1
|
Raspa M, Gwaltney A, Bann C, von Hehn J, Benke TA, Marsh ED, Peters SU, Ananth A, Percy AK, Neul JL. Psychometric Assessment of the Rett Syndrome Caregiver Assessment of Symptom Severity (RCASS). J Autism Dev Disord 2025; 55:997-1009. [PMID: 38438817 PMCID: PMC11374935 DOI: 10.1007/s10803-024-06238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 03/06/2024]
Abstract
Rett syndrome is a severe neurodevelopmental disorder that affects about 1 in 10,000 females. Clinical trials of disease modifying therapies are on the rise, but there are few psychometrically sound caregiver-reported outcome measures available to assess treatment benefit. We report on a new caregiver-reported outcome measure, the Rett Caregiver Assessment of Symptom Severity (RCASS). Using data from the Rett Natural History Study (n = 649), we examined the factor structure, using both exploratory and confirmatory factor analysis, and the reliability and validity of the RCASS. The four-factor model had the best overall fit, which covered movement, communication, behavior, and Rett-specific symptoms. The RCASS had moderate internal consistency. Strong face validity was found with age and mutation type, and convergent validity was established with other similar measures, including the Revised Motor-Behavior Assessment Scale, Clinical Severity Scale, Clinical Global Impression Scale, and the Child Health Questionnaire. These data provide initial evidence that the RCASS is a viable caregiver-outcome measure for use in clinical trials in Rett syndrome. Future work to assess sensitivity to change and other measures of reliability, such as test-retest and inter-rater agreement, are needed.
Collapse
Affiliation(s)
- Melissa Raspa
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27708, USA.
| | - Angela Gwaltney
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27708, USA
| | - Carla Bann
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27708, USA
| | | | - Timothy A Benke
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, USA
| | - Eric D Marsh
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Sarika U Peters
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, USA
| | - Amitha Ananth
- University of Alabama at Birmingham, Birmingham, USA
| | - Alan K Percy
- University of Alabama at Birmingham, Birmingham, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
2
|
Kaufmann WE, Luu S, Budimirovic DB. Drug Treatments for Neurodevelopmental Disorders: Targeting Signaling Pathways and Homeostasis. Curr Neurol Neurosci Rep 2024; 25:7. [PMID: 39641900 DOI: 10.1007/s11910-024-01394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF THE REVIEW Preclinical and clinical evidence support the notion that neurodevelopmental disorders (NDDs) are synaptic disorders, characterized by excitatory-inhibitory imbalance. Despite this, NDD drug development programs targeting glutamate or gamma-aminobutyric acid (GABA) receptors have been largely unsuccessful. Nonetheless, recent drug trials in Rett syndrome (RTT), fragile X syndrome (FXS), and other NDDs targeting other mechanisms have met their endpoints. The purpose of this review is to identify the basis of these successful studies. RECENT FINDINGS Despite increasing evidence of disruption in synaptic homeostasis, most genetic variants associated with NDDs implicate proteins involved in cell regulation and not in neurotransmission. Metabolic processes, in particular mitochondrial function, appear to play a role in NDD pathophysiology. NDDs are also characterized by distinctive cell signaling abnormalities, which link cellular and synaptic homeostasis. Recent successful trials in NDDs, including those of trofinetide, the first drug specifically approved for one of these disorders (i.e., RTT), implicate the targeting of downstream processes (i.e., signaling pathways) rather than neurotransmitter receptors. Recent positive drug studies in NDDs and their underlying mechanisms, in conjunction with new knowledge on the pathophysiology of these disorders, support the concept that targeting signaling and cellular and synaptic homeostasis may be a preferred approach for ameliorating synaptic abnormalities in many NDDs.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Boston Children's Hospital, Boston, MA, 02115, USA.
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Skylar Luu
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dejan B Budimirovic
- Kennedy Krieger Institute and Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Haase F, Singh R, Gloss B, Tam P, Gold W. Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome. Int J Mol Sci 2022; 23:11125. [PMID: 36232428 PMCID: PMC9570315 DOI: 10.3390/ijms231911125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2) are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator as well as through epigenetic imprinting and chromatin condensation. Consequently, numerous biological pathways on multiple levels are influenced. However, the exact molecular pathways from genotype to phenotype are currently not fully elucidated. Treatment of RTT is purely symptomatic as no curative options for RTT have yet to reach the clinic. The paucity of this is mainly due to an incomplete understanding of the underlying pathophysiology of the disorder with no clinically useful common disease drivers, biomarkers, or therapeutic targets being identified. With the premise of identifying universal and robust disease drivers and therapeutic targets, here, we interrogated a range of RTT transcriptomic studies spanning different species, models, and MECP2 mutations. A meta-analysis using RNA sequencing data from brains of RTT mouse models, human post-mortem brain tissue, and patient-derived induced pluripotent stem cell (iPSC) neurons was performed using weighted gene correlation network analysis (WGCNA). This study identified a module of genes common to all datasets with the following ten hub genes driving the expression: ATRX, ADCY7, ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2. Here, we discuss the potential benefits of these genes as therapeutic targets.
