1
|
van der Heijden LT, Tibben MM, Mohmaed Ali MI, Aardenburg LGJ, Steeghs N, Beijnen JH, Rosing H, Huitema ADR. An ultra-sensitive liquid chromatography tandem mass spectrometry method for the simultaneous quantification of 2H 6-alectinib and alectinib in human plasma to support a microtracer food-effect trial. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1253:124488. [PMID: 39908914 DOI: 10.1016/j.jchromb.2025.124488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantification of 2H6-alectinib and alectinib was developed and validated for the support of a pilot microtracer food-effect trial. The aim of the bioanalytical method was the simultaneous quantification of low 2H6-alectinib concentrations and high alectinib concentrations that are present in study samples, using a single sample pre-treatment and analysis method. Sample preparation consisted of liquid-liquid extraction with tert-butyl methyl ether (TBME). The final extract was injected on a C18 column (1.7 μm particles, 50 × 2.1 mm ID) with gradient elution. A triple quadruple mass spectrometer operating in positive method was used for detection and quantification. The validated concentration ranges were from 5 to 400 pg/mL for 2H6-alectinib and from 25 to 2000 ng/mL for alectinib. The bias was within ±3.5 % and ± 5.1 % and precisions ≤5.7 % and ≤ 1.9 % for 2H6-alectinib and alectinib, respectively. By correcting for the interference of natural abundant isotopes of alectinib, 2H6-alectinib plasma concentrations between 1 and 5 pg/mL could be quantified, with bias was within ±15.9 % and precision ≤12.5 % in the presence of 400 ng/mL or 800 ng/mL alectinib. The clinical application was successfully applied to quantify 2H6-alectinib and alectinib in plasma samples from a participant enrolled in a microtracer food-effect study.
Collapse
Affiliation(s)
- L T van der Heijden
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Clinical Pharmacy, OLVG Hospital, Amsterdam, the Netherlands.
| | - M M Tibben
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M I Mohmaed Ali
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - L G J Aardenburg
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - N Steeghs
- Department of Medical Oncology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands.; Department of Medical Oncology, Utrecht University Medical Centre, Utrecht, the Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmaco-epidemiology and Clinical pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - H Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Pharmacology, Prinses Máxima Centrum for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
2
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
3
|
Ma S, Wang X, Yan S, Miao L, Wan X, Ding D, Yu D, Diao X, Wang X, Zhang H. Pharmacokinetics, mass balance, and metabolism of [ 14C]envonalkib (TQ-B3139), a novel ALK tyrosine kinase inhibitor, in healthy Chinese subjects. Cancer Chemother Pharmacol 2024; 94:647-657. [PMID: 38507062 DOI: 10.1007/s00280-024-04647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Envonalkib (TQ-B3139) is a novel, potent anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor used to treat ALK-positive non-small cell lung cancer. This phase I mass balance study investigated the pharmacokinetics, metabolism, and excretion of 14C-radiolabeled envonalkib in healthy Chinese male subjects. METHODS A single oral dose of 600 mg (150 µCi) [14C]envonalkib was administered to healthy male subjects under fasted state. Samples of blood, urine and feces were collected for quantitative determination of total radioactivity and unchanged envonalkib, and the metabolites identification. RESULTS After dosing, the median Tmax of radioactivity was 4 h and the mean t1/2 was 65.2 h in plasma. The exposure of total radioactivity was much higher than that of unchanged envonalkib in plasma. The mean total recovery of the radiolabeled dose was 93.93% over 504 h post-dose, with 15.23% in urine and 78.71% in feces. Envonalkib underwent extensive metabolism and a total of 15 metabolites were identified in plasma, urine, and feces. Unchanged envonalkib and its major metabolite M315 were the main components in plasma, accounting for 20.37% and 33.33% of total plasma radioactivity. In urine, O-dealkylation metabolite M315 was the major component accounted for 7.98% of dose. In feces, 16.01% of dose was excreted as cysteine conjugate M434-1. Envonalkib was well tolerated and there were no serious adverse events observed in the study. CONCLUSION Envonalkib was extensively metabolized prior to excretion and eliminated primarily as metabolites via feces.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xin Wang
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaojing Wan
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Dawei Ding
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Ding Yu
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xunqiang Wang
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China.
| | - Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Noguchi Y, Asano H, Masuda R, Teshigawara Y, Go M, Kimura M, Usami E, Yoshimura T. Relationship between Anaplastic Lymphoma Kinase Inhibitors and Epileptic Seizure Disorder: A Post-Marketing Surveillance Study. Oncology 2024; 102:996-1003. [PMID: 38768582 DOI: 10.1159/000539426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) has been to be involved in the uptake and regulation of dopamine 2 receptor (D2R), a G protein-coupled receptor expressed in various brain regions. Therefore, it is crucial to understand the relationship between ALK inhibitors and seizures is an important issue. This study investigated the relationship between ALK inhibitors and seizures. METHODS This study investigated the relationship between ALK inhibitors and seizures through a disproportionality analysis using the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). The target drugs were the ALK inhibitors crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib. The seizures covered were defined high-level group term (HLGT): "Seizures (incl. subtype)" including high-level term (HLT): "seizures and seizure disorders NEC." This study used the information component (IC), a signal score, as a Bayesian statistical method for disproportionality analysis. The signal detection criteria used in this study were the same as those reported previously: a lower limit of 95% credible interval (CrI) for IC >0. RESULTS The signal scores of '"seizures and seizure disorders not elsewhere classified (NEC)" "for each ALK inhibitor were crizotinib (IC: -0.00052, 95% CrI: -0.38-0.27), ceritinib (IC: 1.18, 95% CrI: 0.68-1.54), alectinib (IC: 0.68, 95% CrI: 0.19-1.02), brigatinib (IC: 1.04, 95% CrI: 0.32-1.54), and lorlatinib (IC: 0.82, 95% CrI: 0.11-1.32). On the other hand, "generalized tonic-clonic seizures," "partial simple seizures NEC," "absence seizures," and "partial complex seizures" had no or few reported cases, and no signal was detected. CONCLUSION To our knowledge, this is the first report to evaluate the relationship between ALK inhibitors and seizures using post-marketing surveillance data. These results suggest that ceritinib, alectinib, brigatinib, and lorlatinib, which are highly brain-migrating drugs, are associated with seizures.
