1
|
Yadav DN, Mir NA, Wadhwa R, Tushir S, Sethi S, Anurag RK, Oberoi HS. Hydrolysis of peanut ( Arachis hypogea L) protein concentrate by fungal crude protease extract: effect on structural, functional and in-vitro protein digestibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2141-2149. [PMID: 35602442 PMCID: PMC9114198 DOI: 10.1007/s13197-021-05225-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 06/03/2023]
Abstract
Peanut protein concentrates (PPCs) were subjected to hydrolysis by crude protease extract (CPE) obtained from three fungi viz; Rhizopus oligosporus, Trichoderma reesei, and Aspergillus oryzae and the effect on structural, functional and in-vitro protein digestibility (IVPD) properties were studied. Particle size was found significantly (p ≤ 0.05) lower in hydrolyzed samples than un-treated samples. Fourier transform infrared spectroscopy (FTIR) spectrum of hydrolyzed samples displayed intense absorbance peaks in the wavelength ranging from 1500 to 2600 cm-1. Peanut protein concentrates hydrolyzed by CPE from R. oligosporus showed higher surface hydrophobicity (564.18). Total sulfhydryl content was found lower in all the hydrolyzed samples whereas, reverse trend was observed for exposed sulfhydryl content. The structural changes simultaneously affected the functional and IVPD attributes of hydrolyzed PPCs. In comparison to the PPCs hydrolysed using crude extracts from T. reesei and R. oligosporus, PPCs hydrolysed by A, oryzae showed higher solubility, water and oil binding capacity, foaming capacity and foam stability. Higher IVPD values of 86.70% was also found in PPCs hydrolyzed with CPE of A. oryzae. The study established that CPE hydrolysis of PPCs has potential for scale-up studies and may serve as a cost effective alternative to protein hydrolysis with pure enzymes.
Collapse
Affiliation(s)
- Deep Narayan Yadav
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Nisar Ahmad Mir
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Ritika Wadhwa
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Surya Tushir
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Swati Sethi
- Food Grains and Oilseed Processing Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Rahul Kumar Anurag
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana, 141004 Punjab India
| | - Harinder Singh Oberoi
- Division of Post-Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Hesaraghatta, Bengaluru, 560089 India
| |
Collapse
|
2
|
Laothanachareon T, Bunterngsook B, Champreda V. Profiling multi-enzyme activities of Aspergillus niger strains growing on various agro-industrial residues. 3 Biotech 2022; 12:17. [PMID: 34926121 PMCID: PMC8671598 DOI: 10.1007/s13205-021-03086-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
Agro-industrial wastes provide potential sources of carbon for production of fungal enzymes applied for various biotechnological applications. In this study, 23 strains of Aspergillus niger were systematically investigated for their capability on production of carbohydrate-processing enzymes used in industries. The strains were grown on glucose or selected agricultural wastes comprising varied chemical compositions as the sole carbon source. As a control, glucose induced basal activities of amylase, pectinase, and xylanase in only a few strains, while the CMCase, β-glucanase, and invertase activities were detected only when the carbon source was switched to the agro-industrial biomass. According to one-way ANOVA analysis, banana peels containing lignocellulosic components with high pectin and starch contents with its easily digestible nature, were found to be the best carbon source for inducing production of most target enzymes, while the cellulose-rich sugarcane bagasse efficiently promoted maximal levels of β-glucanase and xylanase activities. The starch fiber-rich cassava pulp also effectively supported the activities of amylase and most other enzymes, but at relatively lower levels compared to those obtained with banana peel. The A. niger TL11 strain was considered the most potent strain for production of all target enzymes with the CMCase, xylanase, pectinase, β-glucanase, amylase, and invertase activities of 76.15, 601.59, 160.89, 409.20, 426.73, and 1186.94 U/mL, respectively. The results provide insights into the efficiency of various carbon sources with different chemical compositions on inducing the target enzymes as well as the dissimilarity of A. niger strains on the production of different carbohydrate-processing enzymes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03086-y.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, 12120 Pathumthani Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, 12120 Pathumthani Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, 12120 Pathumthani Thailand
| |
Collapse
|
3
|
