1
|
Tavares-Marcos C, Correia M, de Jesus BB. Telomeres as hallmarks of iPSC aging: a review on telomere dynamics during stemness and cellular reprogramming. Ageing Res Rev 2025:102773. [PMID: 40414363 DOI: 10.1016/j.arr.2025.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Telomeres, the protective ends of chromosome, are key to tissue repair and regeneration. Telomere shortening is linked to aging and age-related disorders, while excessive telomerase activity may support tissue regeneration or transformation. Some of the functions of telomeres and telomerase may be mediated by its important role in the process of stemness. Active telomerase, and subsequent telomerase-dependent telomere extension, supports stem-cells self-renewal and pluripotency - essential for tissue healing. During cellular reprogramming, differentiated cells are converted into induced pluripotent stem cells (iPSCs), which resemble embryonic stem cells. During iPSC derivation, telomere length is reset, enhancing iPSCs' regenerative potential. During this process, incomplete telomerase activation and telomere extension can lead to genomic instability and/or haltered cell functionality. Understanding the intricate relation of telomeres, telomerase and stemness may be critical when designing novel cell-based therapies targeting degenerative diseases or to unlock strategies to delay aging. Here, we explore the recent bibliography linking these areas, raising awareness of their important when designing novel breakthroughs in health and longevity.
Collapse
Affiliation(s)
- Carlota Tavares-Marcos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Hoseini SM, Montazeri F. The influence of cell source on the senescence of human mesenchymal stem/stromal cells. Hum Cell 2025; 38:87. [PMID: 40221541 DOI: 10.1007/s13577-025-01213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
While mesenchymal stem/stromal cells (MSCs) exhibit the ability to self-renew, they are not immortal; they eventually reach a point of irreversible growth cessation and functional deterioration following a limited series of population doublings, referred to as replicative senescence. When evaluated according to the criteria set by the International Society for Cell Therapy (ISCT), MSCs show significant differences in their senescence patterns and other characteristics related to their phenotype and function. These differences are attributed to the source of the MSCs and the conditions in which they are grown. MSCs derived from fetal or adult sources have variations in their genome stability, as well as in the expression and epigenetic profile of the cells, which in turn affects their secretome. Understanding the key factors of MSC senescence based on cell source can help to develop effective strategies for regulating senescence and improving the therapeutic potential.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, No. 1. Safaeyeh. Bou-Al Ave., Yazd, 8916877391, Iran.
| |
Collapse
|
3
|
Reed X, Weller CA, Saez-Atienzar S, Beilina A, Solaiman S, Portley M, Kaileh M, Roy R, Ding J, Zenobia Moore A, Thad Whitaker D, Traynor BJ, Raphael Gibbs J, Scholz SW, Cookson MR. Characterization of DNA methylation in PBMCs and donor-matched iPSCs shows methylation is reset during stem cell reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.627515. [PMID: 39713361 PMCID: PMC11661179 DOI: 10.1101/2024.12.13.627515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
DNA methylation is an important epigenetic mechanism that helps define and maintain cellular functions. It is influenced by many factors, including environmental exposures, genotype, cell type, sex, and aging. Since age is the primary risk factor for developing neurodegenerative diseases, it is important to determine if aging-related DNA methylation is retained when cells are reprogrammed to an induced Pluripotent Stem Cell (iPSC) state. Here, we selected peripheral blood mononuclear cells (PBMCs; n = 99) from a cohort of diverse and healthy individuals enrolled in the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (GESTALT) study to convert to iPSCs. After reprogramming we evaluated the resulting iPSCs for DNA methylation signatures to determine if they reflect the confounding factors of age and environmental factors. We used genome-wide DNA methylation arrays in both cell types to show that the epigenetic clock is largely reset to an early methylation age after conversion of PBMCs to iPSCs. We further examined the epigenetic age of each cell type using an Epigenome-wide Association Study (EWAS). Finally, we identified a set of methylation Quantitative Trait Loci (methQTL) in each cell type. Our results show that age-related DNA methylation is largely reset in iPSCs, and each cell type has a unique set of methylation sites that are genetically influenced.
Collapse
Affiliation(s)
- Xylena Reed
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cory A. Weller
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20037, USA
| | - Sara Saez-Atienzar
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Makayla Portley
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan J. Traynor
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Chandrababu A, Puthumana J. CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition. Cytotechnology 2024; 76:619-652. [PMID: 39435422 PMCID: PMC11490478 DOI: 10.1007/s10616-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/15/2024] [Indexed: 10/23/2024] Open
Abstract
Food security is a major concern due to the growing population and climate change. A method for increasing food production is the use of modern biotechnology, such as cell culture, marker-assisted selection, and genetic engineering. Cellular agriculture has enabled the production of cell-cultivated meat in bioreactors that mimic the properties of conventional meat. Furthermore, 3D food printing technology has improved food production by adding new nutritional and organoleptic properties. Marker-assisted selection and genetic engineering could play an important role in producing animals and crops with desirable traits. Therefore, integrating cellular agriculture with genetic engineering technology could be a potential strategy for the production of cell-based meat and seafood with high health benefits in the future. This review highlights the production of cell-cultivated meat derived from a variety of species, including livestock, birds, fish, and marine crustaceans. It also investigates the application of genetic engineering methods, such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein), in the context of cellular agriculture. Moreover, it examines aspects such as food safety, regulatory considerations, and consumer acceptance of genetically engineered cell-cultivated meat and seafood.
Collapse
Affiliation(s)
- Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| |
Collapse
|
5
|
Nihad M, Shenoy P S, Bose B. Spontaneous Efficient Differentiation of Human Pluripotent Stem Cells (hPSC) Upon Co-culture of hPSCs with Human Neonatal Foreskin Fibroblasts in 3D. Methods Mol Biol 2024. [PMID: 39316337 DOI: 10.1007/7651_2024_569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pluripotent stem cells (PSCs) form well-formed embryoid bodies (EBs) in 3D culture. These EBs are formed in culture media lacking leukemia inhibitory factor (LIF) or basic fibroblast growth factor (bFGF) in mouse and human PSCs, respectively. EBs are excellent technical tools for understanding developmental biology and inducing controlled differentiation in succeeding experimental steps. Technically speaking, EBs are spontaneously differentiated PSCs in 3D and exhibit all three lineages in a time-point/sequential manner. For example, ectoderm will form first, followed by mesoderm and endoderm. We have attempted to co-culture human neonatal foreskin-derived fibroblast cells in our laboratory with the PSCs first in 2D conditions followed by the induction of EBs (PSC+fibroblasts co-cultured) in low attachment dishes. We also performed spontaneous differentiation of such EBs (co-cultured with fibroblasts). We checked the presence of markers of various lineages, namely, ectoderm, mesoderm, and endoderm in days 6, 10, and 12 day EBs. We have also compared the fibroblast co-cultured EBs, along with control EBs (derived from only PSCs). This co-culture system mimics the natural conditions of uterine implantation and the role of the endometrial fibroblasts in the induction of further embryonic development. The fibroblast co-cultured iPSC EBs had better roundness scores than the normal iPSC EBs and had a higher expression of lineage-specific markers.
