1
|
Xia D, Jiang X, Xie X, Zhou H, Yu D, Jin G, Ye X, Zhu S, Guo Z, Liang X. Identification of a Novel NPC1L1 Inhibitor from Danshen and Its Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2025; 26:2793. [PMID: 40141435 PMCID: PMC11942890 DOI: 10.3390/ijms26062793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Danshen, a well-known traditional Chinese medicine (TCM), has gained increasing attention for its protective effects on nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanisms underlying these effects remain to be elucidated. Niemann-Pick C1-like 1 (NPC1L1), a key transporter mediating intestinal cholesterol absorption, has emerged as a critical target for NAFLD treatment. This study aimed to screen for NPC1L1 inhibitors from Danshen and investigate their therapeutic effects on NAFLD. We established a high-throughput screening platform using stable Caco2 cell lines expressing human NPC1L1 (hL1-Caco2) and discovered that tanshinones (Tans), the liposoluble components of Danshen, inhibited NPC1L1-mediated cholesterol absorption in hL1-Caco2 cells. Additionally, Tans treatment reduced hepatic steatosis in high-fat diet (HFD)-fed mice. To identify the active compounds in Tans, activity-oriented separation was performed by integrating the high-throughput screening platform and two-dimensional chromatographic techniques. Ultimately, cryptotanshinone (CTS) was identified as a novel NPC1L1 inhibitor and significantly decreased hepatic steatosis in HFD-fed mice. Molecular docking and dynamics simulation showed that CTS stably bound with NPC1L1, where TRP383 acted as the key amino acid. Taken together, this study demonstrates, for the first time, that CTS, a liposoluble compound from Danshen, is a novel NPC1L1 inhibitor. Our findings suggest that the inhibitory effect of CTS against NPC1L1-mediated intestinal cholesterol absorption may be a potential mechanism, contributing to its alleviation of NAFLD in mice.
Collapse
Affiliation(s)
- Donghai Xia
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (D.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jiang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (D.X.)
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xiaomin Xie
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Han Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (D.X.)
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Gaowa Jin
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (D.X.)
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhimou Guo
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (D.X.)
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (D.X.)
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
2
|
Zhang J, Li S, Cheng X, Tan X, Shi Y, Su G, Huang Y, Zhang Y, Xue R, Li J, Fan Q, Dong H, Deng Y, Zhang Y. Graphene-Based Far-Infrared Therapy Promotes Adipose Tissue Thermogenesis and UCP1 Activation to Combat Obesity in Mice. Int J Mol Sci 2025; 26:2225. [PMID: 40076847 PMCID: PMC11900916 DOI: 10.3390/ijms26052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Hyperthermia (HT) has broad potential for disease treatment and health maintenance. Previous studies have shown that far-infrared rays (FIRs) at 8-10 μm can potentially reduce inflammation, oxidative stress, and gut microbiota imbalance. However, the effects of FIR HT on energy metabolism require further investigation. To investigate the effects of graphene-FIR HT therapy on diet-induced obesity and their regulatory mechanisms in energy metabolism disorders. After 8 weeks of hyperthermia, mice fed standard chow or a high-fat diet (HFD) underwent body composition analysis. Energy expenditure was measured using metabolic cages. The protein changes in adipose tissue were detected by molecular technology. Graphene-FIR therapy effectively mitigated body fat accumulation, improved dyslipidemia, and impaired liver function while enhancing insulin sensitivity. Furthermore, graphene-FIR therapy increased VO2, VCO2, and EE levels in HFD mice to exhibit enhanced metabolic activity. The therapy activated the AMPK/PGC-1α/SIRT1 pathway in adipose tissue, increasing the expression of uncoupling protein 1 (UCP1) and glucose transporter protein four (GLUT4), activating the thermogenic program in adipose tissue, and improving energy metabolism disorder in HFD mice. In short, graphene-FIR therapy represents a comprehensive approach to improving the metabolic health of HFD mice.
Collapse
Affiliation(s)
- Jinshui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Xin Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Xiaocui Tan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yingxian Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Guixin Su
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yulong Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Jingcao Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Qiongyin Fan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Huajin Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yun Deng
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| |
Collapse
|
3
|
Ren G, He L, Liu Y, Fei Y, Liu X, Lu Q, Chen X, Song Z, Wang J. The long-term intake of milk fat does not significantly increase the blood lipid burden in normal and high-fat diet-fed mice. IMETA 2024; 3:e256. [PMID: 39742303 PMCID: PMC11683457 DOI: 10.1002/imt2.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
After 10 weeks of feeding C57BL/6J mice with a normal diet (ND) or a high-fat diet (HFD), a 7-week intervention with milk fat and whole milk was conducted to assess their long-term effects on host blood lipid levels. The results showed that milk fat and whole milk did not significantly elevate low-density lipoprotein cholesterol (LDL-C) in either ND- or HFD-fed mice. In ND mice, milk fat and whole milk improved gut microbiota diversity and Amplicon Sequence Variants. Key bacterial genera, such as Blautia, Romboutsia, and Prevotellaceae_NK3B31_group, were identified as bidirectional regulators of LDL-C and high-density lipoprotein cholesterol (HDL-C). Six unique metabolites were also linked to LDL-C and HDL-C regulation. Furthermore, an optimized machine learning model accurately predicted LDL-C (R² = 0.96) and HDL-C (R² = 0.89) based on gut microbiota data, with 80% of the top predictive features being gut metabolites influenced by milk fat and whole milk. These findings indicate that the long-term intake of milk fat does not significantly increase the blood lipid burden, and machine learning algorithms based on gut microbiota and metabolites offer novel insights for early lipid assessment and personalized nutrition strategies.
Collapse
Affiliation(s)
- Guang‐Xu Ren
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
| | - Liang He
- Department of Electronic Engineering, and Beijing National Research Center for Information Science and TechnologyTsinghua UniversityBeijingChina
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Yong‐Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Yu‐Ke Fei
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
| | - Xiao‐Fan Liu
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
| | - Qiu‐Yi Lu
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Xin Chen
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Zhi‐Da Song
- School of Computer Science and Technology, and School of Intelligence Science and TechnologyXinjiang UniversityUrumqiChina
| | - Jia‐Qi Wang
- Institute of Food and Nutrition DevelopmentMinistry of Agriculture and Rural Affairs of the People's Republic of ChinaBeijingChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
4
|
Wu X, Li W, Li S, Zhu S, Pan F, Gu Q, Song D. Hypolipidemic effect of polysaccharide from Sargassum fusiforme and its ultrasonic degraded polysaccharide on zebrafish fed high-fat diet. Int J Biol Macromol 2024; 276:133771. [PMID: 38992531 DOI: 10.1016/j.ijbiomac.2024.133771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Sargassum fusiforme is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries. The polysaccharides derived from Sargassum fusiforme (SFPS) have received much interest due to their various bioactivities, such as hypolipidemic, hypoglycemic, and antioxidant activities. In this study, we extracted and purified SFPS, and obtained the ultrasonic degradation product (SFPSUD). The lipid regulatory effects of SFPS and SFPSUD were investigated in a zebrafish model fed a high-fat diet. The results showed that SFPS significantly decreased the levels of total cholesterol (TC) and triglycerides (TG), and increased the activities of lipoprotein lipase (LPL) and hepatic lipase (HL). SFPSUD was more effective than the SFPS in reducing the TC and TG levels in zebrafish, as well as increasing the LPL and HL activities. Histopathological observations of zebrafish livers showed that SFPSUD significantly improved lipid metabolism disorder in the hepatocytes. The possible lipid-lowering mechanism in zebrafish associated with SFPS and SFPSUD may involve acceleration of the lipid metabolism rate by increasing the activities of LPL and HL. Thus, SFPSUD could be tested as a highly effective hypolipidemic drug. Our results suggest that SFPS and SFPSUD have potential uses as functional foods for the prevention and treatment of hyperlipidemia. Ultrasound can be effectively applied to degrade SFPS to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Xuhan Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Wenqing Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Shengjie Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Sunting Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Feng Pan
- Wenzhou Xingbei Seaweed Food Co., Ltd., China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
5
|
Ghanbari M, Salkovskiy Y, Carlson MA. The rat as an animal model in chronic wound research: An update. Life Sci 2024; 351:122783. [PMID: 38848945 PMCID: PMC11581782 DOI: 10.1016/j.lfs.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Yury Salkovskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Mark A Carlson
- Department of Surgery, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Fauste E, Panadero MI, Pérez-Armas M, Donis C, López-Laiz P, Sevillano J, Sánchez-Alonso MG, Ramos-Álvarez MP, Otero P, Bocos C. Maternal fructose intake aggravates the harmful effects of a Western diet in rat male descendants impacting their cholesterol metabolism. Food Funct 2024; 15:6147-6163. [PMID: 38767501 DOI: 10.1039/d4fo01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Scope: fructose consumption from added sugars correlates with the epidemic rise in MetS and CVD. Maternal fructose intake has been described to program metabolic diseases in progeny. However, consumption of fructose-containing beverages is allowed during gestation. Cholesterol is also a well-known risk factor for CVD. Therefore, it is essential to study Western diets which combine fructose and cholesterol and how maternal fructose can influence the response of progeny to these diets. Methods and results: a high-cholesterol (2%) diet combined with liquid fructose (10%), as a model of an unhealthy Western diet, was administered to descendants from control and fructose-fed mothers. Gene (mRNA and protein) expression and plasma, fecal and tissue parameters of cholesterol metabolism were measured. Interestingly, progeny from fructose-fed dams consumed less liquid fructose and cholesterol-rich chow than males from control mothers. Moreover, descendants of fructose-fed mothers fed a Western diet showed an increased cholesterol elimination through bile and feces than males from control mothers. Despite these mitigating circumstances to develop a proatherogenic profile, the same degree of hypercholesterolemia and severity of steatosis were observed in all descendants fed a Western diet, independently of maternal intake. An increased intestinal absorption of cholesterol, synthesis, esterification, and assembly into lipoprotein found in males from fructose-fed dams consuming a Western diet could be the cause. Moreover, an augmented GLP2 signalling seen in these animals would explain this enhanced lipid absorption. Conclusions: maternal fructose intake, through a fetal programming, makes a Western diet considerably more harmful in their descendants than in the offspring from control mothers.
