). The median blood Mn level was 13.55 µg/L (IQR:9.92-17.48). Ninety-nine patients were anemic (68.8%). The mean Hb level was 99.83 ± 19.68 g/L. The patient group with high blood Mn had a high proportion of females, and these patients had high levels of RBC, hemoglobin, Hct, UIBC, serum TCHOL, and serum LDL, yet short dialysis vintage, low prevalence of anemia, low levels of serum ferritin, serum iron, and TSAT. Following adjustment for confounding factors, we found that low blood Mn level was independently associated with lower Hb level and anemia in patients undergoing MHD by multivariate linear and multivariate binary logistic regression, respectively, in different models. CONCLUSION Whilst our study showed that high levels of blood Mn were independently associated with high hemoglobin in patients undergoing MHD, further multicenter studies with large sample sizes are still required.
Collapse
Affiliation(s)
- Yun Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province 510220, China
| | - Jianguang Hu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province 510220, China
| | - Ruiying Tang
- Department of Nephrology, Jiangmen Central Hospital, Jiangmen City, Guangdong Province 510220, China
| | - Haonan Guo
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province 510220, China
| | - Qiongmei Chen
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province 510220, China
| | - Jingxian Qiu
- Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou, Guangdong Province 510220, China
| | - Yan Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province 510220, China; Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou, Guangdong Province 510220, China
| | - Rongshao Tan
- Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou, Guangdong Province 510220, China
| | - Xiaoshi Zhong
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong Province 510220, China.
| |
Collapse
|
28
|
Iyagbaye L, Reichelt-Brushett A, Benkendorff K. Manganese uptake and partitioning between the tissue of the anemone host Exaiptasia pallida and Symbiodinium spp., including assessment of stress and recovery. CHEMOSPHERE 2022; 295:133895. [PMID: 35143868 DOI: 10.1016/j.chemosphere.2022.133895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Manganese (Mn) is essential for global steel and Mn-iron (Fe) alloy production. The human health effects of elevated Mn concentrations have been well established, but studies on its impact on marine invertebrates are limited. This study is the first to investigate Mn uptake in the sea anemone Exaiptasia pallida after chronic exposure (0.5, 1, 10, and 100 mg/L) for 24-d. Following exposure, E. pallida were transferred to ambient seawater for 6-d to assess Mn depuration. Mn accumulation and partitioning in host tissue and symbionts (Symbiodinium spp.), tentacle retraction, and symbiont cell density were measured during exposure and depuration. Mn concentrations were substantially higher in symbionts than tissue in all treatments after 24-d. No significant difference was observed for symbiont cell density after Mn exposure. Tentacle retractions were significantly higher in all Mn exposed treatments than controls at all time points. Mn depuration was observed for both tissue and symbionts but was more rapid in symbionts. This study reveals that Symbiodinium spp. can play a role in Mn uptake and depuration in anemones, but Mn loading does not affect cell density. These results help understand metal uptake and depuration in complex relationships between Symbiodinium spp. and other host taxa like corals.