Collapse
Affiliation(s)
- Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.
| |
Collapse
|
6
|
Estep KN, Tobias JW, Fernandez RJ, Beveridge BM, Johnson FB. Telomeric DNA breaks in human induced pluripotent stem cells trigger ATR-mediated arrest and telomerase-independent telomere damage repair. J Mol Cell Biol 2024; 16:mjad058. [PMID: 37771090 PMCID: PMC11429528 DOI: 10.1093/jmcb/mjad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Although mechanisms of telomere protection are well-defined in differentiated cells, how stem cells sense and respond to telomere dysfunction, in particular telomeric double-strand breaks (DSBs), is poorly characterized. Here, we report the DNA damage signaling, cell cycle, and transcriptome changes in human induced pluripotent stem cells (iPSCs) in response to telomere-internal DSBs. We engineer human iPSCs with an inducible TRF1-FokI fusion protein to acutely induce DSBs at telomeres. Using this model, we demonstrate that TRF1-FokI DSBs activate an ATR-dependent DNA damage response, which leads to p53-independent cell cycle arrest in G2. Using CRISPR-Cas9 to cripple the catalytic domain of telomerase reverse transcriptase, we show that telomerase is largely dispensable for survival and lengthening of TRF1-FokI-cleaved telomeres, which instead are effectively repaired by robust homologous recombination (HR). In contrast to HR-based telomere maintenance in mouse embryonic stem cells, where HR causes ZSCAN4-dependent extension of telomeres beyond their initial lengths, HR-based repair of telomeric breaks is sufficient to maintain iPSC telomeres at a normal length, which is compatible with sustained survival of the cells over several days of TRF1-FokI induction. Our findings suggest a previously unappreciated role for HR in telomere maintenance in telomerase-positive iPSCs and reveal distinct iPSC-specific responses to targeted telomeric DNA damage.
Collapse
Affiliation(s)
- Katrina N Estep
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Quantiative Biosciences, Merck & Co., Inc., West Point, PA 19486, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brinley M Beveridge
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Dogan F, Forsyth NR. TERT Promoter Methylation Is Oxygen-Sensitive and Regulates Telomerase Activity. Biomolecules 2024; 14:131. [PMID: 38275760 PMCID: PMC10813121 DOI: 10.3390/biom14010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Telomere repeats protect linear chromosomes from degradation, and telomerase has a prominent role in their maintenance. Telomerase has telomere-independent effects on cell proliferation, DNA replication, differentiation, and tumorigenesis. TERT (telomerase reverse transcriptase enzyme), the catalytic subunit of telomerase, is required for enzyme activity. TERT promoter mutation and methylation are strongly associated with increased telomerase activation in cancer cells. TERT levels and telomerase activity are downregulated in stem cells during differentiation. The link between differentiation and telomerase can provide a valuable tool for the study of the epigenetic regulation of TERT. Oxygen levels can affect cellular behaviors including proliferation, metabolic activity, stemness, and differentiation. The role of oxygen in driving TERT promoter modifications in embryonic stem cells (ESCs) is poorly understood. We adopted a monolayer ESC differentiation model to explore the role of physiological oxygen (physoxia) in the epigenetic regulation of telomerase and TERT. We further hypothesized that DNMTs played a role in physoxia-driven epigenetic modification. ESCs were cultured in either air or a 2% O2 environment. Physoxia culture increased the proliferation rate and stemness of the ESCs and induced a slower onset of differentiation than in ambient air. As anticipated, downregulated TERT expression correlated with reduced telomerase activity during differentiation. Consistent with the slower onset of differentiation in physoxia, the TERT expression and telomerase activity were elevated in comparison to the air-oxygen-cultured ESCs. The TERT promoter methylation levels increased during differentiation in ambient air to a greater extent than in physoxia. The chemical inhibition of DNMT3B reduced TERT promoter methylation and was associated with increased TERT gene and telomerase activity during differentiation. DNMT3B ChIP (Chromatin immunoprecipitation) demonstrated that downregulated TERT expression and increased proximal promoter methylation were associated with DNMT3B promoter binding. In conclusion, we have demonstrated that DNMT3B directly associates with TERT promoter, is associated with differentiation-linked TERT downregulation, and displays oxygen sensitivity. Taken together, these findings help identify novel aspects of telomerase regulation that may play a role in better understanding developmental regulation and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatma Dogan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK
- Vice Principals Office, Kings College, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|
8
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
9
|
de Bardet JC, Cardentey CR, González BL, Patrone D, Mulet IL, Siniscalco D, Robinson-Agramonte MDLA. Cell Immortalization: In Vivo Molecular Bases and In Vitro Techniques for Obtention. BIOTECH 2023; 12:14. [PMID: 36810441 PMCID: PMC9944833 DOI: 10.3390/biotech12010014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Somatic human cells can divide a finite number of times, a phenomenon known as the Hayflick limit. It is based on the progressive erosion of the telomeric ends each time the cell completes a replicative cycle. Given this problem, researchers need cell lines that do not enter the senescence phase after a certain number of divisions. In this way, more lasting studies can be carried out over time and avoid the tedious work involved in performing cell passes to fresh media. However, some cells have a high replicative potential, such as embryonic stem cells and cancer cells. To accomplish this, these cells express the enzyme telomerase or activate the mechanisms of alternative telomere elongation, which favors the maintenance of the length of their stable telomeres. Researchers have been able to develop cell immortalization technology by studying the cellular and molecular bases of both mechanisms and the genes involved in the control of the cell cycle. Through it, cells with infinite replicative capacity are obtained. To obtain them, viral oncogenes/oncoproteins, myc genes, ectopic expression of telomerase, and the manipulation of genes that regulate the cell cycle, such as p53 and Rb, have been used.
Collapse
Affiliation(s)
- Javier Curi de Bardet
- Department of Neurobiology, International Center for Neurological Restoration, Havana 11300, Cuba
| | | | - Belkis López González
- Department of Allergy, Calixto Garcia General University Hospital, Havana 10400, Cuba
| | - Deanira Patrone
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | |
Collapse
|
10
|
Mesquita FCP, Leite ES, Morrissey J, Freitas C, Coelho-Sampaio T, Hochman-Mendez C. Polymerized Laminin-521: A Feasible Substrate for Expanding Induced Pluripotent Stem Cells at a Low Protein Concentration. Cells 2022; 11:cells11243955. [PMID: 36552719 PMCID: PMC9777247 DOI: 10.3390/cells11243955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Laminins (LNs) play a central role in the self-assembly and maintenance of basement membranes and are involved in critical interactions between cells and other extracellular matrix (ECM) proteins. Among the defined, xeno-free ECM culture matrices, LNs-namely LN521-have emerged as promising coating systems for the large-scale expansion of induced pluripotent stem cells (iPSCs). The biologic activity of LNs is enhanced by their acidification-induced self-polymerization into a cell-associated network called polylaminin (polyLN), which can recapitulate the native-like polymeric array in a cell-free system. Here, we show for the first time to our knowledge that polyLN521 displays a native-like hexagonal-like structure and that, at basal and low concentrations, it permits the large-scale expansion of human iPSCs. Human iPSCs expanded with polyLN521 maintained the pluripotent state and showed no impairment of karyotype stability or telomere length. These results suggest that low-concentration polyLN521 is a stable and cost-effective coating for large-scale iPSC expansion.
Collapse
Affiliation(s)
- Fernanda C. P. Mesquita
- Department of Regenerative Medicine Research, The Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA
| | - Eliel S. Leite
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho B1-011, 373, Rio de Janeiro 21941-902, Brazil
| | - Jacquelynn Morrissey
- Department of Regenerative Medicine Research, The Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA
| | - Catarina Freitas
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho B1-011, 373, Rio de Janeiro 21941-902, Brazil
| | - Tatiana Coelho-Sampaio
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho B1-011, 373, Rio de Janeiro 21941-902, Brazil
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
11
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
12
|
Kotasová H, Capandová M, Pelková V, Dumková J, Koledová Z, Remšík J, Souček K, Garlíková Z, Sedláková V, Rabata A, Vaňhara P, Moráň L, Pečinka L, Porokh V, Kučírek M, Streit L, Havel J, Hampl A. Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells. Tissue Eng Regen Med 2022; 19:1033-1050. [PMID: 35670910 PMCID: PMC9478014 DOI: 10.1007/s13770-022-00458-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.