Collapse
Affiliation(s)
- Yoshihiro Noguchi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
- Laboratory of Medical Collaborative Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Asano
- Department of Pharmacy, Ogaki Municipal Hospital, Gifu, Japan
| | - Rikuto Masuda
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Teshigawara
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Makiko Go
- Department of Pharmacy, Ogaki Municipal Hospital, Gifu, Japan
| | - Michio Kimura
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
- Department of Pharmacy, Ogaki Municipal Hospital, Gifu, Japan
| | - Eiseki Usami
- Laboratory of Medical Collaborative Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
- Department of Pharmacy, Ogaki Municipal Hospital, Gifu, Japan
| | - Tomoaki Yoshimura
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
- Laboratory of Medical Collaborative Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
5
|
Almurshedi AS, Radwan MA, Al Quadeib B, Aldosari B, Alfagih IM, Almarshidy SS. Pharmacokinetics of Afatinib after Intravenous and Oral Administrations in Rats Using Validated UPLC MS/MS Assay. J Chromatogr Sci 2024; 62:249-256. [PMID: 36617945 DOI: 10.1093/chromsci/bmac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
Afatinib is designated as the first-line management therapy for patients with advanced non-small cell lung cancer, and metastatic head and neck cancer. LC coupled to MS/MS can be utilised in therapeutic drug monitoring to ensure optimal use of Afatinib with the reduction of its possible adverse reactions. The aim of this investigation was to determine the pharmacokinetics of Afatinib in rats after single IV (2 mg/kg) and oral (8 mg/kg) doses. Therefore, a selective, sensitive and precise UPLC MS/MS assay thru electrospray ionisation basis with positive ionisation approach was established to measure Afatinib concentrations in the rat. The precision and accuracy of the developed assay method in the concentration range of 10-1000 ng/ml show no significant difference among inter- and-intra-day analysis (P > 0.05). Linearity was detected over the studied range with correlation coefficient, r > 0.995 (n = 6/day). The pharmacokinetics of Afatinib in the rat after a single IV dose showed a mean terminal half-life of 4.6 ± 0.97 h, and a mean clearance 480 ± 80 ml/h/kg. After PO administration, a short absorption phase with a mean Tmax of 1.3 ± 0.6 h with the highest concentration of 513.9 ± 281.1 ng/ml, and the lowest concentration detected after 24 h was 18.8 ± 10.7 ng/ml.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12331 Riyadh, Saudi Arabia
| | - Mahasen A Radwan
- Department of Pharmacy Practice/Clinical Pharmacy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, 11829 Cairo, Egypt
| | - Bushra Al Quadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12331 Riyadh, Saudi Arabia
| | - Basmah Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12331 Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12331 Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 12331 Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Gil M, Knetki-Wróblewska M, Niziński P, Strzemski M, Krawczyk P. Effectiveness of ALK inhibitors in treatment of CNS metastases in NSCLC patients. Ann Med 2023; 55:1018-1028. [PMID: 36896848 PMCID: PMC10795653 DOI: 10.1080/07853890.2023.2187077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Metastases to the central nervous system (CNS) in patients with non-small cell lung cancer constitute an extremely difficult clinical problem, and their occurrence is associated with a poor prognosis. Due to the existence of the blood-brain barrier (BBB) and the action of proteins responsible for the transport of drugs, e.g. P-glycoprotein (P-gp), the penetration of drugs into the CNS is insufficient. Until recently, the only method of CNS metastases treatment was radiotherapy and neurosurgery. The advancement of molecular biology allowed discover targets for molecularly targeted therapies. One of targets is abnormal anaplastic lymphoma kinase, which results from the rearrangement of the ALK gene in patients with non-small cell lung cancer (NSCLC). ALK rearrangement occurs in only about 4.5% of NSCLC patients, but its presence favors brain metastases. The ALK inhibitors (ALKi) were modified to obtain molecules with high ability to penetrate into the CNS. This was achieved by modifying the structure of individual molecules, which became, inter alia, less substrates for P-gp. These modifications caused that less than 10% of patients experience progression in CNS during new ALK inhibitors treatment. This review summarizes the knowledge about the action of BBB, the pharmacodynamics and pharmacokinetics of ALKi, with particular emphasis on their ability to penetrate the CNS and the intracranial activity of individual drugs from different generations of ALK inhibitors.
Collapse
Affiliation(s)
- Michał Gil
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Magdalena Knetki-Wróblewska
- Department of Lung Cancer and Chest Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
van der Heijden LT, Steeghs N, Beijnen JH, Huitema ADR, Dorlo TPC. The use of microtracers in food-effect trials: An alternative study design for toxic drugs with long half-lives exemplified by the case for alectinib. Clin Transl Sci 2023; 16:2557-2564. [PMID: 37828717 PMCID: PMC10719472 DOI: 10.1111/cts.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
The traditional design of food-effect studies has a high patient burden for toxic drugs with long half-lives (e.g., anticancer agents). Microtracers could be used to assess food-effect in patients without influencing their ongoing treatment. The feasibility of a microtracer food-effect study during steady-state of the therapeutic drug was investigated in an in silico simulation study with alectinib as an example for a relative toxic drug with a long half-life. Microtracer pharmacokinetics were simulated based on a previously published population pharmacokinetic model and used for estimation of a model with and a model without food as a covariate on oral bioavailability of alectinib (assuming a 40% food-effect). Power was defined as the fraction of clinical trials where a significant (p < 0.01) food-effect was identified. The proposed study design of 10 patients on steady-state treatment, 10 blood samples collected within 24 h after administration and an assumed food-effect of 40% had a power of 99.9%. The mean estimated food-effect was 39.8% (80% confidence interval: 31.0%-48.6%). The feasibility of microtracer food-effect studies was demonstrated. The design of the microtracer food-effect study allowed estimation of the food-effect with minimal influence on therapeutic treatment and reducing patient burden compared to the traditional study design for toxic drugs with long half-lives.
