1
|
Nirvan H, Deswal G, Selwal MK, Selwal KK. Functional efficacy of Enterococcus faecium HN4 and Lactobacillus delbrueckii HN5 strains isolated from human milk. Future Microbiol 2025; 20:479-488. [PMID: 40152419 PMCID: PMC11980488 DOI: 10.1080/17460913.2025.2484924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
AIMS The microbiota of human milk is described at length; however, variation in different bacterial genera in milk has been reported. Here, breast milk samples from Indian mothers were used to target bacterial species from the pool of microbial communities in human milk with probiotic potential. MATERIALS AND METHODS A culture-dependent technique was used to isolate bacterial cultures, and their physiological and functional properties were appraised. RESULTS Two bacterial cultures, E. faecium HN4 and L delbrueckii HN5, were identified as showing considerable tolerance to acid and bile conditions with 73.0-87.0% survival. The cultures showed other in vitro beneficial properties. CONCLUSION The study highlights the presence of potential probiotics in human milk that could be investigated for further use.
Collapse
Affiliation(s)
- Harsha Nirvan
- Department of Biotechnology, Deenbandhu Chottu Ram University of Science & Technology, Sonipat, Haryana, India
| | - Garima Deswal
- Department of Biotechnology, Deenbandhu Chottu Ram University of Science & Technology, Sonipat, Haryana, India
| | - Manjit K. Selwal
- Department of Biotechnology, Deenbandhu Chottu Ram University of Science & Technology, Sonipat, Haryana, India
| | - Krishan Kumar Selwal
- Department of Biotechnology, Deenbandhu Chottu Ram University of Science & Technology, Sonipat, Haryana, India
| |
Collapse
|
2
|
Zhao M, Zhang Y, Li Y, Li G. Developing Gut-Healthy Strains for Pets: Probiotic Potential and Genomic Insights of Canine-Derived Lactobacillus acidophilus GLA09. Microorganisms 2025; 13:350. [PMID: 40005717 PMCID: PMC11858033 DOI: 10.3390/microorganisms13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Probiotics are widely used to improve pet health and welfare due to their significant biological activity and health benefits. Lactobacillus acidophilus GLA09 was derived from the intestinal tract of healthy beagles. The safety and suitability evaluation of GLA09 was completed through a combination of whole genome sequence and phenotypic analyses, including tests for the inhibition of harmful bacteria, acid resistance, bile salt tolerance, adhesion, and amine-producing substance content. The findings revealed that GLA09 has good gastrointestinal tolerance, inhibits the growth of pathogenic bacteria, and does not produce toxic biogenic amines. The genome of GLA09 comprises one chromosome and one plasmid, with a genome size of 2.10 M and a Guanine + Cytosine content of 38.71%. It encodes a total of 2208 genes, including 10 prophages, and 1 CRISPR sequence. Moreover, 56 carbohydrate-encoding genes were identified in the CAZy database, along with 11 genes for cold and heat stress tolerance, 5 genes for bile salt tolerance, 12 genes for acid tolerance, and 14 predicted antioxidant genes. Furthermore, GLA09 has one lincosamide resistance gene, but there is no risk of transfer. GLA09 harbors a cluster of Helveticin J and Enterolysin A genes linked to antimicrobial activity. Genomic analysis validated the probiotic attributes of GLA09, indicating its potential utility as a significant probiotic in the pet food industry. In summary, L. acidophilus GLA09 has the potential to be used as a probiotic in pet food and can effectively combat intestinal health in pets.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (Y.Z.); (Y.L.)
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (Y.Z.); (Y.L.)
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (Y.Z.); (Y.L.)
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (Y.Z.); (Y.L.)
| |
Collapse
|
3
|
Chen CT, Chao WY, Lin CH, Shih TW, Pan TM. Comprehensive Safety Assessment of Lacticaseibacillus paracasei subsp. paracasei NTU 101 Through Integrated Genotypic and Phenotypic Analysis. Curr Issues Mol Biol 2024; 46:12354-12374. [PMID: 39590328 PMCID: PMC11593238 DOI: 10.3390/cimb46110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Probiotics, as defined by the World Health Organization, are live microorganisms that, when consumed in sufficient quantities, provide health benefits to the host. Although some countries have approved specific probiotic species for use in food, safety concerns may still arise with individual strains. Lacticaseibacillus paracasei subsp. paracasei NTU 101 (NTU 101), isolated from the gut of healthy infants, has demonstrated various probiotic effects and shown safety in a prior 28-day animal feeding study. To further verify its safety and mitigate potential risks, we performed a comprehensive genotypic and phenotypic safety evaluation in accordance with the European Food Safety Authority guidelines for safety assessment through whole genome sequencing and related literature. In this research, minimum inhibitory concentration testing identified NTU 101's resistance to chloramphenicol; however, subsequent gene analysis confirmed no associated risk of resistance. Assessments of safety, including biogenic amine content, hemolytic activity, mucin degradation, and D-lactic acid production, indicated a low level of risk. Additionally, a repeated-dose 90-day oral toxicity study in Sprague-Dawley rats revealed no toxicity at a dose of 2000 mg/kg body weight, further supporting the strain's safety for consumption. Based on these comprehensive analyses, NTU 101 is considered safe for regular consumption as a health supplement.
Collapse
Affiliation(s)
- Chieh-Ting Chen
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
| | - Wen-Yu Chao
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
| | - Chih-Hui Lin
- Department of Life Science, National Taitung University, Taitung 950309, Taiwan;
| | - Tsung-Wei Shih
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tzu-Ming Pan
- SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; (C.-T.C.); (W.-Y.C.); (T.-W.S.)
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
4
|
Cheng J, Cho JH, Suh JW. Characterization of Human Breast Milk-Derived Limosilactobacillus reuteri MBHC 10138 with Respect to Purine Degradation, Anti-Biofilm, and Anti-Lipid Accumulation Activities. Antibiotics (Basel) 2024; 13:964. [PMID: 39452230 PMCID: PMC11504937 DOI: 10.3390/antibiotics13100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Human breast milk is a valuable source of potential probiotic candidates. The bacteria isolated from human breast milk play an important role in the development of the infant gut microbiota, exhibiting diverse biological functions. Methods: In this study, Limosilactobacillus reuteri MBHC 10138 isolated from breast milk was characterized in terms of its probiotic safety characteristics and potential efficacy in hyperuricemia, obesity, lipid liver, and dental caries, conditions which Korean consumers seek to manage using probiotics. Results: Strain MBHC 10138 demonstrated a lack of D-lactate and biogenic amine production as well as a lack of bile salt deconjugation and hemolytic activity. It also exhibited susceptibility to common antibiotics, tolerance to simulated oral-gastric-intestinal conditions, and superior biological activity compared to three L. reuteri reference strains, including KACC 11452 and MJ-1, isolated from feces, and a commercial strain isolated from human breast milk. Notably, L. reuteri MBHC 10138 showed high capabilities in assimilating guanosine (69.48%), inosine (81.92%), and adenosine (95.8%), strongly inhibited 92.74% of biofilm formation by Streptococcus mutans, and reduced lipid accumulation by 32% in HepG2 cells. Conclusions: These findings suggest that strain MBHC 10138, isolated from human breast milk, has potential to be developed as a probiotic for managing hyperuricemia, obesity, and dental caries after appropriate in vivo studies.
Collapse
Affiliation(s)
| | | | - Joo-Won Suh
- Microbio Healthcare, Co., Ltd., Yongin 17058, Republic of Korea; (J.C.); (J.-H.C.)
| |
Collapse
|
5
|
Afshar N, Amini K, Mohajerani H, Saki S. Evaluation of probiotic bifidobacteria strains from Iranian traditional dairy products for their anti-hyperlipidemic potential. Folia Microbiol (Praha) 2024; 69:875-887. [PMID: 38198044 DOI: 10.1007/s12223-023-01124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
This study investigated the therapeutic potential of probiotic bifidobacteria, isolated from Iranian fermented dairy products, in a hyperlipidemic animal model. Bifidobacterium strains were extracted from traditional dairy samples and screened using physiological and phenotypic examinations, 16S rRNA analysis, and probiotic properties such as tolerance to gastrointestinal juice, antimicrobial activity, and antibiotic susceptibility. The ability of the screened bifidobacteria to reduce serum and liver lipids in vivo was tested using male Wistar rats. Six strains of bifidobacteria were isolated from traditional Iranian fermented dairy. These strains showed promising in vitro activity in lowering triglyceride and cholesterol, tolerance to simulated gastrointestinal juice, the ability to adhere to Caco-2 cells, acceptable antibiotic susceptibility, and a broad spectrum of antibacterial activity. The diet supplemented with isolated bifidobacteria significantly reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), liver tissue lipid levels, and hepatic enzymes in animals when compared to a high-fat diet without strains (p < 0.01). Additionally, the potential probiotic-supplemented diet significantly increased bile acid excretion in the feces and upregulated hepatic CYP7A1 expression levels (p < 0.05), while NPC1L1, ACAT2, and MTP gene expressions in small intestinal cells were downregulated (p < 0.05). Bifidobacteria isolated from Iranian traditional dairy showed potential for use in the production of fermented foods that have hypolipemic activity in the host.