Li C, Liu Q, Wang Y, Yang X, Chen S, Zhao Y, Wu Y, Li L. Salt stress improves thermotolerance and high-temperature bioethanol production of multi-stress-tolerant Pichia kudriavzevii by stimulating intracellular metabolism and inhibiting oxidative damage. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:222. [PMID: 34823567 PMCID: PMC8613974 DOI: 10.1186/s13068-021-02071-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND High-temperature bioethanol production benefits from yeast thermotolerance. Salt stress could induce obvious cross-protection against heat stress of Pichia kudriavzevii, contributing to the improvement of its thermotolerance and bioethanol fermentation. However, the underlying mechanisms of the cross-protection remain poorly understood. RESULTS Salt stress showed obvious cross-protection for thermotolerance and high-temperature ethanol production of P. kudriavzevii observed by biomass, cell morphology and bioethanol production capacity. The biomass and ethanol production of P. kudriavzevii at 45 °C were, respectively, improved by 2.6 and 3.9 times by 300 mmol/L NaCl. Metabolic network map showed that salt stress obviously improved the key enzymes and intermediates in carbohydrate metabolism, contributing to the synthesis of bioethanol, ATP, amino acids, nucleotides, and unsaturated fatty acids, as well as subsequent intracellular metabolisms. The increasing trehalose, glycerol, HSPs, and ergosterol helped maintain the normal function of cell components. Heat stress induced serious oxidative stress that the ROS-positive cell rate and dead cell rate, respectively, rose from 0.5% and 2.4% to 28.2% and 69.2%, with the incubation temperature increasing from 30 to 45 °C. The heat-induced ROS outburst, oxidative damage, and cell death were obviously inhibited by salt stress, especially the dead cell rate which fell to only 20.3% at 300 mmol/L NaCl. The inhibiting oxidative damage mainly resulted from the abundant synthesis of GSH and GST, which, respectively, increased by 4.8 and 76.1 times after addition of 300 mmol/L NaCl. The improved bioethanol production was not only due to the improved thermotolerance, but resulted from the up-regulated alcohol dehydrogenases and down-regulated aldehyde dehydrogenases by salt stress. CONCLUSION The results provide a first insight into the mechanisms of the improved thermotolerance and high-temperature bioethanol production of P. kudriavzevii by salt stress, and provide important information to construct genetic engineering yeasts for high-temperature bioethanol production.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qiuying Liu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| |
Collapse
|
4
|
Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, Ramteke PW, Mishra PK, Tuohy M, Leitgeb M, Gupta VK. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117370. [PMID: 34020262 DOI: 10.1016/j.envpol.2021.117370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Fruit wastes can be imperative to elevate economical biomass to biofuels production process at pilot scale. Because of the renewable features, huge availability, having low lignin content organic nature and low cost; these wastes can be of much interest for cellulase enzyme production. This review provides recent advances on the fungal cellulase production using fruit wastes as a potential substrate. Also, the availability of fruit wastes, generation and processing data and their potential applications for cellulase enzyme production have been discussed. Several aspects, including cellulase and its function, solid-state fermentation, process parameters, microbial source, and the application of enzyme in biofuels industries have also been discussed. Further, emphasis has been made on various bottlenecks and feasible approaches such as use of nanomaterials, co-culture, molecular techniques, genetic engineering, and cost economy analysis to develop a low-cost based comprehensive technology for viable production of cellulase and its application in biofuels production technology.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Tahreem Kausar
- Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture Technology & Sciences (Formerly Allahabad Agricultural Institute) Allahabad, 221007, Uttar Pradesh, India; Department of Life Sciences, Mandsaur University, Mandsaur, 458001, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maria Tuohy
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanovaulica 17, 2000, Maribor, Slovenija
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
5
|
Thangaraj B, Solomon PR, Chuangchote S, Wongyao N, Surareungchai W. Biomass‐derived Carbon Quantum Dots – A Review. Part 1: Preparation and Characterization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baskar Thangaraj
- King Mongkut's University of Technology Thonburi Pilot Plant Development and Training Institute Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| | - Pravin Raj Solomon
- SASTRA-Deemed University School of Chemical and Biotechnology 613 402 Thanjavur Tamil Nadu India