Collapse
Affiliation(s)
- Louis Iyagbaye
- Faculty of Science and Engineering, Southern Cross University, NSW, Australia
| | | | - Kirsten Benkendorff
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, NSW, Australia
| |
Collapse
|
29
|
Friedman A, Bauer JA, Austin C, Downs TJ, Tripodis Y, Heiger-Bernays W, White RF, Arora M, Claus Henn B. Multiple metals in children's deciduous teeth: results from a community-initiated pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:408-417. [PMID: 34750512 PMCID: PMC9079191 DOI: 10.1038/s41370-021-00400-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Characterizing retrospective exposure to toxicants during multiple early-life developmental periods is challenging, yet critical for understanding developmental effects. OBJECTIVE To characterize early-life metal exposure using deciduous teeth in a community concerned about past exposures. METHODS Naturally shed teeth were collected from 30 children ages 5-13 years who resided in Holliston, Massachusetts since conception. We estimated weekly prenatal and postnatal (up to 1 year of age) exposure to 12 metals by measuring dentine concentrations using laser ablation-inductively coupled plasma-mass spectrometry. Multivariable linear mixed models were used to explore sociodemographic, dietary, and behavioral correlates of dentine metal concentrations. RESULTS Temporal trends in dentine levels differed by metal. Source of milk during the first year of life was associated with dentine barium (Ba) levels, where being fed predominantly breastmilk was associated with 39% (95% CI: -57%, -13%) lower dentine Ba compared to predominantly formula use. Females had higher prenatal and postnatal dentine Mn and Pb, compared to males (e.g., % difference, postnatal Mn: 122% (17%, 321%); postnatal Pb: 60% (95% CI: -8%, 178%)). SIGNIFICANCE Deciduous teeth provide retrospective information on dose and timing of early-life metals exposure at high resolution. We demonstrate their utility in a community-based study with known past contamination of drinking water. IMPACT STATEMENT We conducted a community-initiated pilot study in a community concerned with historical exposure to multiple metals. Using deciduous teeth, a novel noninvasive biomarker, we characterized early-life exposure to 12 metals in approximately weekly increments during sensitive developmental periods, thus demonstrating the utility of this biomarker in communities concerned with past exposures.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Julia Anglen Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy J Downs
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
30
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
31
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Maternal somatic measures and the postnatal growth and development of rat offspring. Neurotoxicol Teratol 2021; 90:107061. [PMID: 34971732 DOI: 10.1016/j.ntt.2021.107061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Psychological stress experienced by the mother during pregnancy has been associated with emotional and cognitive disorders in children such as depression and anxiety. Socioeconomically disadvantaged populations are vulnerable to adverse life experiences and can also be disproportionally exposed to environmental contaminants. To better understand the neurodevelopmental impacts of an environmental toxicant coupled with elevated psychological stress, we exposed pregnant rats to a series of perinatal stressors. Manganese (Mn), a neurotoxicant at excessive concentrations was delivered through drinking water (0, 2, or 4 mg/mL) from gestational day (GD) 7 to postnatal day (PND) 22. A variable stress paradigm was applied to half of the animals from GD13 to PND9. Measurements of somatic development and behavior were examined in the offspring at different developmental stages. No evidence of overt maternal toxicity was observed although the 4 mg/mL Mn-exposed dams gained less body weight during gestation compared to the other dams. Stress also reduced gestational maternal weight gain. Daily fluid consumption normalized for body weight was decreased in the Mn-exposed dams in a dose-dependent manner but was not altered by the stress paradigm. Maternal stress and/or Mn exposure did not affect litter size or viability, but pup weight was significantly reduced in the 4 mg/mL Mn-exposed groups on PNDs 9 through 34 when compared to the other offspring groups. The efficacy of the manipulations to increase maternal stress levels was determined using serum corticosterone as a biomarker. The baseline concentration was established prior to treatment (GD7) and levels were low and similar in all treatment groups. Corticosterone levels were elevated in the perinatal-stress groups compared to the no-stress groups, regardless of Mn exposure, on subsequent time points (GD16, PND9), but were only significantly different on GD16. An analysis of tissue concentrations revealed Mn was elevated similarly in the brain and blood of offspring at PND2 and at PND22 in a significant dose-dependent pattern. Dams also showed a dose-dependent increase in Mn concentrations in the brain and blood; the addition of stress increased the Mn concentrations in the maternal blood but not the brain. Perinatal stress did not alter the effects of Mn on the maternal or offspring somatic endpoints described here.
Collapse
|
32
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
34
|
Ordak M, Sloniewicz N, Nasierowski T, Muszynska E, Bujalska-Zadrozny M. Manganese concentration in patients with encephalopathy following ephedrone use: a narrative review and analysis of case reports. Clin Toxicol (Phila) 2021; 60:10-17. [PMID: 34521308 DOI: 10.1080/15563650.2021.1973488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Numerous case reports describe manganese encephalopathy in patients using ephedrone (methcathinone). The aim of this narrative review of case reports was to relate manganese ion concentrations in peripheral blood to the reported neurological deficits. METHODS International databases, including Thomson (Web of Knowledge), PubMed/Medline, Science Direct, Scopus and Google Scholar were searched for literature items published between 2007 and 2020, in which the authors measured the manganese concentration in patients taking ephedrone. RESULTS We identified 39 patients in two case series comprising of twenty-three and twelve patients, respectively, and four case reports meeting inclusion criteria. The study showed that 93% of them had elevated blood manganese concentration in relation to the accepted norm (>219 nmol/L), and the median was 364 nmol/L. The median duration of ephedrone use in individual groups of patients was approximately 48 months, and it did not show a relationship with the manganese concentration in the blood. A greater percentage of the people with manganese concentration higher than 250 nmol/L exhibited more severe gait, speech and handwriting disorders. The median duration of ephedrone withdrawal was a month in the group of people with the highest level of manganese ions (>500 nmol/L). CONCLUSION Manganese concentrations did not vary with the duration of ephedrone use.
