1
|
Budama-Kilinc Y, Kurtur OB, Gok B, Cakmakci N, Kecel-Gunduz S, Unel NM, Ozturk TK. Use of Immunoglobulin Y Antibodies: Biosensor-based Diagnostic Systems and Prophylactic and Therapeutic Drug Delivery Systems for Viral Respiratory Diseases. Curr Top Med Chem 2024; 24:973-985. [PMID: 38561616 DOI: 10.2174/0115680266289898240322073258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Respiratory viruses have caused many pandemics from past to present and are among the top global public health problems due to their rate of spread. The recently experienced COVID-19 pandemic has led to an understanding of the importance of rapid diagnostic tests to prevent epidemics and the difficulties of developing new vaccines. On the other hand, the emergence of resistance to existing antiviral drugs during the treatment process poses a major problem for society and global health systems. Therefore, there is a need for new approaches for the diagnosis, prophylaxis, and treatment of existing or new types of respiratory viruses. Immunoglobulin Y antibodies (IgYs) obtained from the yolk of poultry eggs have significant advantages, such as high production volumes, low production costs, and high selectivity, which enable the development of innovative and strategic products. Especially in diagnosing respiratory viruses, antibody-based biosensors in which these antibodies are integrated have the potential to provide superiority in making rapid and accurate diagnosis as a practical diagnostic tool. This review article aims to provide information on using IgY antibodies in diagnostic, prophylactic, and therapeutic applications for respiratory viruses and to provide a perspective for future innovative applications.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ozan Baris Kurtur
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Nisanur Cakmakci
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, Istanbul, Turkiye
| | - Necdet Mehmet Unel
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Plantomics Research Laboratory, Kastamonu, Turkiye
- Research and Application Center, Kastamonu University, Kastamonu, Turkiye
| | | |
Collapse
|
2
|
Nadiya S, Kolla HB, Reddy PN. Optimization and evaluation of a multiplex PCR assay for detection of Staphylococcus aureus and its major virulence genes for assessing food safety. Braz J Microbiol 2023; 54:311-321. [PMID: 36690906 PMCID: PMC9944222 DOI: 10.1007/s42770-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a natural commensal microflora of humans which causes opportunistic infections due to its large arsenal of exotoxins, invasion, immune evasion, and antibiotic resistance mechanisms. The primary goal of this study is to develop a multiplex PCR (mPCR) assay for simultaneous detection of Staphylococcus aureus (nuc) and its virulence genes coding for prominent exotoxins namely alpha hemolysin (hla), enterotoxins A (sea), enterotoxin B (seb), toxic shock syndrome toxin (tsst-1), and the gene coding for methicillin resistance (mecA). A competitive internal amplification control (IAC) was included in the assay to exclude the false negative outcomes. Highly specific primer pairs were designed for the target genes using in silico resources. At the outset, monoplex PCRs were standardized using reference S. aureus strains. Primer specificity to the target genes was authenticated through restriction digestion analysis of amplified PCR products. Multiplex PCR was optimized in increments of one gene starting with nuc and IAC amplified simultaneously using one pair of primers (nuc) in a competitive manner. The mPCR assay was found to be highly sensitive with a detection limit of ~10 CFUs per reaction for pure cultures. Multiplex PCR assay was further evaluated on the retail and processed food samples to test the prevalence of S. aureus and study their exotoxin profiles. Of the 57 samples examined, 13 samples (22.80%) were found to be contaminated with S. aureus whose DNA was extracted after a 6-h enrichment period. Among these, a high percentage of hemolytic and enterotoxin A positive strains were encountered. The mPCR assay developed in this study would be a useful tool for rapid and reliable monitoring of S. aureus for food quality testing and from clinical infections.
Collapse
Affiliation(s)
- Shaik Nadiya
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Andhra Pradesh, Guntur district, 522 213, India
| | - Harish Babu Kolla
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Andhra Pradesh, Guntur district, 522 213, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government Degree College (Autonomous), Maddilapalem, Visakhapatnam, Andhra Pradesh, 530 013, India.