Collapse
Affiliation(s)
- Florencia Haase
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Rachna Singh
- School of Medicine Sydney, The University of Notre Dame, Chippendale, NSW 2007, Australia
| | - Brian Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Patrick Tam
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wendy Gold
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| |
Collapse
|
4
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
5
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Vallés AS, Barrantes FJ. Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:435-474. [PMID: 35034726 DOI: 10.1016/bs.apcsb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Tost A, Migliorelli C, Bachiller A, Medina-Rivera I, Romero S, García-Cazorla Á, Mañanas MA. Choosing Strategies to Deal with Artifactual EEG Data in Children with Cognitive Impairment. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1030. [PMID: 34441170 PMCID: PMC8392530 DOI: 10.3390/e23081030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a disease that involves acute cognitive impairment and, consequently, a complex and varied symptomatology. This study evaluates the EEG signals of twenty-nine patients and classify them according to the level of movement artifact. The main goal is to achieve an artifact rejection strategy that performs well in all signals, regardless of the artifact level. Two different methods have been studied: one based on the data distribution and the other based on the energy function, with entropy as its main component. The method based on the data distribution shows poor performance with signals containing high amplitude outliers. On the contrary, the method based on the energy function is more robust to outliers. As it does not depend on the data distribution, it is not affected by artifactual events. A double rejection strategy has been chosen, first on a motion signal (accelerometer or EEG low-pass filtered between 1 and 10 Hz) and then on the EEG signal. The results showed a higher performance when working combining both artifact rejection methods. The energy-based method, to isolate motion artifacts, and the data-distribution-based method, to eliminate the remaining lower amplitude artifacts were used. In conclusion, a new method that proves to be robust for all types of signals is designed.
Collapse
Affiliation(s)
- Ana Tost
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain; (C.M.); (A.B.); (S.R.); (M.A.M.)
| | - Carolina Migliorelli
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain; (C.M.); (A.B.); (S.R.); (M.A.M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (I.M.-R.); (Á.G.-C.)
| | - Alejandro Bachiller
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain; (C.M.); (A.B.); (S.R.); (M.A.M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (I.M.-R.); (Á.G.-C.)
| | - Inés Medina-Rivera
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (I.M.-R.); (Á.G.-C.)
| | - Sergio Romero
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain; (C.M.); (A.B.); (S.R.); (M.A.M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (I.M.-R.); (Á.G.-C.)
| | - Ángeles García-Cazorla
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (I.M.-R.); (Á.G.-C.)
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca, Hospital Sant Joan de Déu, metabERN and CIBERER-ISCIII, 08950 Barcelona, Spain
| | - Miguel A. Mañanas
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain; (C.M.); (A.B.); (S.R.); (M.A.M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (I.M.-R.); (Á.G.-C.)
| |
Collapse
|
8
|
Saby JN, Benke TA, Peters SU, Standridge SM, Matsuzaki J, Cutri-French C, Swanson LC, Lieberman DN, Key AP, Percy AK, Neul JL, Nelson CA, Roberts TP, Marsh ED. Multisite Study of Evoked Potentials in Rett Syndrome. Ann Neurol 2021; 89:790-802. [PMID: 33480039 PMCID: PMC8882338 DOI: 10.1002/ana.26029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the current study was to evaluate the utility of evoked potentials as a biomarker of cortical function in Rett syndrome (RTT). As a number of disease-modifying therapeutics are currently under development, there is a pressing need for biomarkers to objectively and precisely assess the effectiveness of these treatments. METHOD Yearly visual evoked potentials (VEPs) and auditory evoked potentials (AEPs) were acquired from individuals with RTT, aged 2 to 37 years, and control participants across 5 sites as part of the Rett Syndrome and Related Disorders Natural History Study. Baseline and year 1 data, when available, were analyzed and the repeatability of the results was tested. Two syndrome-specific measures from the Natural History Study were used for evaluating the clinical relevance of the VEP and AEP parameters. RESULTS At the baseline study, group level comparisons revealed reduced VEP and AEP amplitude in RTT compared to control participants. Further analyses within the RTT group indicated that this reduction was associated with RTT-related symptoms, with greater severity associated with lower VEP and AEP amplitude. In participants with RTT, VEP and AEP amplitude was also negatively associated with age. Year 1 follow-up data analyses yielded similar findings and evidence of repeatability of EPs at the individual level. INTERPRETATION The present findings indicate the promise of evoked potentials (EPs) as an objective measure of disease severity in individuals with RTT. Our multisite approach demonstrates potential research and clinical applications to provide unbiased assessment of disease staging, prognosis, and response to therapy. ANN NEUROL 2021;89:790-802.
