1
|
Chen E, Ling AL, Reardon DA, Chiocca EA. Lessons learned from phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? Neuro Oncol 2024; 26:211-225. [PMID: 37995317 PMCID: PMC10836778 DOI: 10.1093/neuonc/noad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma (GBM)'s median overall survival is almost 21 months. Six phase 3 immunotherapy clinical trials have recently been published, yet 5/6 did not meet approval by regulatory bodies. For the sixth, approval is uncertain. Trial failures result from multiple factors, ranging from intrinsic tumor biology to clinical trial design. Understanding the clinical and basic science of these 6 trials is compelled by other immunotherapies reaching the point of advanced phase 3 clinical trial testing. We need to understand more of the science in human GBMs in early trials: the "window of opportunity" design may not be best to understand complex changes brought about by immunotherapeutic perturbations of the GBM microenvironment. The convergence of increased safety of image-guided biopsies with "multi-omics" of small cell numbers now permits longitudinal sampling of tumor and biofluids to dissect the complex temporal changes in the GBM microenvironment as a function of the immunotherapy.
Collapse
Affiliation(s)
- Ethan Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Chan TYH, Wong JSY, Kiang KMY, Sun CWY, Leung GKK. The duality of CXCR3 in glioblastoma: unveiling autocrine and paracrine mechanisms for novel therapeutic approaches. Cell Death Dis 2023; 14:835. [PMID: 38104126 PMCID: PMC10725418 DOI: 10.1038/s41419-023-06354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with limited therapeutic options and a poor prognosis. CXCR3, a chemokine receptor, serves dual autocrine-paracrine functions in cancer. Despite gaps in our understanding of the functional role of the CXCR3 receptor in GBM, it has been shown to hold promise as a therapeutic target for the treatment of GBM. Existing clinical therapeutics and vaccines targeting CXCR3 ligand expression associated with the CXCR3 axes have also shown anti-tumorigenic effects in GBM. This review summarizes existing evidence on the oncogenic function of CXCR3 and its ligands CXCL9, CXCL10, and CXCL11, in GBM, and examines the controversies concerning the immunomodulatory functions of the CXCR3 receptor, including immune T cell recruitment, polarization, and positioning. The mechanisms underlying monotherpies and combination therapies targeting the CXCR3 pathways are discussed. A better understanding of the CXCR3 axes may lead to the development of strategies for overcoming the limitations of existing immunotherapies for GBM.
Collapse
Affiliation(s)
- Travis Yui Hei Chan
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jenny Sum Yee Wong
- Division of Vascular Surgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karrie Mei-Yee Kiang
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cherry Won Yuet Sun
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Republic of Ireland
| | - Gilberto Ka-Kit Leung
- Division of Neurosurgery, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Ahmadzadeh M, Mohit E. Therapeutic potential of a novel IP-10-(anti-HER2 scFv) fusion protein for the treatment of HER2-positive breast cancer. Biotechnol Lett 2023; 45:371-385. [PMID: 36650341 DOI: 10.1007/s10529-022-03342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Interferon-γ-inducible protein 10 (IP-10) is a potent antitumor agent and acts by its angiostatic and immunomodulatory properties. IP-10 can target to tumor site by linking with single chain variable fragment (scFv) that recognized specific tumor antigen. In this study, we evaluated biological activity of the fusion protein including IP-10 and anti-HER2 scFv (IP-10-(anti-HER2 scFv)). RESULTS The HER2- and cell-based ELISA as well as the flow cytometry analysis demonstrated that the fusion protein specifically binds to HER2 antigen. In addition, competitive ELISA demonstrated that the fusion protein recognized the same epitope of HER2 antigen as trastuzumab. The results of MTT assay demonstrated that the growth of HER2-enriched SK-BR3 cells was inhibited in the presence of the fusion protein. Moreover, the cytotoxic effect of the fusion protein was not significantly different from that of trastuzumab. However, no significant cytotoxic effect compared to trastuzumab and anti-HER2 scFv was observed in HER2-low-expressing MDA-MB-231 cells. The obtained findings demonstrated that IP-10-(anti-HER2 scFv) can selectively reduce the cell viability in HER2+ cells. Moreover, similar inhibitory effect on growth of both SK-BR-3 and MDA-MB-231 cell lines was observed in the presence of anti-HER2 scFv protein even at high concentration after 72 h. The chemotaxis properties of the fusion protein were also analyzed by a chemotaxis assay. It was demonstrated that the fusion protein induced migration of activated T cell similar to recombinant IP-10 protein. CONCLUSIONS Our findings suggested that IP-10-(anti-HER2 scFv) fusion protein can specifically direct IP-10 to the HER2-expressing tumor cells and may act as an adjuvant along with HER2-based vaccine to gather the elicited immune response at the site of HER2-overexpressimg tumors.