| | - Surawut Chuangchote
- King Mongkut's University of Technology Thonburi Research Center of Advanced Materials for Energy and Environmental Technology 126 Prachauthit Road 10140 Bangmod, Bangkok Thailand
- King Mongkut's University of Technology Thonburi Department of Tool and Materials Engineering Faculty of Engineering 126 Prachauthit Road 10140 Bangmod, Thungkru, Bangkok Thailand
| | - Nutthapon Wongyao
- King Mongkut's University of Technology Thonburi Fuel Cells and Hydrogen Research and Engineering Center Pilot Plant Development and Training Institute 10140 Bangkok Thailand
| | - Werasak Surareungchai
- King Mongkut's University of Technology Thonburi School of Bioresources and Technology Nanoscience & Nanotechnology Graduate Programme Faculty of Science Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| |
Collapse
|
6
|
Martins LC, Monteiro CC, Semedo PM, Sá-Correia I. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl Microbiol Biotechnol 2020; 104:6527-6547. [PMID: 32474799 PMCID: PMC7347521 DOI: 10.1007/s00253-020-10697-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Pectin-rich agro-industrial residues are feedstocks with potential for sustainable biorefineries. They are generated in high amounts worldwide from the industrial processing of fruits and vegetables. The challenges posed to the industrial implementation of efficient bioprocesses are however manyfold and thoroughly discussed in this review paper, mainly at the biological level. The most important yeast cell factory platform for advanced biorefineries is currently Saccharomyces cerevisiae, but this yeast species cannot naturally catabolise the main sugars present in pectin-rich agro-industrial residues hydrolysates, in particular D-galacturonic acid and L-arabinose. However, there are non-Saccharomyces species (non-conventional yeasts) considered advantageous alternatives whenever they can express highly interesting metabolic pathways, natively assimilate a wider range of carbon sources or exhibit higher tolerance to relevant bioprocess-related stresses. For this reason, the interest in non-conventional yeasts for biomass-based biorefineries is gaining momentum. This review paper focuses on the valorisation of pectin-rich residues by exploring the potential of yeasts that exhibit vast metabolic versatility for the efficient use of the carbon substrates present in their hydrolysates and high robustness to cope with the multiple stresses encountered. The major challenges and the progresses made related with the isolation, selection, sugar catabolism, metabolic engineering and use of non-conventional yeasts and S. cerevisiae-derived strains for the bioconversion of pectin-rich residue hydrolysates are discussed. The reported examples of value-added products synthesised by different yeasts using pectin-rich residues are reviewed. Key Points • Review of the challenges and progresses made on the bioconversion of pectin-rich residues by yeasts. • Catabolic pathways for the main carbon sources present in pectin-rich residues hydrolysates. • Multiple stresses with potential to affect bioconversion productivity. • Yeast metabolic engineering to improve pectin-rich residues bioconversion. Graphical abstract.
Collapse
Affiliation(s)
- Luís C Martins
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina C Monteiro
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paula M Semedo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Shariq M, Sohail M. Citrus limetta peels: a promising substrate for the production of multienzyme preparation from a yeast consortium. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCitrus limettapeels (CLP), a waste material generated by juice industries, has scarcely been reported for the production of yeast enzymes. The study was conducted to obtain a multienzyme preparation from a yeast consortium under solid-state fermentation of CLP. The substrate, CLP, was pretreated using either acid or alkali, and factors affecting production of multienzyme were studied by generating two separate Plackett–Burman designs. Since, alkali-pretreated CLP yielded higher titers; therefore, significant factors affecting multienzyme preparation using this substrate were optimized by employing Box–Behnken design. The analysis revealed that under optimized conditions, i.e., cultivation of yeast strains for 72 h to alkali-pretreated CLP moistened with mineral salt medium having pH 5 yielded more than 10 IU mL−1of cellulase, xylanase, and amylase. The multienzyme was studied for its application to saccharify fruit and non-fruit wastes and for orange juice clarification. The data showed that the enzyme preparation could release 3.03 mg L−1 h−1of reducing sugars from various crude substrates and was able to reduce turbidity of orange juice by 11% with substantial decrease in viscosity and acidity. Hence, CLP appeared as a promising substrate to produce multienzyme preparation from yeast consortium.