Collapse
Affiliation(s)
- Joni N. Saby
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Timothy A. Benke
- Department of Pediatrics, Neurology, Pharmacology and Otolaryngology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Shannon M. Standridge
- Cincinnati Children’s Hospital Medical Center, Division of Neurology and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Junko Matsuzaki
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Clare Cutri-French
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsay C. Swanson
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - David N. Lieberman
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Alan K. Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L. Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School
| | - Timothy P.L. Roberts
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Trujillo CA, Adams JW, Negraes PD, Carromeu C, Tejwani L, Acab A, Tsuda B, Thomas CA, Sodhi N, Fichter KM, Romero S, Zanella F, Sejnowski TJ, Ulrich H, Muotri AR. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol Med 2021; 13:e12523. [PMID: 33501759 PMCID: PMC7799367 DOI: 10.15252/emmm.202012523] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Duplication or deficiency of the X-linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. No clinically approved treatments for RTT are currently available, but human pluripotent stem cell technology offers a platform to identify neuropathology and test candidate therapeutics. Using a strategic series of increasingly complex human stem cell-derived technologies, including human neurons, MECP2-mosaic neurospheres to model RTT female brain mosaicism, and cortical organoids, we identified synaptic dysregulation downstream from knockout of MECP2 and screened select pharmacological compounds for their ability to treat this dysfunction. Two lead compounds, Nefiracetam and PHA 543613, specifically reversed MECP2-knockout cytologic neuropathology. The capacity of these compounds to reverse neuropathologic phenotypes and networks in human models supports clinical studies for neurodevelopmental disorders in which MeCP2 deficiency is the predominant etiology.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Jason W Adams
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- Department of NeurosciencesSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- Center for Academic Research and Training in AnthropogenyUniversity of California San DiegoLa JollaCAUSA
| | - Priscilla D Negraes
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- StemoniX IncMaple GroveMNUSA
| | - Cassiano Carromeu
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- StemoniX IncMaple GroveMNUSA
| | - Leon Tejwani
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Interdepartmental Neuroscience ProgramYale School of MedicineNew HavenCTUSA
| | - Allan Acab
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ben Tsuda
- Department of NeurosciencesSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Charles A Thomas
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
| | | | | | | | | | - Terrence J Sejnowski
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
- Institute for Neural ComputationUniversity of California San DiegoLa JollaCAUSA
- Division of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Henning Ulrich
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's HospitalDepartment of Cellular & Molecular MedicineSchool of MedicineUniversity of California San DiegoLa JollaCAUSA
- Center for Academic Research and Training in AnthropogenyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
10
|
Fell CW, Nagy V. Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability. Trends Mol Med 2021; 27:220-230. [PMID: 33397633 DOI: 10.1016/j.molmed.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Intellectual disabilities (ID) are a type of neurodevelopmental disorder (NDD). They can have a genetic cause, including an emerging class of ID centring around Rho GTPases, such as Ras-related C3 botulinum toxin substrate 1 (RAC1). Guidelines for establishing genetic causality include the use of cellular models, which often have morphological aberrations, a long-standing hallmark of ID. Disease cellular models can facilitate high-throughput screening (HTS) of chemical or genetic perturbations, which can provide translatable biological insight. Here, we discuss a class of IDs centring around RAC1. We review novel and established cellular models of ID, including mouse and human primary cells and reprogrammed or induced neurons. Finally, we review progress and remaining challenges in the adoption of HTS methodologies by the community studying neurological disorders.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria.
| |
Collapse
|
11
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
12
|
Kaufmann WE, Sprouse J, Rebowe N, Hanania T, Klamer D, Missling CU. ANAVEX®2-73 (blarcamesine), a Sigma-1 receptor agonist, ameliorates neurologic impairments in a mouse model of Rett syndrome. Pharmacol Biochem Behav 2019; 187:172796. [PMID: 31704481 DOI: 10.1016/j.pbb.2019.172796] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that is associated in most cases with mutations in the transcriptional regulator MECP2. At present, there are no effective treatments for the disorder. Despite recent advances in RTT genetics and neurobiology, most drug development programs have focused on compounds targeting the IGF-1 pathway and no pivotal trial has been completed as yet. Thus, testing novel drugs that can ameliorate RTT's clinical manifestations is a high priority. ANAVEX2-73 (blarcamesine) is a Sigma-1 receptor agonist and muscarinic receptor modulator with a strong safety record and preliminary evidence of efficacy in patients with Alzheimer's disease. Its role in calcium homeostasis and mitochondrial function, cellular functions that underlie pathological processes and compensatory mechanisms in RTT, makes blarcamesine an intriguing drug candidate for this disorder. Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. We tested blarcamesine in female heterozygous mice carrying one null allele of Mecp2 (HET) using a two-tier approach, with age-appropriate tests. Administration of the drug to younger and older adult mice resulted in improvement in multiple motor, sensory, and autonomic phenotypes of relevance to RTT. The latter included motor coordination and balance, acoustic and visual responses, hindlimb clasping, and apnea in expiration. In line with previous animal and human studies, blarcamesine also showed a good safety profile in this mouse model of RTT. Clinical studies in RTT with blarcamesine are ongoing.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Anavex Life Sciences Corp., 51 West 52nd Street, 7th floor, New York, NY 10019, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322.