Collapse
Affiliation(s)
- L. T. van der Heijden
- Department of Pharmacy & PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - N. Steeghs
- Division of Medical Oncology, Department of Clinical PharmacologyAntoni van Leeuwenhoek Hospital/The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - J. H. Beijnen
- Department of Pharmacy & PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Pharmaco‐epidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - A. D. R. Huitema
- Department of Pharmacy & PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of PharmacologyPrincess Maxima CenterUtrechtThe Netherlands
| | - T. P. C. Dorlo
- Department of Pharmacy & PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of PharmacologyAntoni van Leeuwenhoek/The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
8
|
Zhang S, Tian J, Wang X, Liu C. PPIs therapy has a negative impact on the clinical outcomes of advanced SCLC patients treated with PD-L1 inhibitors. BMC Pulm Med 2023; 23:438. [PMID: 37951887 PMCID: PMC10638834 DOI: 10.1186/s12890-023-02754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) inhibitors has emerged as a first-line therapeutic strategy for advanced small cell lung cancer (SCLC), which can stimulate T-cell activation, thereby preventing tumor avoidance of immunologic surveillance, whereas, proton pump inhibitors (PPIs) can play an important role in regulating immune function. This study assessed whether the concomitantly use of PPIs affected outcomes of immunotherapy in advanced SCLC. METHODS Data from advanced SCLC patients who firstly treated with PD-L1 inhibitors between July 2018 and February 2021 was retrospectively analyzed. The impact of concomitant medications (especially PPIs) on objective response rate, progression-free survival (PFS) and overall survival (OS) were evaluated. RESULTS Of 208 patients, 101 received immunotherapy concomitant PPIs. The median PFS of patients receiving PPIs (6.6 months) were significantly shorter than those without PPIs (10.6 months), and so was OS. There was associated with a 74.9% increased risk of progression and 58.3% increased risk of death. Both first-line and post-first-line immunotherapy, patients treated PPIs had poorer PFS. CONCLUSION PPIs therapy has a negative impact on the clinical outcomes of advanced SCLC patients treated with PD-L1 inhibitors.
Collapse
Affiliation(s)
- Sisi Zhang
- Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jing Tian
- Department of Radiation Oncology, Jinan Zhangqiu District People's Hospital, Jinan, Shandong, 250200, China
| | - Xinwei Wang
- Department of Intensive Care Medical Center, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, 250013, China
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
9
|
Zhang H, Li X, Zhang Z, Huang S, Guo Q, Yan N. Activity of ceritinib in crizotinib-resistant ROS1-rearranged non-small-cell lung cancer patients. Medicine (Baltimore) 2023; 102:e33543. [PMID: 37478263 PMCID: PMC10662874 DOI: 10.1097/md.0000000000033543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 07/23/2023] Open
Abstract
As a second-generation selective oral anaplastic lymphoma kinase inhibitor, ceritinib is an effective first-line treatment for c-ros oncogene 1 (ROS1)-rearranged non-small-cell lung cancer (NSCLC). Its efficacy and safety for the treatment of crizotinib-resistant ROS1-rearranged NSCLC were explored in the study. A retrospective single-center study was conducted to investigate the efficacy of ceritinib in crizotinib-resistant ROS1-rearranged NSCLC. The objective response rate was the primary objective, while the disease control rate, progression-free survival and adverse events were secondary objectives. From December 2015 to October 2021, a total of 246 patients with ROS1-rearranged NSCLC were screened, 12 (4.9%) of whom were treated with ceritinib after the development of crizotinib resistance. Among the 12 crizotinib-resistant patients included, 3 displayed the efficacy of partial response and 3 had the efficacy of stable condition. The objective response rate, disease control rate and median progression-free survival of all patients were 25% (95% confidence interval [CI]: -3.7% to 53.7%; 3 of 12 patients), 50% (95% CI: 16.8% to 83.2%; 6 of 12 patients), and 10.5 months (95% CI, 5.7 to 15.3 months), respectively. In addition, of the 6 patients with brain metastases, an intracranial disease control rate of 66.7% (95% CI:12.5% to 120.9%) was obtained. The research results reveal that ceritinib can be a treatment option for ROS1-rearranged NSCLC patients after the development of crizotinib resistance.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Ziheng Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Siyuan Huang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Qianqian Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| |
Collapse
|
10
|
Zhou Y, Yin Y, Xu J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. An update on Alectinib: a first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother 2023; 24:1361-1373. [PMID: 37278051 DOI: 10.1080/14656566.2023.2221786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Alectinib is a second-generation, anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) for the treatment of ALK+ non-small cell lung cancer (NSCLC) and is able to induce significant and durable CNS responses. However, long-term use of alectinib has been clinically reported to cause some serious and even life-threatening adverse events. There are currently no effective interventions for its adverse events, and this undoubtedly leads to delays in patient treatment and limits its long-term clinical use. AREAS COVERED Based on the clinical trials conducted so far, we summarize the efficacy and adverse events that occurred, especially those related to cardiovascular disorders, gastrointestinal disorders, hepatobiliary disorders, musculoskeletal and connective tissue disorders, skin and subcutaneous tissue disorders, and respiratory disorders. The factors that may influence alectinib selection are also described. Findings are based on a PubMed literature search of clinical and basic science research papers spanning 1998-2023. EXPERT OPINION The significant prolongation of patient survival compared with first-generation ALK inhibitor suggests its potential as a first-line treatment for the NSCLC, but the severe adverse events of alectinib limit its long-term clinical use. Future research should focus on the exact mechanisms of these toxicities, how to alleviate the adverse events caused by alectinib clinically, and the development of next-generation drugs with reduced toxicities.