| |
Collapse
|
3
|
Shahdost-Fard F, Faridfar S, Keihan AH, Aghaei M, Petrenko I, Ahmadi F, Ehrlich H, Rahimi-Nasrabadi M. Applicability of a Green Nanocomposite Consisted of Spongin Decorated Cu 2WO 4(OH) 2 and AgNPs as a High-Performance Aptasensing Platform in Staphylococcus aureus Detection. BIOSENSORS 2023; 13:271. [PMID: 36832038 PMCID: PMC9954421 DOI: 10.3390/bios13020271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This study reports the synthesis of a nanocomposite consisting of spongin and its applicability in the development of an aptasensing platform with high performance. The spongin was carefully extracted from a marine sponge and decorated with copper tungsten oxide hydroxide. The resulting spongin-copper tungsten oxide hydroxide was functionalized by silver nanoparticles and utilized in electrochemical aptasensor fabrication. The nanocomposite covered on a glassy carbon electrode surface amplified the electron transfer and increased active electrochemical sites. The aptasensor was fabricated by loading of thiolated aptamer on the embedded surface via thiol-AgNPs linkage. The applicability of the aptasensor was tested in detecting the Staphylococcus aureus bacterium as one of the five most common causes of nosocomial infectious diseases. The aptasensor measured S. aureus under a linear concentration range of 10-108 colony-forming units per milliliter and a limit of quantification and detection of 12 and 1 colony-forming unit per milliliter, respectively. The highly selective diagnosis of S. aureus in the presence of some common bacterial strains was satisfactorily evaluated. The acceptable results of the human serum analysis as the real sample may be promising in the bacteria tracking in clinical samples underlying the green chemistry principle.
Collapse
Affiliation(s)
- Faezeh Shahdost-Fard
- Department of Chemistry, Faculty of Basic Sciences, Farhangian University, Tehran 19396-14464, Iran
| | - Shahin Faridfar
- Department of Chemistry, Faculty of Science, University of Imam Hossein, Tehran 15816-18711, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19516-83759, Iran
| | - Mohammad Aghaei
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 84334-71964, Iran
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Farhad Ahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Mehdi Rahimi-Nasrabadi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14179-35840, Iran
| |
Collapse
|
4
|
Xu Y, He P, Ahmad W, Hassan MM, Ali S, Li H, Chen Q. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Biosens Bioelectron 2022; 209:114240. [PMID: 35447597 DOI: 10.1016/j.bios.2022.114240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus (S. aureus) has been identified as a marker of food contamination, closely associated with human health. This work designs a sensitive and rapid bio-detection strategy for S. aureus based on hybridization chain reaction-assisted surface enhanced Raman scattering (HCR-assisted-SERS) signal amplification. In this approach, the interaction between the aptamer (Apt) and its partial complementary DNA strands (cDNA) fabricated on the surface of gold-assisted magnetic nanoparticles (Au-MNPs) and the subsequent detachment of the cDNA results in the activation of the HCR process. In the HCR, a pair of hairpin structured DNA probes (H1 and H2) with sticky ends self-assembles to form a long DNA polymer. Subsequently, the output and amplification of the SERS signal were performed by conjugating 4-ATP modified Au@Ag NPs with the obtained DNA polymer via a specific Ag-S bond, and further collected through a self-administered polydimethylsiloxane (PDMS) cone-shaped support array. The precise quantification of S. aureus was performed in the concentration range of 28 to 2.8 × 106 cfu/mL, achieving a detection limit of 0.25 cfu/mL. This strategy was further applied to S. aureus detection in spiked milk samples with good recoveries (91-102%) and the relative standard deviation (4.35-8.41%). The sensing platform also showed satisfactory validation results (p > 0.05) using the traditional plate counting method. The proposed HCR-assisted SERS probe can be extended to other foodborne pathogenic bacteria types via engineering appropriate Apt and DNA initiators, thus, inspiring widespread applications in food safety and biomedical research.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
5
|
Dou L, Zhang Y, Bai Y, Li Y, Liu M, Shao S, Li Q, Yu W, Shen J, Wang Z. Advances in Chicken IgY-Based Immunoassays for the Detection of Chemical and Biological Hazards in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:976-991. [PMID: 34990134 DOI: 10.1021/acs.jafc.1c06750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As antibodies are the main biological binder for hazards in food samples, their performance directly determines the sensitivity, specificity, and reproducibility of the developed immunoassay. The overwhelmingly used mammalian-derived antibodies usually suffer from complicated preparation, high cost, frequent bleeding of animals, and sometimes low titer and affinity. Chicken yolk antibody (IgY) has recently attracted considerable attention in the bioanalytical field owing to its advantages in productivity, animal welfare, comparable affinity, and high specificity. However, a broad understanding of the application of IgY-based immunoassay for the detection of chemical and biological hazards in food samples remains limited. Here, we briefly summarized the diversity, structure, and production of IgY including polyclonal and monoclonal formats. Then, a comprehensive overview of the principles, designs, and applications of IgY-based immunoassays for these hazards was reviewed and discussed, including food-borne pathogens, food allergens, veterinary drugs, pesticides, toxins, endocrine disrupting chemicals, etc. Thus, the trend of IgY-based immunoassays is expected, and more IgY types, higher sensitivity, and diversification of recognition-to-signal manners are necessary in the future.