Collapse
Affiliation(s)
- Nasim Afshar
- Department of Microbiology, Faculty of Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kumarss Amini
- Department of Microbiology, Faculty of Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran.
| | | | - Sasan Saki
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
6
|
Keresztény T, Libisch B, Orbe SC, Nagy T, Kerényi Z, Kocsis R, Posta K, Papp PP, Olasz F. Isolation and Characterization of Lactic Acid Bacteria With Probiotic Attributes From Different Parts of the Gastrointestinal Tract of Free-living Wild Boars in Hungary. Probiotics Antimicrob Proteins 2024; 16:1221-1239. [PMID: 37353593 PMCID: PMC11322276 DOI: 10.1007/s12602-023-10113-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Lactic acid bacteria (LAB) in the microbiota play an important role in human and animal health and, when used as probiotics, can contribute to an increased growth performance in livestock management. Animals living in their native habitat can serve as natural sources of microorganisms, so isolation of LAB strains from wild boars could provide the opportunity to develop effective probiotics to improve production in swine industry. In this study, the probiotic potential of 56 LAB isolates, originated from the ileum, colon, caecum and faeces of 5 wild boars, were assessed in vitro in details. Their taxonomic identity at species level and their antibacterial activity against four representative strains of potentially pathogenic bacteria were determined. The ability to tolerate low pH and bile salt, antibiotic susceptibility, bile salt hydrolase activity and lack of hemolysis were tested. Draft genome sequences of ten Limosilactobacillus mucosae and three Leuconostoc suionicum strains were determined. Bioinformatic analysis excluded the presence of any known acquired antibiotic resistance genes. Three genes, encoding mesentericin B105 and two different bacteriocin-IIc class proteins, as well as two genes with possible involvement in mesentericin secretion (mesE) and transport (mesD) were identified in two L. suionicum strains. Lam29 protein, a component of an ABC transporter with proved function as mucin- and epithelial cell-adhesion factor, and a bile salt hydrolase gene were found in all ten L. mucosae genomes. Comprehensive reconsideration of all data helps to select candidate strains to assess their probiotic potential further in animal experiments.
Collapse
Affiliation(s)
- Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
| | - Stephanya Corral Orbe
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary
| | - Tibor Nagy
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life, Sciences, 2100, Gödöllő, Hungary
| | - Zoltán Kerényi
- Hungarian Dairy Research Institute Ltd, 9200, Mosonmagyaróvár, Hungary
| | - Róbert Kocsis
- Hungarian Dairy Research Institute Ltd, 9200, Mosonmagyaróvár, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
| | - Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100, Gödöllő, Hungary.
| |
Collapse
|
7
|
Lima JMS, Carneiro KO, Pinto UM, Todorov SD. Bacteriocinogenic anti-listerial properties and safety assessment of Enterococcus faecium and Lactococcus garvieae strains isolated from Brazilian artisanal cheesemaking environment. J Appl Microbiol 2024; 135:lxae159. [PMID: 38925659 DOI: 10.1093/jambio/lxae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.
Collapse
Affiliation(s)
- João Marcos Scafuro Lima
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Kayque Ordonho Carneiro
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Uelinton Manoel Pinto
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| |
Collapse
|
8
|
Grabner F M, Grabner H M, Schein H, Schrank A, Töglhofer M, Weidenholzer E, Rückert-Reed C, Busche T, Buchebner-Jance M. Lacticaseibacillus parahuelsenbergensis sp. nov., Lacticaseibacillus styriensis sp. nov. and Lacticaseibacillus zeae subsp. silagei subsp. nov., isolated from different grass and corn silage. Int J Syst Evol Microbiol 2024; 74:006441. [PMID: 38954457 PMCID: PMC11316572 DOI: 10.1099/ijsem.0.006441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Four rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain-positive lactic acid bacteria, designated as EB0058T, SCR0080, LD0937T and SCR0063T, were isolated from different corn and grass silage samples. The isolated strains were characterized using a polyphasic approach and EB0058T and SCR0080 were identified as Lacticaseibacillus zeae by 16S rRNA gene sequence analysis. Based on whole-genome sequence-based characterization, EB0058T and SCR0080 were separated into a distinct clade from Lacticaseibacillus zeae DSM 20178T, together with CECT9104 and UD2202, whose genomic sequences are available from NCBI GenBank. The average nucleotide identity (ANI) values within the new subgroup are 99.9 % and the digital DNA-DNA hybridization (dDDH) values are 99.3-99.9 %, respectively. In contrast, comparison of the new subgroup with publicly available genomic sequences of L. zeae strains, including the type strain DSM 20178T, revealed dDDH values of 70.2-72.5 % and ANI values of 96.2-96.6 %. Based on their chemotaxonomic, phenotypic and phylogenetic characteristics, EB0058T and SCR0080 represent a new subspecies of L. zeae. The name Lacticaseibacillus zeae subsp. silagei subsp. nov. is proposed with the type strain EB0058T (=DSM 116376T=NCIMB 15474T). According to the results of 16S rRNA gene sequencing, LD0937T and SCR0063T are members of the Lacticaseibacillus group. The dDDH value between the isolates LD0937T and SCR0063T was 67.6 %, which is below the species threshold of 70 %, clearly showing that these two isolates belong to different species. For both strains, whole genome-sequencing revealed that the closest relatives within the Lacticaseibacillus group were Lacticaseibacillus huelsenbergensis DSM 115425 (dDDH 66.5 and 65.9 %) and Lacticaseibacillus casei DSM 20011T (dDDH 64.1 and 64.9 %). Based on the genomic, chemotaxonomic and morphological data obtained in this study, two novel species, Lacticaseibacillus parahuelsenbergensis sp. nov. and Lacticaseibacillus styriensis sp. nov. are proposed and the type strains are LD0937T (=DSM 116105T=NCIMB 15471T) and SCR0063T (=DSM 116297T=NCIMB 15473T), respectively.
Collapse
Affiliation(s)
- Monika Grabner F
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Monika Grabner H
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Hermine Schein
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Andrea Schrank
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Manuela Töglhofer
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | | | | | - Tobias Busche
- Omics Core Facility NGS, Medical School OWL & CBTec, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
9
|
Quaresma LS, Santos RCV, Gomes GC, Américo MF, Campos GM, Laguna JG, Barroso FAL, Azevedo V, de Jesus LCL. Multidrug resistance profile in Lactobacillus delbrueckii: a food industry species with probiotic properties. World J Microbiol Biotechnol 2024; 40:235. [PMID: 38850338 DOI: 10.1007/s11274-024-04046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Gabriel Camargos Gomes
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
10
|
Cai Z, Guo Y, Zheng Q, Liu Z, Zhong G, Zeng L, Huang M, Pan D, Wu Z. Screening of a potential probiotic Lactiplantibacillus plantarum NUC08 and its synergistic effects with yogurt starter. J Dairy Sci 2024; 107:2760-2773. [PMID: 38135047 DOI: 10.3168/jds.2023-24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
This study aims to identify lactic acid bacteria (LAB) isolates possessing physiological characteristics suitable for use as probiotics in yogurt fermentation. Following acid and bile salt tolerance tests, Lactiplantibacillus plantarum (NUC08 and NUC101), Lacticaseibacillus rhamnosus (NUC55 and NUC201), and Lacticaseibacillus paracasei (NUC159, NUC216, and NUC351) were shortlisted based on intraspecies distribution for further evaluation. Their physiological probiotic properties, including transit tolerance, adhesion, autoaggregation, surface hydrophobicity, biofilm formation, and antibacterial activity, were assessed. Principal component analysis indicated that Lactiplantibacillus plantarum NUC08 was the preferred choice among the evaluated strains. Subsequent investigations revealed that co-culturing Lactiplantibacillus plantarum NUC08 with 2 yogurt starter strains resulted in a cooperative and synergistic effect, enhancing the growth of mixed strains and increasing their tolerance to simulated gastric and intestinal conditions. Additionally, when Vibrio harveyi bioluminescent reporter strain was used, the 3 cocultured strains cooperated to induce the activity of a quorum sensing (QS) molecule autoinducer-2 (AI-2), hinting a potential connection between phenotypic traits and QS in the cocultured strains. Importantly, LAB viable counts were significantly higher in yogurt co-fermented with Lactiplantibacillus plantarum NUC08, consistently throughout the storage period. In conclusion, the study demonstrates that the probiotic strain Lactiplantibacillus plantarum NUC08 can be employed in synergy with yogurt starter strains, affirming its potential for use in the development of functional fermented dairy products.