Collapse
Affiliation(s)
- Yourong Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxin Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Hanley MJ, Kerstein D, Tugnait M, Narasimhan N, Marbury TC, Venkatakrishnan K, Gupta N. Brigatinib pharmacokinetics in patients with chronic hepatic impairment. Invest New Drugs 2023:10.1007/s10637-023-01339-6. [PMID: 37052729 DOI: 10.1007/s10637-023-01339-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
Brigatinib is an anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of ALK-positive non-small cell lung cancer. This open-label, parallel-group study investigated the effect of chronic hepatic impairment on the pharmacokinetics (PK) of brigatinib to inform dosing recommendations for these patients. Participants with hepatic impairment classified according to Child-Pugh categories of mild (A), moderate (B), or severe (C) and matched-healthy participants with normal hepatic function received a single oral dose of 90-mg brigatinib. Plasma samples were collected for the determination of brigatinib plasma protein binding and estimation of plasma PK parameters. Twenty-seven participants were enrolled (Child-Pugh A-C, n = 6 each; matched-healthy participants, n = 9). The mean fraction of free plasma brigatinib was comparable for the Child-Pugh A (11.1%), Child-Pugh B (10.8%), and healthy participant groups (8.5%); free brigatinib was higher in the Child-Pugh C group (23.1%). There were no clinically meaningful effects of mild or moderate hepatic impairment on unbound systemic exposures (area under the plasma concentration-time curve [AUC]) of brigatinib (geometric least-squares mean ratios [90% CI] of 89.32% [69.79%-114.31%] and 99.55% [77.78%-127.41%], respectively). In the severe hepatic impairment group, brigatinib unbound AUC was approximately 37% higher (geometric least-squares mean ratio [90% CI] of 137.41% [107.37%-175.86%]) compared with healthy participants with normal hepatic function. Brigatinib was well tolerated in healthy participants and in participants with hepatic impairment. No dose adjustment is required for patients with mild or moderate hepatic impairment. The brigatinib dose should be reduced by approximately 40% for patients with severe hepatic impairment.
Collapse
Affiliation(s)
- Michael J Hanley
- Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02421, USA
| | - David Kerstein
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
- Theseus Pharmaceuticals, Cambridge, MA, USA
| | - Meera Tugnait
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
- Cerevel Therapeutics, Cambridge, MA, USA
| | - Narayana Narasimhan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
- Theseus Pharmaceuticals, Cambridge, MA, USA
| | | | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Neeraj Gupta
- Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02421, USA.
| |
Collapse
|
12
|
Guo ZX, Wu YE, Shi HY, van den Anker J, Liang P, Zheng Y, Zhao XW, Feng R, Zhao W. A liquid chromatography-tandem mass spectrometry method for simultaneous quantification of thirty-nine tyrosine kinase inhibitors in human plasma. J Pharm Biomed Anal 2023; 224:115159. [PMID: 36442459 DOI: 10.1016/j.jpba.2022.115159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Currently, the use of targeted drugs such as tyrosine kinase inhibitors (TKIs) plays an important role in clinical therapy. As the number of approved TKIs continues to increase, existing analysis methods will not be able to meet the growing needs, and will hamper the development of therapeutic drug monitoring (TDM) of TKIs. Based on LC-MS/MS technology, this study tends to develop and validate a multi-component analysis method for simultaneous determination of the concentrations of 39 TKIs in plasma. Spiked plasma was blended with isotope labelled internal standards, and injected into the LC-MS/MS system after protein precipitation by acetonitrile. Chromatographic separation was achieved using an ODS-4 column with gradient elution of formic acid/water (1:1000; v/v) and acetonitrile. Analytes detection was conducted in positive ionisation mode using MRM. The total run time was 8 min. The method validation was conducted by assessing the following parameters: selectivity, linearity and the lower limit of qualification, accuracy and precision, stability, matrix effect and recovery. The concentrations of 39 TKIs showed good linearity within the range of their respective standard curves in plasma, the accuracy of all quality control samples ranged from 85.9% to 114.1%, and the precision was lower than 13.3%. The extraction recovery ranged from 92.6% to 114.7%, and the matrix effect of plasma was lower than 11.3%. This new method was successfully developed, can be used for the determination of drug concentrations in multiple patients with different kinds of TKIs, and will therefore be suitable for TDM of 39 TKIs.
Collapse
Affiliation(s)
- Zi-Xuan Guo
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai-Yan Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington DC, USA; Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, the George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Ping Liang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Zheng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Wei Zhao
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|
13
|
Staša J, Gregorová J, Slanař O, Šíma M. Therapeutic Drug Monitoring of Protein Kinase Inhibitors in the Treatment of Non-small Cell Lung Cancer. Prague Med Rep 2023; 124:199-215. [PMID: 37736945 DOI: 10.14712/23362936.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Targeted therapy with protein kinase inhibitors (PKIs) represents one of the important treatment options for non-small cell lung cancer (NSCLC). It has contributed to improve patients' survival and quality of life significantly. These anticancer drugs are administrated orally in flat-fixed doses despite the well-known large interpatient pharmacokinetic variability and the possible need for dose individualization. To optimize and individualize dosing of PKIs, and thereby increasing the effectiveness and safety of the treatment, therapeutic drug monitoring (TDM) is the most frequently mentioned method. Unlike other areas of medicine, TDM has been rather exceptional in oncological practise since there is a little evidence or no data for concentration-effect relationships of PKIs. Therefore, the aim of this review is to summarize the pharmacokinetic characteristics of PKIs and provide the evidence supporting the use of TDM for personalised treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Judita Staša
- Department of Clinical Pharmacy, Bulovka University Hospital, Prague, Czech Republic.
