1
|
Wyatt KH, Cieslik J, Dieleman CM, Kane ES, Rober AR, Sullivan B, Turetsky MR. Legacy Effects of Plant Community Structure Are Manifested in Microbial Biofilm Development With Consequences for Ecosystem CO 2 Emissions. GLOBAL CHANGE BIOLOGY 2024; 30:e17603. [PMID: 39611239 PMCID: PMC11605497 DOI: 10.1111/gcb.17603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
To better understand linkages between hydrology and ecosystem carbon flux in northern aquatic ecosystems, we evaluated the relationship between plant communities, biofilm development, and carbon dioxide (CO2) exchange following long-term changes in hydrology in an Alaskan fen. We quantified seasonal variation in biofilm composition and CO2 exchange in response to lowered and raised water table position (relative to a control) during years with varying levels of background dissolved organic carbon (DOC). We then used nutrient-diffusing substrates (NDS) to evaluate cause-effect relationships between changes in plant subsidies (i.e., leachates) and biofilm composition among water table treatments. We found that background DOC concentration determined whether plant subsidies promoted net autotrophy or heterotrophy on NDS. In conditions where background DOC was ≤ 40 mg L-1, plant subsidies promoted an autotrophic biofilm. Conversely, when background DOC concentration was ≥ 50 mg L-1, plant subsidies promoted heterotrophy. Greater light attenuation associated with elevated levels of DOC may have overwhelmed the stimulatory effect of nutrients on autotrophic microbes by constraining photosynthesis while simultaneously allowing heterotrophs to outcompete autotrophs for available nutrients. At the ecosystem level, conditions that favored an autotrophic biofilm resulted in net CO2 uptake among all water table treatments, whereas the site was a net source of CO2 to the atmosphere in conditions that supported greater heterotrophy. Taken together, these findings show that hydrologic history interacts with changes in dominant plant functional groups to alter biofilm composition, which has consequences for ecosystem CO2 exchange.
Collapse
Affiliation(s)
- Kevin H. Wyatt
- School of Environment and Natural ResourcesThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Evan S. Kane
- College of Forest Resources and Environmental SciencesMichigan Technological UniversityHoughtonMichiganUSA
- USDA Forest ServiceNorthern Research StationHoughtonMichiganUSA
| | - Allison R. Rober
- School of Environment and Natural ResourcesThe Ohio State UniversityColumbusOhioUSA
| | | | - Merritt R. Turetsky
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
2
|
Hein N, Astrin JJ, Beckers N, Giebner H, Langen K, Löffler J, Misof B, Fonseca VG. Arthropod diversity in the alpine tundra using metabarcoding: Spatial and temporal differences in alpha- and beta-diversity. Ecol Evol 2024; 14:e10969. [PMID: 38343576 PMCID: PMC10857931 DOI: 10.1002/ece3.10969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 10/28/2024] Open
Abstract
All ecosystems face ecological challenges in this century. Therefore, it is becoming increasingly important to understand the ecology and degree of local adaptation of functionally important Arctic-alpine biomes by looking at the most diverse taxon of metazoans: the Arthropoda. This is the first study to utilize metabarcoding in the Alpine tundra, providing insights into the effects of micro-environmental parameters on alpha- and beta-diversity of arthropods in such unique environments. To characterize arthropod diversity, pitfall traps were set at three middle-alpine sampling sites in the Scandinavian mountain range in Norway during the snow-free season in 2015. A metabarcoding approach was then used to determine the small-scale biodiversity patterns of arthropods in the Alpine tundra. All DNA was extracted directly from the preservative EtOH from 27 pitfall traps. In order to identify the controlling environmental conditions, all sampling locations were equipped with automatic data loggers for permanent measurement of the microenvironmental conditions. The variables measured were: air temperature [°C] at 15 cm height, soil temperature [°C] at 15 cm depth, and soil moisture [vol.%] at 15 cm depth. A total of 233 Arthropoda OTUs were identified. The number of unique OTUs found per sampling location (ridge, south-facing slope, and depression) was generally higher than the OTUs shared between the sampling locations, demonstrating that niche features greatly impact arthropod community structure. Our findings emphasize the fine-scale heterogeneity of arctic-alpine ecosystems and provide evidence for trait-based and niche-driven adaptation. The spatial and temporal differences in arthropod diversity were best explained by soil moisture and soil temperature at the respective locations. Furthermore, our results show that arthropod diversity is underestimated in alpine-tundra ecosystems using classical approaches and highlight the importance of integrating long-term functional environmental data and modern taxonomic techniques into biodiversity research to expand our ecological understanding of fine- and meso-scale biogeographical patterns.