Collapse
Affiliation(s)
- Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Capandová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Zuzana Koledová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ján Remšík
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Current Address: Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Karel Souček
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Volodymyr Porokh
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martin Kučírek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Libor Streit
- Department of Plastic and Cosmetic Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Plastic and Cosmetic Surgery, St. Anne's Faculty Hospital, Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
13
|
Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:459. [PMID: 36064437 PMCID: PMC9446809 DOI: 10.1186/s13287-022-03145-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Over the last 2 decades, induced pluripotent stem cells (iPSCs) have had various potential applications in various medical research areas, from personalized medicine to disease treatment. Different cellular resources are accessible for iPSC generation, such as keratinocytes, skin fibroblasts, and blood or urine cells. However, all these sources are somatic cells, and we must make several changes in a somatic cell's transcriptome and chromatin state to become a pluripotent cell. It has recently been revealed that cancer cells can be a new source of iPSCs production. Cancer cells show similarities with iPSCs in self-renewal capacity, reprogramming potency, and signaling pathways. Although genetic abnormalities and potential tumor formation in cancer cells pose a severe risk, reprogrammed cancer-induced pluripotent stem cells (cancer-iPSCs) indicate that pluripotency can transiently overcome the cancer phenotype. This review discusses whether cancer cells can be a preferable source to generate iPSCs.
Collapse
|
14
|
Shi Y, Liu G, Wu R, Mack DL, Sun XS, Maxwell J, Guan X, Atala A, Zhang Y. Differentiation Capacity of Human Urine-Derived Stem Cells to Retain Telomerase Activity. Front Cell Dev Biol 2022; 10:890574. [PMID: 35693947 PMCID: PMC9186504 DOI: 10.3389/fcell.2022.890574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Telomerase activity is essential for the self-renewal and potential of embryonic, induced pluripotent, and cancer stem cells, as well as a few somatic stem cells, such as human urine-derived stem cells (USCs). However, it remains unclear how telomerase activity affects the regeneration potential of somatic stem cells. The objective of this study was to determine the regenerative significance of telomerase activity, particularly to retain cell surface marker expression, multipotent differentiation capability, chromosomal stability, and in vivo tumorigenic transformation, in each clonal population of human primary USCs. In total, 117 USC specimens from 10 healthy male adults (25–57 years of age) were obtained. Polymerase chain reaction amplification of a telomeric repeat was used to detect USCs with positive telomerase activity (USCsTA+). A total of 80 USCsTA+ (70.2%) were identified from 117 USC clones, but they were not detected in the paired normal bladder smooth muscle cell and bone marrow stromal cell specimens. In the 20–40 years age group, approximately 75% of USC clones displayed positive telomerase activity, whereas in the 50 years age group, 59.2% of the USC clones expressed positive telomerase activity. USCsTA+ extended to passage 16, underwent 62.0 ± 4.8 population doublings, produced more cells, and were superior for osteogenic, myogenic, and uroepithelial differentiation compared to USCsTA−. Importantly, USCs displayed normal chromosome and no oncological transformation after being implanted in vivo. Overall, as a safe cell source, telomerase-positive USCs have a robust regenerative potential in cell proliferation and multipotent differentiation capacity.
Collapse
Affiliation(s)
- Yingai Shi
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Jilin, China
| | - Guihua Liu
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Reproductive Medical Center, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongpei Wu
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - David L. Mack
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Department of Rehabilitation Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Xiuzhi Susan Sun
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Bio-Materials and Technology Lab, Grain Science and Industry, Bio and Agricultural Engineering, Kansas State University, Kansas, KS, United States
| | - Joshua Maxwell
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Xuan Guan
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- Cardiovascular Disease AdvenHealth Orland, Orland, FL, United States
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, United States
- *Correspondence: Yuanyuan Zhang,
| |
Collapse
|
15
|
Dorgaleleh S, Naghipoor K, Hajimohammadi Z, Dastaviz F, Oladnabi M. Molecular insight of dyskeratosis congenita: Defects in telomere length homeostasis. J Clin Transl Res 2022; 8:20-30. [PMID: 35097237 PMCID: PMC8791241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare disease and is a heterogenous disorder, with its inheritance patterns as autosomal dominant, autosomal recessive, and X-linked recessive. This disorder occurs due to faulty maintenance of telomeres in stem cells. This congenital condition is diagnosed with three symptoms: oral leukoplakia, nail dystrophy, and abnormal skin pigmentation. However, because it has a wide range of symptoms, it may have phenotypes similar to other diseases. For this reason, it is necessary to use methods of measuring the Telomere Length (TL) and determining the shortness of the telomere in these patients so that it can be distinguished from other diseases. Today, the Next Generation Sequencing technique accurately detects mutations in the target genes. AIM This work aims to review and summarize how each of the DC genes is involved in TL, and how to diagnose and differentiate the disease using clinical signs and methods to measure TL. It also offers treatments for DC patients, such as Hematopoietic Stem Cell Transplantation and Androgen therapy. RELEVANCE FOR PATIENTS In DC patients, the genes involved in telomere homeostasis are mutated. Because these patients may have an overlapping phenotype with other diseases, it is best to perform whole-exome sequencing after genetics counseling to find the relevant mutation. As DC is a multi-systemic disease, we need to monitor patients frequently through annual lung function tests, ultrasounds, gynecological examinations, and skin examinations.
Collapse
Affiliation(s)
- Saeed Dorgaleleh
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Karim Naghipoor
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Hajimohammadi
- 2Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Dastaviz
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- 3Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran,4Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran,
Corresponding author: Morteza Oladnabi Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran. Tel: +981732459995
| |
Collapse
|
16
|
Chen L, Guttieres D, Koenigsberg A, Barone PW, Sinskey AJ, Springs SL. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials 2021; 280:121274. [PMID: 34871881 DOI: 10.1016/j.biomaterials.2021.121274] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Food systems of the future will need to face an increasingly clear reality - that a protein-rich diet is essential for good health, but traditional meat products will not suffice to ensure safety, sustainability, and equity of food supply chains at a global scale. This paper provides an in-depth analysis of bioprocess technologies needed for cell-based meat production and challenges in reaching commercial scale. Specifically, it reviews state-of-the-art bioprocess technologies, current limitations, and opportunities for research across four domains: cell line development, cell culture media, scaffolding, and bioreactors. This also includes exploring innovations to make cultured meat a viable protein alternative across numerous key performance indicators and for specific applications where traditional livestock is not an option (e.g., local production, space exploration). The paper explores tradeoffs between production scale, product quality, production cost, and footprint over different time horizons. Finally, a discussion explores various factors that may impact the ability to successfully scale and market cultured meat products: social acceptance, environmental tradeoffs, regulatory guidance, and public health benefits. While the exact nature of the transition from traditional livestock to alternative protein products is uncertain, it has already started and will likely continue to build momentum in the next decade.