Collapse
Affiliation(s)
- Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qing Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| |
Collapse
|
6
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens Bioelectron 2020; 172:112806. [PMID: 33190016 DOI: 10.1016/j.bios.2020.112806] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/19/2023]
Abstract
In this study, a sensitive biosensor was developed based on aptamer functionalized polydimethylsiloxane (PDMS) film for the detection of Staphylococcus aureus (S. aureus) using surface-enhanced Raman scattering (SERS) technology. Initially, the surface of PDMS film was chemically modified by piranha solution and 3-Aminopropyltriethoxysilane (APTES), and then AuNPs-PDMS film was prepared by coating gold nanoparticles (AuNPs) through electrostatic interaction. Next, the aptamers were immobilized on the AuNPs-PDMS membrane via gold-sulfur bond to form the capture substrate. Meanwhile, gold-silver core-shell nanoflowers (Au@Ag NFs) modified with mercaptobenzoic acid (4-MBA) and aptamers were applied as a signal probe. In the presence of the target, the signal molecular probe and the capturing substrate specifically combined with the target and resulted in a sandwich structure "capture substrate-target-signal molecular probe". Under the optimized experimental condition, the signal of 4-MBA at 1085 cm-1 was linearly related to the S. aureus concentration in the range of 4.3 × 10 cfu mL-1-4.3 × 107 cfu mL-1 (y = 326.91x-117.62, R2 = 0.9932) with a detection limit of 13 cfu mL-1. The method was successfully applied to spiked actual samples and a 92.5-110% recovery rate was achieved.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
8
|
Application of IgY antibodies against staphylococcal protein A (SpA) of Staphylococcus aureus for detection and prophylactic functions. Appl Microbiol Biotechnol 2020; 104:9387-9398. [PMID: 32960294 DOI: 10.1007/s00253-020-10912-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
In the present study, immunoglobulin Y (IgY) antibodies were raised in hens against the surface staphylococcal protein A (SpA) of Staphylococcus aureus. Anti-SpA IgY were tested in vitro for diagnostic applications, bacteriostatic, and biofilm inhibition effects. A specific and sensitive immunocapture PCR (IPCR) was developed to detect S. aureus from food, clinical, and environmental samples. Anti-SpA IgY were used for capturing S. aureus cells from different matrices. Chicken antibodies were chosen over mammalian antibodies based on its inertness to immunoglobulin (Ig)-binding property of SpA protein. No cross-reactivity was encountered with closely related Gram-positive and Gram-negative food pathogens. Inter-assay variation is < 10%. The assay was found suitable for testing on solid and liquid food samples, skin, and nasal swabs. The assay showed limit of detection of ≥ 102 CFU/mL from broth cultures and 102 to 103 CFU/ml from diverse natural samples. This assay overcomes the false positives commonly encountered while using mammalian immunoglobulins (IgG). Anti-SpA IgY antibodies were tested for their bacteriostatic effect on the growth of S. aureus. IgY antibodies at a concentration of 150 μg/ml inhibited the growth of S. aureus completely indicating the potential of IgY antibodies in neutralization of infectious pathogens. Similarly, anti-SpA IgY at MIC50 concentration reduced biofilm formation by ~ 45%. In view of advantages offered by IgY antibodies for specific detection of S. aureus in immunocapture PCR (IPCR) assay and in vitro neutralization potential of S. aureus, we recommend using IgY over conventional IgG of mammals involving S. aureus and its antigens. KEY POINTS: • IPCR with anti-SpA IgY for S. aureus was specific and sensitive for natural samples. • Anti-SpA IgY at 150 ug/ml displayed growth inhibition of S. aureus strains temporarily. • Anti-SpA IgY at MIC50 concentrations inhibited the biofilm formation partially.