Collapse
Affiliation(s)
- Nils Hein
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)BonnGermany
- Department of GeographyUniversity of BonnBonnGermany
| | - Jonas J. Astrin
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)BonnGermany
| | | | - Hendrik Giebner
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)BonnGermany
| | - Kathrin Langen
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)BonnGermany
| | - Jörg Löffler
- Department of GeographyUniversity of BonnBonnGermany
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)BonnGermany
| | - Vera G. Fonseca
- Centre for Environment Fisheries and Aquaculture Science (Cefas)WeymouthUK
| |
Collapse
|
3
|
Curasi SR, Fetcher N, Wright KS, Weldon DP, Rocha AV. Insights into the tussock growth form with model-data fusion. THE NEW PHYTOLOGIST 2023; 239:562-575. [PMID: 36653954 DOI: 10.1111/nph.18751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Some rhizomatous grass and sedge species form tussocks that impact ecosystem structure and function. Despite their importance, tussock development and size controls are poorly understood due to the decadal to centennial timescales over which tussocks form. We explored mechanisms regulating tussock development and size in a ubiquitous arctic tussock sedge (Eriophorum vaginatum) using field observations and a mass balance model coupled with a tiller population model. Model-data fusion was used to quantify parameter and prediction uncertainty, determine model sensitivity, and test hypotheses on the factors regulating tussock size. The model accurately captured the dynamics of tussock development, characteristics, and size observed in the field. Tussock growth approached maximal size within several decades, which was determined by feedbacks between the mass balance of tussock root necromass and density-dependent tillering. The model also predicted that maximal tussock size was primarily regulated by tiller root productivity and necromass bulk density and less so by tiller demography. These predictions were corroborated by field observations of tussock biomass and root characteristics. The study highlights the importance of belowground processes in regulating tussock development and size and enhances our understanding of the influence of tussocks on arctic ecosystem structure and function.
Collapse
Affiliation(s)
- Salvatore R Curasi
- Department of Biology, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ned Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Kelseyann S Wright
- Department of Biology, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Daniel P Weldon
- Department of Biology, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Adrian V Rocha
- Department of Biology, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
4
|
Chmura HE, Duncan C, Burrell G, Barnes BM, Buck CL, Williams CT. Climate change is altering the physiology and phenology of an arctic hibernator. Science 2023; 380:846-849. [PMID: 37228197 DOI: 10.1126/science.adf5341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Climate warming is rapid in the Arctic, yet impacts to biological systems are unclear because few long-term studies linking biophysiological processes with environmental conditions exist for this data-poor region. In our study spanning 25 years in the Alaskan Arctic, we demonstrate that climate change is affecting the timing of freeze-thaw cycles in the active layer of permafrost soils and altering the physiology of arctic ground squirrels (Urocitellus parryii). Soil freeze has been delayed and, in response, arctic ground squirrels have delayed when they up-regulate heat production during torpor to prevent freezing. Further, the termination of hibernation in spring has advanced 4 days per decade in females but not males. Continued warming and phenological shifts will alter hibernation energetics, change the seasonal availability of this important prey species, and potentially disrupt intraspecific interactions.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Rocky Mountain Research Station, United States Forest Service, Missoula, MT 59801, USA
| | - Cassandra Duncan
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Grace Burrell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Cory T Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Structuring Life After Death: Plant Leachates Promote CO2 Uptake by Regulating Microbial Biofilm Interactions in a Northern Peatland Ecosystem. Ecosystems 2023. [DOI: 10.1007/s10021-023-00820-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractShifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2 flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2 emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2 emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes.
Collapse
|
6
|
Pichler V, Gömöryová E, Merganič J, Fleischer P, Homolák M, Onuchin A, Výbošťok J, Prosekin K. Interrelationships among mountain relief, surface organic layer, soil organic carbon, and its mineral association under subarctic forest tundra. Sci Rep 2022; 12:17252. [PMID: 36241892 PMCID: PMC9568575 DOI: 10.1038/s41598-022-21521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Efforts to estimate the impact of climate change-induced forest expansion on soil carbon stocks in cold regions are hindered by the lack of soil organic carbon (SOC) concentration data. The presented study addressed the information gap by establishing SOC concentration and its variability in two catchments inside the vast, remote, and rugged Putorana Plateau. Additionally, it explored interrelationships among the terrain relief, vegetation cover, surface organic layer, SOC and its mineral association on the northernmost boundary of the forest-tundra biome traversing the northwestern part of the Central Siberian Tableland. Soil samples were taken from the active layer on the slope base, middle, and below the upper forest boundary. Subsequently, they were analyzed for SOC concentration by dry combustion. Multiple linear regression identified associations between slope angle and surface organic layer thickness and between SOC concentration and surface organic layer thickness, clay content, and dithionite-extracted Al. Clay content and surface organic layer thickness explained 68% of the overall SOC concentration variability. When used with data produced by remote sensing-based multipurpose large-scale mapping of selected biophysical factors, the acquired regression equations could aid the estimation of SOC across the rugged terrain of the Siberian Traps.