Collapse
Affiliation(s)
- Michal Ordak
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Natalia Sloniewicz
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | | | - Elzbieta Muszynska
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Ipek Y, Jeyasingh PD. Growth and ionomic responses of a freshwater cyanobacterium to supplies of nitrogen and iron. HARMFUL ALGAE 2021; 108:102078. [PMID: 34588115 DOI: 10.1016/j.hal.2021.102078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial harmful algal blooms (HABs) are increasing in frequency and magnitude worldwide. A number of parameters are thought to underlie HABs, including the ratio at which two key elements, nitrogen (N) and phosphorus (P) are supplied, although a predictive understanding eludes us. While the physiological importance of iron (Fe) in electron transport and N-fixation is well known, relatively little is known about its impacts on the growth of freshwater cyanobacteria. Moreover, there is growing appreciation for correlated changes in the quotas of multiple elements encompassing an organism (i.e. the ionome) when the supply of one element changes, indicating that growth differences arise from complex biochemical adjustments rather than limitation of a key anabolic process by a single element. In this study, the effects of supply N:P and Fe on the growth and ionome of Dolichospermum, a nitrogen-fixing cyanobacterium found in freshwater ecosystems, were examined. Changes in both supply N:P and Fe had significant effects on yield. Consistent with prior observations, cyanobacterial growth was higher at N:P = 20, compared to N:P = 5, and quotas of all elements decreased with growth. Yield was negatively related with the degree of imbalance between dissolved supply and intracellular concentrations of not only N and Fe, but also multiple other elements. Changes in Fe supply had a significant effect on yield in N-limited conditions (N:P = 5). Again, ionome-wide imbalances decreased yield. Together, these results indicate that attention to multiple elements encompassing the ionome of a HAB-forming taxon, and the supplies of such elements may help improve the ability to forecast blooms. Such elemental interactions may be critical as limnologists begin to appreciate the staggering variation in the supplies of such elements among lakes, and anthropogenic activities continue to alter global biogeochemical cycles.
Collapse
Affiliation(s)
- Yetkin Ipek
- Oklahoma State University, Department of Integrative Biology 501 Life Sciences West Stillwater, OK 74078, United States.
| | - Punidan D Jeyasingh
- Oklahoma State University, Department of Integrative Biology 501 Life Sciences West Stillwater, OK 74078, United States.
| |
Collapse
|
36
|
Li J, Li Y, Gong Z, Zhang J, Zhou Z, Tan X, Li L. Major and trace elements changes of female methamphetamine addicts during six months' compulsory treatment: Biomarkers discovery. Forensic Sci Int 2021; 325:110892. [PMID: 34273604 DOI: 10.1016/j.forsciint.2021.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The concentration levels of major and trace elements are significantly correlated with human health. However, studies profiling major and trace elements among female using methamphetamine are rare. This study aims to investigate the major and trace elements changes and discover elemental biomarkers in plasma of female methamphetamine (METH) addicts in six months' compulsory treatment. METHODS A total of 60 female METH addicts selected from drug rehabilitation center were randomly divided into three equal groups: (1) Detoxification for one month; (2) Detoxification for three months; (3) Detoxification for six months. Twenty healthy women, without drug abuse history were selected as control group. Four major elements including Na, Mg, K, Ca and twelve trace elements including V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Sn, Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results were analyzed using One-way Analysis of Variance (ANOVA) and Student-Newman-Keuls (SNK test). Elemental biomarkers were discovered based on orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS The four groups used in the study were divided into four significant sections according to scatter plots. The total elemental concentrations of three METH withdrawal groups were increased compared to the control group. Over six months, element contents of the withdrawal groups gradually equaled element contents of the control group in compulsory treatment. The variable importance in the projection values (VIP > 1) of OPLS-DA model and SNK test (p < 0.05) revealed Fe, Cu, Cr and Se as elemental biomarkers. CONCLUSION Major and trace elements demonstrated significant differences between control group and three METH withdrawal groups. Fe, Cu, Cr and Se are potential elemental biomarkers among METH-abused female groups. Metabolic disorders of major and trace elements exist in the female methamphetamine addicts.