| | - Jeffrey Sprouse
- Anavex Life Sciences Corp., 51 West 52nd Street, 7th floor, New York, NY 10019, USA
| | - Nell Rebowe
- Anavex Life Sciences Corp., 51 West 52nd Street, 7th floor, New York, NY 10019, USA
| | - Taleen Hanania
- PsychoGenics Inc., 215 College Road, Paramus, NJ 07652, USA
| | - Daniel Klamer
- Anavex Life Sciences Corp., 51 West 52nd Street, 7th floor, New York, NY 10019, USA
| | | |
Collapse
|
13
|
Smith ES, Smith DR, Eyring C, Braileanu M, Smith-Connor KS, Ei Tan Y, Fowler AY, Hoffman GE, Johnston MV, Kannan S, Blue ME. Altered trajectories of neurodevelopment and behavior in mouse models of Rett syndrome. Neurobiol Learn Mem 2019; 165:106962. [PMID: 30502397 PMCID: PMC8040058 DOI: 10.1016/j.nlm.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Abstract
Rett Syndrome (RTT) is a genetic disorder that is caused by mutations in the x-linked gene coding for methyl-CpG-biding-protein 2 (MECP2) and that mainly affects females. Male and female transgenic mouse models of RTT have been studied extensively, and we have learned a great deal regarding RTT neuropathology and how MeCP2 deficiency may be influencing brain function and maturation. In this manuscript we review what is known concerning structural and coinciding functional and behavioral deficits in RTT and in mouse models of MeCP2 deficiency. We also introduce our own corroborating data regarding behavioral phenotype and morphological alterations in volume of the cortex and striatum and the density of neurons, aberrations in experience-dependent plasticity within the barrel cortex and the impact of MeCP2 loss on glial structure. We conclude that regional structural changes in genetic models of RTT show great similarity to the alterations in brain structure of patients with RTT. These region-specific modifications often coincide with phenotype onset and contribute to larger issues of circuit connectivity, progression, and severity. Although the alterations seen in mouse models of RTT appear to be primarily due to cell-autonomous effects, there are also non-cell autonomous mechanisms including those caused by MeCP2-deficient glia that negatively impact healthy neuronal function. Collectively, this body of work has provided a solid foundation on which to continue to build our understanding of the role of MeCP2 on neuronal and glial structure and function, its greater impact on neural development, and potential new therapeutic avenues.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dani R Smith
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charlotte Eyring
- The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Maria Braileanu
- Undergraduate Program in Neuroscience, The Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen S Smith-Connor
- The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Yew Ei Tan
- Perdana University Graduate School of Medicine, Kuala Lumpur, Malaysia
| | - Amanda Y Fowler
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Gloria E Hoffman
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Michael V Johnston
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Mary E Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Kadam SD, Sullivan BJ, Goyal A, Blue ME, Smith-Hicks C. Rett Syndrome and CDKL5 Deficiency Disorder: From Bench to Clinic. Int J Mol Sci 2019; 20:ijms20205098. [PMID: 31618813 PMCID: PMC6834180 DOI: 10.3390/ijms20205098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Rett syndrome (RTT) and CDKL5 deficiency disorder (CDD) are two rare X-linked developmental brain disorders with overlapping but distinct phenotypic features. This review examines the impact of loss of methyl-CpG-binding protein 2 (MeCP2) and cyclin-dependent kinase-like 5 (CDKL5) on clinical phenotype, deficits in synaptic- and circuit-homeostatic mechanisms, seizures, and sleep. In particular, we compare the overlapping and contrasting features between RTT and CDD in clinic and in preclinical studies. Finally, we discuss lessons learned from recent clinical trials while reviewing the findings from pre-clinical studies.
Collapse
Affiliation(s)
- Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Archita Goyal
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Mary E Blue
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Constance Smith-Hicks
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Layne CS, Young DR, Lee BC, Glaze DG, Schwabe A, Suter B. Kinematics associated with treadmill walking in Rett syndrome. Disabil Rehabil 2019; 43:1585-1593. [PMID: 31613656 DOI: 10.1080/09638288.2019.1674389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Individuals with Rett syndrome suffer from severely impaired cognitive and motor performance. Current movement-related therapeutic programs often include traditional physical therapy activities and assisted treadmill walking routines for those individuals who are ambulatory. However, there are no quantitative reports of kinematic gait parameters obtained during treadmill walking. The purpose of this research was to characterize the kinematic patterns of the lower limbs during treadmill walking as speed was slowly increased. METHODS Seventeen independently ambulatory females diagnosed with a methyl-CpG-binding protein 2 gene mutation walked on a motorized treadmill while joint kinematics were obtained by a camera-based motion capture system and analysis software. RESULTS Stride times progressively decreased as treadmill speeds increased. There were significant main effects of speed on sagittal knee and hip ranges of motion and hip velocity. There were large joint asymmetries and variance values relative to other ambulatory patient populations, although variance values decreased as walking speed increased. CONCLUSIONS The results indicate that individuals with Rett syndrome can adapt their kinematic gait patterns in response to increasing treadmill speed, but only within a narrow range of speeds. We suggest that treadmill training for ambulatory individuals with Rett syndrome may promote improved walking kinematics and possibly provide overall health benefits.Implications for rehabilitationWalking is an activity that can counter the negative impacts of the sedentary lifestyle of many individuals with disabilities, including those individuals with Rett syndrome.Documentation of the lower limb kinematic patterns displayed during walking by ambulatory females with Rett syndrome can be used by clinicians to evaluate their patients' gait performance in response to therapeutic and pharmacological interventions designed to promote walking.The ability to adapt to increases in treadmill speed suggests that a training program of treadmill walking may be effective in promoting improved gait performance in individuals with Rett syndrome.