Collapse
Affiliation(s)
- Lu Chen
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Donovan Guttieres
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Andrea Koenigsberg
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Paul W Barone
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Anthony J Sinskey
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Stacy L Springs
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States.
| |
Collapse
|
17
|
Sui Y, Hu W, Zhang W, Li D, Zhu H, You Q, Zhu R, Yi Q, Tang T, Gao L, Zhu S, Yang T. Insights into homeobox B9: a propeller for metastasis in dormant prostate cancer progenitor cells. Br J Cancer 2021; 125:1003-1015. [PMID: 34247196 PMCID: PMC8476533 DOI: 10.1038/s41416-021-01482-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of treatment failure and cancer-related deaths in prostate cancer (PCa) patients. Our previous study demonstrated that a CD44+ subpopulation isolated from PCa cells or tumours possesses both stem cell properties and metastatic potential, serving as metastatic prostate cancer stem cells (mPCSCs) in PCa metastasis. However, the underlying mechanisms remain unknown. METHODS In this study, we established PCa models via the orthotopic and subcutaneous implantation of different human PCa cancer cell lines, and compared the metastatic efficacy, after which process function analysis of target genes was pinpointed. RESULTS Several novel differentially expressed genes (DEGs) between orthotopic and ectopic tumours were identified. Among them, human homeobox B9 (HOXB9) transcription factor was found to be essential for PCa metastasis, as evidenced by the diminished number of lung metastatic foci derived from orthotopic implantation with HOXB9-deficient CWR22 cells, compared with the control. In addition, HOXB9 protein expression was upregulated in PCa tissues, compared with paracancer and benign prostate hyperplasia tissues. It was also positively correlated with Gleason scores. Gain- and loss-of-function assays showed that HOXB9 altered the expression of various tumour metastasis- and cancer stem cell (CSC) growth-related genes in a transforming growth factor beta (TGFβ)-dependent manner. Moreover, HOXB9 was overexpressed in an ALDH+CD44+CXCR4+CD24+ subpopulation of PCa cells that exhibited enhanced TGFβ-dependent tumorigenic and metastatic abilities, compared with other isogenic PCa cells. This suggests that HOXB9 may contribute to PCa tumorigenesis and metastasis via TGFβ signalling. Of note, ALDH+CD44+CXCR4+CD24+-PCa cells exhibited resistance to castration and antiandrogen therapy and were present in human PCa tissues. CONCLUSION Taken together, our study identified HOXB9 as a critical regulator of metastatic mPCSC behaviour. This occurs through altering the expression of a panel of CSC growth- and invasion/metastasis-related genes via TGFβ signalling. Thus, targeting HOXB9 is a potential novel therapeutic PCa treatment strategy.
Collapse
Affiliation(s)
- Yi Sui
- grid.412615.5Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Hu
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wei Zhang
- grid.488206.00000 0004 4912 1751Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dejian Li
- grid.477929.6Department of Othopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hongbo Zhu
- grid.477929.6Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qinghua You
- grid.477929.6Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rujian Zhu
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qingtong Yi
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Tang
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lili Gao
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shengjuan Zhu
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Yang
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
18
|
Nolte J. Lrrc34 Interacts with Oct4 and Has an Impact on Telomere Length in Mouse Embryonic Stem Cells. Stem Cells Dev 2021; 30:1093-1102. [PMID: 34549596 DOI: 10.1089/scd.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere length maintenance in pluripotent stem cells (PSCs) is a main characteristic and a major premise for their undifferentiated long-term survival. However, little is known about the factors that control telomere length and elongation in these cells. Here, I describe Lrrc34 (leucine-rich repeat 34) as a novel telomere length regulating gene in murine embryonic stem cells. Downregulation of Lrrc34 results in significant reduction of telomerase activity and telomere length over time while also influencing the expression of known telomere length-associated genes. Generating induced PSCs (iPSCs) with Lrrc34 as a fifth factor in classical Yamanaka reprogramming increases the efficiency but did not have an impact on telomere length in the resulting iPSCs. Moreover, Lrrc34 was found to interact with Oct4, connecting the pluripotency network to telomere length regulation.
Collapse
Affiliation(s)
- Jessica Nolte
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Xu T, Cheng D, Zhao Y, Zhang J, Zhu X, Zhang F, Chen G, Wang Y, Yan X, Robertson GP, Gaddameedhi S, Lazarus P, Wang S, Zhu J. Polymorphic tandem DNA repeats activate the human telomerase reverse transcriptase gene. Proc Natl Acad Sci U S A 2021; 118:e2019043118. [PMID: 34155099 PMCID: PMC8256013 DOI: 10.1073/pnas.2019043118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple independent sequence variants of the hTERT locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; hTERT alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.
Collapse
Affiliation(s)
- Tao Xu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - De Cheng
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Yuanjun Zhao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jinglong Zhang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Xiaolu Zhu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Fan Zhang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Gang Chen
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Yang Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shobhan Gaddameedhi
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606
| | - Philip Lazarus
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Shuwen Wang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Jiyue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210;
| |
Collapse
|
20
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
21
|
Xu R, Shen X, Xie H, Zhang H, Liu D, Chen X, Fu Y, Zhang P, Yang Y, Cheng J, Jiang H. Identification of the canonical and noncanonical role of miR-143/145 in estrogen-deficient bone loss. Theranostics 2021; 11:5491-5510. [PMID: 33859759 PMCID: PMC8039936 DOI: 10.7150/thno.55041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Postmenopausal-induced bone loss is mainly caused by declining core transcription factors (TFs) of bone mesenchymal stem cells (BMSCs), but little is known about how miRNAs regulate chromatin structure remodeling of TFs gene to maintain BMSCs function in bone homeostasis. Methods: We examined the serum, salivary and bone samples from Pre- and Post-menopause women by paired analysis and confirmed canonical ceRNA role of MIR143HG and miR-143/145 complexes in cytoplasm and noncanonical role for SOX2 transcription in nucleus (FISH, qRT-PCR, immunostaining, Luciferase assays and ChIP). Moreover, we took advantage of transgenic mice under OVX-induced osteoporosis, studying the in vitro and in vivo effect of miR-143/145 deletion on BMSCs function and bone homeostasis. Last, using miRNA antagonism, antagomiR-143/145 were delivered into bone marrow to treat estrogen-deficient bone loss. Results: Here, we identified miR-143/145 as potential diagnostic candidates for postmenopausal osteoporosis, and miR-143/145 overexpression impaired BMSCs self-renewing and differentiation function. Mechanistically, we confirmed that cytoplasmic miR-143/145 and LncRNA MIR143HG, that controlled by ERβ, cooperatively regulated pluripotency genes translation via canonical ceRNA pathway, and MIR143HG cooperates with miR‑143 to nuclear translocation for co-activation of SOX2 transcription via opening promoter chromatin. Meanwhile, miR‑143/145 were shuttled into osteoclasts in extracellular vesicles and triggered osteoclastic activity by targeting Cd226 and Srgap2. Furthermore, miR-143/145-/- mice or using chemically‑modified antagomiR-143/145 significantly alleviated estrogen-deficient osteoporosis. Conclusions: Our findings reveal a canonical and noncanonical role of miR-143/145 in controlling BMSCs pluripotency and unfold their dual effect on bone formation and bone resorption, suggesting miR-143/145 as promising therapeutic targets for treating estrogen-deficient bone loss.
Collapse
Affiliation(s)
- Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hanyu Xie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hengguo Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dingshan Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
22
|
Zhan S, Huang J. Effects of Cigarette Smoking on Preimplantation Embryo Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:137-150. [PMID: 33523432 DOI: 10.1007/978-981-33-4187-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this chapter, we first gave a brief introduction to the detriments of cigarette smoking, with an emphasis on its adverse effects on female reproductive health. Then, we outlined recent advances about the impacts of cigarette smoke on preimplantation embryo development. Additionally, toxicities of cadmium and benzo(a)pyrene (BaP) at this specific developmental window were also discussed, to illustrate the potential mechanisms involved in cigarette smoke-associated embryotoxicity. Finally, we provide an overview of the issues to be solved in the future research. Further studies about the molecular mechanism of cigarette smoking-associated female infertility may provide vital insights into developing new interventions for the women smokers and thus improving their reproductive outcomes.