Collapse
Affiliation(s)
- Jiaquan Li
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yong Li
- Spine Department 1, Central People's Hospital of Tengzhou, Tengzhou, Shandong 277500, China
| | - Zheng Gong
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingjing Zhang
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Xiaohui Tan
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Liang Li
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Ajsuvakova OP, Skalnaya MG, Michalke B, Tinkov AA, Serebryansky EP, Karganov MY, Medvedeva YS, Skalny AV. Alteration of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) tissue levels and speciation in rats with desferioxamine-induced iron deficiency. Biometals 2021; 34:923-936. [PMID: 34003408 DOI: 10.1007/s10534-021-00318-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the impact of iron deficiency and iron replenishment on serum iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) speciation and tissue accumulation in a deferrioxamine-induced model of iron deficiency. A total of 26 male Wistar rats were divided into three groups: control; Fe-deficient; Fe-replenished (with iron (II) gluconate). Serum ferritin and transferrin levels were assessed using immunoturbudimetric method. Liver, spleen, and serum metal levels were assessed using ICP-MS. Speciation analysis was performed using a hyphenated HPLC-ICP-MS technique. Desferrioxamine injections resulted in a significant decrease in tissue iron content that was reversed by Fe supplementation. Iron speciation revealed a significant increase in serum transferrin-bound iron and reduced ferritin-bound Fe levels. Serum but not tissue Cu levels were characterized by a significant decrease in hypoferremic rats, whereas ceruloplasmin-bound fraction tended to increase. At the same time, Zn levels were found to be higher in liver, spleen, and serum of Fe-deficient rats with a predominant increase in low molecular weight fraction.Both iron-deficient and iron-replenished rats were characteirzed by increased transferrin-bound Mn levels and reduced low-molecular weight fraction. Hypothetically, these differences may be associated with impaired Fe metabolism under Fe-deficient conditions predisposing to impairment of essential metal handling. However, further studies aimed at assessment of the impact on Fe deficiency on metal metabolism are highly required.
Collapse
Affiliation(s)
- Olga P Ajsuvakova
- Micronutrients Ltd, Moscow, Russia. .,Odintsovo Distr., All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow reg, Russia. .,Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | | | - Bernhard Michalke
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Alexey A Tinkov
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.,IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Orenburg State University, Moscow, Russia.,K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | | | | | - Yulia S Medvedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Anatoly V Skalny
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.,IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Orenburg State University, Moscow, Russia.,K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| |
Collapse
|
38
|
Chen P, Bornhorst J, Patton S, Bagai K, Nitin R, Miah M, Hare DJ, Kysenius K, Crouch PJ, Xiong L, Rouleau GA, Schwerdtle T, Connor J, Aschner M, Bowman AB, Walters AS. A potential role for zinc in restless legs syndrome. Sleep 2021; 44:zsaa236. [PMID: 33175142 PMCID: PMC8033460 DOI: 10.1093/sleep/zsaa236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/13/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Evaluate serum and brain noniron metals in the pathology and genetics of restless legs syndrome (RLS). METHODS In two independent studies (cohorts 1 and 2), in which subjects either remained on medications or tapered off medications, we analyzed serum levels of iron, calcium, magnesium, manganese, copper, and zinc both in RLS patients and controls, and assessed the prevalence of the MEIS1 and BTBD9 risk alleles previously established through genome-wide association studies. Human brain sections and a nematode genetic model were also quantified for metal levels using mass spectrometry. RESULTS We found a significant enrichment for the BTBD9 risk genotype in the RLS affected group compared to control (p = 0.0252), consistent with previous literature. Serum (p = 0.0458 and p = 0.0139 for study cohorts 1 and 2, respectively) and brain (p = 0.0413) zinc levels were significantly elevated in the RLS patients versus control subjects. CONCLUSION We show for the first time that serum and brain levels of zinc are elevated in RLS. Further, we confirm the BTBD9 genetic risk factor in a new population, although the zinc changes were not significantly associated with risk genotypes. Zinc and iron homeostasis are interrelated, and zinc biology impacts neurotransmitter systems previously linked to RLS. Given the modest albeit statistically significant increase in serum zinc of ~20%, and the lack of association with two known genetic risk factors, zinc may not represent a primary etiology for the syndrome. Further investigation into the pathogenetic role that zinc may play in restless legs syndrome is needed.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Stephanie Patton