Collapse
Affiliation(s)
- Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Yingqi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Qing Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai, 200436, China
| | - Guowei Zhong
- Department of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Zeng
- Department of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Mingquan Huang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
11
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
12
|
Altavas PJD, Amoranto MBC, Kim SH, Kang DK, Balolong MP, Dalmacio LMM. Safety assessment of five candidate probiotic lactobacilli using comparative genome analysis. Access Microbiol 2024; 6:000715.v4. [PMID: 38361650 PMCID: PMC10866033 DOI: 10.1099/acmi.0.000715.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Micro-organisms belonging to the Lactobacillus genus complex are often used for oral consumption and are generally considered safe but can exhibit pathogenicity in rare and specific cases. Therefore, screening and understanding genetic factors that may contribute to pathogenicity can yield valuable insights regarding probiotic safety. Limosilactobacillus mucosae LM1, Lactiplantibacillus plantarum SK151, Lactiplantibacillus plantarum BS25, Limosilactobacillus fermentum SK152 and Lactobacillus johnsonii PF01 are current probiotics of interest; however, their safety profiles have not been explored. The genome sequences of LM1, SK151, SK152 and PF01 were downloaded from the NCBI GenBank, while that of L. plantarum BS25 was newly sequenced. These genomes were then annotated using the Rapid Annotation using Subsystem Technology tool kit pipeline. Subsequently, a command line blast was performed against the Virulence Factor Database (VFDB) and the Comprehensive Antibiotic Resistance Database (CARD) to identify potential virulence factors and antibiotic resistance (AR) genes. Furthermore, ResFinder was used to detect acquired AR genes. The query against the VFDB identified genes that have a role in bacterial survivability, platelet aggregation, surface adhesion, biofilm formation and immunoregulation; and no acquired AR genes were detected using CARD and ResFinder. The study shows that the query strains exhibit genes identical to those present in pathogenic bacteria with the genes matched primarily having roles related to survival and surface adherence. Our results contribute to the overall strategies that can be employed in pre-clinical safety assessments of potential probiotics. Gene mining using whole-genome data, coupled with experimental validation, can be implemented in future probiotic safety assessment strategies.
Collapse
Affiliation(s)
- Patrick Josemaria d.R Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Mia Beatriz C. Amoranto
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Sang Hoon Kim
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Marilen P. Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| |
Collapse
|
13
|
Silva AS, Casarotti SN, Penna ALB. Trends and challenges for the application of probiotic lactic acid bacteria in functional foods. CIÊNCIA RURAL 2024; 54. [DOI: 10.1590/0103-8478cr20230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
ABSTRACT: It is increasingly challenging for the food industries to develop products which meet the consumers’ demands. They seek foods that are innovative and present health benefits. In this review, the main objectives are to show the tendencies and innovations in the dairy food market and to indicate the challenges to apply probiotic bacteria to non-dairy products. Moreover, the safety of probiotic lactic acid bacteria (LAB) to be applied to food products and the beneficial effect of probiotic bacteria on the intestinal microbiota and overall human health were also discussed. We considered that the development of probiotic fermented products added with fruits and fruit by-products, cereals or other vegetables aligns with the market tendencies and the consumers’ demands.
Collapse
Affiliation(s)
- Aline Sousa Silva
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil
| | | | | |
Collapse
|
14
|
Silva LF, Sunakozawa TN, Monteiro DA, Casella T, Conti AC, Todorov SD, Barretto Penna AL. Potential of Cheese-Associated Lactic Acid Bacteria to Metabolize Citrate and Produce Organic Acids and Acetoin. Metabolites 2023; 13:1134. [PMID: 37999230 PMCID: PMC10673126 DOI: 10.3390/metabo13111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.
Collapse
Affiliation(s)
- Luana Faria Silva
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tássila Nakata Sunakozawa
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Diego Alves Monteiro
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tiago Casella
- Department of Dermatological, Infectious and Parasitic Diseases, FAMERP—São José do Rio Preto Medical School, São José do Rio Preto 15090-000, SP, Brazil;
| | - Ana Carolina Conti
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, USP—São Paulo University, São Paulo 05508-000, SP, Brazil;
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Ana Lúcia Barretto Penna
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| |
Collapse
|
15
|
Roldán-Pérez S, Gómez Rodríguez SL, Sepúlveda-Valencia JU, Ruiz Villadiego OS, Márquez Fernández ME, Montoya Campuzano OI, Durango-Zuleta MM. Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese. Heliyon 2023; 9:e21558. [PMID: 38027952 PMCID: PMC10658276 DOI: 10.1016/j.heliyon.2023.e21558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Lactic Acid Bacteria play an important role in the milk fermentation processes of traditional cheeses and have become an important target for the development of novel cheese cultures because of their ability to confer health benefits. This study aimed to evaluate the probiotic potential of 12 Lactic Acid Bacteria (LAB) strains previously isolated and molecularly identified from an artisanal Colombian Double-Cream Cheese. Probiotic properties, including safety (hemolysis and sensibility to antibiotics), pH and bile salt tolerance, auto-aggregation, cell surface hydrophobicity, antibacterial activity, and exopolysaccharide production, were examined. None of the strains were hemolytic, and Pediococcus (16, 18) and Lactobacillus (28, 29) were found to be sensitive to all antibiotics. Moreover, all the strains tolerated pH (3.0, 6.5 and 8.0) and bile salt conditions (0.3, 0.6 and 1.0 % w/v). Pediococcus pentosaceus (16), Leuconostoc citreum (17), Pediococcus acidilactici (18), Enterococcus faecium (21,22), Enterococcus faecalis (24) and Limosilactobacillus fermentum (29) exhibited medium autoaggregation and affinity to chloroform. Six of the strains exhibited a ropy exopolysaccharide phenotype. Antibacterial activity against foodborne pathogens, Salmonella Typhimurium ATCC 14028, Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, was found to be strain dependent, with the strains 16, 18, 21, 26, 28 and 29 presenting a higher inhibition (>4 mm) against all of them. According to Principal Component Analysis, P. pentosaceus (16), Leu. mesenteroides (26), L. casei (28), L. fermentum (29), and E. faecium (21) showed strong probiotic properties. Our findings suggest that five strains out of the 12 sampled strains are potential probiotics that could be used in the processing of traditional dairy products on an industrial scale to improve their quality.
Collapse
Affiliation(s)
- Samantha Roldán-Pérez
- Universidad Nacional de Colombia sede Medellín, Faculty of Agricultural Sciences, Medellín, Colombia
| | | | | | | | | | - Olga I. Montoya Campuzano
- Universidad Nacional de Colombia sede Medellín, Faculty of Agricultural Sciences, Medellín, Colombia
| | | |
Collapse
|
16
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Effects of Synbiotic Lacticaseibacillus paracasei, Bifidobacterium breve, and Prebiotics on the Growth Stimulation of Beneficial Gut Microbiota. Foods 2023; 12:3847. [PMID: 37893739 PMCID: PMC10606279 DOI: 10.3390/foods12203847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Grabner F M, Grabner H M, Schein H, Weidenholzer E, Busche T, Rückert-Reed C, Buchebner-Jance M. Lacticaseibacillus huelsenbergensis sp. nov., isolated from grass silage and corn silage. Int J Syst Evol Microbiol 2023; 73. [PMID: 37787645 DOI: 10.1099/ijsem.0.006049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Two rod-shaped, facultative anaerobic, Gram-stain-positive lactic acid bacteria were isolated from corn silage and grass silage. They were characterized using a polyphasic approach and designated as HO 1656T and HO 0673. Analysis of 16S rRNA gene sequence of both strains indicated that they belong to the
Lacticaseibacillus
group. The most closely related species,
Lacticaseibacillus casei
DSM 20011T and
Lacticaseibacillus zeae
DSM 20178T, have digital DNA–DNA hybridization (dDDH) values of 63.9 and 53.4%, respectively, with the novel strains. In contrast, the dDDH value between strains HO 1656T and HO 0673 is 99.3 %, clearly showing that these two isolated strains belong to the same species. According to analysis of the housekeeping genes (dnaK, mutL and pheS), both strains form a distinct cluster within the
Lacticaseibacillus
group. Strains HO 0673 and HO 1656T could produce acid from d-arabinose, adonitol, ribose, rhamnose, dulcitol, sorbitol, turanose, l-fucose and l-arabitol, unlike their nearest phylogenetic neighbour
L. casei
DSM 20011T. The major cellular fatty acids of both strains are C16 : 0 and C18 : 1 ω9c. The G+C content of the genomic DNA of both strains is 48.0 mol%. Thus, strains HO 1656T and HO 0673 represent a novel species based on their chemotaxonomic, phenotypic and phylogenetic characteristics. The name Lacticaseibacillus huelsenbergensis sp. nov. is proposed with the type strain HO 1656T (=DSM 115425T=NCIMB 15466T).