Collapse
Affiliation(s)
- Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran
- Food and Drug Administration, The Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran.
| |
Collapse
|
4
|
Wang X, Zhang Y, Wang S, Ni H, Zhao P, Chen G, Xu B, Yuan L. The role of CXCR3 and its ligands in cancer. Front Oncol 2022; 12:1022688. [PMID: 36479091 PMCID: PMC9720144 DOI: 10.3389/fonc.2022.1022688] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a class of small cytokines or signaling proteins that are secreted by cells. Owing to their ability to induce directional chemotaxis of nearby responding cells, they are called chemotactic cytokines. Chemokines and chemokine receptors have now been shown to influence many cellular functions, including survival, adhesion, invasion, and proliferation, and regulate chemokine levels. Most malignant tumors express one or more chemokine receptors. The CXC subgroup of chemokine receptors, CXCR3, is mainly expressed on the surface of activated T cells, B cells, and natural killer cells, and plays an essential role in infection, autoimmune diseases, and tumor immunity by binding to specific receptors on target cell membranes to induce targeted migration and immune responses. It is vital to treat infections, autoimmune diseases, and tumors. CXCR3 and its ligands, CXCL9, CXCL10, and CXCL11, are closely associated with the development and progression of many tumors. With the elucidation of its mechanism of action, CXCR3 is expected to become a new indicator for evaluating the prognosis of patients with tumors and a new target for clinical tumor immunotherapy. This article reviews the significance and mechanism of action of the chemokine receptor CXCR3 and its specific ligands in tumor development.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yangyang Zhang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Sen Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hongyan Ni
- Department of Surgery, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Peng Zhao
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guangyu Chen
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Schroder PM, Schmitz R, Fitch ZW, Ezekian B, Yoon J, Choi AY, Manook M, Barbas A, Leopardi F, Song M, Farris AB, Collins B, Kwun J, Knechtle SJ. Preoperative carfilzomib and lulizumab based desensitization prolongs graft survival in a sensitized non-human primate model. Kidney Int 2020; 99:161-172. [PMID: 32898569 DOI: 10.1016/j.kint.2020.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Sensitized patients are difficult to transplant due to pre-formed anti-donor immunity. We have previously reported successful desensitization using carfilzomib and belatacept in a non-human primate (NHP) model. Here we evaluated selective blockade of the co-stimulatory signal (CD28-B7) with Lulizumab, which preserves the co-inhibitory signal (CTLA4-B7). Five maximally MHC-mismatched pairs of NHPs were sensitized to each other with two sequential skin transplants. Individuals from each pair were randomized to either desensitization with once-weekly Carfilzomib (27mg/m2 IV) and Lulizumab (12.5mg/kg SC) over four weeks, or no desensitization (Control). NHPs then underwent life-sustaining kidney transplantation from their previous skin donor. Rhesus-specific anti-thymocyte globulin was used as induction therapy and immunosuppression maintained with tacrolimus, mycophenolate, and methylprednisolone. Desensitized subjects demonstrated a significant reduction in donor-specific antibody, follicular helper T cells (CD4+PD-1+ICOS+), and proliferating B cells (CD20+Ki67+) in the lymph nodes. Interestingly, regulatory T cell (CD4+CD25+CD127lo) frequency was maintained after desensitization in addition to increased frequency of naïve CD4 T cells (CCR7+CD45RA+) and naïve B cells (IgD+CD27-CD20+) in circulation. This was associated with significant prolongation in graft survival (MST = 5.8 ± 4.0 vs. 64.8 ± 36.3; p<0.05) and lower antibody-mediated rejection scores compared to control animals. However, all desensitized animals eventually developed AMR and graft failure. Desensitization with CFZ and Lulizumab improves allograft survival in allosensitized NHPs, by transient control of the germinal center and shifting of the immune system to a more naive phenotype. This regimen may translate into clinical practice to improve outcomes of highly sensitized transplant patients.