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA
| | - Kanika Bagai
- Department of Neurology, Sleep Division, Vanderbilt University Medical Center, Nashville, TN
| | - Rachana Nitin
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN
| | - Mahfuzur Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Dominic J Hare
- School of Biosciences, The University of Melbourne, Victoria, Australia
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria, Australia
| | - Lan Xiong
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Tanja Schwerdtle
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Nuthetal, Germany
| | - James Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN
| | - Arthur S Walters
- Department of Neurology, Sleep Division, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
39
|
Kapoor D, Garg D, Sharma S, Goyal V. Inherited Manganese Disorders and the Brain: What Neurologists Need to Know. Ann Indian Acad Neurol 2021; 24:15-21. [PMID: 33911374 PMCID: PMC8061520 DOI: 10.4103/aian.aian_789_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/04/2022] Open
Abstract
Although acquired manganese neurotoxicity has been widely reported since its first description in 1837 and is popularly referred to as "manganism," inherited disorders of manganese homeostasis have received the first genetic signature as recently as 2012. These disorders, predominantly described in children and adolescents, involve mutations in three manganese transporter genes, i.e., SLC30A10 and SLC39A14 which lead to manganese overload, and SLC39A8, which leads to manganese deficiency. Both disorders of inherited hypermanganesemia typically exhibit dystonia and parkinsonism with relatively preserved cognition and are differentiated by the occurrence of polycythemia and liver involvement in the SLC30A10-associated condition. Mutations in SLC39A8 lead to a congenital disorder of glycosylation which presents with developmental delay, failure to thrive, intellectual impairment, and seizures due to manganese deficiency. Chelation with iron supplementation is the treatment of choice in inherited hypermanganesemia. In this review, we highlight the pathognomonic clinical, laboratory, imaging features and treatment modalities for these rare disorders.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Vinay Goyal
- Institute of Neurosciences, Medanta Medicity, Gurgaon, Haryana, India
| |
Collapse
|
40
|
Queiroz HM, Ying SC, Abernathy M, Barcellos D, Gabriel FA, Otero XL, Nóbrega GN, Bernardino AF, Ferreira TO. Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. ENVIRONMENT INTERNATIONAL 2021; 146:106284. [PMID: 33264733 PMCID: PMC8382573 DOI: 10.1016/j.envint.2020.106284] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
Manganese (Mn) is an abundant element in terrestrial and coastal ecosystems and an essential micronutrient in the metabolic processes of plants and animals. Mn is generally not considered a potentially toxic element due to its low content in both soil and water. However, in coastal ecosystems, the Mn dynamic (commonly associated with the Fe cycle) is mostly controlled by redox processes. Here, we assessed the potential contamination of the Rio Doce estuary (SE Brazil) by Mn after the world's largest mine tailings dam collapse, potentially resulting in chronic exposure to local wildlife and humans. Estuarine soils, water, and fish were collected and analyzed seven days after the arrival of the tailings in 2015 and again two years after the dam collapse in 2017. Using a suite of solid-phase analyses including X-ray absorption spectroscopy and sequential extractions, our results indicated that a large quantity of MnII arrived in the estuary in 2015 bound to Fe oxyhydroxides. Over time, dissolved Mn and Fe were released from soils when FeIII oxyhydroxides underwent reductive dissolution. Due to seasonal redox oscillations, both Fe and Mn were then re-oxidized to FeIII, MnIII, and MnIV and re-precipitated as poorly crystalline Fe oxyhydroxides and poorly crystalline Mn oxides. In 2017, redox conditions (Eh: -47 ± 83 mV; pH: 6.7 ± 0.5) favorable to both Fe and Mn reduction led to an increase (~880%) of dissolved Mn (average for 2015: 66 ± 130 µg L-1; 2017: 582 ± 626 µg L-1) in water and a decrease (~75%, 2015: 547 ± 498 mg kg-1; 2017: 135 ± 80 mg kg-1) in the total Mn content in soils. The crystalline Fe oxyhydroxides content significantly decreased while the fraction of poorly ordered Fe oxides increased in the soils limiting the role of Fe in Mn retention. The high concentration of dissolved Mn found within the estuary two years after the arrival of mine tailings indicates a possible chronic contamination scenario, which is supported by the high levels of Mn in two species of fish living in the estuary. Our work suggests a high risk to estuarine biota and human health due to the rapid Fe and Mn biogeochemical dynamic within the impacted estuary.