Collapse
|
9
|
Ji Y, Li X, Lu Y, Guo P, Zhang G, Wang Y, Zhang Y, Zhu W, Pan J, Wang J. Nanobodies Based on a Sandwich Immunoassay for the Detection of Staphylococcal Enterotoxin B Free from Interference by Protein A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5959-5968. [PMID: 32374597 DOI: 10.1021/acs.jafc.0c00422] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the leading causes of food poisoning, staphylococcal enterotoxins (SEs) secreted by Staphylococcus aureus pose a serious threat to human health. The immunoassay has become the dominant tool used for the rapid detection of harmful bacteria and toxins as a result of its excellent specificity. However, with regard to SEs, staphylococcal protein A (SpA) is likely to bind with the fragment crystallizable (Fc) terminal of the traditional antibody and result in a false positive, limiting the practical application of this method. Therefore, to eliminate the bottleneck problem, the sandwich immunoassay was development by replacing the traditional antibody with a nanobody (Nb) that lacked a Fc terminal. Using 0.5 × 107 colony-forming units, the Nb library was constructed using Bactrian camels immunized with staphylococcal enterotoxin B (SEB) to obtain a paired Nb against SEB with good affinity. A sandwich enzyme-linked immunosorbent assay (ELISA) was developed using one Nb as the capture antibody and a phage-displayed Nb with signal-amplifying properties as the detection antibody. In optimal conditions, the current immunoassay displayed a broad quantitative range from 1 to 512 ng/mL and a 0.3 ng/mL limit of detection. The recovery of spiked milk, milk powder, cheese, and beef ranged from 87.66 to 114.2%. The Nbs-ELISA was not influenced by SpA during the detection of SEB in S. aureus food poisoning. Therefore, the Nb developed here presented the perfect candidates for immunoassay application during SE determination as a result of the complete absence of SpA interference.
Collapse
Affiliation(s)
- Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yunlong Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Pengli Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ganwei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jiachuan Pan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou, Guangdong 510070, People's Republic of China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
10
|
Zhao J, Lv Q, Liu P, Guo L, Zhang L, Zheng Y, Ming L, Kong D, Jiang H, Jiang Y. AlphaLISA for detection of staphylococcal enterotoxin B free from interference by protein A. Toxicon 2019; 165:62-68. [DOI: 10.1016/j.toxicon.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023]
|
11
|
Kota RK, Srirama K, Reddy PN. IgY antibodies of chicken do not bind staphylococcal binder of immunoglobulin (Sbi) from Staphylococcus aureus. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Lv R, Chen Y, Xia N, Liang Y, He Q, Li M, Qi Z, Lu Y, Zhao S. Development of a double-antibody sandwich ELISA for rapid detection to C-peptide in human urine. J Pharm Biomed Anal 2018; 162:179-184. [PMID: 30261444 DOI: 10.1016/j.jpba.2018.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 01/18/2023]
Abstract
C-peptide level is recognized as an important indicator of diabetes diagnosis. A sensitive and specific double-antibody sandwich enzyme-linked immunosorbent assay for the detection of C-peptide based on double antibody sandwich method was studied in this paper. The rabbit and hen were innunized with PLL-C-peptide and BSA-C-peptide respectively to obtain specific Yolk antibody (IgY) and polyclonal antibody used to construct the sandwich ELISA for the measurement of C-peptide. The limit of detection was 0.51 μg/mL and the half maximal inhibitory concentration (IC50) was 3.26 μg/mL. The method developed in the study showed no evident cross-reactivity with other similar analogs. The detection standard curve of C-peptide exhibited a good linearity (R2 = 0.9896, n = 15). 17 types of the urine of diabetes patients on c-peptide levels compared with the hospital type of diabetes information, with a conclusion of a high consistent rate. Therefore, the methods could be selectively used for rapid screening of C-peptide in human urine, and the type of diabetes has some referential significance.