Collapse
Affiliation(s)
- E Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M Pérez-Armas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - C Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - P López-Laiz
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - J Sevillano
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M G Sánchez-Alonso
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M P Ramos-Álvarez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - P Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - C Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
7
|
Kokai D, Markovic Filipovic J, Opacic M, Ivelja I, Banjac V, Stanic B, Andric N. In vitro and in vivo exposure of endothelial cells to dibutyl phthalate promotes monocyte adhesion. Food Chem Toxicol 2024; 188:114663. [PMID: 38631435 DOI: 10.1016/j.fct.2024.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The effect of endothelial cells' exposure to dibutyl phthalate (DBP) on monocyte adhesion is largely unknown. We evaluated monocyte adhesion to DBP-exposed endothelial cells by combining three approaches: short-term exposure (24 h) of EA.hy926 cells to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. Monocyte adhesion to human EA.hy926 and rat aortic endothelial cells, expression of selected cellular adhesion molecules and chemokines, and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) were analyzed. We observed increased monocyte adhesion to DBP-exposed EA.hy926 cells in vitro and to rat aortic endothelium ex vivo. ERK1/2 inhibitor prevented monocyte adhesion to DBP-exposed EA.hy926 cells in short-term exposure experiments. Increased ERK1/2 phosphorylation in rat aortic endothelium and transient decrease in ERK1/2 activation following long-term exposure of EA.hy926 cells to DBP were also observed. In summary, exposure of endothelial cells to DBP promotes monocyte adhesion, thus suggesting a possible role for this phthalate in the development of atherosclerosis. ERK1/2 signaling could be the mediator of monocyte adhesion to DBP-exposed endothelial cells, but only after short-term high-level exposure.
Collapse
Affiliation(s)
- Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Ivana Ivelja
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Vojislav Banjac
- University of Novi Sad, Institute of Food Technology, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| |
Collapse
|
8
|
Jafari Z, Sadeghi S, Dehaghi MM, Bigham A, Honarmand S, Tavasoli A, Hoseini MHM, Varma RS. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch Pharm (Weinheim) 2024; 357:e2300569. [PMID: 38251938 DOI: 10.1002/ardp.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi Dehaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Department of Chemistry, Centre of Excellence for Research in Sustainable Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
9
|
Kurt Z, Cheng J, Barrere-Cain R, McQuillen CN, Saleem Z, Hsu N, Jiang N, Pan C, Franzén O, Koplev S, Wang S, Björkegren J, Lusis AJ, Blencowe M, Yang X. Shared and distinct pathways and networks genetically linked to coronary artery disease between human and mouse. eLife 2023; 12:RP88266. [PMID: 38060277 PMCID: PMC10703441 DOI: 10.7554/elife.88266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.
Collapse
Affiliation(s)
- Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- The Information School at the University of SheffieldSheffieldUnited Kingdom
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Rio Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Caden N McQuillen
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Nuoya Jiang
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Oscar Franzén
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Johan Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, (Huddinge), Karolinska InstitutetHuddingeSweden
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, UCLALos AngelesUnited States
- Cardiovascular Research Laboratory, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
- Interdepartmental Program of Bioinformatics, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
10
|
Kurt Z, Cheng J, McQuillen CN, Saleem Z, Hsu N, Jiang N, Barrere-Cain R, Pan C, Franzen O, Koplev S, Wang S, Bjorkegren J, Lusis AJ, Blencowe M, Yang X. Shared and distinct pathways and networks genetically linked to coronary artery disease between human and mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544148. [PMID: 37333408 PMCID: PMC10274918 DOI: 10.1101/2023.06.08.544148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.
Collapse
Affiliation(s)
- Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Computer and Information Sciences, University of Northumbria, Ellison Pl, Newcastle upon Tyne NE1 8ST, UK
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Caden N. McQuillen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Nuoya Jiang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Rio Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA 90095-1679, USA
| | - Oscar Franzen
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, US
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, US
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Johan Bjorkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, US
- Department of Medicine, (Huddinge), Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA 90095-1679, USA
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, UCLA, CA 90095, USA
- Cardiovascular Research Laboratory, David Geffen School of Medicine, UCLA, CA 90095
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt Pathways as a Potential Target Pathway in Atherosclerosis. J Lipid Atheroscler 2023; 12:223-236. [PMID: 37800111 PMCID: PMC10548192 DOI: 10.12997/jla.2023.12.3.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Yegor S Chegodaev
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| |
Collapse
|
12
|
Osqueei MR, Mahmoudabadi AZ, Bahari Z, Meftahi GH, Movahedi M, Taghipour R, Mousavi N, Huseini HF, Jangravi Z. Eryngium billardieri extract affects cardiac gene expression of master regulators of cardiomyaopathy in rats with high fatdiet-induced insulin resistance. Clin Nutr ESPEN 2023; 56:59-66. [PMID: 37344084 DOI: 10.1016/j.clnesp.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND For years, numerous studies have focused on identifying approaches to increase insulin sensitivity by modifying the signaling factors. In the present study, we examined the effects of Eryngium billardieri extract, as an anti-diabetic herbal medication, on the heart mRNA level of Akt serine/threonine kinase (Akt), mechanistic target of rapamycin kinase (mTOR), peroxisome proliferator-activated receptor gamma (PPARγ), and Forkhead box o1 (Foxo1) in rats with high-fat diet (HFD)-induced insulin resistance (IR). We also assessed the anti-diabetic effects of E. billardieri extract in rats with insulin resistance. METHODS Twenty-seven male Wistar rats were divided into two groups. Nine rats were fed a normal diet (control group), and 18 rats were fed an HFD for 13 weeks (HFD group). To confirm the induction of insulin resistance, the oral glucose tolerance test (OGTT) was performed and homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. Then rats with IR were randomly divided into the following groups: the HFD group, which continued an HFD, and the group treated with E. billardieri extract, which received the extract at a concentration of 50 mg/kg for 30 days. On the 30th day, the animals were sacrificed and serum samples were collected for biochemistry analyses. Furthermore, the expression of Akt, mTOR, PPARγ, and Foxo1 was measured in heart tissue using the real-time polymerase chain reaction (PCR) method. RESULTS Real-time PCR analyses revealed that an HFD can significantly decrease the expression level of Akt, mTOR, and PPARγ in the heart tissue. However, an HFD significantly increased the expression level of Foxo1 in the HFD group compared to the control group (P < 0.05). In addition, our data showed that the administration of E. billardieri extract significantly enhanced the mRNA levels of Akt, PPARγ, and mTOR in the heart tissue compared to the HFD group (P < 0.05), while it significantly decreased the Foxo1 mRNA levels (P < 0.01). CONCLUSION Given that Akt, mTOR, PPARγ, and Foxo1 are critical factors in insulin resistance, the present study suggests that E. billardieri could probably be used as an alternative treatment for IR as a major feature of metabolic syndrome.