Collapse
Affiliation(s)
- Shaoquan Zhan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Babochkina TI, Gerlinskaya LA, Moshkin MP. Generation of donor organs in chimeric animals via blastocyst complementation. Vavilovskii Zhurnal Genet Selektsii 2020; 24:913-921. [PMID: 35088005 PMCID: PMC8763716 DOI: 10.18699/vj20.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
The lack of organs for transplantation is an important problem in medicine today. The growth of organs
in chimeric animals may be the solution of this. The proposed technology is the interspecific blastocyst complementation method in combination with genomic editing for obtaining “free niches” and pluripotent stem cell
production methods. The CRISPR/Cas9 method allows the so-called “free niches” to be obtained for blastocyst
complementation. The technologies of producing induced pluripotent stem cells give us the opportunity to obtain human donor cells capable of populating a “free niche”. Taken together, these technologies allow interspecific
blastocyst complementation between humans and other animals, which makes it possible in the future to grow
human organs for transplantations inside chimeric animals. However, in practice, in order to achieve successful
interspecific blastocyst complementation, it is necessary to solve a number of problems: to improve methods for
producing “chimeric competent” cells, to overcome specific interspecific barriers, to select compatible cell developmental stages for injection and the corresponding developmental stage of the host embryo, to prevent apoptosis of donor cells and to achieve effective proliferation of the human donor cells in the host animal. Also, it is
very important to analyze the ethical aspects related to developing technologies of chimeric organisms with the
participation of human cells. Today, many researchers are trying to solve these problems and also to establish new
approaches in the creation of interspecific chimeric organisms in order to grow human organs for transplantation.
In the present review we described the historical stages of the development of the blastocyst complementation
method, examined in detail the technologies that underlie modern blastocyst complementation, and analyzed
current progress that gives us the possibility to grow human organs in chimeric animals. We also considered the
barriers and issues preventing the successful implementation of interspecific blastocyst complementation in practice, and discussed the further development of this method
Collapse
Affiliation(s)
- T I Babochkina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
McCarthy M, Brown T, Alarcon A, Williams C, Wu X, Abbott RD, Gimble J, Frazier T. Fat-On-A-Chip Models for Research and Discovery in Obesity and Its Metabolic Comorbidities. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:586-595. [PMID: 32216545 PMCID: PMC8196547 DOI: 10.1089/ten.teb.2019.0261] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
The obesity epidemic and its associated comorbidities present a looming challenge to health care delivery throughout the world. Obesity is characterized as a sterile inflammatory process within adipose tissues leading to dysregulated secretion of bioactive adipokines such as adiponectin and leptin, as well as systemic metabolic dysfunction. The majority of current obesity research has focused primarily on preclinical animal models in vivo and two-dimensional cell culture models in vitro. Neither of these generalized approaches is optimal due to interspecies variability, insufficient accuracy with respect to predicting human outcomes, and failure to recapitulate the three-dimensional (3D) microenvironment. Consequently, there is a growing demand and need for more sophisticated microphysiological systems to reproduce more physiologically accurate human white and brown/beige adipose depots. To address this research need, human and murine cell lines and primary cultures are being combined with bioscaffolds to create functional 3D environments that are suitable for metabolically active adipose organoids in both static and perfusion bioreactor cultures. The development of these technologies will have considerable impact on the future pace of discovery for novel small molecules and biologics designed to prevent and treat metabolic syndrome and obesity in humans. Furthermore, when these adipose tissue models are integrated with other organ systems they will have applicability to obesity-related disorders such as diabetes, nonalcoholic fatty liver disease, and osteoarthritis. Impact statement The current review article summarizes the advances made within the organ-onchip field, as it pertains to adipose tissue models of obesity and obesity-related syndromes, such as diabetes, non-alcoholic fatty liver disease, and osteoarthritis. As humanized 3D adipose-derived constructs become more accessible to the research community, it is anticipated that they will accelerate and enhance the drug discovery pipeline for obesity, diabetes, and metabolic diseases by reducing the preclinical evaluation process and improving predictive accuracy. Such developments, applications, and usages of existing technologies can change the paradigm of personalized medicine and create substantial progress in our approach to modern medicine.
Collapse
Affiliation(s)
| | - Theodore Brown
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Andrea Alarcon
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | | | - Xiying Wu
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Rosalyn D. Abbott
- Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Gimble
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Trivia Frazier
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| |
Collapse
|
25
|
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2020; 15:135-143. [PMID: 31656156 DOI: 10.2174/1574362414666191018121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) as a serious public health issue and neurological insult is one of the most severe cause of long-term disability. To date, a variety of techniques have been widely developed to treat central nervous system injury. Currently, clinical treatments are limited to surgical decompression and pharmacotherapy. Because of their negative effects and inefficiency, novel therapeutic approaches are required in the management of SCI. Improvement and innovation of stem cell-based therapies have a huge potential for biological and future clinical applications. Human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are defined by their abilities to divide asymmetrically, self-renew and ultimately differentiate into various cell lineages. There are considerable research efforts to use various types of stem cells, such as ESCs, neural stem cells (NSCs), and mesenchymal stem cells (MSCs) in the treatment of patients with SCI. Moreover, the use of patient-specific iPSCs holds great potential as an unlimited cell source for generating in vivo models of SCI. In this review, we focused on the potential of hPSCs in treating SCI.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Qiao Y, Agboola OS, Hu X, Wu Y, Lei L. Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem Cell Rev Rep 2020; 16:1049-1061. [PMID: 32939647 PMCID: PMC7494249 DOI: 10.1007/s12015-020-10042-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are mainly characterized by their unlimited proliferation abilities and potential to develop into almost any cell type. The creation of this technology has been of great interest to many scientific fields, especially regenerative biology. However, concerns about the safety of iPSC application in transplantation have arisen due to the tumorigenic and immunogenic properties of iPSCs. This review will briefly introduce the developing history of somatic reprogramming and applications of iPSC technology in regenerative medicine. In addition, the review will highlight two challenges to the efficient usage of iPSCs and the underlying mechanisms of these challenges. Finally, the review will discuss the expanding application of iPSC technology in cancer immunotherapy as a potential cancer vaccine and its advantages in auxiliary treatment compared with oncofetal antigen-based and embryonic stem cell (ESC)-based vaccines.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Oluwafemi Solomon Agboola
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, 150081, People's Republic of China.
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
27
|
The association between mitochondrial DNA copy number, telomere length, and tubal pregnancy. Placenta 2020; 97:108-114. [PMID: 32792056 DOI: 10.1016/j.placenta.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
Growing evidence has demonstrated association between the occurrence of tubal ectopic pregnancy (TP) and oxidative stress (OS) status, in which mitochondria and telomeres play important roles. However, little is known about the underlying correlation between TP and the mitochondrial DNA copy number (mtDNAcn) or telomere length (TL) abnormalities. In this study, we found OS level was elevated in TP patients. We hierarchically detected the relative mtDNAcn and TL of villi from normal pregnancy (NP) and TP samples according to different gestational age, fetal sex, maternal age, and BMI. The results revealed that the relative mtDNAcn was significantly lower in the villi in the TP group compared with the NP cohort, which was negatively correlated with OS status. In the NP group, the mtDNAcn in the female subgroup was apparently lower than that in the male subgroup, while no statistical difference was found in the mtDNAcn in the TP group between the female and male subgroups. Moreover, the relative TL in the TP group was at a similar level to the NP group, and no statistical correlation was observed between relative TL and OS level. In summary, our findings indicate that the abnormal level of mtDNAcn rather than TL is correlated with TP, which provides new insights into the mechanism of TP.