Collapse
Affiliation(s)
- Charles S Layne
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.,Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX, USA
| | - David R Young
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Beom-Chan Lee
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Daniel G Glaze
- Blue Bird Circle Rett Center, Texas Children's Hospital, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Aloysia Schwabe
- Blue Bird Circle Rett Center, Texas Children's Hospital, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Bernhard Suter
- Blue Bird Circle Rett Center, Texas Children's Hospital, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Frasca A, Bedogni F, Landsberger N. Progress in the development of in vivo redox measurements: New tools for longitudinal studies in Rett syndrome. Neurosci Biobehav Rev 2019; 104:28-29. [DOI: 10.1016/j.neubiorev.2019.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022]
|
17
|
Faundez V, Wynne M, Crocker A, Tarquinio D. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Front Integr Neurosci 2019; 13:30. [PMID: 31379529 PMCID: PMC6650571 DOI: 10.3389/fnint.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Meghan Wynne
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT, United States
| | - Daniel Tarquinio
- Rare Neurological Diseases (Private Research Institution), Atlanta, GA, United States
| |
Collapse
|
18
|
Tramarin M, Rusconi L, Pizzamiglio L, Barbiero I, Peroni D, Scaramuzza L, Guilliams T, Cavalla D, Antonucci F, Kilstrup-Nielsen C. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5. Hum Mol Genet 2019; 27:2052-2063. [PMID: 29618004 DOI: 10.1093/hmg/ddy108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.
Collapse
Affiliation(s)
- Marco Tramarin
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Laura Rusconi
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Lara Pizzamiglio
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Isabella Barbiero
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Diana Peroni
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Linda Scaramuzza
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Hospital, 20132 Milan, Italy
| | - Tim Guilliams
- Healx Ltd, Park House, Castle Park, Cambridge CB3 0DU, UK
| | - David Cavalla
- Healx Ltd, Park House, Castle Park, Cambridge CB3 0DU, UK.,Numedicus Ltd, Cambridge CB1 2DX, UK
| | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| |
Collapse
|
19
|
Layne CS, Lee BC, Young DR, Glaze DG, Schwabe A, Suter B. Temporal Gait Measures Associated With Overground and Treadmill Walking in Rett Syndrome. J Child Neurol 2018; 33:883073818780471. [PMID: 29926771 DOI: 10.1177/0883073818780471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rett syndrome is a severe neurodevelopmental disorder leading to intellectual impairment and global developmental delays, including difficulty or inability to walk. Assessing differences in temporal parameters and associated variability between overground and treadmill walking is important if gait training is to be incorporated into intervention protocols. Fourteen female patients with Rett syndrome (mean age 10.4 years ± SD 5.1) were evaluated during overground and treadmill walking. Stride, stance, swing, and double support times, and the variance of these measures, were obtained. Wilcoxon signed-rank tests were used to assess for potential differences between overground and treadmill measures. Treadmill gait resulted in decreases in swing and double support times. When normalized to stride time, treadmill gait displayed an increase in stance time with decreases in swing and double support times. Excepting stance time, treadmill gait resulted in decreased variability, indicating a more regularized gait while walking on the treadmill. These results suggest that treadmill walking can be beneficial for ambulatory patients with Rett syndrome and could be incorporated into a therapeutic protocol designed to maintain the maximum degree of mobility and overall general health as part of a comprehensive health management approach.