Collapse
Affiliation(s)
- Mohaddeseh Rashedi Osqueei
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zaree Mahmoudabadi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Iran
| | | | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Reza Taghipour
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Naser Mousavi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
14
|
Zou D, Yang P, Liu J, Dai F, Xiao Y, Zhao A, Huang N. Constructing Mal-Efferocytic Macrophage Model and Its Atherosclerotic Spheroids and Rat Model for Therapeutic Evaluation. Adv Biol (Weinh) 2023; 7:e2200277. [PMID: 36721069 DOI: 10.1002/adbi.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Indexed: 02/02/2023]
Abstract
Efferocytosis, responsible for apoptotic cell clearance, is an essential factor against atherosclerosis. It is reported that efferocytosis is severely impaired in fibroatheroma, especially in vulnerable thin cap fibroatheroma. However, there is a shortage of studies on efferocytosis defects in cell and animal models. Here, the impacts of oxidized low density lipoprotein (ox-LDL) and glut 1 inhibitor (STF31) on efferocytosis of macrophages are studied, and an evaluation system is constructed. Through regulating the cell ratios and stimulus, three types of atherosclerotic spheroids are fabricated, and a necrotic core emerges with surrounding apoptotic cells. Rat models present a similar phenomenon in that substantial apoptotic cells are uncleared in time in vulnerable plaque, and the model period is shortened to 7 weeks. Mechanism studies reveal that ox-LDL, through mRNA and miRNA modulation, downregulates efferocytosis receptor (PPARγ/LXRα/MerTK), internalization molecule (SLC29a1), and upregulates the competitive receptor CD300a that inhibits efferocytosis receptor-ligand binding process. The foam cell differentiation has also confirmed that CD36 and Lp-PLA2 levels are significantly elevated, and macrophages present an interesting transition into prothrombic phenotype. Collectively, the atherosclerotic models featured by efferocytosis defect provide a comprehensive platform to evaluate the efficacy of medicine and biomaterials for atherosclerosis treatment.
Collapse
Affiliation(s)
- Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jianan Liu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Fanfan Dai
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yangyang Xiao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Chengdu, 610031, P. R. China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
15
|
Analysis of Metabolite Distribution in Rat Liver of High-Fat Model by Mass Spectrometry Imaging. Metabolites 2023; 13:metabo13030411. [PMID: 36984851 PMCID: PMC10057431 DOI: 10.3390/metabo13030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Hyperlipidemia is a medical condition characterized by elevated levels of blood lipids, especially triglycerides (TG). However, it remains unclear whether TG levels remain consistently elevated throughout the entire developmental stage of the high-lipid state. In our animal experiment, we found that TG levels were significantly higher in the early stage of the high-lipid model but significantly decreased at the 14th week of the late stage, reaching levels similar to those of the control group. This suggests that TG levels in the high-lipid model are not always higher than those of the control group. To determine the reason for this observation, we used in situ mass spectrometry imaging (MSI) to detect the distribution of metabolites in the liver of rats. The metabolite distribution of the control rats at different stages was significantly different from that of the model rats, and the high-lipid model differed significantly from the control rats. We identified nine functional metabolites that showed differences throughout the period, namely, PA(20:3-OH/i-21:0), PA(20:4-OH/22:6), PG(20:5-OH/i-16:0), PG(22:6-2OH/i-13:0), PG(O-18:0/20:4), PGP(18:3-OH/i-12:0), PGP(PGJ2/i-15:0), SM(d18:0/18:1-2OH), and TG(14:0/14:0/16:0), among which TG was most significantly correlated with hyperlipidemia and high lipid. This study is unique in that it used MSI to reveal the changes in metabolites in situ, showing the distribution of different metabolites or the same metabolite in liver tissue. The findings highlight the importance of considering the animal’s age when using TG as a biomarker for hyperlipidemia. Additionally, the MSI images of the liver in the high-lipid model clearly indicated the distribution and differences of more significant metabolites, providing valuable data for further research into new biomarkers and mechanisms of hyperlipidemia. This new pathway of in situ, visualized, and data-rich metabolomics research provides a more comprehensive understanding of the characteristics of high lipid and its implications for disease prevention and treatment.
Collapse
|
16
|
Xu R, Yuan W, Wang Z. Advances in Glycolysis Metabolism of Atherosclerosis. J Cardiovasc Transl Res 2022; 16:476-490. [PMID: 36068370 DOI: 10.1007/s12265-022-10311-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Glycolysis is an important way for various cells such as vascular wall endothelial cells, smooth muscle cells, macrophages, and other cells to obtain energy. In pathological conditions, it can participate in the process of AS by regulating lipid deposition, calcification, angiogenesis in plaques, etc., together with its metabolite lactic acid. Recent studies have shown that lactate-related lactylation modifications are ubiquitous in the human proteome and are involved in the regulation of various inflammatory diseases. Combined with the distribution and metabolic characteristics of cells in the plaque in the process of AS, glycolysis-lactate-lactylation modification may be a new entry point for targeted intervention in atherosclerosis in the future. Therefore, this article intends to elaborate on the role and mechanism of glycolysis-lactate-lactylation modification in AS, as well as the opportunities and challenges in targeted therapy, hoping to bring some help to relevant scholars in this field. In atherosclerosis, glycolysis, lactate, and lactylation modification as a metabolic sequence affect the functions of macrophages, smooth muscle cells, endothelial cells, lymphocytes, and other cells and interfere with processes such as vascular calcification and intraplaque neovascularization to influence the progression of atherosclerosis.
Collapse
Affiliation(s)
- Ruhan Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
17
|
Zhou Y, Wang S, Liang X, Heger Z, Xu M, Lu Q, Yu M, Adam V, Li N. Turning Hot into Cold: Immune Microenvironment Reshaping for Atherosclerosis Attenuation Based on pH-Responsive shSiglec-1 Delivery System. ACS NANO 2022; 16:10517-10533. [PMID: 35762565 DOI: 10.1021/acsnano.2c01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Current atherosclerosis treatment is based on a combination of cholesterol-lowering medication and low-fat diets; however, the clinical effect is unsatisfactory. It has been shown that the level of immune cell infiltration and pro-inflammatory factors in the atherosclerotic immune microenvironment (AIM) play important roles in the development and progression of atherosclerosis. Therefore, we hypothesized that reshaping "hot AIM" into "cold AIM" could attenuate atherosclerosis. For this purpose, we designed a pH-responsive and charge-reversible nanosystem, referred to as Au-PEI/shSiglec-1/PEI-acetylsalicylic acid (ASPA NPs) to effectively deliver shSiglec-1, which blocked the interactions between macrophages with CD8+ T/NKT cells, thus inhibiting immune cell infiltration. Further, we demonstrated that acetylsalicylic acid (ASA), detached from the pH-responsive PEI-ASA polymer, and inhibited lipid accumulation in macrophage, thereby decreasing the lipid antigen presentation. Additionally, reduced macrophage-produced inflammatory factors by ASA and low CD8+ T/NKT cell infiltration levels synergistically inhibit Th17 cell differentiation, thus further dramatically attenuating inflammation in AIM by decreasing the IL-17A production. Eventually, ASPA NPs efficiently reshaped AIM by inhibiting immune cell infiltration, lipid antigen presentation, and pro-inflammation, which provided a feasible therapeutic strategy for atherosclerosis immunotherapy.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Min Xu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Meng Yu
- School of Pharmaceutical Science Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Simon F, Larena-Avellaneda A, Wipper S. Experimental Atherosclerosis Research on Large and Small Animal Models in Vascular Surgery. J Vasc Res 2022; 59:221-228. [PMID: 35760040 PMCID: PMC9533439 DOI: 10.1159/000524795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Animal models have significantly advanced our understanding of the mechanisms of atherosclerosis formation and the evaluation of therapeutic options. The current focus of research is on preventive strategies and includes pharmacologic and biologic interventions directed primarily against smooth-muscle cell proliferation, endovascular devices for recanalization and/or drug delivery, and an integrated approach using both devices and pharmacobiologic agents. The experience over many decades with animal models in vascular research has established that a single, ideal, naturally available model for atherosclerosis does not exist. The spectrum ranges from large animals such as pigs to small animal experiments with genetically modified rodents such as the ApoE-/- mouse with correspondingly differently pronounced changes in their lipid and lipoprotein levels. The development of transgenic variants of currently available models, e.g., an ApoE-deficient rabbit line, has widened our options. Nevertheless, an appreciation of the individual features of natural or stimulated disease in each species is of importance for the proper design and execution of relevant experiments.
Collapse
Affiliation(s)
- Florian Simon
- University Hospital Düsseldorf, Clinic for Vascular and Endovascular Surgery, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Axel Larena-Avellaneda
- Department of Vascular and Endovascular Surgery, Asklepios Clinic Altona, Hamburg, Germany
| | - Sabine Wipper
- Department for Vascular Surgery, University Hospital Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Recent Progress of Chronic Stress in the Development of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4121173. [PMID: 35300174 PMCID: PMC8923806 DOI: 10.1155/2022/4121173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/04/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
With the development of the times, cardiovascular diseases have become the biggest cause of death in the global aging society, causing a serious social burden. Atherosclerosis is a chronic inflammatory disease, which can occur in large and medium-sized blood vessels in the whole body. It takes atherosclerotic plaque as the typical pathological change and endothelial injury as the core pathophysiological mechanism. It is the pathological basis of coronary heart disease, peripheral artery disease, cerebrovascular disease, and other diseases. Recent studies have shown that chronic stress plays an important role in the occurrence and development of atherosclerosis, endothelial injury, lipid metabolism, and chronic inflammation. This process involves a large number of molecular targets. It is usually the cause of atherosclerotic cardiovascular and cerebrovascular diseases. If chronic stress factors exist for a long time, patients have genetic susceptibility, and the combination of environmental factors triggers the pathogenesis, which may eventually lead to complete blockage of the blood vessels, unstable rupture of plaques, and serious adverse cardiovascular events. This paper reviews the role of chronic stress in the occurrence and development of atherosclerosis, focusing on the pathophysiological mechanism.