Collapse
|
28
|
Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration "Tracheal tissue engineering: an overview". J Tissue Eng Regen Med 2020; 14:653-672. [PMID: 32064791 DOI: 10.1002/term.3019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Airway system is a vital part of the living being body. Trachea is the upper respiratory portion that connects nostril and lungs and has multiple functions such as breathing and entrapment of dust/pathogen particles. Tracheal reconstruction by artificial prosthesis, stents, and grafts are performed clinically for the repairing of damaged tissue. Although these (above-mentioned) methods repair the damaged parts, they have limited applicability like small area wounds and lack of functional tissue regeneration. Tissue engineering helps to overcome the above-mentioned problems by modifying the traditional used stents and grafts, not only repair but also regenerate the damaged area to functional tissue. Bioengineered tracheal replacements are biocompatible, nontoxic, porous, and having 3D biomimetic ultrastructure with good mechanical strength, which results in faster and better tissue regeneration. Till date, the bioengineered tracheal replacements studies have been going on preclinical and clinical levels. Besides that, still many researchers are working at advance level to make extracellular matrix-based acellular, 3D printed, cell-seeded grafts including living cells to overcome the demand of tissue or organ and making the ready to use tracheal reconstructs for clinical application. Thus, in this review, we summarized the tracheal tissue engineering aspects and their outcomes.
Collapse
Affiliation(s)
- Archna Dhasmana
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Atul Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Sagar Rawal
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
29
|
Zhao S, Wang F, Liu L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells. Genes (Basel) 2019; 10:genes10121030. [PMID: 31835618 PMCID: PMC6947546 DOI: 10.3390/genes10121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
30
|
The role of telomere-binding modulators in pluripotent stem cells. Protein Cell 2019; 11:60-70. [PMID: 31350723 PMCID: PMC6949317 DOI: 10.1007/s13238-019-0651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs), ESCs derived by somatic cell nuclear transfer (ntESCs), and induced pluripotent stem cells (iPSCs) have unlimited capacity for self-renewal and pluripotency and can give rise to all types of somatic cells. In order to maintain their self-renewal and pluripotency, PSCs need to preserve their telomere length and homeostasis. In recent years, increasing studies have shown that telomere reprogramming is essential for stem cell pluripotency maintenance and its induced pluripotency process. Telomere-associated proteins are not only required for telomere maintenance in both stem cells, their extra-telomeric functions have also been found to be critical as well. Here, we will discuss how telomeres and telomere-associated factors participate and regulate the maintenance of stem cell pluripotency.
Collapse
|
31
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
32
|
Delgado DA, Zhang C, Gleason K, Demanelis K, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Doherty JA, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum Genet 2018; 138:49-60. [PMID: 30536049 DOI: 10.1007/s00439-018-1964-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
Leukocyte telomere length (LTL) is a heritable trait with two potential sources of heritability (h2): inherited variation in non-telomeric regions (e.g., SNPs that influence telomere maintenance) and variability in the lengths of telomeres in gametes that produce offspring zygotes (i.e., "direct" inheritance). Prior studies of LTL h2 have not attempted to disentangle these two sources. Here, we use a novel approach for detecting the direct inheritance of telomeres by studying the association between identity-by-descent (IBD) sharing at chromosome ends and phenotypic similarity in LTL. We measured genome-wide SNPs and LTL for a sample of 5069 Bangladeshi adults with substantial relatedness. For each of the 6318 relative pairs identified, we used SNPs near the telomeres to estimate the number of chromosome ends shared IBD, a proxy for the number of telomeres shared IBD (Tshared). We then estimated the association between Tshared and the squared pairwise difference in LTL ((ΔLTL)2) within various classes of relatives (siblings, avuncular, cousins, and distant), adjusting for overall genetic relatedness (ϕ). The association between Tshared and (ΔLTL)2 was inverse among all relative pair types. In a meta-analysis including all relative pairs (ϕ > 0.05), the association between Tshared and (ΔLTL)2 (P = 0.01) was stronger than the association between ϕ and (ΔLTL)2 (P = 0.43). Our results provide strong evidence that telomere length (TL) in parental germ cells impacts TL in offspring cells and contributes to LTL h2 despite telomere "reprogramming" during embryonic development. Applying our method to larger studies will enable robust estimation of LTL h2 attributable to direct transmission of telomeres.
Collapse
Affiliation(s)
- Dayana A Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kevin Gleason
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control, Atlanta, GA, 30333, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | | | | | | | | | | | | | - Muhammad Yunus
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jennifer A Doherty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.,Department of Medicine, University of Chicago, Chicago, IL, 60615, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA. .,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA. .,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
33
|
Jose SS, Tidu F, Burilova P, Kepak T, Bendickova K, Fric J. The Telomerase Complex Directly Controls Hematopoietic Stem Cell Differentiation and Senescence in an Induced Pluripotent Stem Cell Model of Telomeropathy. Front Genet 2018; 9:345. [PMID: 30210531 PMCID: PMC6123533 DOI: 10.3389/fgene.2018.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.
Collapse
Affiliation(s)
- Shyam Sushama Jose
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Federico Tidu
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Burilova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kepak
- Pediatric Oncology Translational Research, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Pediatric Hematology and Oncology, The University Hospital Brno, Brno, Czechia
| | - Kamila Bendickova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Fric
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
34
|
Fu H, Tian CL, Ye X, Sheng X, Wang H, Liu Y, Liu L. Dynamics of Telomere Rejuvenation during Chemical Induction to Pluripotent Stem Cells. Stem Cell Reports 2018; 11:70-87. [PMID: 29861168 PMCID: PMC6066961 DOI: 10.1016/j.stemcr.2018.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Chemically induced pluripotent stem cells (CiPSCs) may provide an alternative and attractive source for stem cell-based therapy. Sufficient telomere lengths are critical for unlimited self-renewal and genomic stability of pluripotent stem cells. Dynamics and mechanisms of telomere reprogramming of CiPSCs remain elusive. We show that CiPSCs acquire telomere lengthening with increasing passages after clonal formation. Both telomerase activity and recombination-based mechanisms are involved in the telomere elongation. Telomere lengths strongly indicate the degree of reprogramming, pluripotency, and differentiation capacity of CiPSCs. Nevertheless, telomere damage and shortening occur at a late stage of lengthy induction, limiting CiPSC formation. We find that histone crotonylation induced by crotonic acid can activate two-cell genes, including Zscan4; maintain telomeres; and promote CiPSC generation. Crotonylation decreases the abundance of heterochromatic H3K9me3 and HP1α at subtelomeres and Zscan4 loci. Taken together, telomere rejuvenation links to reprogramming and pluripotency of CiPSCs. Crotonylation facilitates telomere maintenance and enhances chemically induced reprogramming to pluripotency. CiPSCs acquire telomere elongation after clonal formation with increasing passages Both telomerase and recombination mechanisms are involved in the telomere elongation Telomere damage and shortening can occur during late stage of lengthy induction Crotonylation activates Zscan4 and promotes telomere elongation and CiPSC induction
Collapse
Affiliation(s)
- Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Cheng-Lei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yifei Liu
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
35
|
Czerwińska P, Mazurek S, Wiznerowicz M. Application of induced pluripotency in cancer studies. Rep Pract Oncol Radiother 2018; 23:207-214. [PMID: 29760595 DOI: 10.1016/j.rpor.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 12/13/2022] Open
Abstract
As soon as induced pluripotent stem cells (iPSCs) reprogramming of somatic cells were developed, the discovery attracted the attention of scientists, offering new perspectives for personalized medicine and providing a powerful platform for drug testing. The technology was almost immediately applied to cancer studies. As presented in this review, direct reprogramming of cancer cells with enforced expression of pluripotency factors have several basic purposes, all of which aim to explain the complex nature of cancer development and progression, therapy-resistance and relapse, and ultimately lead to the development of novel anti-cancer therapies. Here, we briefly present recent advances in reprogramming methodologies as well as commonalities between cell reprogramming and carcinogenesis and discuss recent outcomes from the implementation of induced pluripotency into cancer research.