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jana Gregorová
- Department of Clinical Pharmacy, Bulovka University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
14
|
Hanley MJ, D'Arcangelo M, Felip E, Garrido P, Zhu J, Ye M, Vranceanu F, Gupta N. A Phase 1 Drug-Drug Interaction Study Between Brigatinib and the CYP3A Substrate Midazolam in Patients With ALK-Positive or ROS1-Positive Solid Tumors. J Clin Pharmacol 2022; 63:583-592. [PMID: 36579743 DOI: 10.1002/jcph.2198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Brigatinib is a next-generation anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of patients with ALK-positive (ALK+) non-small cell lung cancer (NSCLC). A phase 1 drug-drug interaction study was conducted to evaluate the effect of multiple-dose administration of brigatinib on the single-dose pharmacokinetics of midazolam, a sensitive cytochrome P450 3A substrate. In cycle 1, patients with ALK+ or ROS1+ solid tumors, including NSCLC, received a single 3-mg dose of midazolam as an oral solution alone on day 1 and then coadministered with brigatinib on day 21 (brigatinib 90 mg once daily on days 2-8; 180 mg once daily on days 9-28). After cycle 1, patients could continue to receive brigatinib in 28-day treatment cycles. The primary study objective was to characterize the effect of brigatinib 180 mg once daily on midazolam pharmacokinetics. The secondary objective was to assess safety. Exploratory efficacy endpoints included objective response rate and progression-free survival. Brigatinib was generally well tolerated, and safety data were consistent with the known safety profile. Among the 10 patients with ALK+ NSCLC, the confirmed objective response rate was 30% and median progression-free survival was 7.2 months. Coadministration of brigatinib reduced midazolam maximum observed plasma concentration by ≈16% (geometric least-squares mean ratio, 0.836 [90%CI, 0.662-1.056]) and area under the plasma concentration-time curve from time 0 to infinity by ≈26% (geometric least-squares mean ratio, 0.741 [90%CI, 0.600-0.915]). Thus, brigatinib is a weak inducer of cytochrome P450 3A in vivo.
Collapse
Affiliation(s)
- Michael J Hanley
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | - Enriqueta Felip
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pilar Garrido
- IRYCIS, Ramón y Cajal University Hospital, Madrid, Spain
| | - Jiaxi Zhu
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Meng Ye
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Florin Vranceanu
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
15
|
Liu S, She P, Li Z, Li Y, Yang Y, Li L, Zhou L, Wu Y. Insights into the antimicrobial effects of ceritinib against Staphylococcus aureus in vitro and in vivo by cell membrane disruption. AMB Express 2022; 12:150. [DOI: 10.1186/s13568-022-01492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractAccording to a 2019 report from the Centers of Disease Control and Prevention (CDC), methicillin-resistant Staphylococcus aureus (MRSA) was listed as one of the “serious threats” that had become a global public challenge in hospitals and community. Biofilm-associated infections and refractory persisters of S. aureus also impede the effectiveness of conventional antibiotics that have greatly increased difficulty in clinical therapy. There is an urgent need to develop new antimicrobials with antibiofilm and anti-persister capacities, and drug repurposing is the most effective and most economical solution to the problem. The present study profiles the antimicrobial activity of ceritinib, a tyrosine kinase inhibitor, against S. aureus in vitro and in vivo. We investigated the antimicrobial efficacy of ceritinib against planktonic and persistent S. aureus by a time-killing kinetics assay. Then, antibiofilm effect of ceritinib was assessed by crystal violet staining and laser confocal microscope observation. Ceritinib showed biofilm inhibition and mature biofilm eradication, and possesses robust bactericidal activity against S. aureus persisters. We also evaluated antimicrobial efficacy in vivo using a subcutaneous abscess infection model. Ceritinib ameliorated infection in a subcutaneous abscess mouse model and only showed negligible systemic toxicity in vivo. Mechanism exploration was conducted by transmission electron microscopy, fluorescently labeled giant unilamellar vesicle assays, and a series of fluorescent dyes. In conclusion, we find ceritinib represents potential bactericidal activity against MRSA by disrupting cell membrane integrity and inducing reactive oxygen species production, suggesting ceritinib has the potential to treat MRSA-related infections.
Collapse
|
16
|
TABBÒ F, DE FILIPPIS M, JACOBS F, NOVELLO S. Strengths and pitfalls of brigatinib in non-small cell lung cancer patients' management. Minerva Med 2022; 113:315-332. [DOI: 10.23736/s0026-4806.21.07693-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Sisi M, Fusaroli M, De Giglio A, Facchinetti F, Ardizzoni A, Raschi E, Gelsomino F. Psychiatric Adverse Reactions to Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer: Analysis of Spontaneous Reports Submitted to the FDA Adverse Event Reporting System. Target Oncol 2022; 17:43-51. [PMID: 35025076 PMCID: PMC8783913 DOI: 10.1007/s11523-021-00865-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
Background The development of anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) has improved the survival outcomes of patients with advanced ALK-rearranged non-small-cell lung cancer (NSCLC). The adverse events (AEs) related to ALK inhibitors are fairly well known; notably, about 20% of patients receiving lorlatinib experienced cognitive effects and behavioral alterations in pivotal trials. Therefore, psychiatric disorders could represent AEs of special interest for all ALK TKIs, deserving careful assessment in the post-marketing setting. Objective We conducted a real-world pharmacovigilance study on psychiatric AEs with marketed ALK inhibitors in subjects with advanced NSCLC. Patients and methods We performed an observational, retrospective analysis of spontaneous reports submitted to the Food and Drug Administration Adverse Events Reporting System (FAERS, as of December 2020), selecting psychiatric AEs to ALK TKIs approved in NSCLC (crizotinib, ceritinib, alectinib, brigatinib, lorlatinib). These AEs were independently scrutinized by three oncologists applying predefined exclusion criteria, described in terms of clinical/demographic features and assessed for drug-related causality according to an adaptation of the WHO–UMC system, a standardized probabilistic algorithm. Results Among 584 reported psychiatric AEs, 95 cases were selected as potentially treatment related, with higher reporting frequency for lorlatinib (26, 2.8%), followed by brigatinib (10, 1.2%), alectinib (18, 0.7%), ceritinib (12, 0.6%), and crizotinib (29, 0.3%). Reported psychiatric symptoms were mood disorders (39), psychotic disorders (24), and anxiety, agitation, and irritability (25). In the majority (74%) of cases, psychiatric AEs were serious and required hospitalization in about 32% of patients; 15.8% of retained cases were considered as highly probable and 69.5% as probable. Drug discontinuation was recorded in 31.6% of the reported cases, with the highest proportion for lorlatinib (65.4%). Conclusion Notwithstanding limitations, our study found a higher proportion of psychiatric AEs with lorlatinib, but also raised the hypothesis of psychiatric reactions as a class effect of ALK TKIs. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-021-00865-8.