Collapse
Affiliation(s)
- Viliam Pichler
- grid.27139.3e0000 0001 1018 7460Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovak Republic
| | - Erika Gömöryová
- grid.27139.3e0000 0001 1018 7460Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovak Republic
| | - Ján Merganič
- grid.27139.3e0000 0001 1018 7460Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovak Republic
| | - Peter Fleischer
- grid.27139.3e0000 0001 1018 7460Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovak Republic
| | - Marián Homolák
- grid.27139.3e0000 0001 1018 7460Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovak Republic
| | - Alexander Onuchin
- grid.465316.30000 0004 0494 7330V.N. Sukachev Institute of Forest SB RAS, Akademgorodok 50, Building 28, 660036 Krasnoyarsk, Russian Federation
| | - Jozef Výbošťok
- grid.27139.3e0000 0001 1018 7460Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovak Republic
| | - Konstantin Prosekin
- Taimyr Directorate of Nature Reserves, Kirov Str. 24, 663305 Norilsk, Russian Federation
| |
Collapse
|
7
|
Lee JR, Waterman MJ, Shaw JD, Bergstrom DM, Lynch HJ, Wall DH, Robinson SA. Islands in the ice: Potential impacts of habitat transformation on Antarctic biodiversity. GLOBAL CHANGE BIOLOGY 2022; 28:5865-5880. [PMID: 35795907 PMCID: PMC9542894 DOI: 10.1111/gcb.16331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
Antarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice-free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice-free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice-free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non-native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at-risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.
Collapse
Affiliation(s)
- Jasmine R. Lee
- British Antarctic SurveyNERCCambridgeUK
- Securing Antarctica's Environmental Future, School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Melinda J. Waterman
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Justine D. Shaw
- Securing Antarctica's Environmental Future, School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Dana M. Bergstrom
- Australian Antarctic Division, Department of AgricultureWater and the EnvironmentKingstonTASAustralia
- Global Challenges ProgramUniversity of WollongongWollongongNew South WalesAustralia
| | - Heather J. Lynch
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNew YorkUSA
| | - Diana H. Wall
- Department of Biology and School of Global Environmental SustainabilityColorado State UniversityFort CollinsColoradoUSA
| | - Sharon A. Robinson
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Global Challenges ProgramUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
8
|
Hudson AR, Peters DPC, Blair JM, Childers DL, Doran PT, Geil K, Gooseff M, Gross KL, Haddad NM, Pastore MA, Rudgers JA, Sala O, Seabloom EW, Shaver G. Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network. Bioscience 2022; 72:889-907. [PMID: 36034512 PMCID: PMC9405733 DOI: 10.1093/biosci/biab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.
Collapse
Affiliation(s)
- Amy R Hudson
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
| | - Debra P C Peters
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
- US Department of Agriculture Agricultural Research Service's Jornada Experimental Range, Las Cruces , New Mexico, United States
- New Mexico State University , Las Cruces, New Mexico, United States
| | - John M Blair
- Kansas State University, Manhattan , Kansas, United States
| | | | - Peter T Doran
- Louisiana State University , Baton Rouge, Louisiana, United States
| | - Kerrie Geil
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
| | | | - Katherine L Gross
- W. K. Kellogg Biological Station, Vermont , United States
- Department of Plant Biology, Vermont , United States
| | - Nick M Haddad
- W. K. Kellogg Biological Station, Vermont , United States
- Department of Plant Biology, Vermont , United States
| | | | | | - Osvaldo Sala
- Arizona State University , Tempe, Arizona, United States
- Global Drylands Center and the School of Life Sciences, Arizona State University , Tempe, Arizona, United States
| | - Eric W Seabloom
- University of Minnesota , St. Paul, Minnesota, United States
| | - Gaius Shaver
- Marine Biological Laboratory, Woods Hole , Massachusetts, United States
| |
Collapse
|
9
|
From Intra-plant to Regional Scale: June Temperatures and Regional Climates Directly and Indirectly Control Betula nana Growth in Arctic Alaska. Ecosystems 2022. [DOI: 10.1007/s10021-022-00771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractTundra shrubs reflect climate sensitivities in their growth-ring widths, yet tissue-specific shrub chronologies are poorly studied. Further, the relative importance of regional climate patterns that exert mesoscale precipitation and temperature influences on tundra shrub growth has been explored in only a few Arctic locations. Here, we investigate Betula nana growth-ring chronologies from adjacent dry heath and moist tussock tundra habitats in arctic Alaska in relation to local and regional climate. Mean shrub and five tissue-specific ring width chronologies were analyzed using serial sectioning of above- and below-ground shrub organs, resulting in 30 shrubs per site with 161 and 104 cross sections from dry and moist tundra, respectively. Betula nana growth-ring widths in both habitats were primarily related to June air temperature (1989–2014). The strongest relationships with air temperature were found for ‘Branch2’ chronologies (dry site: r = 0.78, June 16, DOY = 167; moist site: r = 0.75, June 9, DOY = 160). Additionally, below-ground chronologies (‘Root’ and ‘Root2’) from the moist site were positively correlated with daily mean air temperatures in the previous late-June (‘Root2’ chronology: r = 0.57, pDOY = 173). Most tissue-specific chronologies exhibited the strongest correlations with daily mean air temperature during the period between 8 and 20 June. Structural equation modeling indicated that shrub growth is indirectly linked to regional Arctic and Pacific Decadal Oscillation (AO and PDO) climate indices through their relation to summer sea ice extent and air temperature. Strong dependence of Betula nana growth on early growing season temperature indicates a highly coordinated allocation of resources to tissue growth, which might increase its competitive advantage over other shrub species under a rapidly changing Arctic climate.