Collapse
Affiliation(s)
- Patrycja Czerwińska
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sylwia Mazurek
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
36
|
Transposon control mechanisms in telomere biology. Curr Opin Genet Dev 2018; 49:56-62. [DOI: 10.1016/j.gde.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022]
|
37
|
Xu X, Guo M, Zhang N, Ye S. Telomeric noncoding RNA promotes mouse embryonic stem cell self-renewal through inhibition of TCF3 activity. Am J Physiol Cell Physiol 2018. [PMID: 29513567 DOI: 10.1152/ajpcell.00292.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although long noncoding RNAs (lncRNAs) are emerging as new modulators in the fate decision of pluripotent stem cells, the functions of specific lncRNAs remain unclear. Here, we found that telomeric RNA (TERRA or TelRNA), one type of lncRNAs, is highly expressed in mouse embryonic stem cells (mESCs) but declines significantly upon differentiation. TERRA is induced by the Wnt/β-catenin signaling pathway and can reproduce its self-renewal-promoting effect when overexpressed. Further studies revealed that T cell factor 3 ( TCF3) is a potential downstream target of TERRA and mediates the effect of TERRA in mESC maintenance. TERRA inhibits TCF3 transcription, while enforced TCF3 expression abrogates the undifferentiated state of mESCs supported by TERRA. Accordingly, the transcripts of the pluripotency genes Esrrb, Tfcp2l1, and Klf2, repressed by TCF3 in mESCs, are increased in TERRA-overexpressing cells. Our study therefore highlights the important role of TERRA in mESC maintenance and also uncovers a mechanism by which TERRA promotes self-renewal. These data will expand our understanding of the pluripotent regulatory network of ESCs.
Collapse
Affiliation(s)
- Xiaojuan Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , People's Republic of China.,University of Science and Technology of China , Hefei , People's Republic of China
| | - Mengmeng Guo
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University , Hefei , People's Republic of China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , People's Republic of China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University , Hefei , People's Republic of China
| |
Collapse
|
38
|
Delgado DA, Zhang C, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. Genome-wide association study of telomere length among South Asians identifies a second RTEL1 association signal. J Med Genet 2017; 55:64-71. [PMID: 29151059 PMCID: PMC5749304 DOI: 10.1136/jmedgenet-2017-104922] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023]
Abstract
Background Leucocyte telomere length (TL) is a potential biomarker of ageing and risk for age-related disease. Leucocyte TL is heritable and shows substantial differences by race/ethnicity. Recent genome-wide association studies (GWAS) report ~10 loci harbouring SNPs associated with leucocyte TL, but these studies focus primarily on populations of European ancestry. Objective This study aims to enhance our understanding of genetic determinants of TL across populations. Methods We performed a GWAS of TL using data on 5075 Bangladeshi adults. We measured TL using one of two technologies (qPCR or a Luminex-based method) and used standardised variables as TL phenotypes. Results Our results replicate previously reported associations in the TERC and TERT regions (P=2.2×10−8 and P=6.4×10−6, respectively). We observed a novel association signal in the RTEL1 gene (intronic SNP rs2297439; P=2.82×10−7) that is independent of previously reported TL-associated SNPs in this region. The minor allele for rs2297439 is common in South Asian populations (≥0.25) but at lower frequencies in other populations (eg, 0.07 in Northern Europeans). Among the eight other previously reported association signals, all were directionally consistent with our study, but only rs8105767 (ZNF208) was nominally significant (P=0.003). SNP-based heritability estimates were as high as 44% when analysing close relatives but much lower when analysing distant relatives only. Conclusions In this first GWAS of TL in a South Asian population, we replicate some, but not all, of the loci reported in prior GWAS of individuals of European ancestry, and we identify a novel second association signal at the RTEL1 locus.
Collapse
Affiliation(s)
- Dayana A Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control, Atlanta, Georgia, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | - Mohammad Yunus
- Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA.,Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
39
|
Hsieh MH, Chen YT, Chen YT, Lee YH, Lu J, Chien CL, Chen HF, Ho HN, Yu CJ, Wang ZQ, Teng SC. PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res 2017; 45:10492-10503. [PMID: 28985359 PMCID: PMC5737510 DOI: 10.1093/nar/gkx683] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Telomerase is highly expressed in cancer and embryonic stem cells (ESCs) and implicated in controlling genome integrity, cancer formation and stemness. Previous studies identified that Krüppel-like transcription factor 4 (KLF4) activates telomerase reverse transcriptase (TERT) expression and contributes to the maintenance of self-renewal in ESCs. However, little is known about how KLF4 regulates TERT expression. Here, we discover poly(ADP-ribose) polymerase 1 (PARP1) as a novel KLF4-interacting partner. Knockdown of PARP1 reduces TERT expression and telomerase activity not only in cancer cells, but also in human and mouse ESCs. Recruitment of KLF4 to TERT promoter is reduced in PARP1-suppressed cells. The poly(ADP-ribose) polymerase activity is dispensable, while the oligo(ADP-ribose) polymerase activity is required for the PARP1- and KLF4-mediated TERT activation. Repression of Parp1 in mouse ESCs decreases expression of pluripotent markers and induces differentiation. These results suggest that PARP1 recruits KLF4 to activate telomerase expression and stem cell pluripotency, indicating a positive regulatory role of the PARP1–KLF4 complex in telomerase expression in cancer and stem cells.
Collapse
Affiliation(s)
- Meng-Hsun Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Ting Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Liang Chien
- Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology and Institute of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology and Institute of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei 100, Taiwan
| |
Collapse
|
40
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
41
|
Teif VB, Mallm JP, Sharma T, Mark Welch DB, Rippe K, Eils R, Langowski J, Olins AL, Olins DE. Nucleosome repositioning during differentiation of a human myeloid leukemia cell line. Nucleus 2017; 8:188-204. [PMID: 28406749 PMCID: PMC5403151 DOI: 10.1080/19491034.2017.1295201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of epichromatin (surface chromatin adjacent to the nuclear envelope). Nucleosome positions changed genome-wide, exhibiting a specific class of alterations involving nucleosome loss in extended (∼1kb) regions, pronounced in enhancers and promoters. Genes that lost nucleosomes at their promoters showed a tendency to be upregulated. On the other hand, nucleosome gain did not show simple effects on transcript levels. The average genome-wide nucleosome repeat length (NRL) did not change significantly with differentiation. However, we detected an approximate 10 bp NRL decrease around the haematopoietic transcription factor (TF) PU.1 and the architectural protein CTCF, suggesting an effect on NRL proximal to TF binding sites. Nucleosome occupancy changed in regions associated with active promoters in differentiated cells, compared with untreated HL-60/S4 cells. Epichromatin regions revealed an increased GC content and high nucleosome density compared with surrounding chromatin. Epichromatin showed depletion of major histone modifications and revealed enrichment with PML body-associated genes. In general, chromatin changes during HL-60/S4 differentiation appeared to be more localized to regulatory regions, compared with genome-wide changes among diverse cell types studied elsewhere.