Collapse
|
20
|
Schyman P, Printz RL, Pannala VR, AbdulHameed MDM, Estes SK, Shiota C, Boyd KL, Shiota M, Wallqvist A. Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat. Toxicol Appl Pharmacol 2021; 430:115713. [PMID: 34492290 PMCID: PMC8511347 DOI: 10.1016/j.taap.2021.115713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.
Collapse
Affiliation(s)
- Patric Schyman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli Lynn Boyd
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
21
|
De Nisco G, Chiastra C, Hartman EMJ, Hoogendoorn A, Daemen J, Calò K, Gallo D, Morbiducci U, Wentzel JJ. Comparison of Swine and Human Computational Hemodynamics Models for the Study of Coronary Atherosclerosis. Front Bioeng Biotechnol 2021; 9:731924. [PMID: 34409022 PMCID: PMC8365882 DOI: 10.3389/fbioe.2021.731924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary atherosclerosis is a leading cause of illness and death in Western World and its mechanisms are still non completely understood. Several animal models have been used to 1) study coronary atherosclerosis natural history and 2) propose predictive tools for this disease, that is asymptomatic for a long time, aiming for a direct translation of their findings to human coronary arteries. Among them, swine models are largely used due to the observed anatomical and pathophysiological similarities to humans. However, a direct comparison between swine and human models in terms of coronary hemodynamics, known to influence atherosclerotic onset/development, is still lacking. In this context, we performed a detailed comparative analysis between swine- and human-specific computational hemodynamic models of coronary arteries. The analysis involved several near-wall and intravascular flow descriptors, previously emerged as markers of coronary atherosclerosis initiation/progression, as well as anatomical features. To do that, non-culprit coronary arteries (18 right–RCA, 18 left anterior descending–LAD, 13 left circumflex–LCX coronary artery) from patients presenting with acute coronary syndrome were imaged by intravascular ultrasound and coronary computed tomography angiography. Similarly, the three main coronary arteries of ten adult mini-pigs were also imaged (10 RCA, 10 LAD, 10 LCX). The geometries of the imaged coronary arteries were reconstructed (49 human, 30 swine), and computational fluid dynamic simulations were performed by imposing individualized boundary conditions. Overall, no relevant differences in 1) wall shear stress-based quantities, 2) intravascular hemodynamics (in terms of helical flow features), and 3) anatomical features emerged between human- and swine-specific models. The findings of this study strongly support the use of swine-specific computational models to study and characterize the hemodynamic features linked to coronary atherosclerosis, sustaining the reliability of their translation to human vascular disease.
Collapse
Affiliation(s)
- Giuseppe De Nisco
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Eline M J Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Joost Daemen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Karol Calò
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
22
|
Porcine pancreatic ductal epithelial cells transformed with KRAS G12D and SV40T are tumorigenic. Sci Rep 2021; 11:13436. [PMID: 34183736 PMCID: PMC8238942 DOI: 10.1038/s41598-021-92852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
We describe our initial studies in the development of an orthotopic, genetically defined, large animal model of pancreatic cancer. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic pigs. A transformed cell line was generated from these primary cells with oncogenic KRAS and SV40T. The transformed cell lines outperformed the primary and SV40T immortalized cells in terms of proliferation, population doubling time, soft agar growth, transwell migration and invasion. The transformed cell line grew tumors when injected subcutaneously in nude mice, forming glandular structures and staining for epithelial markers. Future work will include implantation studies of these tumorigenic porcine pancreatic cell lines into the pancreas of allogeneic and autologous pigs. The resultant large animal model of pancreatic cancer could be utilized for preclinical research on diagnostic, interventional, and therapeutic technologies.
Collapse
|
23
|
Spirulina liquid extract prevents metabolic disturbances and improves liver sphingolipids profile in hamster fed a high-fat diet. Eur J Nutr 2021; 60:4483-4494. [PMID: 34110469 DOI: 10.1007/s00394-021-02589-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Metabolic syndrome is characterized by hyperglycemia, hyperlipemia and exacerbated oxidative stress. The aim of the study was to determine whether Spirulysat®, a Spirulina liquid extract (SLE) enriched in phycocyanin, would prevent metabolic abnormalities induced by high-fat diet. METHODS The effect of acute SLE supplementation on postprandial lipemia and on triton-induced hyperlipidemia was studied in hamster fed control diet (C). The effect of chronic SLE supplementation on lipid content in plasma, liver and aorta, and on glycemia and oxidative stress was studied in hamster fed control (C) or high-fat diet (HF) for two weeks and then treated with SLE for two weeks (CSp and HFSp) or not (C and HF). RESULTS The acute SLE supplementation lowered plasma cholesterol and non-esterified fatty acid concentrations after olive oil gavage (P < 0.05) in CSp, while no effect was observed on triglyceridemia. HFD increased plasma MDA, basal glycemia, triglyceridemia, total plasma cholesterol, VLDL, LDL and HDL cholesterol, ceramide, sphingomyelin and glucosylceramide content in liver in HF compared to C (P < 0.05). SLE did not affect SOD and GPx activities nor total antioxidant status in HFSp group but lowered glycemia, glucoceramide and cholesterol in liver and cholesterol in aorta compared to HF (P < 0.05). SLE also decreased HMGCoA and TGF-β1 gene expression in liver (P < 0.05) and tended to lower G6Pase (P = 0.068) gene expression in HFSp compared to HF. CONCLUSION Although 2-week SLE supplementation did not affect oxidative stress, it protected from hyperglycemia and lipid accumulation in liver and aorta suggesting a protective effect against metabolic syndrome.
Collapse
|
24
|
Abstract
Germline editing, the process by which the genome of an individual is edited in such a way that the change is heritable, has been applied to a wide variety of animals [D. A. Sorrell, A. F. Kolb, Biotechnol. Adv. 23, 431-469 (2005); D. Baltimore et al., Science 348, 36-38 (2015)]. Because of its relevancy in agricultural and biomedical research, the pig genome has been extensively modified using a multitude of technologies [K. Lee, K. Farrell, K. Uh, Reprod. Fertil. Dev. 32, 40-49 (2019); C. Proudfoot, S. Lillico, C. Tait-Burkard, Anim. Front. 9, 6-12 (2019)]. In this perspective, we will focus on using pigs as the model system to review the current methodologies, applications, and challenges of mammalian germline genome editing. We will also discuss the broad implications of animal germline editing and its clinical potential.
Collapse
|
25
|
Inoue KI, Toyoda S, Jojima T, Abe S, Sakuma M, Inoue T. Time-restricted feeding prevents high-fat and high-cholesterol diet-induced obesity but fails to ameliorate atherosclerosis in apolipoprotein E-knockout mice. Exp Anim 2020; 70:194-202. [PMID: 33268668 PMCID: PMC8150245 DOI: 10.1538/expanim.20-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the leading risk factors for atherosclerosis is obesity, which is commonly caused by a nutrient-rich Western-style diet, sedentary behaviors, and shift
work. Time-restricted (TR) feeding and intermittent fasting are both known to prevent overweight and adiposity, improve glucose tolerance, and decrease plasma
cholesterol in high-fat diet-induced obese mice. Here we examined the overall effects of TR feeding of a Western diet (fat, 40.5 Kcal%; cholesterol, 0.21 g%)
using 8-week-old Apoe−/− mice. Mice were assigned into three groups: (1) an ad libitum (AL) group fed an AL Western
diet, (2) a TR group with restricted access to a Western diet (15 h/day, 12:00 to 3:00 Zeitgeber time [ZT]); and (3) an Ex/TR group fed a TR Western diet and
subjected to physical exercise at 12:00 ZT. Mice in the AL group gained body weight rapidly during the 14-week observation period. With TR feeding, excessive
weight gain, liver adiposity, visceral fat, and brown adipose tissue volume were effectively suppressed. Although TR feeding failed to decrease Oil Red
O-stained aortic plaques in Apoe−/− mice, physical exercise significantly decreased them. Neither TR feeding with exercise nor that
without exercise decreased the mean area under the curve of the plasma cholesterol level or the fasting plasma glucose. Collectively, TR feeding of a Western
diet prevented the development of obesity but failed to ameliorate atherosclerosis in Apoe−/− mice.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Comprehensive Research Facilities for Advanced Medical Science, Research Center for Advanced Medical Science, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.,Center of Regenerative Medicine, Dokkyo Medical University Hospital, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Teruo Inoue
- Comprehensive Research Facilities for Advanced Medical Science, Research Center for Advanced Medical Science, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.,Center of Regenerative Medicine, Dokkyo Medical University Hospital, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.,Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
26
|
Tic Movement of Thyroid Cartilage as a Cause for Localized Cerebral Embolism: Mimics of Embolic Stroke of Undetermined Source with Non-Stenotic Carotid Plaque. J Stroke Cerebrovasc Dis 2020; 29:105197. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
|
27
|
Abstract
There is a great debate regarding the association of cholesterol intake from egg consumption and the incidence of cardiovascular disease (CVD). Most studies show that moderate egg consumption is not associated with a significant increase in CVD, stroke, heart failure, and type 2 diabetes mellitus (T2DM), whereas others dispute this fact and state that there is an association with increased egg consumption, especially if they are consumed with saturated fats. In addition, the recent relaxation of cholesterol intake to greater than 300 mg/d by the American College of Cardiology/American Heart Association Nutritional Guidelines has fueled this debate. In order to get a current perspective on the significance of moderate egg consumption with the primary incidence of CVD, a focused Medline search of the English language literature was conducted between 2010 and March 2020 using the terms, cholesterol intake, egg consumption, coronary artery disease, CVD, and T2DM. Nineteen pertinent articles were retrieved, and these, together with collateral literature, will be discussed in this review article. The analysis of data from the articles retrieved indicated that several studies showed that moderate egg consumption (1 egg/d) is not associated with adverse cardiovascular effects in subjects free of CVD or T2DM, whereas other studies showed a positive association, especially in patients with preexisting CVD or T2DM. Therefore, at present, there is no unanimous agreement on this subject, and the controversy will continue until new confirmatory evidence becomes available.