Collapse
|
10
|
Increased Arctic NO3− Availability as a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Drying. NITROGEN 2022. [DOI: 10.3390/nitrogen3020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Climate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO3−). Researchers have identified two primary mechanisms that increase nitrogen and NO3− availability within permafrost soils: (1) the ‘frozen feast’, where previously frozen organic material becomes available as it thaws, and (2) ‘shrubification’, where expansion of nitrogen-fixing shrubs promotes increased soil nitrogen. Through the synthesis of original and previously published observational data, and the application of multiple geospatial approaches, this study investigates and highlights a third mechanism that increases NO3− availability: the hydrogeomorphic evolution of polygonal permafrost landscapes. Permafrost thaw drives changes in microtopography, increasing the drainage of topographic highs, thus increasing oxic conditions that promote NO3− production and accumulation. We extrapolate relationships between NO3− and soil moisture in elevated topographic features within our study area and the broader Alaskan Coastal Plain and investigate potential changes in NO3− availability in response to possible hydrogeomorphic evolution scenarios of permafrost landscapes. These approximations indicate that such changes could increase Arctic tundra NO3− availability by ~250–1000%. Thus, hydrogeomorphic changes that accompany continued permafrost degradation in polygonal permafrost landscapes will substantially increase soil pore water NO3− availability and boost future fertilization and productivity in the Arctic.
Collapse
|
11
|
Variation in abundance and life-history traits of two congeneric Arctic wolf spider species, Pardosa hyperborea and Pardosa furcifera, along local environmental gradients. Polar Biol 2022. [DOI: 10.1007/s00300-022-03041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wilbur SM, Deane CE, Breed GA, Buck CL, Williams C, Barnes BM. Survival estimates of free-living arctic ground squirrels: effects of sex and biologging. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hibernation is associated with long lifespan: on average, hibernating mammals live 15% longer than non-hibernators of equivalent mass. We investigated how survival varies with sex, season, and the deployment of biologgers in arctic ground squirrels [Urocitellus parryii (Richardson, 1825)], a widely-distributed northern hibernator. The duration of hibernation in arctic ground squirrels differs markedly by sex: females hibernate 30% longer each year than males, a behavioural trait that could positively affect female survival. Additionally, males engage in aggressive territorial and food cache defense in spring and fall, which may decrease survival in this sex. From 13 years of mark-recapture data, we estimated apparent survival of arctic ground squirrels in Arctic Alaska using Cormack-Jolly-Seber models in Program MARK. We found that females had higher annual survival ["φ" ̂Fannual = 0.753 (0.469; 0.913 C.I.)] than males ["φ" ̂Mannual = 0.546 (0.416; 0.670)], with a maximum observed lifespan (10 years) that exceeded that of males (six years). We also show that biologger use and implantation did not significantly impact survival. Quantifying basic arctic ground squirrel demographics from this well-studied population illustrates how sex-specific hibernation parameters may influence lifespan differences in male and female arctic ground squirrels and provides support for the safety of biologging devices.
Collapse
Affiliation(s)
- Sara M. Wilbur
- University of Alaska Fairbanks, 11414, Institute of Arctic Biology, Fairbanks, Alaska, United States
- Translational Genomics Research Institute Flagstaff, 525768, Flagstaff, Arizona, United States
| | - Cody E. Deane
- University of Alaska Fairbanks, 11414, Institute of Arctic Biology, Fairbanks, Alaska, United States
| | - Greg A Breed
- University of Alaska Fairbanks Department of Biology and Wildlife, 124480, Institute of Arctic Biology, Fairbanks, Alaska, United States
| | - C. Loren Buck
- Northern Arizona University, 3356, Biological Sciences, Flagstaff, Arizona, United States
| | - Cory Williams
- University of Alaska Fairbanks, 11414, Institute of Arctic Biology, Fairbanks, Alaska, United States
| | - Brian M. Barnes
- University of Alaska Fairbanks, 11414, Institute of Arctic Biology, Fairbanks, Alaska, United States
| |
Collapse
|
13
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Yu L, Leng G, Python A. Varying response of vegetation to sea ice dynamics over the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149378. [PMID: 34352465 DOI: 10.1016/j.scitotenv.2021.149378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Recent reduction of sea ice may have contributed to vegetation growth over the Arctic through albedo feedback effects to atmospheric warming. Understanding the varying response of vegetation to sea ice dynamics is critical for predicting future climate change over the Arctic and middle-high latitudes. Instead of looking at the direct response characteristics, we perform a systematic analysis of the time-lag and time-cumulation responses of vegetation to sea ice dynamics, using a long-term Arctic Normalized Difference Vegetation Index (NDVI) dataset and three sea ice indices (sea ice concentration (SIC), sea ice area (SIA) and sea ice extent (SIE)) from 1982 to 2015. The results show that annual NDVI in the Arctic has exhibited a significant (p < 0.05) increase during 1982 to 2015, while a significant (p < 0.05) decrease is detected for annual SIC, SIA and SIE. The results of a regression analysis on NDVI identify a lag time of 7-months, 8-months and 9-months for vegetation response to SIC, SIA and SIE in February, March and April, respectively, while no evident lag response is observed in summer except for August. For the cumulation response, NDVI in February, March and April shows the largest response to the previous 5, 7 and 9 months of sea ice variations, respectively, while a short cumulation response of 1 to 3 months is found in summer. The differences in the spatial patterns of lagged time are usually not statistically significant in autumn and winter. A shorter lag response (1-3 month) is found in the Yamalia region in June. Further analysis suggests that vegetation response to sea ice dynamics depends on bio - climatic characteristics and soil pH, with vegetation responding faster to sea ice changes in acidic soil. This study provides observational evidences on the varying response of vegetation to sea ice dynamics over the Arctic, which has great implications for predicting vegetation-climate feedback and climate change.