Collapse
Affiliation(s)
- Rui Lv
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yingshan Chen
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Nana Xia
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yuxin Liang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Qiyi He
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Minyou Li
- Guangzhou Jinde Biotechnology Co., LTD, Guangzhou 510663, People's Republic of China.
| | - Zongxian Qi
- Guangzhou Jinde Biotechnology Co., LTD, Guangzhou 510663, People's Republic of China.
| | - Yeyu Lu
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
13
|
Achuth J, Renuka RM, Jalarama Reddy K, Shivakiran MS, Venkataramana M, Kadirvelu K. Development and evaluation of an IgY based silica matrix immunoassay platform for rapid onsite SEB detection. RSC Adv 2018; 8:25500-25513. [PMID: 35702392 PMCID: PMC9097597 DOI: 10.1039/c8ra03574a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
The present study involves immunoassay platform development based on a surface functionalized silica matrix for rapid onsite detection of Staphylococcal enterotoxin B (SEB). Silica matrix functionalization as well as the immunoassay parameters was experimentally designed and optimized through response surface methodology (RSM). Silica surface functionalization was carried out with hydrofluoric acid (HF), ammonia, 3-aminopropyl triethoxysilane (APTES) and glutaraldehyde (GA). The RSM optimized matrix functionalization parameters for HF, ammonia, APTES and GA were determined to be 10%, 40%, 20% and 10% (V/V), respectively. Antibodies for the study were generated against recombinant SEB toxin in rabbit (anti-SEB IgG) and chicken (anti-SEB IgY). Subsequently, antibodies were immobilized on the functionalized silica matrix and were further characterized by SEM and contact angle measurements to elucidate the surface uniformity and degree of hydrophilicity. The immunoassay platform was developed with anti-SEB IgG (capturing agent) and anti-SEB IgY (revealing partner). The limit of detection (LOD) of the developed platform was determined to be 0.005 μg mL-1 and no cross-reactivity with similar toxins was observed. Upon co-evaluation with a standard ELISA kit (Chondrex, Inc) against various field isolates, the platform was found to be on par and reliable. In conclusion, the developed method may find better utility in onsite detection of SEB from resource-poor settings.
Collapse
Affiliation(s)
- J Achuth
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - R M Renuka
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - K Jalarama Reddy
- Freeze Drying and Animal Product Technology Division, Defence Food Research Laboratory Siddarthanagar Mysore Karnataka- 570011 India
| | - M S Shivakiran
- Department of Biotechnology, Vignan's University Guntur Andhra Pradesh-522213 India
| | - M Venkataramana
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| | - K Kadirvelu
- DRDO-BU-CLS, Bharathiar University Campus Coimbatore Tamilnadu-641046 India +0422 2428162
| |
Collapse
|
14
|
Mudili V, Makam SS, Sundararaj N, Siddaiah C, Gupta VK, Rao PVL. A novel IgY-Aptamer hybrid system for cost-effective detection of SEB and its evaluation on food and clinical samples. Sci Rep 2015; 5:15151. [PMID: 26477645 PMCID: PMC4609960 DOI: 10.1038/srep15151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/09/2015] [Indexed: 11/09/2022] Open
Abstract
In the present study, we introduce a novel hybrid sandwich-ALISA employing chicken IgY and ssDNA aptamers for the detection of staphylococcal enterotoxin B (SEB). Cloning, expression and purification of the full length recombinant SEB was carried out. Anti-SEB IgY antibodies generated by immunizing white leg-horn chickens with purified recombinant SEB protein and were purified from the immunized egg yolk. Simultaneously, ssDNA aptamers specific to the toxin were prepared by SELEX method on microtiter well plates. The sensitivity levels of both probe molecules i.e., IgY and ssDNA aptamers were evaluated. We observed that the aptamer at 250 ngmL(-1) concentration could detect the target antigen at 50 ngmL(-1) and the IgY antibodies at 250 ngmL(-1), could able to detect 100 ngmL(-1) antigen. We further combined both the probes to prepare a hybrid sandwich aptamer linked immune sorbent assay (ALISA) wherein the IgY as capturing molecule and biotinylated aptamer as revealing probe. Limit of detection (LOD) for the developed method was determined as 50 ngmL(-1). Further, developed method was evaluated with artificially SEB spiked milk and natural samples and obtained results were validated with PCR. In conclusion, developed ALISA method may provide cost-effective and robust detection of SEB from food and environmental samples.
Collapse
Affiliation(s)
- Venkataramana Mudili
- DRDO-BU-CLS, Bharathiar University Campus, Coimbatore, Tamil Nadu- 641046, India
| | - Shivakiran S. Makam
- DRDO-BU-CLS, Bharathiar University Campus, Coimbatore, Tamil Nadu- 641046, India
| | - Naveen Sundararaj
- DRDO-BU-CLS, Bharathiar University Campus, Coimbatore, Tamil Nadu- 641046, India
| | | | - Vijai Kumar Gupta
- Molecular Glyco-biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|