Collapse
|
28
|
Deng J, Zhang Y, He G, Lu H, Zhao Y, Li Y, Zhu Y. Arterial wall injury and miRNA expression induced by stent retriever thrombectomy under stenotic conditions in a dog model. J Neurointerv Surg 2020; 13:563-567. [PMID: 32859747 DOI: 10.1136/neurintsurg-2020-016347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Acute ischemic stroke can be caused by in situ stenotic vessel occlusion. In the present study, we compared the extent of arterial wall damage and miRNA expression following stent retriever use under normal and stenotic conditions. METHODS The stent retriever procedure was simulated in three dogs by the creation of four stenoses on each side of the common carotid artery (CCA) to allow five stent passages. Device safety was also assessed in normal control models by five passages through both CCAs. Device manipulation-related damage to the arterial walls was evaluated and compared between groups by angiography and pathological analysis. Real-time PCR was used to evaluate the differences in the expression of miRNAs between the two groups. RESULTS Twenty-four stenoses were created in three model dogs, and the mean stenosis rate was 65.58%±18.95%. Angiography revealed greater vasospasm in the stenotic group than in the non-stenotic group (1.17±0.17 vs 0.5±0.23; P=0.04). Pathological examination revealed that SR passage through the stenotic lumen caused higher injury scores (1.63±0.19 vs 0.25±0.09 for the non-stenotic lumen; P<0.001), more endothelial denudation (1.79±0.13 vs 0.58±0.13 for the non-stenotic lumen; P<0.001), and increased thrombus deposition (0.71±0.14 vs 0±0 for the non-stenotic lumen; P<0.001). miR21-3p, miR29-3p, and miR26a were upregulated in stenotic vessels compared with non-stenotic vessels after SR thrombectomy (P<0.001). CONCLUSION In our model dogs, SR thrombectomy resulted in more severe tissue damage to the arterial wall under stenotic conditions than under non-stenotic conditions. The damage may have resulted from upregulation of miR21-3p, miR29-3p, and miR26a expression.
Collapse
Affiliation(s)
- Jiangshan Deng
- Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiran Zhang
- Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangchen He
- Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haitao Lu
- Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuehua Li
- Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yueqi Zhu
- Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
29
|
Buglak NE, Bahnson ESM. A Rat Carotid Artery Pressure-Controlled Segmental Balloon Injury with Periadventitial Therapeutic Application. J Vis Exp 2020. [PMID: 32716387 DOI: 10.3791/60473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability worldwide, in part due to atherosclerosis. Atherosclerotic plaque narrows the luminal surface area in arteries thereby reducing adequate blood flow to organs and distal tissues. Clinically, revascularization procedures such as balloon angioplasty with or without stent placement aim to restore blood flow. Although these procedures reestablish blood flow by reducing plaque burden, they damage the vessel wall, which initiates the arterial healing response. The prolonged healing response causes arterial restenosis, or re-narrowing, ultimately limiting the long-term success of these revascularization procedures. Therefore, preclinical animal models are integral for analyzing the pathophysiological mechanisms driving restenosis, and provide the opportunity to test novel therapeutic strategies. Murine models are cheaper and easier to operate on than large animal models. Balloon or wire injury are the two commonly accepted injury modalities used in murine models. Balloon injury models in particular mimic the clinical angioplasty procedure and cause adequate damage to the artery for the development of restenosis. Herein we describe the surgical details for performing and histologically analyzing the modified, pressure-controlled rat carotid artery balloon injury model. Additionally, this protocol highlights how local periadventitial application of therapeutics can be used to inhibit neointimal hyperplasia. Lastly, we present light sheet fluorescence microscopy as a novel approach for imaging and visualizing the arterial injury in three-dimensions.
Collapse
Affiliation(s)
- Nicholas E Buglak
- Department of Surgery, Division of Vascular Surgery, University of North Carolina at Chapel Hill; Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill; Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill; McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Edward S M Bahnson
- Department of Surgery, Division of Vascular Surgery, University of North Carolina at Chapel Hill; Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill; Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill; McAllister Heart Institute, University of North Carolina at Chapel Hill;
| |
Collapse
|
30
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
31
|
Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. ACTA ACUST UNITED AC 2020; 53:e9557. [PMID: 32428130 PMCID: PMC7266502 DOI: 10.1590/1414-431x20209557] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerosis retains the leading position among the causes of global morbidity and mortality worldwide, especially in the industrialized countries. Despite the continuing efforts to investigate disease pathogenesis and find the potential points of effective therapeutic intervention, our understanding of atherosclerosis mechanisms remains limited. This is partly due to the multifactorial nature of the disease pathogenesis, when several factors so different as altered lipid metabolism, increased oxidative stress, and chronic inflammation act together leading to the formation and progression of atherosclerotic plaques. Adequate animal models are currently indispensable for studying these processes and searching for novel therapies. Animal models based on rodents, such as mice and rats, and rabbits represent important tools for studying atherosclerosis. Currently, genetically modified animals allow for previously unknown possibilities in modelling the disease and its most relevant aspects. In this review, we describe the recent progress made in creating such models and discuss the most important findings obtained with them to date.
Collapse
Affiliation(s)
- A V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Y Y Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - A V Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Li S, Xu S, Zhao Y, Wang H, Feng J. Dietary Betaine Addition Promotes Hepatic Cholesterol Synthesis, Bile Acid Conversion, and Export in Rats. Nutrients 2020; 12:nu12051399. [PMID: 32414094 PMCID: PMC7284822 DOI: 10.3390/nu12051399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is widely reported how betaine addition regulates lipid metabolism but how betaine affects cholesterol metabolism is still unknown. This study aimed to investigate the role of betaine in hepatic cholesterol metabolism of Sprague-Dawley rats. Rats were randomly allocated to four groups and fed with a basal diet or a high-fat diet with or without 1% betaine. The experiment lasted 28 days. The results showed that dietary betaine supplementation reduced the feed intake of rats with final weight unchanged. Serum low-density-lipoprotein cholesterol was increased with the high-fat diet. The high-fat diet promoted cholesterol synthesis and excretion by enhancing the HMG-CoA reductase and ABCG5/G8, respectively, which lead to a balance of hepatic cholesterol. Rats in betaine groups showed a higher level of hepatic total cholesterol. Dietary betaine addition enhanced cholesterol synthesis as well as conversion of bile acid from cholesterol by increasing the levels of HMGCR and CYP7A1. The high-fat diet decreased the level of bile salt export pump, while dietary betaine addition inhibited this decrease and promoted bile acid efflux and increased total bile acid levels in the intestine. In summary, dietary betaine addition promoted hepatic cholesterol metabolism, including cholesterol synthesis, conversion of bile acids, and bile acid export.
Collapse
Affiliation(s)
- Sisi Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
| | - Shuyi Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
| | - Yang Zhao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
| | - Haichao Wang
- Department of Animal Science, College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 430068, China;
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (S.L.); (S.X.); (Y.Z.)