Collapse
Affiliation(s)
- Monia Sisi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Michele Fusaroli
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea De Giglio
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Facchinetti
- Institut Gustave Roussy, Inserm, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Université Paris-Saclay, Villejuif, France
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Mukai Y, Wakamoto A, Hatsuyama T, Yoshida T, Sato H, Fujita A, Inotsume N, Toda T. An Liquid Chromatography-Tandem Mass Spectrometry Method for the Simultaneous Determination of Afatinib, Alectinib, Ceritinib, Crizotinib, Dacomitinib, Erlotinib, Gefitinib, and Osimertinib in Human Serum. Ther Drug Monit 2021; 43:772-779. [PMID: 33871406 DOI: 10.1097/ftd.0000000000000895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Routine therapeutic drug monitoring is a promising approach for the rational use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase (ALK) inhibitors. The purpose of this study was to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of 5 EGFR-TKIs (afatinib, dacomitinib, erlotinib, gefitinib, and osimertinib) and 3 ALK inhibitors (alectinib, ceritinib, and crizotinib). METHODS A 100-mL aliquot of serum was diluted with 100 μL of 1% aqueous ammonia containing internal standards and then purified using the supported liquid extraction method. LC-MS/MS was conducted in positive ionization mode, and the method was validated according to published guidelines. RESULTS Calibration curves were linear across concentration ranges examined. The intra- and interassay accuracies were 90.7%-110.7% and 94.7%-107.6%, respectively. All intra- and interassay imprecision values were ≤10.1%. The EGFR-TKIs and ALK inhibitors examined in this study, except osimertinib, which could be stored on ice for at least 5 hours, were stable at room temperature for 3 hours. For the internal standard-normalized matrix factors, the mean recovery and percent coefficient of variation values ranged between 54%-112% and 1.7%-11.7%, respectively. This method successfully determined serum concentrations of afatinib, alectinib, erlotinib, gefitinib, and osimertinib in clinical samples. Serum levels of kinase inhibitors consistently reflected those reported in previous studies. CONCLUSIONS An LC-MS/MS method suitable for the simultaneous determination of 5 EGFR-TKIs and 3 ALK inhibitors in serum was developed and validated. The newly developed method enabled the determination of 5 of 8 target drugs examined in clinical samples. However, a large number of clinical samples need to be analyzed to verify the usefulness of the method.
Collapse
Affiliation(s)
- Yuji Mukai
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido, Japan
- Department of Pharmacy, University of Tsukuba Hospital, Ibaraki, Japan
| | - Azusa Wakamoto
- Pharmaceutical Division, Sapporo Minami-Sanjo Hospital, Hokkaido, Japan
| | - Tae Hatsuyama
- Pharmaceutical Division, Sapporo Minami-Sanjo Hospital, Hokkaido, Japan
| | | | - Hideki Sato
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido, Japan
| | - Akihisa Fujita
- Department of Pulmonary Diseases, Sapporo Minami-Sanjo Hospital, Hokkaido, Japan ; and
| | - Nobuo Inotsume
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido, Japan
- Nihon Pharmaceutical University, Saitama, Japan
| | - Takaki Toda
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido, Japan
| |
Collapse
|
19
|
Gibson EG, Campagne O, Selvo NS, Gajjar A, Stewart CF. Population pharmacokinetic analysis of crizotinib in children with progressive/recurrent high-grade and diffuse intrinsic pontine gliomas. Cancer Chemother Pharmacol 2021; 88:1009-1020. [PMID: 34586478 DOI: 10.1007/s00280-021-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Crizotinib, a potent oral tyrosine kinase inhibitor, was evaluated in combination with dasatinib in a phase 1 trial (NCT01644773) in children with progressive or recurrent high-grade and diffuse intrinsic pontine gliomas (HGG and DIPG). This study aimed to characterize the pharmacokinetics of crizotinib in this population and identify significant covariates. METHODS Patients (N = 36, age range 2.9-21.3 years) were treated orally once or twice-daily with 100-215 mg/m2 crizotinib and 50-65 mg/m2 dasatinib. Pharmacokinetic studies were performed for crizotinib alone after the first dose and at steady state, and for the drug combination at steady state. Crizotinib plasma concentrations were measured using a validated LC-MS/MS method. Population modeling was performed (Monolix) and the impact of factors including patient demographics and co-medications were investigated on crizotinib pharmacokinetics. RESULTS Crizotinib concentrations were described with a linear two-compartment model and absorption lag time. Concomitant dasatinib and overweight/obese status significantly influenced crizotinib pharmacokinetics, resulting in clinically relevant impact (> 20%) on drug exposure. Crizotinib mean apparent clearance (CL/F) was 66.7 L/h/m2 after single-dose and decreased to 26.5 L/h/m2 at steady state when given alone, but not when combined with dasatinib (mean 60.8 L/h/m2). Overweight/obese patients exhibited lower crizotinib CL/F and apparent volume V1/F (mean 46.2 L/h/m2 and 73.3 L/m2) compared to other patients (mean 75.5 L/h/m2 and 119.3 L/m2, p < 0.001). CONCLUSION A potential pharmacokinetic interaction was observed between crizotinib and dasatinib in children with HGG and DIPG. Further, crizotinib exposure was significantly higher in overweight/obese patients, who may require a dosing adjustment.
Collapse
Affiliation(s)
- Elizabeth G Gibson
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Bristol Myers Squibb, Princeton, NJ, USA
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Nicholas S Selvo
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
20
|
Schokrpur S, Hilburn V, Giustini N, Bazhenova L. An overview of alectinib hydrochloride as a treatment option for ALK positive non-small cell lung cancer. Expert Opin Pharmacother 2021; 22:1815-1824. [PMID: 34225542 DOI: 10.1080/14656566.2021.1948014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Alectinib is a second-generation inhibitor of anaplastic lymphoma kinase (ALK) and RET. Phase III clinical trials have established its superiority to crizotinib in the first-line ALK inhibitor-naïve setting. Studies also support its use over chemotherapy in the post-crizotinib setting. It is currently one of several FDA- and EMA-approved ALK inhibitors, and it is listed as a preferred initial therapy for treatment-naïve ALK-positive non-small cell lung cancer (NSCLC).Areas covered: Herein, the authors provide the reader with details of the chemical structure, pharmacologic properties, resistance mutations, phase I, II, and III clinical trials, and safety profile of alectinib. Furthermore, the authors provide the reader with the expert opinion and future perspectives on the drug.Expert opinion: Alectinib compares favorably to other second-generation ALK inhibitors with regards to safety, tolerability, and efficacy. Based on currently available data, it is an appropriate first-line option. Ongoing studies will better resolve the ideal sequencing of ALK inhibitors in the treatment of ALK-positive NSCLC.