Collapse
Affiliation(s)
- Monika Grabner F
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Monika Grabner H
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Hermine Schein
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | | | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert-Reed
- Omics Core Facility NGS, Medical School OWL & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
18
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
19
|
Song EJ, Lee ES, Kim YI, Shin DU, Eom JE, Shin HS, Lee SY, Nam YD. Gut microbial change after administration of Lacticaseibacillus paracasei AO356 is associated with anti-obesity in a mouse model. Front Endocrinol (Lausanne) 2023; 14:1224636. [PMID: 37705572 PMCID: PMC10496115 DOI: 10.3389/fendo.2023.1224636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction The status of an impaired gut microbial community, known as dysbiosis, is associated with metabolic diseases such as obesity and insulin resistance. The use of probiotics has been considered an effective approach for the treatment and prevention of obesity and related gut microbial dysbiosis. The anti-obesity effect of Lacticaseibacillus paracasei AO356 was recently reported. However, the effect of L. paracasei AO356 on the gut microbiota has not yet been identified. This study aimed to elucidate the effect of L. paracasei AO356 on gut microbiota and ensure its safety for use as a probiotic. Methods Oral administration of L. paracasei AO356 (107 colony-forming units [CFU]/mg per day, 5 days a week, for 10 weeks) to mice fed a high-fat diet significantly suppressed weight gain and fat mass. We investigated the composition of gut microbiota and explored its association with obesity-related markers. Results Oral administration of L. paracasei AO356 significantly changed the gut microbiota and modified the relative abundance of Lactobacillus, Bacteroides, and Oscillospira. Bacteroides and Oscillospira were significantly related to the lipid metabolism pathway and obesity-related markers. We also confirmed the safety of L. paracasei AO356 using antibiotics resistance, hemolysis activity, bile salt hydrolase activity, lactate production, and toxicity tests following the safety assessment guidelines of the Ministry of Food and Drug Safety (MFDS). Discussion This study demonstrated that L. paracasei AO356 is not only associated with an anti-obesity effect but also with changes in the gut microbiota and metabolic pathways related to obesity. Furthermore, the overall safety assessment seen in this study could increase the potential use of new probiotic materials with anti-obesity effects.
Collapse
Affiliation(s)
- Eun-Ji Song
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young In Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Do Nam
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
20
|
Park SK, Jin H, Song NE, Baik SH. Probiotic Properties of Pediococcus pentosaceus JBCC 106 and Its Lactic Acid Fermentation on Broccoli Juice. Microorganisms 2023; 11:1920. [PMID: 37630480 PMCID: PMC10456906 DOI: 10.3390/microorganisms11081920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
To understand the biological roles of Pediococcus pentosaceus strains as probiotics isolated from the traditional Korean fermented food, Jangajji, Pediococcus pentosaceus was selected based on its high cinnamoyl esterase (CE) and antioxidant activities. The acid and bile stability, intestinal adhesion, antagonistic activity against human pathogens, cholesterol-lowering effects, and immune system stimulation without inflammatory effects were evaluated. Nitric oxide (NO) levels were measured in co-culture with various bacterial stimulants. Fermentation ability was measured by using a broccoli matrix and the sulforaphane levels were measured. Resistance to acidic and bilious conditions and 8% adherence to Caco-2 cells were observed. Cholesterol levels were lowered by 51% by assimilation. Moreover, these strains exhibited immunomodulatory properties with induction of macrophage TNF-α and IL-6 and had microstatic effects on various pathogens. Co-culture with various bacterial stimulants resulted in increased NO production. Fermentation activity was increased with the strains, and higher sulforaphane levels were observed. Therefore, in the future, the applicability of the selected strain to broccoli matrix-based fermented functional foods should be confirmed.
Collapse
Affiliation(s)
| | | | | | - Sang-Ho Baik
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-K.P.); (H.J.); (N.-E.S.)
| |
Collapse
|
21
|
Prakash V, Madhavan A, Veedu AP, Babu P, Jothish A, Nair SS, Suhail A, Prabhakar M, Sain T, Rajan R, Somanathan P, Abhinand K, Nair BG, Pal S. Harnessing the probiotic properties and immunomodulatory effects of fermented food-derived Limosilactobacillus fermentum strains: implications for environmental enteropathy. Front Nutr 2023; 10:1200926. [PMID: 37342549 PMCID: PMC10277634 DOI: 10.3389/fnut.2023.1200926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Environmental enteropathy (EE), a chronic small intestine disease characterized by gut inflammation, is widely prevalent in low-income countries and is hypothesized to be caused by continuous exposure to fecal contamination. Targeted nutritional interventions using potential probiotic strains from fermented foods can be an effective strategy to inhibit enteric pathogens and prevent chronic gut inflammation. Methods We isolated potential strains from fermented rice water and lemon pickle and investigated their cell surface properties, antagonistic properties, adhesion to HT-29 cells, and inhibition of pathogen adherence to HT-29 cells. Bacteriocin-like inhibitory substances (BLIS) were purified, and in vivo, survival studies in Caenorhabditis elegans infected with Salmonella enterica MW116733 were performed. We further checked the expression pattern of pro and anti-inflammatory cytokines (IL-6, IL8, and IL-10) in HT-29 cells supplemented with strains. Results The strains isolated from rice water (RS) and lemon pickle (T1) were identified as Limosilactobacillus fermentum MN410703 and MN410702, respectively. Strains showed probiotic properties like tolerance to low pH (pH 3.0), bile salts up to 0.5%, simulated gastric juice at low pH, and binding to extracellular matrix molecules. Auto-aggregation of T1 was in the range of 85% and significantly co-aggregated with Klebsiella pneumoniae, S. enterica, and Escherichia coli at 48, 79, and 65%, respectively. Both strains had a higher binding affinity to gelatin and heparin compared to Bacillus clausii. Susceptibility to most aminoglycoside, cephalosporin, and macrolide classes of antibiotics was also observed. RS showed BLIS activity against K. pneumoniae, S. aureus, and S. enterica at 60, 48, and 30%, respectively, and the protective effects of BLIS from RS in the C. elegans infection model demonstrated a 70% survival rate of the worms infected with S. enterica. RS and T1 demonstrated binding efficiency to HT-29 cell lines in the 38-46% range, and both strains inhibited the adhesion of E. coli MDR and S. enterica. Upregulation of IL-6 and IL-10 and the downregulation of IL-8 were observed when HT-29 cells were treated with RS, indicating the immunomodulatory effects of the strain. Discussion The potential strains identified could effectively inhibit enteric pathogens and prevent environmental enteropathy.
Collapse
|
22
|
Haranahalli Nataraj B, Behare PV, Yadav H, Srivastava AK. Emerging pre-clinical safety assessments for potential probiotic strains: a review. Crit Rev Food Sci Nutr 2023; 64:8155-8183. [PMID: 37039078 DOI: 10.1080/10408398.2023.2197066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anil Kumar Srivastava
- U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University, Mathura, India
- Probiotic Association of India, Karnal, India
| |
Collapse
|
23
|
Coimbra-Gomes J, Reis PJM, Tavares TG, Faria MA, Malcata FX, Macedo AC. Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules 2023; 28:molecules28083285. [PMID: 37110519 PMCID: PMC10142741 DOI: 10.3390/molecules28083285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as β-glucuronidase and N-acetyl-β-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.
Collapse
Affiliation(s)
- Joana Coimbra-Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Patrícia J M Reis
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia G Tavares
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratory of Food Science and Hydrology/Rede de Química e Tecnologia, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - F Xavier Malcata
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Angela C Macedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- UNICES-UMAIA-Research Unit in Management Sciences and Sustainability, University of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal
| |
Collapse
|
24
|
Rwubuzizi R, Kim H, Holzapfel WH, Todorov SD. Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon 2023; 9:e15610. [PMID: 37151672 PMCID: PMC10161700 DOI: 10.1016/j.heliyon.2023.e15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The role of lactic acid bacteria (LAB) as probiotics as health promoting factors for human or veterinary practice has gained increasing interest during the last three decades. This is reflected in screening approaches of LAB strains in line with minimal requirements for a "probiotic" with regard to safety and functionality. The latter might also include natural antioxidant properties, thereby constituting an additional benefit in substituting synthetic antioxidants. The in vitro antioxidant assays conducted in this study included the scavenging of the 2,2-diphenyl-1-picrylhydrazil (DPPH) free radical, metal (Fe+2) ion chelation, determining the scavenging properties of the hydroxyl and superoxide radicals, and anti-lipid peroxidation. Analysis of DPPH free radical scavenging property for the microorganisms included in current study, showed Streptococcus salivarius ST59HK to exhibit the highest activity at a level of 85.24%. The greatest Fe+2 chelation activity with 98.2% was recorded for Str. salivarius ST62HK while the lowest was recorded for Str. salivarius ST48HK at 71.5%. The greatest and minimal hydroxyl radical scavenging levels were detected for Str. salivarius ST59HK (98.6%) and Lactiplantibacillus plantarum ST63HK (35.60%), respectively. Superoxide anion radical scavenging activity was highly exhibited by Str. salivarius ST61HK (54.62%) and the least exhibited by Enterococcus faecium ST651ea (18.7%). Lastly, the strains Lactobacillus gasseri ST16HK and E. faecium ST7319ea showed the highest and lowest anti-lipid peroxidation levels with 69.43% and 26.15%, respectively. Anti-oxidative properties appear to be strain specific and thus some of these strains could be potentially applied as natural antioxidants in fermented food products.