Collapse
Affiliation(s)
- Charles Shannon Layne
- 1 Health and Human Performance, University of Houston, Houston, TX, USA
- 2 Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
- 3 Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX, USA
| | - Beom-Chan Lee
- 1 Health and Human Performance, University of Houston, Houston, TX, USA
- 2 Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - David Ryan Young
- 1 Health and Human Performance, University of Houston, Houston, TX, USA
- 2 Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Daniel Gordon Glaze
- 4 Blue Bird Circle Rett Center, Houston, TX, USA
- 5 Texas Children's Hospital, Houston, TX, USA
- 6 Baylor College of Medicine, Houston, TX, USA
| | - Aloysia Schwabe
- 5 Texas Children's Hospital, Houston, TX, USA
- 6 Baylor College of Medicine, Houston, TX, USA
| | - Bernhard Suter
- 4 Blue Bird Circle Rett Center, Houston, TX, USA
- 5 Texas Children's Hospital, Houston, TX, USA
- 6 Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Mancini J, Dubus JC, Jouve E, Roux JC, Franco P, Lagrue E, Castelnau P, Cances C, Chaix Y, Rougeot-Jung C, Cornu C, Desportes V, Vallée L, Bahi-Buisson N, Truillet R, Attolini L, Villard L, Blin O, Micallef J. Effect of desipramine on patients with breathing disorders in RETT syndrome. Ann Clin Transl Neurol 2017; 5:118-127. [PMID: 29468173 PMCID: PMC5817841 DOI: 10.1002/acn3.468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Rett Syndrome (RTT) is a severe neurodevelopmental condition with breathing disorders, affecting around one in 10,000 female births. Desipramine, a noradrenaline reuptake inhibitor, reduced the number of apneas in Mecp2-deficient mice, a model of RTT. We planned a phase 2 trial to test its efficacy and its safety on breathing patterns in 36 girls with RTT. Methods The trial was a 6-month, multicenter, randomized, double-blind, placebo-controlled study registered with ClinicalTrials.gov, number NCT00990691. Girls diagnosed according to clinical examination and confirmed by genotyping were randomly assigned in a 1:1:1 ratio to receive 2-3 mg/kg Desipramine per day (high Desipramine), 1-2 mg/kg Desipramine per day (low Desipramine), or a placebo. The primary outcome was the change of apnea hypopnea index (AHI), defined by the number of apnea and hypopnea events per hour, assessed at 6 months from baseline. Intention-to-treat analysis was applied. Results The median change in AHI from baseline to 6 months was -31 (IQR: -37 to -11) for the high Desipramine, -17.5 (IQR: -31 to 13) for the low Desipramine, and -13 (IQR:-31 to 0) for the placebo group. We did not find any significant difference in these changes between the groups (P = 0.781). A significant inverse correlation between Desipramine plasma concentration and AHI (r = -0.44; P = 0.0002) was underlined. Interpretation This first clinical trial of desipramine did not show clinical efficacy. Although required further studies, the significant correlation between Desipramine concentrations and improvement of AHI provided additional and relevant reasons to test the noradrenergic pathway in RTT.
Collapse
Affiliation(s)
- Josette Mancini
- Neuropediatric Unit Aix Marseille University Children Hospital APHM, Timone, Neurosciences Institute Marseille France
| | - Jean-Christophe Dubus
- Pneumology Pediatric Unit Aix Marseille University Children Hospital CNRS URMITE 6236A PHM Marseille France
| | - Elisabeth Jouve
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | | | - Patricia Franco
- Neuropediatric Ward Hypnology Unit Lyon University Civil Hospices of Lyon INSERM U628 Lyon France
| | - Emmanuelle Lagrue
- Neuropediatrics and Handicap Department Tours University INSERM, UMR U930 Imaging and Brain, CHRU Tours Tours France
| | - Pierre Castelnau
- Neuropediatrics and Handicap Department Tours University INSERM, UMR U930 Imaging and Brain, CHRU Tours Tours France
| | - Claude Cances
- Neuropediatric Unit Neuro Imaging Center Toulouse University Children Hospital CHU PURPANUMR 1214 Toulouse France
| | - Yves Chaix
- Neuropediatric Unit Neuro Imaging Center Toulouse University Children Hospital CHU PURPANUMR 1214 Toulouse France
| | - Christelle Rougeot-Jung
- Lyon University National Reference Center for Rare Diseases with Intellectual Disability HFME Hospices Civils de Lyon Lyon France.,CNRS UMR 5304 ISC Lyon France
| | - Catherine Cornu
- Department of Pharmacotoxicology Clinical Investigation Center Hospices Civils de Lyon INSERM 1407 Lyon France.,Lyon University CNRS UMR 5558 Lyon France
| | - Vincent Desportes
- Lyon University National Reference Center for Rare Diseases with Intellectual Disability HFME Hospices Civils de Lyon Lyon France.,CNRS UMR 5304 ISC Lyon France
| | - Louis Vallée
- Department of Neuropediatrics Lille North 2 University CHRU Hôpital Roger Salengro Lille France
| | - Nadia Bahi-Buisson
- Imagine Institute and INSERM UMR-1163 Embryology and Genetics of Congenital Malformations Pediatric Neurology Paris Descartes - Sorbonne Paris Cité University Necker Enfants Malades University Hospital AP-HP Paris France
| | - Romain Truillet
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Laurence Attolini
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Laurent Villard
- Aix Marseille University INSERM, GMGF UMR_S 910 Marseille France
| | - Olivier Blin
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Joëlle Micallef
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| |
Collapse
|
21
|
Riikonen R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. Int J Mol Sci 2017; 18:E2056. [PMID: 28954393 PMCID: PMC5666738 DOI: 10.3390/ijms18102056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factors play a key role for neuronal growth, differentiation, the survival of neurons and synaptic formation. The action of IGF-1 is most pronounced in the developing brain. In this paper we will try to give an answer to the following questions: Why are studies in children important? What clinical studies in neonatal asphyxia, infantile spasms, progressive encephalopathy-hypsarrhythmia-optical atrophy (PEHO) syndrome, infantile ceroid lipofuscinosis (INCL), autistic spectrum disorders (ASD) and subacute sclerosing encephalopathy (SSPE) have been carried out? What are IGF-based therapeutic strategies? What are the therapeutic approaches? We conclude that there are now great hopes for the therapeutic use of IGF-1 for some neurological disorders (particularly ASD).