Collapse
Affiliation(s)
- Hermano M Queiroz
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Samantha C Ying
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States; Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Macon Abernathy
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - Diego Barcellos
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Fabricio A Gabriel
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Xosé L Otero
- Department of Edaphology and Agricultural Chemistry - CRETUS, Faculty of Biology, Universidade de Santiago de Compostela, Campus Sur, 15782, Santiago de Compostela, Spain
| | - Gabriel N Nóbrega
- Graduate Program in Earth Sciences (Geochemistry), Department of Geochemistry, Federal Fluminense University, Niterói, Brazil
| | - Angelo F Bernardino
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Tiago O Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
41
|
Smethurst DGJ, Kovalev N, McKenzie ER, Pestov DG, Shcherbik N. Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese. J Biol Chem 2020; 295:17200-17214. [PMID: 33040024 PMCID: PMC7863898 DOI: 10.1074/jbc.ra120.015025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Nikolay Kovalev
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, Pennsylvania, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA.
| |
Collapse
|
42
|
Abstract
OBJECTIVE T1-weighted brain magnetic resonance imaging (MRI) of the basal ganglia provides a noninvasive measure of manganese (Mn) exposure, and may also represent a biomarker for clinical neurotoxicity. METHODS We acquired T1-weighted MRI scans in 27 Mn-exposed welders, 12 other Mn-exposed workers, and 29 nonexposed participants. T1-weighted intensity indices were calculated for four basal ganglia regions. Cumulative Mn exposure was estimated from work history data. Participants were examined using the Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3). RESULTS We observed a positive dose-response association between cumulative Mn exposure and the pallidal index (PI) (β = 2.33; 95% confidence interval [CI], 0.93 to 3.74). There was a positive relationship between the PI and UPDRS3 (β = 0.15; 95% CI, 0.03 to 0.27). CONCLUSION The T1-weighted pallidal signal is associated with occupational Mn exposure and severity of parkinsonism.
Collapse
|
43
|
Serum trace metal association with response to erythropoiesis stimulating agents in incident and prevalent hemodialysis patients. Sci Rep 2020; 10:20202. [PMID: 33214633 PMCID: PMC7677396 DOI: 10.1038/s41598-020-77311-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in hemodialysis patients' serum trace metals have been documented. Early studies addressing associations levels of serum trace metals with erythropoietic responses and/or hematocrit generated mixed results. These studies were conducted prior to current approaches for erythropoiesis stimulating agent (ESA) drug dosing guidelines or without consideration of inflammation markers (e.g. hepcidin) important for regulation of iron availability. This study sought to determine if the serum trace metal concentrations of incident or chronic hemodialysis patients associated with the observed ESA response variability and with consideration to ESA dose response, hepcidin, and high sensitivity C-reactive protein levels. Inductively-coupled plasma-mass spectrometry was used to measure 14 serum trace metals in 29 incident and 79 prevalent dialysis patients recruited prospectively. We compared these data to three measures of ESA dose response, sex, and dialysis incidence versus dialysis prevalence. Hemoglobin was negatively associated with ESA dose and cadmium while positively associated with antimony, arsenic and lead. ESA dose was negatively associated with achieved hemoglobin and vanadium while positively associated with arsenic. ESA response was positively associated with arsenic. Vanadium, nickel, cadmium, and tin were increased in prevalent patients. Manganese was increased in incident patients. Vanadium, nickel, and arsenic increased with time on dialysis while manganese decreased. Changes in vanadium and manganese were largest and appeared to have some effect on anemia. Incident and prevalent patients' chromium and antimony levels exceeded established accepted upper limits of normal.