Collapse
Affiliation(s)
- Ronaldo Rwubuzizi
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
| | - Hamin Kim
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk, 37554, Pohang, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
- Corresponding author. ProBacLab, Department of Advanced Convergence, Handong Global University, Gyeongbuk 37554, Pohang, Republic of Korea.
| |
Collapse
|
25
|
Bnfaga AA, Lee KW, Than LTL, Amin-Nordin S. Antimicrobial and immunoregulatory effects of Lactobacillus delbrueckii 45E against genitourinary pathogens. J Biomed Sci 2023; 30:19. [PMID: 36959635 PMCID: PMC10037868 DOI: 10.1186/s12929-023-00913-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Lactobacilli are essential microbiota that maintain a healthy, balanced vaginal environment. Vaginitis is a common infection in women during their reproductive years. Many factors are associated with vaginitis; one of them is the imbalance of microbiota in the vaginal environment. This study aimed to evaluate the antimicrobial properties of Lactobacillus delbrueckii 45E (Ld45E) against several species of bacteria, namely, Group B Streptococcus (GBS), Escherichia coli, Klebsiella spp., and Candida parapsilosis, as well as to determine the concentration of interleukin-17 (IL-17) in the presence of Ld45E. METHODS The probiotic characteristics of Ld45E were evaluated by examining its morphology, pH tolerance, adhesive ability onto HeLa cells, hemolytic activity, antibiotic susceptibility, and autoaggregation ability. Then, the antimicrobial activity of Ld45E was determined using Ld45E culture, cell-free supernatant, and crude bacteriocin solution. Co-aggregation and competition ability assays against various pathogens were conducted. The immunoregulatory effects of Ld45E were analyzed by measuring the proinflammatory cytokine IL-17. A p-value less than 0.05 was considered statistical significance. RESULTS Ld45E is 3-5 mm in diameter and round with a flat-shaped colony. pH 4 and 4.5 were the most favorable range for Ld45E growth within 12 h of incubation. Ld45E showed a strong adhesion ability onto HeLa cells (86%) and negative hemolytic activities. Ld45E was also sensitive to ceftriaxone, cefuroxime, ciprofloxacin, and doxycycline. We found that it had a good autoaggregation ability of 80%. Regarding antagonistic properties, Ld45E culture showed strong antimicrobial activity against GBS, E. coli, and Klebsiella spp. but only a moderate effect on C. parapsilosis. Cell-free supernatant of Ld45E exerted the most potent inhibitory effects at 40 °C against all genital pathogens, whereas bacteriocin showed a robust inhibition at 37 °C and 40 °C. The highest co-aggregation affinity was observed with GBS (81%) and E. coli (40%). Competition ability against the adhesion of GBS (80%), E. coli (76%), Klebsiella (72%), and C. parapsilosis (58%) was found. Ld45E was able to reduce the induction of the proinflammatory protein IL-17. CONCLUSIONS Ld45E possessed antimicrobial and immunoregulatory properties, with better cell-on-cell activity than supernatant activity. Thus, Ld45E is a potential probiotic candidate for adjunct therapy to address vaginal infections.
Collapse
Affiliation(s)
- Ameda Abdullah Bnfaga
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Para-Clinic, Faculty of Medicine, Aden University, Aden, Yemen
| | - Kai Wei Lee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Persiaran MARDI-UPM, 43400, Serdang, Malaysia.
| |
Collapse
|
26
|
Functional Characterization of Lactobacillus plantarum Isolated from Cow Milk and the Development of Fermented Coconut and Carrot Juice Mixed Beverage. Curr Microbiol 2023; 80:139. [PMID: 36920622 DOI: 10.1007/s00284-023-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Screening probiotics are crucial for assessing their safety, security, and further production of functional foods for human health. The present study aimed to isolate and identify bacteria from raw cow's milk samples that exhibit health benefits upon consumption. We characterized the probiotic properties of Lactobacillus plantarum (also called Lactiplantibacillus plantarum) strains CMGC2 and CMJC7 isolated from cow milk by in vitro study. The strains exhibited tolerance to simulated gastric conditions and were further identified by 16S rRNA sequencing as Lactobacillus plantarum (L. plantarum) CMGC2 and CMJC7. Both isolates were evaluated in vitro for their probiotic attributes, viz. hydrophobicity, autoaggregation, co-aggregation, lysozyme tolerance, antibacterial activity, antibiotic susceptibility, hemolytic activity, and phenol tolerance. The isolates CMGC2 and CMJC7 showed excellent probiotic attributes; hence, both strains were selected to produce coconut and carrot juice mixed beverages (CCMB). The CCMB was evaluated for the pH, acid-production rate, and total viable bacterial counts. The results showed that the CCMB was an excellent medium for the growth of CMGC2 and CMJC7 as it supported adequate growth of organisms (8.93 CFU/mL and 8.68 CFU/mL, respectively) even after 48 h of incubation. In conclusion, CMGC2 and CMJC7 can be used to develop different beverages possessing nutritive and probiotic values, and these beverages can be used for producing unique products.
Collapse
|
27
|
Huang K, Shi W, Yang B, Wang J. The probiotic and immunomodulation effects of Limosilactobacillus reuteri RGW1 isolated from calf feces. Front Cell Infect Microbiol 2023; 12:1086861. [PMID: 36710979 PMCID: PMC9879569 DOI: 10.3389/fcimb.2022.1086861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Limosilactobacillus reuteri is a gut symbiont with multiple remarkable beneficial effects on host health, and members of L. reuteri are valuable probiotic agents. However, L. reuteri showed obvious host specificity. Methods In our study, a novel L. reuteri RGW1 was isolated from feces of healthy calves, and its potential as a probiotic candidate were assessed, by combining in vitro, in vivo experiments and genomic analysis. Results and discussion RGW1 was sensitive to all the antibiotics tested, and it did not contain any virulence factor-coding genes. This isolate showed good tolerance to acid (pH 3.0), 0.3% bile salt, and simulated gastric fluid. Moreover, this isolate showed a high hydrophobicity index (73.7 ± 4.6%) and was able to adhere to Caco-2 cells, and antagonize Escherichia coli F5. Treatment of LPS-induced mice with RGW1 elevated TGF-β and IL-10 levels, while RGW1 cell-free supernatant (RCS) decreased TNF-α levels in the sera. Both RGW1 and RCS increased the villus height and villus height/crypt depth ratio of colon. Genomic analysis revealed the mechanism of the probiotic properties described above, and identified the capacity of RGW1 to biosynthesize L-lysine, folate, cobalamin and reuterin de novo. Our study demonstrated the novel bovine origin L. reuteri RGW1 had multiple probiotic characteristics and immunomodulation effects, and provided a deeper understanding of the relationship between these probiotic properties and genetic features.
Collapse
|
28
|
Selection of Beneficial Bacterial Strains With Potential as Oral Probiotic Candidates. Probiotics Antimicrob Proteins 2022; 14:1077-1093. [PMID: 34982415 DOI: 10.1007/s12602-021-09896-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to select beneficial strains from the oral cavity of healthy volunteers and to evaluate these as potential oral probiotic candidates. The selection process was based on the isolation, differentiation, identification, and safety assessment of LAB strains, followed by a series of experiments for the selection of appropriate candidates with beneficial properties. In the screening procedure, 8 isolates from the oral cavity of a Caucasian volunteers were identified as Streptococcus (Str.) salivarius ST48HK, ST59HK, ST61HK, and ST62HK; Lactiplantibacillus plantarum (Lb.) (Lactobacillus plantarum) ST63HK and ST66HK; Latilactobacillus sakei (Lb.) (Lactobacillus sakei) ST69HK; and Lactobacillus (Lb.) gasseri ST16HK based on 16S rRNA sequencing. Physiological and phenotypic tests did not show hemolytic, proteinase, or gelatinase activities, as well as production of biogenic amines. In addition, screening for the presence of efaA, cyt, IS16, esp, asa1, and hyl virulence genes and vancomycin-resistant genes confirmed safety of the studied strains. Moreover, cell-to-cell antagonism indicated that the strains were able to inhibit the growth of tested representatives from the genera Bacillus, Enterococcus, Streptococcus, and Staphylococcus in a strain-specific manner. Various beneficial genes were detected including gad gene, which codes for GABA production. Furthermore, cell surface hydrophobicity levels ranging between 1.58% and 85% were determined. The studied strains have also demonstrated high survivability in a broad range of pH (4.0-8.0). The interaction of the 8 putative probiotic candidates with drugs from different groups and oral hygiene products were evaluated for their MICs. This is to determine if the application of these drugs and hygiene products can negatively affect the oral probiotic candidates. Overall, antagonistic properties, safety assessment, and high rates of survival in the presence of these commonly used drugs and oral hygiene products indicate Str. salivarius ST48HK, ST59HK, ST61HK, and ST62HK; Lb. plantarum ST63HK and ST66HK; Lb. sakei ST69HK; and Lb. gasseri ST16HK as promising oral cavity probiotic candidates.