Collapse
Affiliation(s)
- Linfei Yu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoyong Leng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Andre Python
- Center for Data Science, Zhejiang University, Hangzhou 310058, China; Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
15
|
Rozenfeld SB, Volkov SV, Rogova NV, Kirtaev GV, Soloviev MY. The Impact of Changes in Breeding Conditions in the Arctic on the Expansion of the Russian Population of the Barnacle Goose (Branta leucopsis). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021090211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kluge M, Wurzbacher C, Wauthy M, Clemmensen KE, Hawkes JA, Einarsdottir K, Stenlid J, Peura S. Community composition of aquatic fungi across the thawing Arctic. Sci Data 2021; 8:221. [PMID: 34413318 PMCID: PMC8377128 DOI: 10.1038/s41597-021-01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Thermokarst activity at permafrost sites releases considerable amounts of ancient carbon to the atmosphere. A large part of this carbon is released via thermokarst ponds, and fungi could be an important organismal group enabling its recycling. However, our knowledge about aquatic fungi in thermokarstic systems is extremely limited. In this study, we collected samples from five permafrost sites distributed across circumpolar Arctic and representing different stages of permafrost integrity. Surface water samples were taken from the ponds and, additionally, for most of the ponds also the detritus and sediment samples were taken. All the samples were extracted for total DNA, which was then amplified for the fungal ITS2 region of the ribosomal genes. These amplicons were sequenced using PacBio technology. Water samples were also collected to analyze the chemical conditions in the ponds, including nutrient status and the quality and quantity of dissolved organic carbon. This dataset gives a unique overview of the impact of the thawing permafrost on fungal communities and their potential role on carbon recycling.
Collapse
Affiliation(s)
- Mariana Kluge
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Christian Wurzbacher
- Department of Civil, Geo and Environmental Engineering, Technische Universität München, Munich, Germany
| | - Maxime Wauthy
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre for Northern Studies (CEN), Université Laval, Québec, Québec, Canada
| | - Karina Engelbrecht Clemmensen
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Karolina Einarsdottir
- Limnology, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Snowier winters extend autumn availability of high‐quality forage for caribou in Arctic Alaska. Ecosphere 2021. [DOI: 10.1002/ecs2.3617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range. PLoS One 2021; 16:e0251625. [PMID: 34010344 PMCID: PMC8133401 DOI: 10.1371/journal.pone.0251625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.
Collapse
|
19
|
Rastetter EB, Ohman MD, Elliott KJ, Rehage JS, Rivera‐Monroy VH, Boucek RE, Castañeda‐Moya E, Danielson TM, Gough L, Groffman PM, Jackson CR, Miniat CF, Shaver GR. Time lags: insights from the U.S. Long Term Ecological Research Network. Ecosphere 2021. [DOI: 10.1002/ecs2.3431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Edward B. Rastetter
- The Ecosystems Center Marine Biological Laboratory Woods Hole Massachusetts02543USA
| | - Mark D. Ohman
- Scripps Institution of Oceanography University of California, San Diego La Jolla California92093USA
| | - Katherine J. Elliott
- Center for Forest Watershed Research Coweeta Hydrologic LaboratoryUSDA Forest ServiceSouthern Research Station Otto North Carolina28763USA
| | - J. S. Rehage
- Institute of Environment Florida International University Miami Florida33199USA
| | - Victor H. Rivera‐Monroy
- Department of Oceanography and Coastal Sciences College of the Coast and Environment Louisiana State University Baton Rouge Louisiana70803USA
| | - R. E. Boucek
- Institute of Environment Florida International University Miami Florida33199USA
| | - Edward Castañeda‐Moya
- Southeast Environmental Research Center Florida International University Miami Florida33199USA
| | - Tess M. Danielson
- Department of Oceanography and Coastal Sciences College of the Coast and Environment Louisiana State University Baton Rouge Louisiana70803USA
| | - Laura Gough
- Department of Biological Sciences Towson University Towson Maryland21252USA
| | - Peter M. Groffman
- City University of New York Advanced Science Research Center at the Graduate Center New York New York10031USA
- Cary Institute of Ecosystem Studies 2801 Sharon Turnpike Millbrook New York12545USA
| | - C. Rhett Jackson
- Warnell School of Forestry and Environmental Science University of Georgia Athens Georgia30602‐2152USA
| | - Chelcy Ford Miniat
- Center for Forest Watershed Research Coweeta Hydrologic LaboratoryUSDA Forest ServiceSouthern Research Station Otto North Carolina28763USA
| | - Gaius R. Shaver
- The Ecosystems Center Marine Biological Laboratory Woods Hole Massachusetts02543USA
| |
Collapse
|
20
|
Beel CR, Heslop JK, Orwin JF, Pope MA, Schevers AJ, Hung JKY, Lafrenière MJ, Lamoureux SF. Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. Nat Commun 2021; 12:1448. [PMID: 33664252 PMCID: PMC7933336 DOI: 10.1038/s41467-021-21759-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Hydrological transformations induced by climate warming are causing Arctic annual fluvial energy to shift from skewed (snowmelt-dominated) to multimodal (snowmelt- and rainfall-dominated) distributions. We integrated decade-long hydrometeorological and biogeochemical data from the High Arctic to show that shifts in the timing and magnitude of annual discharge patterns and stream power budgets are causing Arctic material transfer regimes to undergo fundamental changes. Increased late summer rainfall enhanced terrestrial-aquatic connectivity for dissolved and particulate material fluxes. Permafrost disturbances (<3% of the watersheds’ areal extent) reduced watershed-scale dissolved organic carbon export, offsetting concurrent increased export in undisturbed watersheds. To overcome the watersheds’ buffering capacity for transferring particulate material (30 ± 9 Watt), rainfall events had to increase by an order of magnitude, indicating the landscape is primed for accelerated geomorphological change when future rainfall magnitudes and consequent pluvial responses exceed the current buffering capacity of the terrestrial-aquatic continuum. Climate warming is causing annual Arctic fluvial energy budgets to shift seasonality from snowmelt-dominated to snowmelt- and rainfall-dominated hydrological regimes, enhancing late summer and fall terrestrial-aquatic connectivity and higher material fluxes.