Collapse
Affiliation(s)
- Paul M Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary W Fitch
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley Y Choi
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Miriam Manook
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew Barbas
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Leopardi
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Mingqing Song
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alton B Farris
- Department of Pathology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Bradley Collins
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| | - Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Ahmadzadeh M, Farshdari F, Behdani M, Nematollahi L, Mohit E. Cloning, Expression and One-Step Purification of a Novel IP-10-(anti-HER2 scFv) Fusion Protein in Escherichia coli. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10100-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Chen Q, He Q, Zhuang L, Wang K, Yin C, He L. IP10-CDR3 Reduces The Viability And Induces The Apoptosis Of Ovarian Cancer Cells By Down-Regulating The Expression Of Bcl-2 And Caspase 3. Onco Targets Ther 2019; 12:9697-9706. [PMID: 32009802 PMCID: PMC6859960 DOI: 10.2147/ott.s209757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study aimed to explore the effects of interferon-γ inducible protein 10 (IP10) and complementarity-determining region 3 (CDR3) of T cells receptor on ovarian cancer cells and the involved mechanisms. METHODS IP10 and CDR3 were linked with single-chain antibody (scfv) and exotoxin gene muton of Pseudomonas aeruginosa (PE40) to construct IP10-CDR3scfv and IP10-CDR3-PE40scfv. Then, we constructed pcDNA3.1-IP10-CDR3scfv and pcDNA3.1-IP10-CDR3-PE40scfv plasmids which were proved by HindIII/EcoRI digestion. SKOV3 cells and HOSEpiC cells were incubated with fluorescein isothiocyanate (FITC) labeled IP10-CDR3scfv and IP10-CDR3-PE40scfv proteins and protein levels were examined by flow cytometry. After gene transfection, SKOV3 cells were divided into four groups: Control, pcDNA3.1(+) negative control (NC) (pcDNA3.1(+) NC transfection), IP10-CDR3scfv (IP10-CDR3scfv transfection) and IP10-CDR3-PE40scfv (IP10-CDR3-PE40scfv transfection). Levels of IP10, CDR3, Caspase-3, cleaved Caspase-3 and Bcl-2 were determined by RT-PCR and Western blot. Cell viability and apoptosis were investigated by CCK-8 assay and Annexin V-FITC/PI assay, respectively. RESULTS The levels of FITC-labeled IP10-CDR3scfv and IP10-CDR3-PE40scfv proteins in the SKOV3+IP10-CDR3scfv group and the SKOV3+IP10-CDR3-PE40scfv group were remarkably higher than that in the SKOV3 group (P<0.05). So was the HOSEpiC related groups. There was no obvious difference in the levels of IP10, CDR3, Caspase-3, cleaved Caspase-3 and Bcl-2 between the control group and the pcDNA3.1(+) NC group. However, compared with the control group, the levels of Caspase-3 and Bcl-2 were reduced notably and the levels of IP10, CDR3 and cleaved Caspase-3 were elevated sharply in the IP10-CDR3scfv and IP10-CDR3-PE40scfv groups (P<0.05). The control group and the pcDNA3.1(+) NC group demonstrated similar cell viability and apoptosis. However, compared with the control group, cell viability in the IP10-CDR3scfv and IP10-CDR3-PE40scfv groups decreased significantly and cell apoptosis increased (P<0.05). CONCLUSION IP10-CDR3 could reduce the viability and induce the apoptosis of ovarian cancer cells by down-regulating the expression of Bcl-2 and Caspase-3.