- Correspondence: ; Tel.: +86-571-88982121
| |
Collapse
|
33
|
Kilany MS, El Sayed SA, Salem HF, Beheiry RR. Histological and ultrastructural studies on the coronary artery of adult domestic dog (Canis familiaris). Anat Histol Embryol 2019; 49:80-89. [PMID: 31508860 DOI: 10.1111/ahe.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/09/2019] [Accepted: 08/10/2019] [Indexed: 11/29/2022]
Abstract
The objective of this work was to study the histological structure of the dog's coronary artery by light and transmission electron microscope (TEM). The coronary artery consisted of three tunics: tunica intima, tunica media and tunica adventitia. The tunica intima consisted of endothelium rested directly on internal elastic lamina without the subendothelial connective tissue layer. The tunica media were composed of smooth muscle fibres interspersed with few elastic and collagen fibres. The tunica adventitia consisted of collagen and elastic fibres intermingled with fibroblast cells; it had vasa vasorum and nervi vasorum. Some histomorphometric measurements were performed and compared statistically. The ultrastructural study showed that the endothelial cells were communicated through complex junctions and characterised by filiform cytoplasmic processes passed through the opening of the underlying internal elastic membrane. The smooth muscle fibres of tunica media communicated with each other through cytoplasmic processes. The tunica adventitia showed minute non-myelinated nerve. This work revealed that the dog's coronary arteries are typical muscular arteries, which show little structural variations from that of other mammals.
Collapse
Affiliation(s)
- Maha S Kilany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shafika A El Sayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hoda F Salem
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Sihag J, Jones PJH. Dietary fatty acid profile influences circulating and tissue fatty acid ethanolamide concentrations in a tissue-specific manner in male Syrian hamsters. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1563-1579. [PMID: 31301433 DOI: 10.1016/j.bbalip.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The discovery of N‑acylethanolamines (NAEs) has prompted an increase in research aimed at understanding their biological roles including regulation of appetite and energy metabolism. However, a knowledge gap remains to understand the effect of dietary components on NAE levels, in particular, heterogeneity in dietary fatty acid (DFA) profile, on NAE levels across various organs. OBJECTIVE To identify and elucidate the impact of diet on NAE levels in seven different tissues/organs of male hamsters, with the hypothesis that DFA will act as precursors for NAE synthesis in golden Syrian male hamsters. METHOD A two-month feeding trial was performed, wherein hamsters were fed various dietary oil blends with different composition of 18-C fatty acid (FA). RESULTS DFA directly influences tissue FA and NAE levels. After C18:1n9-enriched dietary treatments, marked increases were observed in duodenal C18:1n9 and oleoylethanolamide (OEA) concentrations. Among all tissues; adipose tissue brown, adipose tissue white, brain, heart, intestine-duodenum, intestine-jejunum, and liver, a negative correlation was observed between gut-brain OEA concentrations and body weight. CONCLUSION DFA composition influences FA and NAE levels across all tissues, leading to significant shifts in intestinal-brain OEA concentrations. The endogenously synthesized increased OEA levels in these tissues enable the gut-brain-interrelationship. Henceforth, we summarize that the brain transmits anorexic properties mediated via neuronal signalling, which may contribute to the maintenance of healthy body weight. Thus, the benefits of OEA can be enhanced by the inclusion of C18:1n9-enriched diets, pointing to the possible nutritional use of this naturally occurring bioactive lipid-amide in the management of obesity.
Collapse
Affiliation(s)
- Jyoti Sihag
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter J H Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
35
|
Meester EJ, Krenning BJ, de Swart J, Segbers M, Barrett HE, Bernsen MR, Van der Heiden K, de Jong M. Perspectives on Small Animal Radionuclide Imaging; Considerations and Advances in Atherosclerosis. Front Med (Lausanne) 2019; 6:39. [PMID: 30915335 PMCID: PMC6421263 DOI: 10.3389/fmed.2019.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
This review addresses nuclear SPECT and PET imaging in small animals in relation to the atherosclerotic disease process, one of our research topics of interest. Imaging of atherosclerosis in small animal models is challenging, as it operates at the limits of current imaging possibilities regarding sensitivity, and spatial resolution. Several topics are discussed, including technical considerations that apply to image acquisition, reconstruction, and analysis. Moreover, molecules developed for or applied in these small animal nuclear imaging studies are listed, including target-directed molecules, useful for imaging organs or tissues that have elevated expression of the target compared to other tissues, and molecules that serve as substrates for metabolic processes. Differences between animal models and human pathophysiology that should be taken into account during translation from animal to patient as well as differences in tracer behavior in animal vs. man are also described. Finally, we give a future outlook on small animal radionuclide imaging in atherosclerosis, followed by recommendations. The challenges and solutions described might be applicable to other research fields of health and disease as well.
Collapse
Affiliation(s)
- Eric J Meester
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - B J Krenning
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - J de Swart
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - M Segbers
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - H E Barrett
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - M R Bernsen
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - K Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
36
|
Wong YS, Czarny B, Venkatraman SS. Precision nanomedicine in atherosclerosis therapy: how far are we from reality? PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(1).181114.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis, characterized by build-up of lipids and chronic inflammation of the arterial wall, is the primary cause of cardiovascular disease and is a leading cause of death worldwide. Currently available therapies are inadequate and warrant the demand for improved technologies for more effective treatment. Although primarily the domain of antitumor therapy, recent advances have shown the considerable potential of nanomedicine to advance atherosclerosis treatment. This Review details the arsenal of nanocarriers and molecules available for selective targeting in atherosclerosis, and emphasize the challenges in atherosclerosis treatment.
Collapse
|
37
|
Effects of Unfiltered Coffee and Bioactive Coffee Compounds on the Development of Metabolic Syndrome Components in a High-Fat-/High-Fructose-Fed Rat Model. Nutrients 2018; 10:nu10101547. [PMID: 30347674 PMCID: PMC6213813 DOI: 10.3390/nu10101547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The literature is inconsistent as to how coffee affects metabolic syndrome (MetS), and which bioactive compounds are responsible for its metabolic effects. This study aimed to evaluate the effects of unfiltered coffee on diet-induced MetS and investigate whether or not phenolic acids and trigonelline are the main bioactive compounds in coffee. Twenty-four male Sprague‒Dawley rats were fed a high-fat (35% W/W) diet plus 20% W/W fructose in drinking water for 14 weeks, and were randomized into three groups: control, coffee, or nutraceuticals (5-O-caffeoylquinic acid, caffeic acid, and trigonelline). Coffee or nutraceuticals were provided in drinking water at a dosage equal to 4 cups/day in a human. Compared to the controls, total food intake (p = 0.023) and mean body weight at endpoint (p = 0.016) and estimated average plasma glucose (p = 0.041) were lower only in the coffee group. Surrogate measures of insulin resistance including the overall fasting insulin (p = 0.010), endpoint HOMA-IR (p = 0.022), and oral glucose tolerance (p = 0.029) were improved in the coffee group. Circulating triglyceride levels were lower (p = 0.010), and histopathological and quantitative (p = 0.010) measurements indicated lower grades of liver steatosis compared to controls after long-term coffee consumption. In conclusion, a combination of phenolic acids and trigonelline was not as effective as coffee per se in improving the components of the MetS. This points to the role of other coffee chemicals and a potential synergism between compounds.
Collapse
|
38
|
Romain C, Piemontese A, Battista S, Bernini F, Ossoli A, Strazzella A, Gaillet S, Rouanet JM, Cases J, Zanotti I. Anti-Atherosclerotic Effect of a Polyphenol-Rich Ingredient, Oleactiv ®, in a Hypercholesterolemia-Induced Golden Syrian Hamster Model. Nutrients 2018; 10:E1511. [PMID: 30326655 PMCID: PMC6213376 DOI: 10.3390/nu10101511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/12/2023] Open
Abstract
The development of nutraceutical ingredients has risen as a nutritional solution for health prevention. This study evaluated the effects of Oleactiv®, an ingredient developed for the prevention of atherogenesis, in hypercholesterolemic hamsters. Oleactiv® is a polyphenol-rich ingredient obtained from artichoke, olive and grape extracts as part of fruit and vegetables commonly consumed within the Mediterranean diet. A total of 21 Golden Syrian hamsters were divided into three groups. The standard group (STD) was fed a normolipidemic diet for 12 weeks, while the control group (CTRL) and Oleactiv® goup (OLE) were fed a high-fat diet. After sacrifice, the aortic fatty streak area (AFSA), plasmatic total cholesterol (TC), high-density lipoproteins (HDL-C), non-HDL-C and triglycerides (TG), were assessed. The cholesterol efflux capacity (CEC) of hamster plasma was quantified using a radiolabeled technique in murine macrophages J774. OLE administration induced a significant reduction of AFSA (-69%, p < 0.0001). Hamsters of the OLE group showed a significant decrease of both non-HDL-C (-173 mmol/L, p < 0.05) and TG (-154 mmol/L, p < 0.05). Interestingly, OLE induced a significant increase of total CEC (+17,33%, p < 0,05). Oleactiv® supplementation prevented atheroma development and had positive effects on the lipid profile of hypercholesterolemic hamsters. The increased CEC underlines the anti-atherosclerotic mechanism at the root of the atheroma reduction observed.