Collapse
Affiliation(s)
- Raili Riikonen
- Child Neurology, Children's Hospital, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
22
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
23
|
van Karnebeek CDM, Bowden K, Berry-Kravis E. Treatment of Neurogenetic Developmental Conditions: From 2016 into the Future. Pediatr Neurol 2016; 65:1-13. [PMID: 27697313 DOI: 10.1016/j.pediatrneurol.2016.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurogenetic developmental conditions represent a heterogeneous group of rare inherited disorders with neurological manifestation during development. Treatments for these conditions have largely been supportive; however, a number of treatments are emerging which target the underlying physiology and offer great potential. Our aim was to present a state-of-the-art overview of the current and potential causal treatments available or under development for neurogenetic developmental conditions. METHODS In this review, we focus on the following neurogenetic developmental conditions: (1) inborn errors of metabolism causing neurogenetic developmental conditions, (2) fragile X syndrome, (3) Rett syndrome, (4) tuberous sclerosis complex, 5) Down syndrome and other neurogenetic developmental conditions. RESULTS A large group of inborn errors of metabolism leads to neurodevelopmental disability, affecting the central nervous system during infancy or childhood and can present with comorbidities such as intellectual developmental disability, epilepsy, atypical cerebral palsy, autism spectrum disorder, behavioral and psychiatric disturbances, for which causal treatments are discussed. CONCLUSIONS The advent of these new disease-modifying therapies has the potential to reverse the underlying neural mechanisms of these debilitating conditions, which may provide prospect to affected individuals.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Kristin Bowden
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois; Department of Biochemistry, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
24
|
Dziwota E, Fałkowska U, Adamczyk K, Adamczyk D, Stefańska A, Pawęzka J, Olajossy M. Silent angels the genetic and clinical aspects of Rett syndrome. CURRENT PROBLEMS OF PSYCHIATRY 2016. [DOI: 10.1515/cpp-2016-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Rett syndrome is a neurodevelopmental genetic disorder and, because of some behavioral characteristics, individuals affected by the disease are known as silent angels. Girls with Rett syndrome perform stereotyped movements, they have learning difficulties, their reaction time is prolonged, and they seem alienated in the environment. These children require constant pediatric, neurological and orthopedic care. In the treatment of Rett syndrome physical therapy, music therapy, hydrotherapy, hippotherapy, behavioral methods, speech therapy and diet, are also used. In turn, psychological therapy of the syndrome is based on the sensory integration method, using two or more senses simultaneously. In 80% of cases, the syndrome is related to mutations of the MECP2 gene, located on chromosome X. The pathogenesis of Rett syndrome is caused by the occurrence of a non-functional MeCP2 protein, which is a transcription factor of many genes, i.e. Bdnf, mef2c, Sgk1, Uqcrc1. Abnormal expression of these genes reveals a characteristic disease phenotype. Clinical symptoms relate mainly to the nervous, respiratory, skeletal and gastrointestinal systems. Currently causal treatment is not possible. However, researchers are developing methods by which, perhaps in the near future, it will be possible to eliminate the mutations in the MECP2 gene, and this will give a chance to the patient for normal functioning.
The paper presents the etiology and pathogenesis of the disease, genetic, clinical, pharmacological aspects and other forms of Rett syndrome treatment.
Collapse
Affiliation(s)
- Ewelina Dziwota
- Second Department of Psychiatry and Psychiatric Rehabilitation, Department of Psychiatry at the Medical University of Lublin
| | - Urszula Fałkowska
- Students Scientific Society at the Second Department of Psychiatry and Psychiatric Rehabilitation
| | - Katarzyna Adamczyk
- Students Scientific Society at the Second Department of Psychiatry and Psychiatric Rehabilitation
| | - Dorota Adamczyk
- Students Scientific Society at the Second Department of Psychiatry and Psychiatric Rehabilitation
| | - Alena Stefańska
- Department of Clinical Psychology and Cardiology, Medical University, Lublin
| | - Justyna Pawęzka
- Second Department of Psychiatry and Psychiatric Rehabilitation, Department of Psychiatry at the Medical University of Lublin
| | - Marcin Olajossy
- Second Department of Psychiatry and Psychiatric Rehabilitation, Department of Psychiatry at the Medical University of Lublin
| |
Collapse
|
25
|
Claveria-Gimeno R, Abian O, Velazquez-Campoy A, Ausió J. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One? CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Kaufmann WE, Stallworth JL, Everman DB, Skinner SA. Neurobiologically-based treatments in Rett syndrome: opportunities and challenges. Expert Opin Orphan Drugs 2016; 4:1043-1055. [PMID: 28163986 PMCID: PMC5214376 DOI: 10.1080/21678707.2016.1229181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Abstract