Collapse
Affiliation(s)
- Qi Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Quan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Kunya Wang
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi330006, People’s Republic of China
| | - Chunhua Yin
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi330006, People’s Republic of China
| | - Linsheng He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| |
Collapse
|
8
|
House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, Todd KL, Henderson MA, Giuffrida L, Petley EV, Sek K, Mardiana S, Gide TN, Quek C, Scolyer RA, Long GV, Wilmott JS, Loi S, Darcy PK, Beavis PA. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clin Cancer Res 2019; 26:487-504. [PMID: 31636098 DOI: 10.1158/1078-0432.ccr-19-1868] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immunotherapies. EXPERIMENTAL DESIGN The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoString-based analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. RESULTS The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8+ T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8+ T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. CONCLUSIONS These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Peter Savas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Zhi L Teo
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Tuba N Gide
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Camelia Quek
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - James S Wilmott
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Sherene Loi
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Yang X, Zhao J, Duan S, Hou X, Li X, Hu Z, Tang Z, Mo F, Lu X. Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics 2019; 9:4066-4083. [PMID: 31281532 PMCID: PMC6592167 DOI: 10.7150/thno.33383] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Adequate recruitment of highly active tumor antigen-specific cytotoxic T lymphocytes (CTLs) remains a major challenge in cancer immunotherapy. Objective: To construct liposome (LP)-based nanocapsules with surface endoglin aptamer (ENG-Apt) encapsulating mouse interferon-inducible protein-10 (mIP-10), with the ability to target mouse tumor vascular endothelial cells (mTECs) and enhance CTLs targeting and recruitment to the tumor vasculature. Methods: ENG-Apt/mIP-10-LP nanocapsules were prepared by grafting DSPE-PEG2000-ENG-Apt on the surface of liposomes containing mIP-10 plasmids, characterized and assessed for the cell binding specificity in vitro. The tumor-targeting ability of ENG-Apt/mIP-10-LP nanocapsules was evaluated in vivo. The anti-tumor efficacy of ENG-Apt/mIP-10-LP nanocapsules treatment, as well as the combination treatment of ENG-Apt/mIP-10-LP nanocapsules and adoptive TRP2CD8+ T cells, were both tested in melanoma-bearing mice, by evaluation of the tumor volume and the mouse survival time. To discuss the anti-tumoral mechanism of ENG-Apt/mIP-10-LP nanocapsules-based therapies, IFN-γ secretion, proportion of TRP2CD8+ T cells among TILs, MDSCs in the tumor microenvironment and Tregs in the spleen, were determined after the treatments. Proliferation and apoptosis of tumor cells, and tumor angiogenesis were also assessed. Results: The prepared ENG-Apt/mIP-10-LP nanocapsules possess an adequate nanometric size, good stability, high specificity to mTECs and tumor sites, along with the ability to induce mIP-10 expression in vitro and in vivo. Treatment of ENG-Apt/mIP-10-LP nanocapsules demonstrated CTLs enrichment into the tumor site, which inhibited tumor cell proliferation and angiogenesis, as well as promoted tumor-cell apoptosis, leading to a decrease in tumor progression and prolonged survival time in melanoma tumor-bearing mice. In addition, the proportion of MDSCs and Tregs was found to decrease. The combination of ENG-Apt/mIP-10-LP nanocapsules with adoptive TRP2CD8+ T cells, showed stronger abilities in inhibiting tumor growth and increasing animal survival time, thereby displayed an enhanced anti-melanoma tumor efficacy, due to the recruitment of both endogenous CD8+ T cells and exogenous TRP2CD8+ T cells in vivo. Conclusion: ENG-Apt/mIP-10-LP nanocapsules could enhance the recruitment of both endogenous and exogenous CTLs specifically targeting melanoma tumor vasculatures and exert anti-tumoral effect, therefore provides a potentially novel strategy for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoling Lu
- Nanobody Research Center/School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
10
|
Wang X, Xiong Z, Liu Z, Huang X, Jiang X. Angiopep-2/IP10-EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma. Sci Rep 2018; 8:12827. [PMID: 30150691 PMCID: PMC6110710 DOI: 10.1038/s41598-018-30072-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Preparation of agents that can successfully traverse the blood-brain-barrier (BBB) is a key challenge in brain cancer therapeutics. In this study, angiopep-2 was used as a brain-targeting peptide for preparing multifunctional Angiopep-2-modified poly nanoparticles, angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles. In vitro experiments showed a greater uptake of Angiopep-2 modified nanoparticles, also angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles by bEnd.3 cells versus nanoparticles and nanoparticles modified by IP10-EGFRvIIIscFv. Angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles accumulated in brain tissue after intravenous injection and recruited activated CD8+ T lymphocytes to location of glioblastoma cells. In vivo experiments to assess anti-glioblastoma effect of angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles showed significantly reduced tumor volume in angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles+ CD8+ cytotoxic T lymphocytes group versus in NPs modified by IP10-EGFRvIIIscFv+ CD8+ cytotoxic T lymphocytes, CD8+ cytotoxic T lymphocytes, Angiopep-2 modified nanoparticles+ CD8+ cytotoxic T lymphocytes, angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles and PBS groups. Leukocytes infiltrated in brain tissues showed strong anti-glioblastoma activity in angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles+ CD8+ cytotoxic T lymphocytes treated mice. Thus, angiopep-2 and IP10-EGFRvIIIscFv fusion protein modified nanoparticles may be useful for brain-targeted delivery and recruitment of activated CD8+ T lymphocytes to glioblastoma cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyong Xiong