Collapse
Affiliation(s)
- C R Beel
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada. .,Water Management and Monitoring, Environment and Natural Resources, Government of Northwest Territories, Yellowknife, NT, Canada.
| | - J K Heslop
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada.,Section 3.7 Geomicrobiology, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - J F Orwin
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada.,Resource Stewardship Division, Alberta Environment and Parks, Government of Alberta, Calgary, AB, Canada
| | - M A Pope
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada
| | - A J Schevers
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada
| | - J K Y Hung
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada
| | - M J Lafrenière
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada
| | - S F Lamoureux
- Department of Geography and Planning, Queen's University, Kingston, ON, Canada
| |
Collapse
|
21
|
Hein N, Löffler J, Feilhauer H. Mapping of arthropod alpha and beta diversity in heterogeneous arctic-alpine ecosystems. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.101007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Assmann JJ, Myers-Smith IH, Phillimore AB, Bjorkman AD, Ennos RE, Prevéy JS, Henry GHR, Schmidt NM, Hollister RD. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra. GLOBAL CHANGE BIOLOGY 2019; 25:2258-2274. [PMID: 30963662 DOI: 10.1111/gcb.14639] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/18/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
The Arctic is undergoing dramatic environmental change with rapidly rising surface temperatures, accelerating sea ice decline and changing snow regimes, all of which influence tundra plant phenology. Despite these changes, no globally consistent direction of trends in spring phenology has been reported across the Arctic. While spring has advanced at some sites, spring has delayed or not changed at other sites, highlighting substantial unexplained variation. Here, we test the relative importance of local temperatures, local snow melt date and regional spring drop in sea ice extent as controls of variation in spring phenology across different sites and species. Trends in long-term time series of spring leaf-out and flowering (average span: 18 years) were highly variable for the 14 tundra species monitored at our four study sites on the Arctic coasts of Alaska, Canada and Greenland, ranging from advances of 10.06 days per decade to delays of 1.67 days per decade. Spring temperatures and the day of spring drop in sea ice extent advanced at all sites (average 1°C per decade and 21 days per decade, respectively), but only those sites with advances in snow melt (average 5 days advance per decade) also had advancing phenology. Variation in spring plant phenology was best explained by snow melt date (mean effect: 0.45 days advance in phenology per day advance snow melt) and, to a lesser extent, by mean spring temperature (mean effect: 2.39 days advance in phenology per °C). In contrast to previous studies examining sea ice and phenology at different spatial scales, regional spring drop in sea ice extent did not predict spring phenology for any species or site in our analysis. Our findings highlight that tundra vegetation responses to global change are more complex than a direct response to warming and emphasize the importance of snow melt as a local driver of tundra spring phenology.
Collapse
Affiliation(s)
| | | | | | - Anne D Bjorkman
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | | | - Janet S Prevéy
- Pacific Northwest Research Station, Department of Agriculture - Forest Service, Olympia, Washington
| | | | - Niels M Schmidt
- Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
23
|
Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. Ecosphere 2019. [DOI: 10.1002/ecs2.2677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
24
|
Hunt KE, Hahn TP, Buck CL, Wingfield JC. Effect of testosterone blockers on male aggression, song and parental care in an arctic passerine, the Lapland longspur (Calcarius lapponicus). Horm Behav 2019; 110:10-18. [PMID: 30735664 DOI: 10.1016/j.yhbeh.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.
Collapse
Affiliation(s)
- Kathleen E Hunt
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Thomas P Hahn
- Department of Neurobiology, Physiology & Behavior, University of California, One Shields Ave., Davis, CA 95616, USA.