Collapse
|
29
|
Fusco V, Chieffi D, De Angelis M. Invited review: Fresh pasta filata cheeses: Composition, role, and evolution of the microbiota in their quality and safety. J Dairy Sci 2022; 105:9347-9366. [DOI: 10.3168/jds.2022-22254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|
30
|
Munekata PES, Chaves-Lopez C, Fernandez-Lopez J, Viuda-Martos M, Sayas-Barbera ME, Perez-Alvarez JA, Lorenzo JM. Autochthonous Starter Cultures in Cheese Production – A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Clemencia Chaves-Lopez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Juana Fernandez-Lopez
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - María Estrella Sayas-Barbera
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - José Angel Perez-Alvarez
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, Ourense, España
| |
Collapse
|
31
|
Kumar M, Karthika S, Anjitha N, Varalakshmi P, Ashokkumar B. Screening for probiotic attributes of lactic acid bacteria isolated from human milk and evaluation of their anti-diabetic potentials. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
32
|
Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiol 2022; 103:103934. [DOI: 10.1016/j.fm.2021.103934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
|
33
|
Abid S, Farid A, Abid R, Rehman MU, Alsanie WF, Alhomrani M, Alamri AS, Asdaq SMB, Hefft DI, Saqib S, Muzammal M, Morshedy SA, Alruways MW, Ghazanfar S. Identification, Biochemical Characterization, and Safety Attributes of Locally Isolated Lactobacillus fermentum from Bubalus bubalis (buffalo) Milk as a Probiotic. Microorganisms 2022; 10:954. [PMID: 35630398 PMCID: PMC9144466 DOI: 10.3390/microorganisms10050954] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
The demand of functional foods is on the rise, and researchers are trying to develop nutritious dairy products by using well-characterized strains of bacteria. In this study, we identified locally isolated strains of Lactobacillus fermentum from Bubalus bubalis (Nilli Ravi buffalo) milk and evaluated their potential as probiotics in food products like fermented milk. Fifteen Lactobacillus strains were initially isolated, and only four strains (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were examined for morphological and biochemical characterizations due to their ability of gas production in Durham tubes. Moreover, these strains were selected for further probiotic characterizations due to their extreme morphological resemblance with lactic acid bacteria for their antimicrobial activity, enzymatic potential, autoaggregation capability, hydrophobicity, and acid and bile tolerance. All selected isolates showed significant probiotic potential. However, NMCC-14 and NMCC-17 strains showed maximum probiotic potential. The isolates (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were identified as Lactobacillus fermentum utilizing 16S rRNA gene sequencing. The in vivo safety study of NMCC-14 (dose: 1010 CFU/day/mice; 21 days, orally) showed no histological dysfunctions in a mouse model. Pathogenic bacterial enzymes reduced the beneficial bacterial load in the host gastrointestinal tract. These results suggest that the NMCC-14 strain is safe and can be potentially used as a probiotic. Moreover, fermented milk was prepared by using the NMCC-14 strain. The results revealed that NMCC-14 strain-based fermented milk had significantly (p < 0.05) higher protein content (4.4 ± 0.06), water-holding capacity (WHC), and dynamic viscosity as compared to non-fermented milk. The results suggest that L. fermentum NMCC-14 is safe and nontoxic; hence, it can be a beneficial supplement to be used for the development of dairy products to be subjected to further clinical testing.
Collapse
Affiliation(s)
- Sana Abid
- Department of Biology, Faculty of Science & Technology, Virtual University, Lahore 54000, Pakistan;
| | - Arshad Farid
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan; (A.F.); (M.M.)
| | - Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45500, Pakistan;
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Al Hawiyah 21944, Saudi Arabia; (W.F.A.); (M.A.); (A.S.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Al Hawiyah 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Al Hawiyah 21944, Saudi Arabia; (W.F.A.); (M.A.); (A.S.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Al Hawiyah 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Al Hawiyah 21944, Saudi Arabia; (W.F.A.); (M.A.); (A.S.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Al Hawiyah 21944, Saudi Arabia
| | | | - Daniel Ingo Hefft
- Reaseheath College, University Centre Reaseheath, Nantwich CW5 6DF, UK;
| | - Saddam Saqib
- Department of Biotechnology, Mohi- ud-Din Islamic University, Nerian Sharif 12080, Pakistan;
| | - Muhammad Muzammal
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan; (A.F.); (M.M.)
| | - Sabrin Abdelrahman Morshedy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21526, Egypt;
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15273, Saudi Arabia;
| | - Shakira Ghazanfar
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
34
|
Shen Y, Bai X, Zhang Y, Gao Q, Bu X, Xu Y, Guo N. Evaluation of the Potential Probiotic Yeast Characteristics with Anti-MRSA Abilities. Probiotics Antimicrob Proteins 2022; 14:727-740. [PMID: 35484324 DOI: 10.1007/s12602-022-09942-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a disreputable pathogenic bacterium that has been proven to colonize the intestinal tract. The goal of this study is to find anti-MRSA probiotic yeast from food and evaluate its probiotic characteristics and safety. Finally, 15 strains were isolated from fruit peel with anti-MRSA ability. Using DNA sequence analysis, they were identified as the genus Hanseniaspora (7 strains) and Starmerella (8 strains). Starmerella bacillaris CC-PT4 (CGMCC No. 23573) that was isolated from the grape peel has good auto-aggregation ability and hydrophobicity, and can tolerate 0.3% bile, pH 2, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF). Strikingly, Starmerella bacillaris CC-PT4, like commercial probiotic Saccharomyces boulardii CNCM I-745 (Florastor ®), can adapt to the temperature of the human body (37 ℃). After safety assessment, this strain is sensitive to amphotericin B and cannot produced β-hemolytic activities. Overall, this study provides a new candidate for probiotic yeast with anti-MRSA ability.
Collapse
Affiliation(s)
- Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Yan Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qian Gao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
35
|
Wu C, Dai C, Tong L, Lv H, Zhou X. Evaluation of the Probiotic Potential of Lactobacillus delbrueckii ssp. indicus WDS-7 Isolated from Chinese Traditional Fermented Buffalo Milk In Vitro. Pol J Microbiol 2022; 71:91-105. [PMID: 35635173 PMCID: PMC9152907 DOI: 10.33073/pjm-2022-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/19/2022] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from Chinese traditional fermented buffalo milk. Out of 22 isolates, 11 were putatively identified as LAB preliminarily. A total of six LAB strains displayed strong adhesion to HT-29 cells and all these strains showed preferable tolerance to artificially simulated gastrointestinal juices. WDS-4, WDS-7, and WDS-18 exhibited excellent antioxidant capacities, including DPPH radical, ABTS+ radical, and superoxide anion scavenging activities. Compared with the other two LAB strains, WDS-7 had a stronger inhibition effect on four pathogens. Based on the 16S rRNA gene sequencing and phylogenetic analysis, WDS-7 was identified as Lactobacillus delbrueckii ssp. indicus and selected to assess the potential and safety of probiotics further. The results revealed that WDS-7 strain had a strong capacity for acid production and good thermal stability. WDS-7 strain also possessed bile salt hydrolase (BSH) activity. Compared to LGG, WDS-7 was a greater biofilm producer on the plastic surface and exhibited a better EPS production ability (1.94 mg/ml as a glucose equivalent). WDS-7 was proved to be sensitive in the majority of tested antibiotics and absence of hemolytic activity. Moreover, no production of biogenic amines and β-glucuronidase was observed in WDS-7. The findings of this work indicated that L. delbrueckii ssp. indicus WDS-7 fulfilled the probiotic criteria in vitro and could be exploited for further evaluation in vivo.