Collapse
Affiliation(s)
- Shiruyeh Schokrpur
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Van Hilburn
- Division of Pharmacy, University of California San Diego, San Diego, California, USA
| | - Nicholas Giustini
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Lyudmila Bazhenova
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| |
Collapse
|
21
|
De Carlo E, Stanzione B, Del Conte A, Revelant A, Bearz A. Brigatinib as a treatment of ALK-positive non-small cell lung cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1954907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elisa De Carlo
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Brigida Stanzione
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandro Del Conte
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alberto Revelant
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Bearz
- Clinical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
22
|
Zhou L, Wang S, Chen M, Huang S, Zhang M, Bao W, Bao A, Zhang P, Guo H, Liu Z, Xie G, Gao J, Wu Z, Lou Y, Fan G. Simultaneous and rapid determination of 12 tyrosine kinase inhibitors by LC-MS/MS in human plasma: Application to therapeutic drug monitoring in patients with non-small cell lung cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122752. [PMID: 33991955 DOI: 10.1016/j.jchromb.2021.122752] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
In recent years, more than 50 tyrosine kinase inhibitors (TKIs) was indicated against numerous cancers, especially outstanding advantages in the treatment of non-small cell lung cancer (NSCLC), and several studies have shown that therapeutic drug monitoring (TDM) of TKIs can improve treatment efficacy and safety. The present study aimed to develop and validate a LC-MS/MS method for the TDM of 12 TKIs (gefitinib, erlotinib, afatinib, dacomitinib, icotinib, osimertinib, crizotinib, ceritinib, alectinib, dabrafenib, trametinib, anlotinib) in patients with NSCLC. The analytes of interest and internal standard were extracted from human plasma. Salting-out assisted liquid-liquid extraction (SALLE) with 5 M ammonium acetate solution was optimized for method validation and compared to simple protein precipitation (PPT). Chromatographic separation was conducted on Waters X bridge C18 column (100 × 4.6 mm, 3.5 μm) using a gradient elution of acetonitrile/5mM ammonium acetate in pure water with 0.1% (v/v) formic acid at 40 °C within 6 min. The total flow was maintained at 1 mL/min, 30% of the post column flow was split into the mass spectrometer and the rest to waste via a 3-way tee. The mass analysis was performed by positive ion electrospray ionization (ESI) in multiple-reaction monitoring (MRM) mode. The assay was validated based on the guidelines on bioanalytical methods by FDA. This quantification method was proved to be satisfactory in selectivity, accuracy, precision, linearity (r2 > 0.995), recovery, matrix effect and stability and the accuracy was further assessed in plasma with a degree of hemolysis of 4%. The described method to simultaneously quantify the 12 selected anticancer drugs in human plasma was successfully validated and applied to routine TDM of gefitinib, erlotinib, icotinib, osimertinib, crizotinib and anlotinib in cancer patients. TKIs plasma monitoring helps to individualize dose adjustment and manage adverse effects in NSCLC patients.
Collapse
Affiliation(s)
- Lijuan Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Ming Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Shiqi Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, PR China
| | - Min Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Wuping Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Aihua Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Pengyu Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Haiying Guo
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Zhenwei Liu
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Guogang Xie
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Jianwei Gao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Zhenghua Wu
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
23
|
Gupta N, Hanley MJ, Kerstein D, Tugnait M, Narasimhan N, Marbury TC, Venkatakrishnan K. Effect of severe renal impairment on the pharmacokinetics of brigatinib. Invest New Drugs 2021; 39:1306-1314. [PMID: 33742299 PMCID: PMC8426299 DOI: 10.1007/s10637-021-01095-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 01/27/2023]
Abstract
Background Brigatinib, a next-generation anaplastic lymphoma kinase (ALK) inhibitor, targets activated, mutant forms of ALK and overcomes mechanisms of resistance to the ALK inhibitors crizotinib, ceritinib, and alectinib. Brigatinib is approved in multiple countries for treatment of patients with ALK-positive non–small cell lung cancer. Based on population pharmacokinetic (PK) analyses, no dosage adjustment is required for patients with mild or moderate renal impairment. Methods An open-label, single-dose study was conducted to evaluate the PK of brigatinib (90 mg) in patients with severe renal impairment (estimated glomerular filtration rate < 30 mL/min/1.73 m2; n = 8) and matched healthy volunteers with normal renal function (estimated glomerular filtration rate ≥ 90 mL/min/1.73 m2; n = 8). Plasma and urine were collected for the determination of plasma protein binding and estimation of plasma and urine PK parameters. Results Plasma protein binding of brigatinib was similar between patients with severe renal impairment (92 % bound) and matched healthy volunteers with normal renal function (91 % bound). Unbound brigatinib exposure (area under the plasma concentration-time curve from time zero to infinity) was approximately 92 % higher in patients with severe renal impairment compared with healthy volunteers with normal renal function. The renal clearance of brigatinib in patients with severe renal impairment was approximately 20 % of that observed in volunteers with normal renal function. Conclusions These findings support a brigatinib dosage reduction of approximately 50 % in patients with severe renal impairment. Trial registry: Not applicable.