Collapse
|
8
|
Patsalou M, Samanides CG, Protopapa E, Stavrinou S, Vyrides I, Koutinas M. A Citrus Peel Waste Biorefinery for Ethanol and Methane Production. Molecules 2019; 24:molecules24132451. [PMID: 31277372 PMCID: PMC6651380 DOI: 10.3390/molecules24132451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
This paper deals with the development of a citrus peel waste (CPW) biorefinery that employs low environmental impact technologies for production of ethanol and methane. Three major yeasts were compared for ethanol production in batch fermentations using CPW pretreated through acid hydrolysis and a combination of acid and enzyme hydrolysis. The most efficient conditions for production of CPW-based hydrolyzates included processing at 116 °C for 10 min. Pichia kudriavzevii KVMP10 achieved the highest ethanol production that reached 30.7 g L−1 in fermentations conducted at elevated temperatures (42 °C). A zero-waste biorefinery was introduced by using solid biorefinery residues in repeated batch anaerobic digestion fermentations achieving methane formation of 342 mL gVS−1 (volatile solids). Methane production applying untreated and dried CPW reached a similar level (339–356 mL gVS−1) to the use of the side stream, demonstrating that the developed bioprocess constitutes an advanced alternative to energy intensive methods for biofuel production.
Collapse
Affiliation(s)
- Maria Patsalou
- Department of Environmental Science & Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Charis G Samanides
- Department of Environmental Science & Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Eleni Protopapa
- Department of Environmental Science & Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Stella Stavrinou
- Department of Environmental Science & Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Environmental Science & Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Michalis Koutinas
- Department of Environmental Science & Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus.
| |
Collapse
|
9
|
Effect of inorganic salt stress on the thermotolerance and ethanol production at high temperature of Pichia kudriavzevii. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Lavudi S, Oberoi HS, Mangamoori LN. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology. 3 Biotech 2017; 7:233. [PMID: 28689301 DOI: 10.1007/s13205-017-0863-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022] Open
Abstract
In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.
Collapse
|
11
|
Koutinas M, Patsalou M, Stavrinou S, Vyrides I. High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant Pichia kudriavzevii KVMP10. Lett Appl Microbiol 2016; 62:75-83. [PMID: 26510181 DOI: 10.1111/lam.12514] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED This work explores the potential for the development of orange peel based ethanol bioprocesses through isolation of the thermotolerant Pichia kudriavzevii KVMP10. A model solution of hydrolysed Valencia orange peel was employed to determine the ethanologenic potential of the yeast, which was maximized at 42°C producing 54 g l(-1) of ethanol. The effect of orange peel oil on bioethanol formation was investigated at 30 and 42°C confirming that the minimum inhibitory peel oil content was 0·01% (v/v). Pichia kudriavzevii KVMP10 demonstrated significant technological advantages for the production of sustainable bioenergy, such as utilization of both hexoses (glucose, sucrose, fructose and galactose) and pentoses (xylose) at high temperatures, exemplifying its great potential for application in orange peel based biorefineries for ethanol production. SIGNIFICANCE AND IMPACT OF THE STUDY Citrus peel waste is one of the most underutilized and geographically diverse residues in the planet. In attempt to develop a citrus peel based biorefinery we report here the isolation of a yeast which exhibited favourable technological characteristics for the production of ethanol through utilization of the specific food waste. Pichia kudriavzevii KVMP10 was highly thermotolerant and utilized both hexoses and pentoses for ethanol production, which was achieved at elevated rates, highlighting its great potential for application in ethanol production processes from citrus peel.