Collapse
Affiliation(s)
- Changjun Wu
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Lin Tong
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Han Lv
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| |
Collapse
|
36
|
A potentially probiotic strain of Enterococcus faecalis from human milk that is avirulent, antibiotic sensitive, and nonbreaching of the gut barrier. Arch Microbiol 2022; 204:158. [PMID: 35107663 DOI: 10.1007/s00203-022-02754-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Human milk is a key source of promising probiotic lactic acid bacteria. The Enterococcus species, because of their dual commensal and pathogenic nature, demand critical safety analysis to establish them as probiotic candidates. In this study, eighteen E. faecalis strains from human milk of mothers living in Pakistan were typed at the strain level by riboprinting. The typed strains were then evaluated in vitro for physiological safety and the presence of transmissible antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors. Selected strains were then checked for tolerance to gastrointestinal acid and bile as criteria for probiotic efficacy. Molecular typing revealed that the strains fell into five distinct clusters or ribotypes. Testing revealed that they were non-hemolytic; however, all strains had gelatinase activity except NPL-493. The isolates were susceptible to most clinically important antibiotics except streptomycin. Molecular screening for antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors indicated that none of the strains possessed resistance genes for aminoglycosides, vancomycin, bacitracin, tetracycline, or clindamycin. Most virulence factors were absent except for the genes gelE and efaAs associated with gut adhesion and translocation, which were present in all except NPL-493. Strain NPL-493 was the most promising probiotic candidate demonstrating significant tolerance to the acid, bile, and digestive enzymes in the human GIT and antibacterial activity against multiple pathogens. The study concluded that E. faecalis NPL-493 from human milk was safe among all the strains and could be considered a potential probiotic.
Collapse
|
37
|
de Marins AR, de Campos TAF, Pereira Batista AF, Correa VG, Peralta RM, Graton Mikcha JM, Gomes RG, Feihrmann AC. Effect of the addition of encapsulated Lactiplantibacillus plantarum Lp-115, Bifidobacterium animalis spp. lactis Bb-12, and Lactobacillus acidophilus La-5 to cooked burger. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Duraisamy S, Husain F, Balakrishnan S, Sathyan A, Subramani P, Chidambaram P, Arokiyaraj S, Al-Qahtani WH, Rajabathar J, Kumarasamy A. Phenotypic Assessment of Probiotic and Bacteriocinogenic Efficacy of Indigenous LAB Strains from Human Breast Milk. Curr Issues Mol Biol 2022; 44:731-749. [PMID: 35723336 PMCID: PMC8929004 DOI: 10.3390/cimb44020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Breast milk is the combination of bioactive compounds and microflora that promote newborn’s proper growth, gut flora, and immunity. Thus, it is always considered the perfect food for newborns. Amongst their bioactives, probiotic communities—especially lactic acid bacteria (LAB)—are characterized from breast milk over the first month of parturition. In this study, seven LAB were characterized phenotypically and genotypically as Levilactobacillus brevis BDUMBT08 (MT673657), L. gastricus BDUMBT09 (MT774596), L. paracasei BDUMBT10 (MT775430), L. brevis BDUMBT11 (MW785062), L. casei BDUMBT12 (MW785063), L. casei BDUMBT13 (MW785178), and Brevibacillus brevis M2403 (MK371781) from human breast milk. Their tolerance to lysozyme, acid, bile, gastric juice, pancreatic juice, and NaCl and potential for mucoadhesion, auto-aggregation, and co-aggregation with pathogens are of great prominence in forecasting their gut colonizing ability. They proved their safety aspects as they were negative for virulence determinants such as hemolysis and biofilm production. Antibiogram of LAB showed their sensitivity to more than 90% of the antibiotics tested. Amongst seven LAB, three isolates (L. brevis BDUMBT08 and BDUMBT11, and L. gatricus BDUMBT09) proved their bacteriocin producing propensity. Although the seven LAB isolates differed in their behavior, their substantial probiotic properties with safety could be taken as promising probiotics for further studies to prove their in vivo effects, such as health benefits, in humans.
Collapse
Affiliation(s)
- Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | - Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | | | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | - Prabhu Subramani
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India; (P.S.); (P.C.)
| | - Prahalathan Chidambaram
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India; (P.S.); (P.C.)
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea;
| | - Wahidah H. Al-Qahtani
- Department of Food Science and Nutrition, College of Food & Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
- Correspondence:
| |
Collapse
|
39
|
Patra F, Duary RK. Determination and Safety Aspects of Probiotic Cultures. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:122-160. [DOI: 10.1002/9781119702160.ch6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Asadi A, Lohrasbi V, Abdi M, Mirkalantari S, Esghaei M, Kashanian M, Oshaghi M, Talebi M. The probiotic properties and potential of vaginal Lactobacilli spp. isolated from healthy women against some vaginal pathogens. Lett Appl Microbiol 2022; 74:752-764. [DOI: 10.1111/lam.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Vahid Lohrasbi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Milad Abdi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Maryam Esghaei
- Department of Virology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Maryam Kashanian
- Department of Obstetrics & Gynecology Akbarabadi Teaching Hospital, Iran University of Medical Sciences Tehran Iran
| | - Mozhgan Oshaghi
- Department of Lab Sciences Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Malihe Talebi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
- Microbial Biotechnology Research Centre Iran University of Medical Sciences Shahid Hemmat Highway Tehran Iran
| |
Collapse
|
41
|
Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Falfán-Cortés RN, Mora-Peñaflor N, Gómez-Aldapa CA, Rangel-Vargas E, Acevedo-Sandoval OA, Franco-Fernández MJ, Castro-Rosas J. Characterization and Evaluation of the Probiotic Potential In Vitro and In Situ of Lacticaseibacillus paracasei Isolated from Tenate Cheese. J Food Prot 2022; 85:112-121. [PMID: 34324685 DOI: 10.4315/jfp-21-021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The objectives of this investigation were (i) to isolate bacteria from various foods (dairy products, fruits, and vegetables) and evaluate their probiotic potential and (ii) to select, identify, and characterize the bacterial strain(s) with the highest probiotic potential. From 14 food samples, 117 bacterial strains were isolated; however, only 42 (T1 to T42) had the correct characteristics (gram positive, coccoid, and bacilliform) and were catalase and oxidase negative to be considered presumptive lactic acid bacteria (LAB). The antagonistic activity of the 42 strains was evaluated against Escherichia coli (O157:H7E09), Listeria monocytogenes (ATCC 19115), Staphylococcus aureus (ATCC 25923), and Salmonella enterica serotype Typhimurium (ATCC 14028). The nine strains with the highest antagonistic activity were recovered from the following foods: pulque (T1), sprouted beans (T26), Ranchero cheese (T30, T31, T32, T33, T35, and T36), and Tenate cheese (T40). The inhibition zones on culture and sensitivity plates were 17.0 ± 1.2 to 19.3 ± 2.8 mm in diameter. Based on the antagonistic activity against pathogenic bacteria and resistance to low pH and bile salts, strain T40 had the highest probiotic potential. A 16S rRNA technique was used to identify strain T40 as Lacticaseibacillus paracasei (renamed from Lactobacillus paracasei in April 2020). This strain had no resistance to ampicillin, gentamicin, erythromycin, and tetracycline. The antagonistic activity was evaluated in situ (fresh cheese) against pathogenic bacteria, supporting the probiotic potential of L. paracasei. Isolates of this LAB recovered from Tenate cheese had characteristics of a probiotic microorganism with high potential for use in food technology. HIGHLIGHTS
Collapse
Affiliation(s)
- Reyna N Falfán-Cortés
- Universidad Autónoma del Estado de Hidalgo (UAEH), Instituto de Ciencias Básicas e Ingenieria (ICBI), Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México.,Catedratica, CONACYT; UAEH, ICBI Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| | - Nancy Mora-Peñaflor
- UAEH, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad Km 1 Ex-Hda. De Aquetzalpa AP 32, Tulancingo, Hgo, México
| | - Carlos A Gómez-Aldapa
- Universidad Autónoma del Estado de Hidalgo (UAEH), Instituto de Ciencias Básicas e Ingenieria (ICBI), Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| | - Esmeralda Rangel-Vargas
- Universidad Autónoma del Estado de Hidalgo (UAEH), Instituto de Ciencias Básicas e Ingenieria (ICBI), Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| | - Otilio A Acevedo-Sandoval
- Universidad Autónoma del Estado de Hidalgo (UAEH), Instituto de Ciencias Básicas e Ingenieria (ICBI), Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| | - Melitón J Franco-Fernández
- UAEH, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad Km 1 Ex-Hda. De Aquetzalpa AP 32, Tulancingo, Hgo, México
| | - Javier Castro-Rosas
- Universidad Autónoma del Estado de Hidalgo (UAEH), Instituto de Ciencias Básicas e Ingenieria (ICBI), Carr. Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| |
Collapse
|
43
|
Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Arch Microbiol 2021; 204:61. [PMID: 34940898 PMCID: PMC8702511 DOI: 10.1007/s00203-021-02700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022]
Abstract
Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.