Collapse
|
44
|
Martins AC, Krum BN, Queirós L, Tinkov AA, Skalny AV, Bowman AB, Aschner M. Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12893-12903. [PMID: 32298096 DOI: 10.1021/acs.jafc.0c00641] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) is an essential element that participates in several biological processes. Mn serves as a cofactor for several enzymes, such as glutamine synthetase and oxidoreductases, that have an important role in the defense of the organisms against oxidative stress. The diet is the main source of Mn intake for humans, and adequate daily intake levels for this metal change with age. Moreover, in higher amounts, Mn may be toxic, mainly to the brain. Here, we provide an overview of Mn occurrence in food, addressing its bioaccessibility and discussing the dietary standard and recommended intake of Mn consumption. In addition, we review some mechanisms underlying Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Bárbara Nunes Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Molecular of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexey A Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| |
Collapse
|
45
|
Martins AC, Gubert P, Villas Boas GR, Paes MM, Santamaría A, Lee E, Tinkov AA, Bowman AB, Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 2020; 20:1109-1121. [PMID: 32799578 PMCID: PMC7657997 DOI: 10.1080/14737175.2020.1807330] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami, LIKA, Federal, University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Gustavo R Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Alexey A. Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
46
|
Abstract
Aim: The etiology of the disease of Peyronie is not certainly known. However, penile micro traumas are thought to be important in the pathogenesis of Peyronie's disease (PD) in genetically predisposed individuals. In this study, we aimed to determine the relationship of some trace element and heavy metals with PD.Material and methods: Thirty Peyronie patients and 26 healthy volunteers were included in the study. In individuals in both groups, levels of serum trace elements (Manganese [Mn], Cu, Cobalt (Co), zinc [Zn], Cd, and iron [Fe]) were determined separately by Atomic Absorption Spectrophotometer method in Yüzüncü Yıl University Central Research Laboratory.Results: Mn, Cu, Zn, and Fe levels in Peyronie patients were statistically significantly lower when compared to the healthy control group (p < .05). Cd and Co levels were similar for both groups but not statistically significant (p > .05).Conclusions: The changes in trace element levels are related to the etiopathogenesis of PD. We think that our study is the first from this aspect.
Collapse
Affiliation(s)
- Mustafa Gunes
- Health Sciences University, Derince Training and Research Hospital, Kocaeli, Turkey
| | - Rahmi Aslan
- Department of Urology, Medical Faculty, Yuzuncu Yıl University, Van, Turkey
| | - Recep Eryılmaz
- Department of Urology, Medical Faculty, Yuzuncu Yıl University, Van, Turkey
| | - Halit Demir
- Department of Chemistry, Science Faculty, Yuzuncu Yıl University, Van, Turkey
| | - Kerem Taken
- Department of Urology, Medical Faculty, Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
47
|
Mealer RG, Jenkins BG, Chen CY, Daly MJ, Ge T, Lehoux S, Marquardt T, Palmer CD, Park JH, Parsons PJ, Sackstein R, Williams SE, Cummings RD, Scolnick EM, Smoller JW. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep 2020; 10:13162. [PMID: 32753748 PMCID: PMC7403432 DOI: 10.1038/s41598-020-70108-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
A common missense variant in SLC39A8 is convincingly associated with schizophrenia and several additional phenotypes. Homozygous loss-of-function mutations in SLC39A8 result in undetectable serum manganese (Mn) and a Congenital Disorder of Glycosylation (CDG) due to the exquisite sensitivity of glycosyltransferases to Mn concentration. Here, we identified several Mn-related changes in human carriers of the common SLC39A8 missense allele. Analysis of structural brain MRI scans showed a dose-dependent change in the ratio of T2w to T1w signal in several regions. Comprehensive trace element analysis confirmed a specific reduction of only serum Mn, and plasma protein N-glycome profiling revealed reduced complexity and branching. N-glycome profiling from two individuals with SLC39A8-CDG showed similar but more severe alterations in branching that improved with Mn supplementation, suggesting that the common variant exists on a spectrum of hypofunction with potential for reversibility. Characterizing the functional impact of this variant will enhance our understanding of schizophrenia pathogenesis and identify novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Bruce G Jenkins
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sylvain Lehoux
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Germany
| | - Christopher D Palmer
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Julien H Park
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Germany
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Robert Sackstein
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| |
Collapse
|
48
|
Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 2020; 295:6312-6329. [PMID: 32188696 PMCID: PMC7212623 DOI: 10.1074/jbc.rev119.009453] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.