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - John C Wingfield
- Department of Neurobiology, Physiology & Behavior, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
25
|
Myers‐Smith IH, Grabowski MM, Thomas HJD, Angers‐Blondin S, Daskalova GN, Bjorkman AD, Cunliffe AM, Assmann JJ, Boyle JS, McLeod E, McLeod S, Joe R, Lennie P, Arey D, Gordon RR, Eckert CD. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1351] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Isla H. Myers‐Smith
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | | | - Haydn J. D. Thomas
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | | | | | - Anne D. Bjorkman
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
- Section for Ecoinformatics & Biodiversity Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Andrew M. Cunliffe
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | - Jakob J. Assmann
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | - Joseph S. Boyle
- School of GeoSciences University of Edinburgh Edinburgh EH9 3FF United Kingdom
| | - Edward McLeod
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Samuel McLeod
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Ricky Joe
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Paden Lennie
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Deon Arey
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Richard R. Gordon
- Department of Environment Yukon Parks–Inuvik Office Yukon Territorial Government Inuvik NWT X0E 0T0 Canada
| | - Cameron D. Eckert
- Department of Environment Yukon Parks–Whitehorse Office Yukon Territorial Government Whitehorse Yukon Territory Y1A 2C6 Canada
| |
Collapse
|
26
|
Isotope ecology detects fine-scale variation in Svalbard reindeer diet: implications for monitoring herbivory in the changing Arctic. Polar Biol 2019. [DOI: 10.1007/s00300-019-02474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Road dust biases NDVI and alters edaphic properties in Alaskan arctic tundra. Sci Rep 2019; 9:214. [PMID: 30659211 PMCID: PMC6338752 DOI: 10.1038/s41598-018-36804-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/25/2018] [Indexed: 11/08/2022] Open
Abstract
Increased road-building activity in the arctic has the potential to impact adjacent ecosystems. Roads in permafrost regions are often built atop insulative gravel pads that generate dust plumes, altering soil chemistry and ecosystem function of nearby tundra. Here, we measure edaphic and vegetation characteristics along transects of decreasing dust deposition perpendicular to the Dalton Highway in northern Alaska. We quantify the impact of dust deposition on normalized difference vegetation index (NDVI), a proxy for aboveground plant biomass. Deposition of calcium carbonate-rich dust declined from 1.625 grams m-2 day-1 immediately adjacent to the road, to negligible levels 625 meters away. Along these transects from the road, we found declines in soil moisture and temperature, thaw depth, shrub height, and foliar nitrogen content, indicating that tundra roads create corridors with edaphic conditions favorable to vascular plant growth. At sites nearest the road, dust deposited on leaf surfaces reduced measured NDVI values by 0.24 by blocking reflectance properties of the underlying leaves. Our findings on the impacts of roads and dust deposition on adjacent tundra may aid planning of future infrastructure projects. We caution that dust deposition may negatively bias NDVI-based estimates of plant biomass, especially where unpaved roads are common.
Collapse
|
28
|
Kendrick MR, Huryn AD, Bowden WB, Deegan LA, Findlay RH, Hershey AE, Peterson BJ, Beneš JP, Schuett EB. Linking permafrost thaw to shifting biogeochemistry and food web resources in an arctic river. GLOBAL CHANGE BIOLOGY 2018; 24:5738-5750. [PMID: 30218544 DOI: 10.1111/gcb.14448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 05/21/2023]
Abstract
Rapidly, increasing air temperatures across the Arctic are thawing permafrost and exposing vast quantities of organic carbon, nitrogen, and phosphorus to microbial processing. Shifts in the absolute and relative supplies of these elements will likely alter patterns of ecosystem productivity and change the way carbon and nutrients are delivered from upland areas to surface waters such as rivers and lakes. The ultra-oligotrophic nature of surface waters across the Arctic renders these ecosystems particularly susceptible to changes in productivity and food web dynamics as permafrost thaw alters terrestrial-aquatic linkages. The objectives of this study were to evaluate decadal-scale patterns in surface water chemistry and assess potential implications of changing water chemistry to benthic organic matter and aquatic food webs. Data were collected from the upper Kuparuk River on the North Slope of Alaska by the U.S. National Science Foundation's Long-Term Ecological Research program during 1978-2014. Analyses of these data show increases in stream water alkalinity and cation concentrations consistent with signatures of permafrost thaw. Changes are also documented for discharge-corrected nitrate concentrations (+), discharge-corrected dissolved organic carbon concentrations (-), total phosphorus concentrations (-), and δ13 C isotope values of aquatic invertebrate consumers (-). These changes show that warming temperatures and thawing permafrost in the upland environment are leading to shifts in the supply of carbon and nutrients available to surface waters and consequently changing resources that support aquatic food webs. This demonstrates that physical, geochemical, and biological changes associated with warming permafrost are fundamentally altering linkages between upland and aquatic ecosystems in rapidly changing arctic environments.