Collapse
Affiliation(s)
- Vladimir B Teif
- a School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , UK
| | | | - Tanvi Sharma
- a School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , UK
| | - David B Mark Welch
- c Josephine Bay Paul Center for Comparative Molecular Biology and Evolution , Marine Biological Laboratory , Woods Hole , MA , USA
| | - Karsten Rippe
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Roland Eils
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jörg Langowski
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ada L Olins
- d Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| | - Donald E Olins
- d Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| |
Collapse
|
42
|
Bagherpoor AJ, Dolezalova D, Barta T, Kučírek M, Sani SA, Ešner M, Kunova Bosakova M, Vinarský V, Peskova L, Hampl A, Štros M. Properties of Human Embryonic Stem Cells and Their Differentiated Derivatives Depend on Nonhistone DNA-Binding HMGB1 and HMGB2 Proteins. Stem Cells Dev 2016; 26:328-340. [PMID: 27863459 DOI: 10.1089/scd.2016.0274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HMGB1 and HMGB2 proteins have been implicated in numerous cellular processes, including proliferation, differentiation, apoptosis, and tumor growth. It is unknown whether they are involved in regulating the typical functions of pluripotent human embryonic stem cells (hESCs) and/or those of the differentiated derivatives of hESCs. Using inducible, stably transfected hESCs capable of shRNA-mediated knockdown of HMGB1 and HMGB2, we provide evidence that downregulation of HMGB1 and/or HMGB2 in undifferentiated hESCs does not affect the stemness of cells and induces only minor changes to the proliferation rate, cell-cycle profile, and apoptosis. After differentiation is induced, however, the downregulation of those proteins has important effects on proliferation, apoptosis, telomerase activity, and the efficiency of differentiation toward the neuroectodermal lineage. Furthermore, those processes are affected only when one, but not both, of the two proteins is downregulated; the knockdown of both HMGB1 and HMGB2 results in a normal phenotype. Those results advance our knowledge of regulation of hESC and human neuroectodermal cell differentiation and illustrate the distinct roles of HMGB1 and HMGB2 during early human development.
Collapse
Affiliation(s)
- Alireza Jian Bagherpoor
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Dasa Dolezalova
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Tomas Barta
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic .,3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Martin Kučírek
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Soodabeh Abbasi Sani
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Milan Ešner
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | | | - Vladimír Vinarský
- 3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Lucie Peskova
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Aleš Hampl
- 2 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic .,3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Michal Štros
- 1 Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics , Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
43
|
Affiliation(s)
- Hao Cheng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
44
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
45
|
Aguado T, Gutiérrez FJ, Aix E, Schneider RP, Giovinazzo G, Blasco MA, Flores I. Telomere Length Defines the Cardiomyocyte Differentiation Potency of Mouse Induced Pluripotent Stem Cells. Stem Cells 2016; 35:362-373. [PMID: 27612935 DOI: 10.1002/stem.2497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated in vitro and in vivo to all cardiovascular lineages and are therefore a promising cell source for cardiac regenerative therapy. However, iPSC lines do not all differentiate into cardiomyocytes (CMs) with the same efficiency. Here, we show that telomerase-competent iPSCs with relatively long telomeres and high expression of the shelterin-complex protein TRF1 (iPSChighT ) differentiate sooner and more efficiently into CMs than those with relatively short telomeres and low TRF1 expression (iPSClowT ). Ascorbic acid, an enhancer of cardiomyocyte differentiation, further increases the cardiomyocyte yield from iPSChighT but does not rescue the cardiomyogenic potential of iPSClowT . Interestingly, although iPSCslowT differentiate very poorly to the mesoderm and endoderm lineages, they differentiate very efficiently to the ectoderm lineage, indicating that cell fate can be determined by in vitro selection of iPSCs with different telomere content. Our findings highlight the importance of selecting iPSCs with ample telomere reserves in order to generate high numbers of CMs in a fast, reliable, and efficient way. Stem Cells 2017;35:362-373.
Collapse
Affiliation(s)
- Tania Aguado
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Francisco J Gutiérrez
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Esther Aix
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Ralph P Schneider
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ignacio Flores
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| |
Collapse
|
46
|
Polshakov VI, Petrova OA, Parfenova YY, Efimov SV, Klochkov VV, Zvereva MI, Dontsova OA. NMR assignments of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:183-187. [PMID: 26721464 DOI: 10.1007/s12104-015-9663-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA fragments to the ends of chromosomes. This enzyme is the focus of substantial attention, both because its structure and mechanism of action are still poorly studied, and because of its pivotal roles in aging and cellular proliferation. The use of telomerase as a potential target for the design of new anticancer drugs is also of great interest. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is essential for activity and processivity. Elucidation of the structure and dynamics of TEN in solution is important for understanding the molecular mechanism of telomerase activity and for the design of new telomerase inhibitors. To approach this problem, in this study we report the (1)H, (13)C, and (15)N chemical shift assignments of TEN from Ogataea polymorpha. Analysis of the assigned chemical shifts allowed us to identify secondary structures and protein regions potentially involved in interaction with other participants of the telomerase catalytic cycle.
Collapse
Affiliation(s)
- Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Olga A Petrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Yulia Yu Parfenova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, Russia, 420008
| | - Vladimir V Klochkov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya, Kazan, Russia, 420008
| | - Maria I Zvereva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Olga A Dontsova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119992
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
47
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
48
|
Effect on Multipotency and Phenotypic Transition of Unrestricted Somatic Stem Cells from Human Umbilical Cord Blood after Treatment with Epigenetic Agents. Stem Cells Int 2015; 2016:7643218. [PMID: 26788071 PMCID: PMC4691642 DOI: 10.1155/2016/7643218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022] Open
Abstract
The epigenetic mechanism of DNA methylation is of central importance for cellular differentiation processes. Unrestricted somatic stem cells (USSCs) from human umbilical cord blood, which have a broad differentiation spectrum, reside in an uncommitted epigenetic state with partial methylation of the regulatory region of the gene coding for the pluripotency master regulator OCT4. Thus we hypothesized that further opening of this “poised” epigenetic state could broaden the differentiation potential of USSCs. Here we document that USSCs drastically change their phenotype after treatment by a new elaborated cultivation protocol which utilizes the DNA hypomethylating compound 5′-aza-2-deoxycytidine (5-Aza-CdR) and the histone deacetylase inhibitor trichostatin A (TSA). This treatment leads to a new stable, spheroid-forming cell type which we have named SpheUSSC. These cells can be stably propagated over at least 150 cell divisions, express OCT4, retain the potential to undergo osteogenic differentiation, and have additionally acquired the ability to uniformly differentiate into adipocytes, unlike the source USSC population. Here we describe our treatment protocol and provide evidence that it induces a dedifferentiation step and concomitantly the acquisition of an extended differentiation capability of the new SpheUSSC type.
Collapse
|
49
|
|
50
|
Effect of luteolin and apigenin on the expression of Oct-4, Sox2, and c-Myc in dental pulp cells with in vitro culture. BIOMED RESEARCH INTERNATIONAL 2015; 2015:534952. [PMID: 25815323 PMCID: PMC4357035 DOI: 10.1155/2015/534952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
Introduction. Dental pulp cells (DPCs) are promising cell source for dental tissue regeneration. Recently, small molecules which optimize microenvironment or activate the reprogramming network provide a new way to enhance the pluripotency. Two promising bioflavonoids luteolin and apigenin were reported to enhance reprogramming efficiency in mouse embryonic fibroblast (MEF). However, their effect and underlying mechanism in cell fate determination of human DPCs remain unclear. Methods. To elucidate the effect of luteolin and apigenin on the cell fate determination of DPCs, we explored the cell proliferation, cell cycle, senescence, apoptosis, expression of pluripotency markers Oct-4, Sox2, and c-Myc, and multilineage differentiation capability of DPCs with luteolin or apigenin treatment. Results. We demonstrated that luteolin and apigenin inhibited cell proliferation, arrested DPCs in G2/M and S phase, and upregulated PI value and apoptosis. Moreover, luteolin and apigenin increased telomerase activity, maintained DPCs in a presenescent state, and activated the expression of Oct-4, Sox2, and c-Myc at a dose- and time-dependent pattern in DPCs even at late passages, albeit repressed lineage-specific differentiation. Conclusions. Addition of luteolin and apigenin in the culture medium might provide an effective way to maintain DPCs in an undifferentiated stage and inhibit lineage-specific differentiation.
Collapse
|