Collapse
Affiliation(s)
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, University of Texas, Austin, Texas 78712
| | - Danielle McBride
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jennifer Veevers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Erin N Haynes
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
49
|
Verspoor RL, Soglo M, Adeoti R, Djouaka R, Edwards S, Fristedt R, Langton M, Moriana R, Osborne M, Parr CL, Powell K, Hurst GDD, Landberg R. Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites. Sci Rep 2020; 10:6146. [PMID: 32273555 PMCID: PMC7145797 DOI: 10.1038/s41598-020-63157-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/23/2020] [Indexed: 12/03/2022] Open
Abstract
Termites are widely used as a food resource, particularly in Africa and Asia. Markets for insects as food are also expanding worldwide. To inform the development of insect-based foods, we analysed selected minerals (Fe-Mn-Zn-Cu-Mg) in wild-harvested and commercially available termites. Mineral values were compared to selected commercially available insects. Alate termites, of the genera Macrotermes and Odontotermes, showed remarkably high manganese (Mn) content (292-515 mg/100 gdw), roughly 50-100 times the concentrations detected in other insects. Other mineral elements occur at moderate concentrations in all insects examined. On further examination, the Mn is located primarily in the abdomens of the Macrotermes subhyalinus; with scanning electron microscopy revealing small spherical structures highly enriched for Mn. We identify the fungus comb, of Macrotermes subhyanus, as a potential biological source of the high Mn concentrations. Consuming even small quantities of termite alates could exceed current upper recommended intakes for Mn in both adults and children. Given the widespread use of termites as food, a better understanding the sources, distribution and bio-availability of these high Mn concentrations in termite alates is needed.
Collapse
Affiliation(s)
- Rudi L Verspoor
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom.
| | | | | | | | - Sam Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Rikard Fristedt
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Food and Nutrition Science, SE-412 96, Göteborg, Sweden
| | - Maud Langton
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, 750 07, Uppsala, Sweden
| | - Rosana Moriana
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, 750 07, Uppsala, Sweden
| | | | - Catherine L Parr
- School of Environmental Science, University of Liverpool, Liverpool, L69 3GP, United Kingdom
- Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Wits, South Africa
| | - Kathryn Powell
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Rikard Landberg
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Food and Nutrition Science, SE-412 96, Göteborg, Sweden
| |
Collapse
|
50
|
Interactions between iron and manganese in neurotoxicity. Arch Toxicol 2020; 94:725-734. [PMID: 32180038 DOI: 10.1007/s00204-020-02652-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
The essential and naturally occurring transition metal manganese (Mn) is present in the soil, water, air, and various foods. Manganese can accumulate in the brain if the Mn intake or exposure is excessive and this can result in neurotoxic effects. Manganese is important for the proper activation of different metabolic and antioxidant enzymes. There are numerous Mn importers and exporters. However, the exact transport mechanism for Mn is not fully understood. On the other hand, iron (Fe) is another well-known essential metal, which has redox activity in addition to chemical characteristics resembling those of Mn. Existing data show that interactions occur between Fe and Mn due to certain similarities regarding their mechanisms of the absorption and the transport. It has been disclosed that Mn-specific transporters, together with Fe transporters, regulate the Mn distribution in the brain and other peripheral tissues. In PC12 cells, a significant increase of transferrin receptor (TfR) mRNA expression was linked to Mn exposure and accompanied by elevated Fe uptake. In both humans and animals, there is a strong relationship between Fe and Mn metabolism. In the present review, special attention is paid to the interaction between Mn and Fe. In particular, Fe and Mn distribution, as well as the potential molecular mechanisms of Mn-induced neurotoxicity in cases of Fe deficiency, are discussed.
Collapse
|