Collapse
|
44
|
Damaceno QS, Gallotti B, Reis IMM, Totte YCP, Assis GB, Figueiredo HC, Silva TF, Azevedo V, Nicoli JR, Martins FS. Isolation and Identification of Potential Probiotic Bacteria from Human Milk. Probiotics Antimicrob Proteins 2021; 15:491-501. [PMID: 34671923 DOI: 10.1007/s12602-021-09866-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Breast milk was long considered a sterile environment, but now it is known to harbor many bacteria that will shape the newborn microbiota. The benefits of breastfeeding to newborn health are, on some level, related to the presence of beneficial bacteria in human milk. Therefore, this study aims to investigate and isolate potential probiotics present in human milk that might be associated with improved health in infants, being potential candidates to be used in simulated human milk formula. Milk samples of 24 healthy mothers were collected at three time points: 30 min (colostrum), 5-9 days (transitional milk), and 25-30 days (mature milk) postpartum. Samples were evaluated by culturing, and the isolated bacteria were identified by MALDI-TOF MS and 16S DNA sequencing. In vitro screening for probiotics properties was performed, and the potential probiotics were mono-associated with germ-free mice to evaluate their ability to colonize the gastrointestinal tract. The microorganisms were submitted to the spray-drying process to check their viability for a potential simulated milk formula production. Seventy-seven bacteria were isolated from breast milk pertaining to four bacterial genera (Staphylococcus, Streptococcus, Leuconostoc, and Lacticaseibacillus). Four potential probiotics were selected: Lacticaseibacillus rhamnosus (n = 2) and Leuconostoc mesenteroides (n = 2). Isolates were able to colonize the gastrointestinal tract of germ-free mice and remained viable after the spray-drying process. In conclusion, breast milk harbors a unique microbiota with beneficial microorganisms that will impact the newborn gut colonization, being an essential source of probiotic candidates to be used in a formula of simulated maternal milk.
Collapse
Affiliation(s)
- Quésia S Damaceno
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Bruno Gallotti
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Isabela M M Reis
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Yasmim C P Totte
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Gabriella B Assis
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique C Figueiredo
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales F Silva
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil
| | - Flaviano S Martins
- Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, MG, 662730270-901, Brazil.
| |
Collapse
|
45
|
Safety Evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a Health-Promoting Bacteria. Probiotics Antimicrob Proteins 2021; 14:816-829. [PMID: 34403080 DOI: 10.1007/s12602-021-09826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.
Collapse
|
46
|
Screening of potential probiotics with anti-Helicobacter pylori activity from infant feces through principal component analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Barzegar H, Alizadeh Behbahani B, Falah F. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr 2021; 9:4094-4107. [PMID: 34401061 PMCID: PMC8358388 DOI: 10.1002/fsn3.2365] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to investigate probiotic, antimicrobial, technological and safety properties of lactobacillus strains isolated from local Iranian cheese made from raw milk. Six different samples were prepared, after serial dilution, culture was performed on MRS culture medium. The gram-positive and catalase-negative lactobacillus strains were subjected to grouping and identifying using biochemical tests, carbohydrates fermentation profiles, and 16S rDNA analysis. The results of sequence analysis showed the Lactobacillus spp. belonged to Lactobacillus brevis, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei. After 3 hr incubation at pH=2, 3-6 log units of strains decreased which Lactobacillus acidophilus (B14) and Lactobacillus brevis (B2) showed highest resistance to low pH as well as simulated GIT juices. The highest and lowest hydrophobicity degree was belonged to L. acidophilus (B14) (65.9%) and L. casei (B22) (25.6%), respectively. Also, the highest auto-aggregation and coaggregation were observed in L. acidophilus (B14) (51.3%) and L. plantarum (B20) (43.6%). The adhered percentage of strains varied from 2.5% to 14.6%. L. plantarum (B20) showed highest proteolytic activity followed by L. acidophilus (B14). Also, the highest autolytic activity belonged to L. acidophilus (B14). All of the strains showed low acidifying potential, except for L. acidophilus (B17) which decreased 2.05 unit of pH after 24 hr. The isolates did not show lipolytic activity as well as biogenic amines production (except L. brevis B3). All of the strains were sensitive to chloramphenicol and erythromycin except L. acidophilus (B15) and L. casei (B22). All strains showed no hemolysis activity which make them safe for consumption. Based on the obtained results, L. acidophilus (B14) presented the best probiotic and technological characteristics and is proposed for using as coculture in the dairy industrial.
Collapse
Affiliation(s)
- Hassan Barzegar
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Fereshteh Falah
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
48
|
Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, Ben Salah R, Chihib NE, Saalaoui E, Asehraou A. Characterization of Probiotic Properties of Antifungal Lactobacillus Strains Isolated from Traditional Fermenting Green Olives. Probiotics Antimicrob Proteins 2021; 12:683-696. [PMID: 30929140 DOI: 10.1007/s12602-019-09543-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this work is to characterize the potential probiotic properties of 14 antifungal Lactobacillus strains isolated from traditional fermenting Moroccan green olives. The molecular identification of strains indicated that they are composed of five Lactobacillus brevis, two Lactobacillus pentosus, and seven Lactobacillus plantarum. In combination with bile (0.3%), all the strains showed survival rates (SRs) of 83.19-56.51% at pH 3, while 10 strains showed SRs of 31.67-64.44% at pH 2.5. All the strains demonstrated high tolerance to phenol (0.6%) and produced exopolysaccharides. The autoaggregation, hydrophobicity, antioxidant activities, and surface tension value ranges of the strains were 10.29-41.34%, 15.07-34.67%, 43.11-52.99%, and 36.23-40.27 mN/m, respectively. Bacterial cultures exhibited high antifungal activity against Penicillium sp. The cell-free supernatant (CFS) of the cultures showed important inhibition zones against Candida pelliculosa (18.2-24.85 mm), as well as an antibacterial effect against some gram-positive and gram-negative bacteria (10.1-14.1 mm). The neutralized cell-free supernatant of the cultures displayed considerable inhibitory activity against C. pelliculosa (11.2-16.4 mm). None of the strains showed acquired or horizontally transferable antibiotic resistance or mucin degradation or DNase, hemolytic, or gelatinase activities. Lactobacillus brevis S82, Lactobacillus pentosus S75, and Lactobacillus plantarum S62 showed aminopeptidase, β-galactosidase, and β-glucosidase activities, while the other enzymes of API-ZYM were not detected. The results obtained revealed that the selected antifungal Lactobacillus strains are considered suitable candidates for use both as probiotic cultures for human consumption and for starters and as biopreservative cultures in agriculture, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco.
| | - Yahya Rokni
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Montreal, Quebec, H9X 3V9, Canada
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council, Via Celoria 2, 20133, Milan, Italy
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Nour Eddine Chihib
- INRA-UMR UMET 8207- PIHM team, CNRS-INRA, University of Lille, 369 rue Jules Guesde, BP20039, 59651, Villeneuve d'Ascq Cedex, France
| | - Ennouamane Saalaoui
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| |
Collapse
|
49
|
Śliżewska K, Chlebicz-Wójcik A, Nowak A. Probiotic Properties of New Lactobacillus Strains Intended to Be Used as Feed Additives for Monogastric Animals. Probiotics Antimicrob Proteins 2021; 13:146-162. [PMID: 32577907 PMCID: PMC7904557 DOI: 10.1007/s12602-020-09674-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study aimed to evaluate the safety and probiotic properties of selected Lactobacillus strains, which are intended to be fed to monogastric animals. The Lactobacillus spp. appeared to be safe since they did not degrade mucus and did not exhibit β-haemolysis. Moreover, the survival of Caco-2 cells in the presence of metabolites of the selected strains was high, which also indicated their safety. The analysed strains showed moderate or strong antagonistic activity against Salmonella spp., Listeria monocytogenes, Campylobacter jejuni and Campylobacter coli, which was tested with the usage of the agar slab method. Furthermore, the strains showed high survivability in an acidic environment and the presence of bile salts (~90%). High resistivity or moderate susceptibility to antibiotics was also observed, as a result of the disc diffusion method. The strains were mostly moderately hydrophilic (hydrophobicity: 10.43–41.14%); nevertheless, their auto-aggregation capability exceeded 50% and their co-aggregation with pathogens varied between 12.12 and 85.45%. The ability of the selected strains to adhere to Caco-2 cells was also analysed; they were found to be moderately adhesive (85.09–95.05%) and able to hinder pathogens attaching to the cells (up to 62.58%). The analysed strains exhibit probiotic properties, such as high survivability and adherence to epithelial cells; therefore, they are suitable for administration to monogastric animals. Since the overuse of antibiotic growth promoters in livestock leads to the spread of antibiotic-resistant pathogens and accumulation of chemotherapeutic residues in food of animal origin, it is of vital importance to introduce alternative feed additives.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
| | - Agnieszka Chlebicz-Wójcik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland
| |
Collapse
|
50
|
Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|