Introduction: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that primarily affects females, typically resulting in a period of developmental regression in early childhood followed by stabilization and severe chronic cognitive, behavioral, and physical disability. No known treatment exists beyond symptomatic management, and while insights into the genetic cause, pathophysiology, neurobiology, and natural history of RTT have been gained, many challenges remain. Areas covered: Based on a comprehensive survey of the primary literature on RTT, this article describes and comments upon the general and unique features of the disorder, genetic and neurobiological bases of drug development, and the history of clinical trials in RTT, with an emphasis on drug trial design, outcome measures, and implementation. Expert opinion: Neurobiologically based drug trials are the ultimate goal in RTT, and due to the complexity and global nature of the disorder, drugs targeting both general mechanisms (e.g., growth factors) and specific systems (e.g., glutamate modulators) could be effective. Trial design should optimize data on safety and efficacy, but selection of outcome measures with adequate measurement properties, as well as innovative strategies, such as those enhancing synaptic plasticity and use of biomarkers, are essential for progress in RTT and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Center for Translational Research, Greenwood Genetic Center, Greenwood, SC, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - David B Everman
- Center for Translational Research, Greenwood Genetic Center , Greenwood , SC , USA
| | - Steven A Skinner
- Center for Translational Research, Greenwood Genetic Center , Greenwood , SC , USA
| |
Collapse
|
27
|
Djukic A, Holtzer R, Shinnar S, Muzumdar H, Rose SA, Mowrey W, Galanopoulou AS, Shinnar R, Jankowski JJ, Feldman JF, Pillai S, Moshé SL. Pharmacologic Treatment of Rett Syndrome With Glatiramer Acetate. Pediatr Neurol 2016; 61:51-7. [PMID: 27363291 DOI: 10.1016/j.pediatrneurol.2016.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Rett syndrome (RTT) is a severe neurological disease that primarily affects females. The level of brain derived neurotropic factor (BDNF) expression directly correlates with the severity of RTT related symptoms. Because Glatiramer acetate (GA) stimulates secretion of BDNF in the brain, we conducted the study with the objective to assess its efficacy in improving gait velocity cognition, respiratory function, electroencephalographic findings, and quality of life in patients with RTT. METHODS Phase two, open label, single center trial. INCLUSION CRITERIA ambulatory girls with genetically confirmed RTT, 10 years or older. Pre- and post-treatment measures were compared using the non-parametric Wilcoxon signed rank sum test and paired t-tests. RESULTS Ten patients were enrolled and completed the trial. Gait velocity improved significantly (improvement range 13%-95%, p=0.03 for both tests) and emerged as an especially valuable outcome measure with excellent test- retest reliability of the 2 trials within sessions (intraclass correlation coefficient=0.94). Memory, and the breath holding index also improved significantly (p≤0.03). Epileptiform discharges decreased in all four patients who had them at baseline. There was a trend towards improved quality of life, which did not reach statistical significance. CONCLUSIONS This prospective open-label trial provides important preliminary information related to the efficacy of GA in improving gait velocity in female patients with RTT who are 10 years or older. The results of this trial justify the need for larger scale controlled trials of GA as well as provide a template for assessing the efficacy of other interventions in RTT.
Collapse
Affiliation(s)
- Aleksandra Djukic
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| | - Roee Holtzer
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, New York
| | - Shlomo Shinnar
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Hiren Muzumdar
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan A Rose
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Wenzhu Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Ruth Shinnar
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey J Jankowski
- Department of Social Sciences, Queensborough Community College, City University of New York, Bayside, New York
| | - Judith F Feldman
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Sophia Pillai
- Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
28
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
29
|
Katz DM, Bird A, Coenraads M, Gray SJ, Menon DU, Philpot BD, Tarquinio DC. Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends Neurosci 2016; 39:100-113. [PMID: 26830113 PMCID: PMC4924590 DOI: 10.1016/j.tins.2015.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Lying at the intersection between neurobiology and epigenetics, Rett syndrome (RTT) has garnered intense interest in recent years, not only from a broad range of academic scientists, but also from the pharmaceutical and biotechnology industries. In addition to the critical need for treatments for this devastating disorder, optimism for developing RTT treatments derives from a unique convergence of factors, including a known monogenic cause, reversibility of symptoms in preclinical models, a strong clinical research infrastructure highlighted by an NIH-funded natural history study and well-established clinics with significant patient populations. Here, we review recent advances in understanding the biology of RTT, particularly promising preclinical findings, lessons from past clinical trials, and critical elements of trial design for rare disorders.
Collapse
Affiliation(s)
- David M Katz
- Departments of Neurosciences and Psychiatry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Monica Coenraads
- Rett Syndrome Research Trust, 67 Under Cliff Road, Trumbull, CT 06611, USA
| | - Steven J Gray
- Gene Therapy Center and Department of Ophthalmology, University of North Carolina, Chapel Hill, NC USA
| | - Debashish U Menon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel C Tarquinio
- Children's Healthcare of Atlanta, Emory University, 1605 Chantilly Drive NE, Atlanta, GA 30324, USA
| |
Collapse
|
30
|
Neul JL, Sahin M. Therapeutic Advances in Autism and Other Neurodevelopmental Disorders. Neurotherapeutics 2015; 12:519-20. [PMID: 26076992 PMCID: PMC4489958 DOI: 10.1007/s13311-015-0364-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jeffrey L. Neul
- />Division of Child Neurology, Department of Neurosciences, University of California, San Diego, La Jolla, CA USA
| | - Mustafa Sahin
- />Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|