Collapse
Affiliation(s)
- Cindy Romain
- Fytexia SAS, Innovation and Scientific Affairs, 34350 Vendres, France.
| | - Antonio Piemontese
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, 43126 Parma, Italy.
| | - Simone Battista
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, 43126 Parma, Italy.
| | - Franco Bernini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, 43126 Parma, Italy.
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Sylvie Gaillet
- Nutrition & Métabolisme, UMR 204 NUTRIPASS, Prévention des Malnutritions & des Pathologies Associées, Université Montpellier Sud de France, 34394 Montpellier, France.
| | - Jean-Max Rouanet
- Nutrition & Métabolisme, UMR 204 NUTRIPASS, Prévention des Malnutritions & des Pathologies Associées, Université Montpellier Sud de France, 34394 Montpellier, France.
| | - Julien Cases
- Fytexia SAS, Innovation and Scientific Affairs, 34350 Vendres, France.
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, 43126 Parma, Italy.
| |
Collapse
|
39
|
Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, Mansourati J, Goanvec C. Effect of personalized moderate exercise training on Wistar rats fed with a fructose enriched water. Nutr Metab (Lond) 2018; 15:69. [PMID: 30305835 PMCID: PMC6171221 DOI: 10.1186/s12986-018-0307-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Metabolic Syndrom has become a public health problem. It mainly results from the increased consumption of fat and sugar. In this context, the benefits of personalized moderate exercise training were investigated on a metabolic syndrome male wistar rat model food with fructose drinking water (20–25% w/v). Different markers including body weight, metabolic measurements, blood biochemistry related to metabolic syndrome complications have been evaluated. Methods Male Wistar rats were randomly allocated to 4 groups: control (sedentary (C, n = 8) and exercise trained (Ex, n = 8)), fructose fed (sedentary (FF, n = 8) and exercise trained fructose fed rats (ExFF, n = 10)). ExFF and Ex rats were trained at moderate intensity during the last 6 weeks of the 12 weeks-long protocol of fructose enriched water. Metabolic control was determined by measuring body weight, fasting blood glucose, HOMA 2-IR, HIRI, MISI, leptin, adiponectin, triglyceridemia and hepatic dysfunction. Results After 12 weeks of fructose enriched diet, rats displayed on elevated fasting glycaemia and insulin resistance. A reduced food intake, as well as increased body weight, total calorie intake and heart weight were also observed in FF group. Concerning biochemical markers, theoretical creatinine clearance, TG levels and ASAT/ALAT ratio were also affected, without hepatic steatosis. Six weeks of 300 min/week of moderate exercise training have significantly improved overweight, fasting glycaemia, HOMA 2-IR, MISI without modify HIRI. Exercise also decreased the plasma levels of leptin, adiponectin and the ratio leptin/adiponectin. Regarding liver function and dyslipidemia, the results were less clear as the effects of exercise and fructose-enriched water interact together, and, sometimes counteract each other. Conclusion Our results indicated that positive health effects were achieved through a personalized moderate training of 300 min per week (1 h/day and 5 days/week) for 6 weeks. Therefore, regular practice of aerobic physical exercise is an essential triggering factor to attenuate MetS disorders induced by excessive fructose consumption.
Collapse
Affiliation(s)
- Julie Dupas
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Annie Feray
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Anthony Guernec
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Morgane Pengam
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Manon Inizan
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,2UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29237 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - François Guerrero
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,UFR Sciences du Sport et de l'Education, 20 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Jacques Mansourati
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,4Département de Cardiologie, Centre Hospitalo-Universitaire de Brest, Boulevard Tanguy Prigent, 29200 Brest, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| | - Christelle Goanvec
- 1EA 4324: Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.,2UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29237 Brest Cedex 3, France.,IBSAM: Institut Brestois Santé Agro Matière, UFR Médecine, avenue Camille Desmoulin, 29200 Brest, France
| |
Collapse
|
40
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
41
|
Meng LB, Qi R, Xu L, Chen Y, Yu Z, Guo P, Gong T. The more critical murderer of atherosclerosis than lipid metabolism: chronic stress. Lipids Health Dis 2018; 17:143. [PMID: 29921279 PMCID: PMC6009046 DOI: 10.1186/s12944-018-0795-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The mortality of atherosclerotic cerebrovascular disease is on the rise, and changes in intimal and media thickness are a leading cause of cerebral ischemia-related death. Levels of low density lipoprotein cholesterol (LDLC), total cholesterol (TC), and chronic stress (CS) are all recognized risk factors for atherosclerosis (AS). However, the leading independent risk factor is indistinct. This study explored the effects of chronic stress, LDLC, and TC on AS and intimal and media thickness, preliminarily explored the main risk factor of AS, and analyzed the related histocyte mechanisms for macrophages and endothelial cells. METHODS Conditions include normal, high-fat diet (HF), and HF plus CS. The correlations between intimal and media thickness and general risk factors were analyzed using χ2, Spearman's rho test, and multiple linear regression. Univariate Cox regression was used to identify potential factors that affect the non-depression time (NDT). We performed a ROC curve to determine the ability of this condition to predict the thickness. Immunohistochemistry was implemented to detect macrophagocytes and endotheliocytes. RESULTS Based on χ2 and Spearman's rho test, LDLC, TC, and CS are all related with intimal and media thickness (P < 0.05). However, in multiple linear regression, CS is still a risk factor of thickness (P < 0.05) but LDLC and TC are not. High levels of LDLC, TC, and CS were correlated with poor NDT (P < 0.05). This condition can predict the thickness sensitively. The endarterium is richest in macrophagocytes, and the arrangement of endotheliocytes is disordered and cracked under CS. CONCLUSION CS is the main independent risk factor for AS and intimal (and media) thickness, rather than LDLC or TC.
Collapse
Affiliation(s)
- Ling-bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Ruomei Qi
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Lei Xu
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Yuhui Chen
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Gong
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730 People’s Republic of China
| |
Collapse
|
42
|
Long-term sertraline treatment and depression effects on carotid artery atherosclerosis in premenopausal female primates. Menopause 2018; 24:1175-1184. [PMID: 28609387 DOI: 10.1097/gme.0000000000000916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Atherosclerosis developed during premenopausal years predicts postmenopausal atherosclerosis burden. Selective serotonin reuptake inhibitor (SSRI) antidepressants, recently approved for hot flushes, have been associated with increased ischemic stroke risk in several observational studies; however, effects on carotid artery atherosclerosis, a strong predictor of future vascular events, are unknown. METHODS The effects of chronic administration of a commonly prescribed SSRI, sertraline HCl, on atherosclerosis in the carotid artery was assessed in a placebo-controlled, longitudinal, randomized study of premeonopausal depressed and nondepressed cynomolgus monkeys (Macaca fascicularis; n = 42). Physiologic and behavioral phenotypes were evaluated at baseline and after 18 months of oral sertraline (20 mg/kg, n = 21) or placebo (n = 21). Carotid artery atherosclerosis was measured post mortem via histomorphometry. RESULTS Atherosclerosis extent in the right common carotid artery, on average, was 60% greater in sertraline-treated depressed monkeys compared with all other groups (P = 0.028). The results of linear regression analyses suggested that sertraline and depression effects on atherosclerosis were not mediated by their effects on behavioral and physiological risk factors. CONCLUSIONS These findings suggest that chronic SSRI treatment is associated with the progression of carotid artery atherosclerosis, which may increase the risk for future vascular events, particularly in depressed women. The underlying mechanism remains to be determined, but does not appear to be related to SSRI effects on traditional cardiovascular risk factors.
Collapse
|
43
|
Lipid-Lowering Effect of the Pleurotus eryngii (King Oyster Mushroom) Polysaccharide from Solid-State Fermentation on Both Macrophage-Derived Foam Cells and Zebrafish Models. Polymers (Basel) 2018; 10:polym10050492. [PMID: 30966526 PMCID: PMC6415515 DOI: 10.3390/polym10050492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Hyperlipidemia is a key risk factor in inducing fatty liver, hypertension, atherosclerosis and cerebrovascular diseases. Previous studies have verified that polysaccharides from fruiting bodies (PEPE) of Pleurotus eryngii (king oyster mushroom) are capable of decreasing the lipid content. In this study, the P. eryngii polysaccharide is obtained by solid-state fermentation (PESF) using lignocellulosic wastes, corn-cobs and wheat bran. The high-performance liquid chromatography (HPLC) assays indicate that PESF has a similar composition to that of PEPE. Meanwhile, PESF has no detectable toxicity and is able to significantly inhibit foam-cell formation in murine macrophage cells (RAW264.7) induced by oxidized low-density lipoprotein. Further verification indicates that PESF has lipid-lowering effects during the lipid absorption phase in a zebrafish hyperlipidemia model. Our findings suggest that the P. eryngii polysaccharide from solid-state fermentation (PESF) can be used as a valuable lipid-lowering food additive or raw materials for producing lipid-lowering drugs.