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Liu
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Huang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Wang Y, Yang X, Yu Y, Xu Z, Sun Y, Liu H, Cheng J, Liu M, Sha B, Li L, Ding N, Li Z, Jin H, Qian Q. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J Cancer 2018; 9:275-287. [PMID: 29344274 PMCID: PMC5771335 DOI: 10.7150/jca.22176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
Purpose The aim of this study was to evaluate the clinical response of immunotherapy with dendritic cell-cytotoxic T lymphocytes (DC-CTLs) in patients with hepatocellular carcinoma (HCC). Method Sixty-eight patients with a confirmed diagnosis of HCC and who received follow-up until December 2015 were enrolled. We measured immune phenotypes of DCs and activated T cells using flow cytometry and clinical indexes using an electrochemiluminescence method. Results DCs exhibited up-regulation of the maturation markers CD83, CD80, CD11c, and CD86 on day8. Levels of IFN-γ and TNF-α were higher in the DCs pulsed with tumor-associated antigens (TAAs) than in DCs with a non-proliferative recombinant adenovirus. The percentage of regulatory T cells (Tregs) decreased in patients after DC-CTLs therapy. In addition, serum levels of AFP, AFP-L3, ALT, and CA19-9 were significantly reduced in these patients. Quality of life was improved, especially on physical functioning scales. Median overall survival (OS) and progression-free survival (PFS) were 8.2 months and 4.3 months, respectively, for the control group and 12.8 months and 9 months, respectively, for the DC-CTL group. Patients treated with DC-CTLs therapy showed a statistically significant PFS and OS curve (OS: p=0.016; PFS: p<0.0001). In addition, no serious adverse reactions were observed. Conclusion This study indicated that Tregs, as well as serum levels of AFP, AFP-L3, ALT, and CA19-9, which were correlated with a poor prognosis, decreased after DC-CTL treatments. The OS, PFS and the quality of life of HCC patients partially improved.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.,Department of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xijing Yang
- Department of Biotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yi Yu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Zenghui Xu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yan Sun
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Hui Liu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Jingbo Cheng
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Min Liu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Bibo Sha
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Linfang Li
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Na Ding
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Zhong Li
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Huajun Jin
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Qijun Qian
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.,Department of Biotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.,Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China.,Ningbo 5 th Hospital (Ningbo Cancer Hospital), Zhuangshi Avenue 1166, Ningbo, 315201, China
| |
Collapse
|
12
|
Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2017; 63:40-47. [PMID: 29207310 DOI: 10.1016/j.ctrv.2017.11.007] [Citation(s) in RCA: 953] [Impact Index Per Article: 119.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Chemokines are proteins which induce chemotaxis, promote differentiation of immune cells, and cause tissue extravasation. Given these properties, their role in anti-tumor immune response in the cancer environment is of great interest. Although immunotherapy has shown clinical benefit for some cancer patients, other patients do not respond. One of the mechanisms of resistance to checkpoint inhibitors may be chemokine signaling. The CXCL9, -10, -11/CXCR3 axis regulates immune cell migration, differentiation, and activation, leading to tumor suppression (paracrine axis). However, there are some reports that show involvements of this axis in tumor growth and metastasis (autocrine axis). Thus, a better understanding of CXCL9, -10, -11/CXCR3 axis is necessary to develop effective cancer control. In this article, we summarize recent evidence regarding CXCL9, CXCL10, CXCL11/CXCR3 axis in the immune system and discuss their potential role in cancer treatment.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| |
Collapse
|
13
|
Razpotnik R, Novak N, Čurin Šerbec V, Rajcevic U. Targeting Malignant Brain Tumors with Antibodies. Front Immunol 2017; 8:1181. [PMID: 28993773 PMCID: PMC5622144 DOI: 10.3389/fimmu.2017.01181] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the antibody to bind to the specific target(s). Finally, the current clinical trials are reviewed, showing the most recent progress of attractive approaches to deliver therapeutic antibodies across the BBB aiming at the specific antigen.