Collapse
Affiliation(s)
- Michael R Kendrick
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama
| | - William B Bowden
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, Vermont
| | | | - Robert H Findlay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama
| | - Anne E Hershey
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Bruce J Peterson
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Joshua P Beneš
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, Vermont
| | - Elissa B Schuett
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, Vermont
| |
Collapse
|
29
|
Krause JS, Pérez JH, Chmura HE, Meddle SL, Hunt KE, Gough L, Boelman N, Wingfield JC. Weathering the storm: Do arctic blizzards cause repeatable changes in stress physiology and body condition in breeding songbirds? Gen Comp Endocrinol 2018; 267:183-192. [PMID: 30031732 PMCID: PMC6127033 DOI: 10.1016/j.ygcen.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
Severe weather events are increasing worldwide because of climate change. To cope with severe weather events, vertebrates rely on the stress response which is activated by the hypothalamic-pituitary adrenal (HPA) axis to adjust physiology and behavior. Previous studies have detailed changes in baseline concentrations of the stress hormone corticosterone during a single storm event, but little data exists on how stress physiology and body condition are adjusted as the storm progresses across multiple days. This represents a serious gap in our understanding of how birds respond physiologically over the duration of a storm. We documented arctic snowstorms that occurred over five consecutive years that were endured by Lapland longspurs (Calcarius lapponicus; 2012-2016) and in three consecutive years by white-crowned sparrows (Zonotrichia leucophrys gambelii; 2014-2016). Data were collected on storm-free days, during snowstorms ranging in length from 1 to 3 days, and the day immediately following a snowstorm. The specific aims were to understand how stress physiology, measured at baseline and in response to restraint handling, and body condition changed over multiple days of the storm, and if these responses were consistent across years. Snowstorms did not affect baseline corticosterone concentrations for either species except for female Lapland longspurs and male white-crowned sparrows in 2014. Lapland longspurs, regardless of sex, increased stress-induced (restraint handling) corticosterone in response to snowstorms in all years but 2013, which was characterized by unusually harsh conditions. Both sexes of White-crowned sparrows showed a significant increase in the stress-induced levels of corticosterone during snowstorms in one of the three years of the study. Stress-induced corticosterone concentrations were only different across each day of the storm in one year of the study for Lapland longspurs. Changes in fat and body mass were not uniform across years, but measurable increases in fat stores and body mass were detected in males of both species during the first day of a snowstorm with declines typically occurring by the second day. Our study showed that severe weather events often caused rapid increases in HPA axis activity and body condition, but these profiles are likely dependent upon ecological and environmental context within the breeding season.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Helen E Chmura
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Kathleen E Hunt
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ 86011, USA
| | - Laura Gough
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Natalie Boelman
- Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
30
|
Blok D, Faucherre S, Banyasz I, Rinnan R, Michelsen A, Elberling B. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra. GLOBAL CHANGE BIOLOGY 2018; 24:2660-2672. [PMID: 29235209 DOI: 10.1111/gcb.14017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability.
Collapse
Affiliation(s)
- Daan Blok
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Samuel Faucherre
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Imre Banyasz
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Michelsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Träger S, Milbau A, Wilson SD. Potential contributions of root decomposition to the nitrogen cycle in arctic forest and tundra. Ecol Evol 2018; 7:11021-11032. [PMID: 29299278 PMCID: PMC5743615 DOI: 10.1002/ece3.3522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant‐associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.
Collapse
Affiliation(s)
- Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Ann Milbau
- Research Institute for Nature and Forest INBO Brussels Belgium.,Department of Ecology and Environmental Science Climate Impacts Research Centre Umeå University Abisko Sweden
| | - Scott D Wilson
- Department of Ecology and Environmental Science Climate Impacts Research Centre Umeå University Abisko Sweden.,Department of Biology University of Regina Regina SK Canada
| |
Collapse
|
32
|
Williams CT, Buck CL, Sheriff MJ, Richter MM, Krause JS, Barnes BM. Sex-Dependent Phenological Plasticity in an Arctic Hibernator. Am Nat 2017; 190:854-859. [PMID: 29166160 DOI: 10.1086/694320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hibernation provides a means of escaping the metabolic challenges associated with seasonality, yet the ability of mammals to prolong or reenter seasonal dormancy in response to extreme weather events is unclear. Here, we show that Arctic ground squirrels in northern Alaska exhibited sex-dependent plasticity in the physiology and phenology of hibernation in response to a series of late spring snowstorms in 2013 that resulted in the latest snowmelt on record. Females and nonreproductive males responded to the >1-month delay in snowmelt by extending heterothermy or reentering hibernation after several days of euthermy, leading to a >2-week delay in reproduction compared to surrounding years. In contrast, reproductive males neither extended nor reentered hibernation, likely because seasonal gonadal growth and development and subsequent testosterone release prevents a return to torpor. Our findings reveal intriguing differences in responses of males and females to climatic stressors, which can generate a phenological mismatch between the sexes.
Collapse
|
33
|
Alatalo JM, Jägerbrand AK, Chen S, Molau U. Responses of lichen communities to 18 years of natural and experimental warming. ANNALS OF BOTANY 2017; 120:159-170. [PMID: 28651333 PMCID: PMC5737088 DOI: 10.1093/aob/mcx053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 05/31/2023]
Abstract
Background and Aims Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. Methods The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Key Results Between 1993 and 2013, mean annual temperature increased about 2 °C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. Conclusions The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens.
Collapse
Affiliation(s)
- Juha M. Alatalo
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Shengbin Chen
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ulf Molau
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|