Collapse
|
44
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Progression of calcific aortic valve sclerosis in WHHLMI rabbits. Atherosclerosis 2018; 273:8-14. [PMID: 29654986 DOI: 10.1016/j.atherosclerosis.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Aortic valve stenosis (AS) is the most common valvular heart disease and can be life-threatening. The pathogenesis of aortic valve calcification remains largely unknown, primarily due to the lack of an adequate animal model. The high-cholesterol diet-induced AS model in rabbits is one of the established models, but it has the significant limitation of liver dysfunction leading to low survival rates. We hypothesized that a myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbit, an animal model of familial hypercholesterolemia and atherosclerosis, is a useful animal model of AS. METHODS WHHLMI rabbits, aged 20 months and 30 months (n = 19), and control Japanese White rabbits (n = 4), aged 30 months, were used and evaluated by echocardiography under anesthesia. Pathological evaluation and quantitative analyses by polymerase chain reaction (PCR) were also performed. RESULTS The lipid profile was similar between 20 months and 30 months. Two rabbits died due to spontaneous myocardial infarction during the study. Thirty-month-old WHHLMI rabbits exhibited significantly smaller aortic valve area (0.22 ± 0.006 cm2vs. 0.12 ± 0.01 cm2, p < 0.05) and higher maximal transvalvular pressure gradient (7.0 ± 0.32 vs. 9.9 ± 0.95 mmHg, p < 0.05) than 20 month-old rabbits. Macroscopic examination of excised aortic valves demonstrated thickened and degenerated valve leaflets at 30 months. Histological evaluation confirmed thickened leaflets with calcified nodules at 30 months. Real-time PCR of resected aortic valve also showed increased expression level of calcification-related molecules including osteopontin, Sox9, Bmp2, RANKL, osteoprotegerin, and Runx2 (p < 0.05 each) in 30-month-old rabbits. CONCLUSIONS WHHLMI rabbits may be useful models of early-stage AS in vivo.
Collapse
|
46
|
Gillis K, Roosens B, Bala G, Remory I, Hernot S, Delvenne P, Mestrez F, Droogmans S, Cosyns B. Interaction of renal failure and dyslipidaemia in the development of calcific aortic valve disease in rats. Acta Cardiol 2017; 72:537-546. [PMID: 28657494 DOI: 10.1080/00015385.2017.1311138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is currently the most common heart valve disease worldwide and is known to be an active process. Both renal failure and dyslipidaemia are considered to be promoting factors for the development of valvular calcifications. The aim of this study is to prospectively evaluate the respective contribution and interaction of renal failure and dyslipidaemia on CAVD in a rat model, using echocardiography and compared with histology. METHODS AND RESULTS Sixty-eight male Wistar rats were prospectively divided in eight groups, each fed a different diet to induce renal failure alone and combined with hyperlipidaemia or hypercholesterolemia. CAVD was detected and quantified by calibrated integrated backscatter of ultrasound (cIB) and compared with the histological calcium score. The study follow-up was 20 weeks. At the end of the study, the cIB value and the calcium score of the aortic valve were significantly increased in the group with isolated renal failure but not with dyslipidaemia. The combination of renal failure with high cholesterol or high-fat diet did not significantly increase calcifications further. CONCLUSIONS Renal failure alone does induce aortic valve calcifications in a rat model of CAVD, whereas dyslipidaemia alone does not. The combination of renal failure with dyslipidaemia does not increase calcification further. These findings suggest that a combination of atherosclerotic and calcifying factors is not required to induce aortic valve calcifications in this model.
Collapse
Affiliation(s)
- Kris Gillis
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Bram Roosens
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Gezim Bala
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Isabel Remory
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU) of Liège, Liège, Belgium
| | - Fabienne Mestrez
- Department of Nephrology, University Hospital (CHU) Ambroise Paré, Mons, Belgium
| | - Steven Droogmans
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Bernard Cosyns
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| |
Collapse
|
47
|
Mahaney MC, Karere GM, Rainwater DL, Voruganti VS, Dick EJ, Owston MA, Rice KS, Cox LA, Comuzzie AG, VandeBerg JL. Diet-induced early-stage atherosclerosis in baboons: Lipoproteins, atherogenesis, and arterial compliance. J Med Primatol 2017. [PMID: 28620920 DOI: 10.1111/jmp.12283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The purpose of this study was to determine whether dietary manipulation can reliably induce early-stage atherosclerosis and clinically relevant changes in vascular function in an established, well-characterized non-human primate model. METHODS We fed 112 baboons a high-cholesterol, high-fat challenge diet for two years. We assayed circulating biomarkers of cardiovascular disease (CVD) risk, at 0, 7, and 104 weeks into the challenge; assessed arterial compliance noninvasively at 104 weeks; and measured atherosclerotic lesions in three major arteries at necropsy. RESULTS We observed evidence of atherosclerosis in all but one baboon fed the two-year challenge diet. CVD risk biomarkers, the prevalence, size, and complexity of arterial lesions, plus consequent arterial stiffness, were increased in comparison with dietary control animals. CONCLUSIONS Feeding baboons a high-cholesterol, high-fat diet for two years reliably induces atherosclerosis, with risk factor profiles, arterial lesions, and changes in vascular function also seen in humans.
Collapse
Affiliation(s)
- Michael C Mahaney
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Genesio M Karere
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - David L Rainwater
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Venkata S Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina, Kannapolis, NC, USA
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael A Owston
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Karen S Rice
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
48
|
Gimpfl M, Rozman J, Dahlhoff M, Kübeck R, Blutke A, Rathkolb B, Klingenspor M, Hrabě de Angelis M, Öner-Sieben S, Seibt A, Roscher AA, Wolf E, Ensenauer R. Modification of the fatty acid composition of an obesogenic diet improves the maternal and placental metabolic environment in obese pregnant mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1605-1614. [PMID: 28235645 DOI: 10.1016/j.bbadis.2017.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/24/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Peri-conceptional exposure to maternal obesogenic nutrition is associated with in utero programming of later-life overweight and metabolic disease in the offspring. We aimed to investigate whether dietary intervention with a modified fatty acid quality in an obesogenic high-calorie (HC) diet during the preconception and gestational phases can improve unfavourable effects of an adipogenic maternal environment. In NMRI mice, peri-conceptional and gestational obesity was induced by feeding a HC diet (controls), and they were compared with dams on a fat-modified (Fat-mod) HC diet of the same energy content but enriched with medium-chain fatty acids (MCFAs) and adjusted to a decreased ratio of n-6 to n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). Effects on maternal and placental outcomes at delivery (day 17.5 post coitum) were investigated. Despite comparable energy assimilation between the two groups of dams, the altered fatty acid composition of the Fat-mod HC diet induced lower maternal body weight, weights of fat depots, adipocyte size, and hepatic fat accumulation compared to the unmodified HC diet group. Further, there was a trend towards lower fasting glucose, insulin and leptin concentrations in dams fed the Fat-mod HC diet. Phenotypic changes were accompanied by inhibition of transcript and protein expression of genes involved in hepatic de novo lipogenesis comprising PPARG2 and its target genes Fasn, Acaca, and Fabp4, whereas regulation of other lipogenic factors (Srebf1, Nr1h3, Abca1) appeared to be more complex. The modified diet led to a sex-specific placental response by upregulating PPARG-dependent fatty acid transport gene expression in female versus male placentae. Qualitative modification of the fatty acid spectrum of a high-energy maternal diet, using a combination of both MCFAs and n-3 LC-PUFAs, seems to be a promising interventional approach to ameliorate the adipogenic milieu of mice before and during gestation.
Collapse
Affiliation(s)
- Martina Gimpfl
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Raphaela Kübeck
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany; Molecular Nutritional Medicine, Else-Kröner Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising, Germany.
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, 80539 Munich, Germany.
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else-Kröner Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising, Germany.
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.
| | - Soner Öner-Sieben
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - Annette Seibt
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - Adelbert A Roscher
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany.
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Regina Ensenauer
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337 Munich, Germany; Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
49
|
Gopal K, Ussher JR. Sugar-sweetened beverages and vascular function: food for thought. Am J Physiol Heart Circ Physiol 2017; 312:H285-H288. [DOI: 10.1152/ajpheart.00783.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; and
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; and
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Abstract
This chapter provides an introduction to animals that are commonly used for research. It presents information on basic care topics such as biology, behavior, housing, feeding, sexing, and breeding of these animals. The chapter provides some insight into the reasons why these animals are used in research. It also gives an overview of techniques that can be utilized to collect blood or to administer drugs or medicine. Each section concludes with a brief description of how to recognize abnormal signs, in addition to lists of various diseases.
Collapse
|