Collapse
Affiliation(s)
- Rok Razpotnik
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Neža Novak
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Uros Rajcevic
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
14
|
Lin C, Yan H, Yang J, Li L, Tang M, Zhao X, Nie C, Luo N, Wei Y, Yuan Z. Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma. Oncotarget 2017; 8:56281-56295. [PMID: 28915590 PMCID: PMC5593561 DOI: 10.18632/oncotarget.17623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/20/2017] [Indexed: 02/05/2023] Open
Abstract
DESI2 (also known as PNAS-4) is a novel pro-apoptotic gene activated during the early response to DNA damage. We previously reported that overexpression of DESI2 induces S phase arrest and apoptosis by activating checkpoint kinases. The present study was designed to test whether combination of DESI2 and IP10 could improve the therapy efficacy in vitro and in vivo. The recombinant plasmid co-expressing DESI2 and IP10 was encapsulated with DOTAP/Cholesterol nanoparticle. Immunocompetent mice bearing CT26 colon carcinoma and LL2 lung cancer were treated with the complex. We found that, in vitro, the combination of DESI2 and IP10 more efficiently inhibited proliferation of CT26, LL2, SKOV3 and A549 cancer cells via apoptosis. In vivo, the combined gene therapy more significantly inhibited tumor growth and efficiently prolonged the survival of tumor bearing mice. Mechanistically, the augmented antitumor activity in vivo was associated with induction of apoptosis and inhibition of angiogenesis. The anti-angiogenesis was further mimicked by inhibiting proliferation of immortalized HUVEC cells in vitro. Meanwhile, the infiltration of lymphocytes also contributed to the enhanced antitumor effects. Depletion of CD8+ T lymphocytes significantly abrogated the antitumor activity, whereas depletion of CD4+ T cells or NK cells showed partial abrogation. Our data suggest that the combined gene therapy of DESI2 and IP10 can significantly enhance the antitumor activity as apoptosis inducer, angiogenesis inhibitor and immune response initiator. The present study may provide a novel and effective method for treating cancer.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - HuaYing Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
- Department of Functional Imaging, Sichuan Provincial Women's and Children's Hospital, Chengdu, 610031, China
| | - Jun Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Na Luo
- Nankai University School of Medicine, Collaborative Innovation Center of Biotherapy, Tianjin, 300071, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Ohnishi M, Higuchi A, Matsumura H, Arakawa Y, Nakamura H, Nirei K, Yamamoto T, Yamagami H, Ogawa M, Gotoda T, Matsuoka S, Nakajima N, Sugitani M, Moriyama M, Murayama H. Involvement of Ornithine Carbamoyltransferase in the Progression of Chronic Hepatitis C and Liver Cirrhosis. Int J Med Sci 2017; 14:629-638. [PMID: 28824294 PMCID: PMC5562113 DOI: 10.7150/ijms.17641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Background: The involvement of serum ornithine carbamoyltransferase (OCT) in the progression of chronic hepatitis and liver cirrhosis is unclear. Methods: A total 256 patients with chronic hepatitis C and 5 healthy controls were examined. Serum OCT concentrations were measured by enzyme-linked immunosorbent assay. Serum OCT concentrations were compared with serum cytokine and chemokine levels, and with disease severity and development of hepatocellular carcinoma (HCC). Results: The median OCT concentrations were 21.8 ng/ml for healthy controls, 36.7 ng/ml for F0 stage disease, 48.7 ng/ml for F1 stage, 77.9 ng/ml for F2 stage, 104.8 ng/ml for F3 stage, and 121.4 ng/ml for F4 stage. OCT concentrations were correlated with aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transpeptidase, platelet counts, indocyanine green retention rate at 15 min, prothrombin times, the molar ratio of branched chain amino acids to tyrosine, and tyrosine. Furthermore, there were significant correlations among OCT concentrations and IP10 and IL18 levels. There were weak correlations between serum OCT concentrations and liver histology. The cumulative incidence of HCC in the high-OCT concentration group (≥75.3 ng/ml) was higher than that in the low-OCT concentration group. Conclusion: The measurement of serum OCT concentration may provide a useful marker of disease severity, and thus could be a useful marker for a high risk of HCC occurrence.
Collapse
Affiliation(s)
- Masahiko Ohnishi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Akihisa Higuchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroshi Matsumura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yasuo Arakawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hitomi Nakamura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Toshiki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroaki Yamagami
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Noriko Nakajima
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masahiko Sugitani
- Division of Morphological and Functional Pathology, Nihon University School of Medicine
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine. 30-1 Oyaguchi kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroshi Murayama
- Yamasa Corporation, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan
| |
Collapse
|
16
|
|