Collapse
Affiliation(s)
- M Koutinas
- Department of Environmental Science & Technology, Cyprus University of Technology, Limassol, Cyprus
| | - M Patsalou
- Department of Environmental Science & Technology, Cyprus University of Technology, Limassol, Cyprus
| | - S Stavrinou
- Department of Environmental Science & Technology, Cyprus University of Technology, Limassol, Cyprus
| | - I Vyrides
- Department of Environmental Science & Technology, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
12
|
Pirota RDPB, Tonelotto M, Delabona PS, Fonseca RF, Paixão DAA, Baleeiro FCF, Bertucci Neto V, Farinas CS. BIOPROCESS DEVELOPMENTS FOR CELLULASE PRODUCTION BY Aspergillus oryzae CULTIVATED UNDER SOLID-STATE FERMENTATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160331s00003520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R. D. P. B. Pirota
- Universidade Federal de São Carlos, Brazil; Embrapa Instrumentação, Brazil
| | - M. Tonelotto
- Universidade Federal de São Carlos, Brazil; Embrapa Instrumentação, Brazil
| | - P. S. Delabona
- Universidade Federal de São Carlos, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Brazil
| | - R. F. Fonseca
- Universidade Federal de São Carlos, Brazil; Embrapa Instrumentação, Brazil
| | - D. A. A. Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Brazil
| | - F. C. F. Baleeiro
- Universidade Federal de São Carlos, Brazil; Embrapa Instrumentação, Brazil
| | | | - C. S. Farinas
- Universidade Federal de São Carlos, Brazil; Embrapa Instrumentação, Brazil
| |
Collapse
|
13
|
Kim MS, Kim S, Ha BS, Park HY, BaeK SY, Yeo SH, Ro HS. Diversity, Saccharification Capacity, and Toxigenicity Analyses of Fungal Isolates in Nuruk. THE KOREAN JOURNAL OF MYCOLOGY 2014. [DOI: 10.4489/kjm.2014.42.3.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Sharma R, Kocher GS, Bhogal RS, Oberoi HS. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY. J Basic Microbiol 2014; 54:1367-77. [PMID: 25047723 DOI: 10.1002/jobm.201400187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/10/2014] [Indexed: 11/05/2022]
Abstract
Thermophilic Aspergillus terreus RWY produced cellulases and xylanases in optimal concentrations at 45 °C in solid state fermentation process, though enzyme production was also observed at 50 and 55 °C. Filter paper cellulase (FP), endoglucanase (EG), β-glucosidase (BGL), cellobiohydrolase (CBH), xylanase, β-xylosidase, α-L-arabinofuranosidase and xylan esterase activities for A. terreus RWY at 45 °C in 72 h were 11.3 ± 0.65, 103 ± 6.4, 122.5 ± 8.7, 10.3 ± 0.66, 872 ± 22.5, 22.1 ± 0.75, 126.4 ± 8.4 and 907 ± 15.5 U (g-ds)(-1) , respectively. Enzyme was optimally active at temperatures and pH ranging between 50-60 °C and 4.0-6.0, respectively. The half life (T1/2 ) of 270 and 240 min at 70 and 75 °C, respectively for the enzyme indicates its stability at higher temperatures. The addition of MnCl2 , CoCl2 , and FeCl3 significantly enhanced cellulase activity. Enzyme demonstrated multiplicity by having seven, one and three isoform(s) for EG, CBH and BGL, respectively. Significant production of functionally active consortium of cellulolytic and xylanolytic enzymes from A. terreus RWY makes it a potential candidate in bioprocessing applications.
Collapse
Affiliation(s)
- Reetika Sharma
- Central Institute of Post-Harvest Engineering and Technology, P.O. PAU, Ludhiana, Punjab, India; Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | | | | | | |
Collapse
|
15
|
Huang R, Cao M, Guo H, Qi W, Su R, He Z. Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4643-4651. [PMID: 24802243 DOI: 10.1021/jf405172a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pomelo peel is an abundant pectin-rich biomass waste in China and has the potential to serve as a source of fuels and chemicals. This study reports a promising way to deal with pomelo peel waste and to utilize it as raw material for ethanol production via simultaneous saccharification and fermentation (SSF). An integrated strategy, incorporating hydrothermal treatment, multienzyme formulation, and fed-batch operation, was further developed to enhance the ethanol production. The results show that hydrothermal treatment (120 °C, 15 min) could significantly reduce the use of cellulase (from 7 to 3.8 FPU g(-1)) and pectinase (from 20 to 10 U g(-1)). A multienzyme complex, which consists of cellulase, pectinase, β-glucosidase, and xylanase, was also proven to be effective to improve the hydrolysis of pretreated pomelo peel, leading to higher concentrations of fermentative sugars (36 vs 14 g L(-1)) and galacturonic acid (23 vs 9 g L(-1)) than those with the use of a single enzyme. Furthermore, to increase the final ethanol concentration, fed-batch operation by adding fresh substrate was employed in the SSF process. A final solid loading of 25% (w/v), which is achieved by adding 15% fresh substrate to the SSF system at an initial solid loading of 10%, produced 36 g L(-1) ethanol product in good yield (73.5%). The ethanol concentration is about 1.73-fold that at the maximum solid loading of 14% for batch operation, whereas both of them have a closed ethanol yield. The results indicate that the use of the fed-batch mode could alleviate the decrease in ethanol yield at high solid loading, which is caused by significant mass transfer limitation and increased inhibition of toxic compounds in the SSF process. The integrated strategy demonstrated in this work could open a new avenue for dealing with pectin-rich biomass wastes and utilization of the wastes to produce ethanol.
Collapse
Affiliation(s)
- Renliang Huang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Replacing a suite of commercial pectinases with a single enzyme, pectate lyase B, in Saccharomyces cerevisiae fermentations of cull peaches. J Ind Microbiol Biotechnol 2014; 41:679-86. [PMID: 24585204 DOI: 10.1007/s10295-013-1394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Fermentation of pectin-rich biomass with low concentrations of polysaccharides requires some treatment of the pectin, but does not need complete degradation of the polysaccharide to reach maximum ethanol yields. Cull peaches, whole rotten fruits that are not suitable for sale, contain high concentrations of glucose (27.7% dw) and fructose (29.3% dw) and low amounts of cellulose (2.8% dw), hemicellulose (4.5% dw) and pectin (5.6% dw). Amounts of commercial saccharification enzymes, cellulase and cellobiase can be significantly decreased and commercial pectinase mixtures can be replaced completely with a single enzyme, pectate lyase (PelB), while maintaining ethanol yields above 90% of the theoretical maximum. PelB does not completely degrade pectin; it only releases short chain oligogalacturonides. However, the activity of PelB is sufficient for the fermentation process, and its addition to fermentations without commercial pectinase increases ethanol production by ~12%.
Collapse
|
17
|
Sandhu SK, Oberoi HS, Babbar N, Miglani K, Chadha BS, Nanda DK. Two-stage statistical medium optimization for augmented cellulase production via solid-state fermentation by newly isolated Aspergillus niger HN-1 and application of crude cellulase consortium in hydrolysis of rice straw. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12653-12661. [PMID: 24328069 DOI: 10.1021/jf403083g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellulolytic enzyme production by newly isolated Aspergillus niger HN-1 was statistically optimized using Plackett-Burman and central composite design (CCD). Optimum concentrations of 2, 0.40, 0.01, and 0.60 g L (-1) for KH2PO4, urea, trace elements solution, and CaCl2·2H2O, respectively, were suggested by Design-Expert software. The two-stage optimization process led to a 3- and 2-fold increases in the filter paper cellulase (FP) and β-glucosidase activities, respectively. FP, β-glucosidase, endoglucanase, exopolygalaturonase, cellobiohydrolase, xylanase, α-l-arabinofuranosidase, β-xylosidase, and xylan esterase activities of 36.7 ± 1.54 FPU gds(-1), 252.3 ± 7.4 IU gds(-1), 416.3 ± 22.8 IU gds(-1), 111.2 ± 5.4 IU gds(-1), 8.9 ± 0.50 IU gds(-1), 2593.5 ± 78.9 IU gds(-1), 79.4 ± 4.3 IU gds(-1), 180.8 ± 9.3 IU gds(-1), and 288.7 ± 11.8 IU gds(-1), respectively, were obtained through solid-state fermentation during the validation studies. Hydrolysis of alkali-treated rice straw with crude cellulases resulted in about 84% glucan to glucose, 89% xylan to xylose, and 91% arabinan to arabinose conversions, indicating potential for biomass hydrolysis by the crude cellulase consortium obtained in this study.
Collapse
Affiliation(s)
- Simranjeet Kaur Sandhu
- Central Institute of Post-Harvest Engineering and Technology, P.O. PAU, Ludhiana 141 004, India
| | | | | | | | | | | |
Collapse
|
18
|
Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermomethanolica, for heterologous gene expression, especially at elevated temperature. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0765-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Oberoi HS, Rawat R, Chadha BS. Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2. Antonie Van Leeuwenhoek 2013; 105:119-34. [DOI: 10.1007/s10482-013-0060-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/17/2013] [Indexed: 11/29/2022]
|
20
|
Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie van Leeuwenhoek 2012; 103:577-88. [PMID: 23132277 DOI: 10.1007/s10482-012-9842-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/24/2012] [Indexed: 11/30/2022]
Abstract
Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH(4))(2)SO(4), 0.09 % yeast extract, 0.05 % KH(2)PO(4), and 0.05 % MgSO(4)·7H(2)O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.
Collapse
Affiliation(s)
- Napatchanok Yuangsaard
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | | | | |
Collapse
|