Collapse
Affiliation(s)
- Neeraj Gupta
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Michael J Hanley
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - David Kerstein
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.,Anchiano Therapeutics, Cambridge, MA, USA
| | - Meera Tugnait
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.,Spectrum Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Narayana Narasimhan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.,Verastem Oncology, Needham, MA, USA
| | | | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.,EMD Serono, Inc., Billerica, MA, USA
| |
Collapse
|
24
|
Gristina V, La Mantia M, Iacono F, Galvano A, Russo A, Bazan V. The Emerging Therapeutic Landscape of ALK Inhibitors in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2020; 13:E474. [PMID: 33352844 PMCID: PMC7766858 DOI: 10.3390/ph13120474] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The treatment of metastatic non-small cell lung cancer (NSCLC) has undergone a paradigm shift over the last decade. Better molecular characterization of the disease has led to the rapid improvement of personalized medicine and the prompt delivery of targeted therapies to patients with NSCLC. The discovery of the EML4-ALK fusion gene in a limited subset of patients affected by NSCLC and the subsequent clinical development of crizotinib in 2011 has been an impressive milestone in lung cancer research. Unfortunately, acquired resistances regularly develop, hence disease progression occurs. Afterward, modern tyrosine kinase inhibitors (TKIs), such as ceritinib, alectinib, brigatinib, and lorlatinib, have been approved by the Food and Drug Administration (FDA) for the management of anaplastic lymphoma kinase (ALK)-positive NSCLCs. Several compounds are currently under investigation to achieve the optimal strategy of therapy. Additionally, the results of ongoing clinical trials with novel-generation TKI will provide more evidence on the best sequence in the treatment of ALK-positive NSCLC patients. In this review, we provide a comprehensive overview of the state-of-the-art targeted therapy options in ALK-positive NSCLCs. Resistance, potential therapeutic strategies to overcome drug resistance, and future perspectives for this subset of patients are critically analyzed and summarized.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Maria La Mantia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Federica Iacono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (V.G.); (M.L.M.); (F.I.); (A.G.); (A.R.)
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
25
|
Wang M, Du Q, Zuo L, Xue P, Lan C, Sun Z. Metabolism and Distribution of Novel Tumor Targeting Drugs In Vivo. Curr Drug Metab 2020; 21:996-1008. [PMID: 33183197 DOI: 10.2174/1389200221666201112110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a new tumor therapy, targeted therapy is becoming a hot topic due to its high efficiency and low toxicity. Drug effects of targeted tumor drugs are closely related to pharmacokinetics, so it is important to understand their distribution and metabolism in vivo. METHODS A systematic review of the literature on the metabolism and distribution of targeted drugs over the past 20 years was conducted, and the pharmacokinetic parameters of approved targeted drugs were summarized in combination with the FDA's drug instructions. Targeting drugs are divided into two categories: small molecule inhibitors and monoclonal antibodies. Novel targeting drugs and their mechanisms of action, which have been developed in recent years, are summarized. The distribution and metabolic processes of each drug in the human body are reviewed. RESULTS In this review, we found that the distribution and metabolism of small molecule kinase inhibitors (TKI) and monoclonal antibodies (mAb) showed different characteristics based on the differences of action mechanism and molecular characteristics. TKI absorbed rapidly (Tmax ≈ 1-4 h) and distributed in large amounts (Vd > 100 L). It was mainly oxidized and reduced by cytochrome P450 CYP3A4. However, due to the large molecular diameter, mAb was distributed to tissues slowly, and the volume of distribution was usually very low (Vd < 10 L). It was mainly hydrolyzed and metabolized into peptides and amino acids by protease hydrolysis. In addition, some of the latest drugs are still in clinical trials, and the in vivo process still needs further study. CONCLUSION According to the summary of the research progress of the existing targeting drugs, it is found that they have high specificity, but there are still deficiencies in drug resistance and safety. Therefore, the development of safer and more effective targeted drugs is the future research direction. Meanwhile, this study also provides a theoretical basis for clinical accurate drug delivery.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Lan
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Zhou S, Liu W, Zhou C, Zhang L, Xie L, Xu Z, Wang L, Zhao Y, Guo L, Chen J, Ding L, Mao L, Tao Y, Zhang C, Ding S, Shao F. Mass balance, metabolic disposition, and pharmacokinetics of [ 14C]ensartinib, a novel potent anaplastic lymphoma kinase (ALK) inhibitor, in healthy subjects following oral administration. Cancer Chemother Pharmacol 2020; 86:719-730. [PMID: 33044566 DOI: 10.1007/s00280-020-04159-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Ensartinib is a novel, potent and highly selective inhibitor of anaplastic lymphoma kinase (ALK) that has promising clinical activity and low toxicity in patients with ALK-positive non-small cell lung cancer. This study was conducted to investigate the pharmacokinetics, metabolism and excretion of ensartinib following a single 200 mg/100 μCi oral dose of radiolabeled ensartinib to healthy subjects. METHODS Six healthy male subjects were enrolled and administrated an oral suspension in a fasted state. Blood, urine and feces were collected. Radioactivity concentrations were measured by liquid scintillation counting and plasma concentrations of ensartinib by liquid chromatography-tandem mass spectrometry. Both techniques were applied for metabolite profiling and characterization. RESULTS The mean total recovery was 101.21% of the radiolabeled dose with 91.00% and 10.21% excreted in feces and urine, respectively. Unchanged ensartinib was the predominant drug-related component in urine and feces, representing 4.39% and 38.12% of the administered dose, respectively. Unchanged ensartinib and its metabolite M465 were the major circulating components, accounting for the same 27.45% of the plasma total radioactivity (AUC0-24h pool), while other circulating metabolites were minor, accounting for less than 10%. Mean Cmax, AUC0-∞, T1/2 and Tmax values for ensartinib in plasma were 185 ng/mL, 3827 h ng/mL, 18.3 h and 3.25 h, respectively. The total radioactivity in plasma was cleared with terminal half-life of 27.2 h. Treatment with ensartinib was well tolerated, and no serious adverse events were reported. CONCLUSION It was well tolerated in the six healthy male subjects following a single oral administration of 200 mg/100 μCi dose of ensartinib. Besides unchanged ensartinib, metabolite of M465 was the predominant circulating drug-related component. The drug was primarily eliminated in feces. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03804541.
Collapse
Affiliation(s)
- Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Nulear Medicine Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Chen Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lingling Zhang
- Lab Testing Division, Department of DMPK Service, WuXi AppTec Co. Ltd., Nanjing, 210038, China
| | - Lijun Xie
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhaoqiang Xu
- Nulear Medicine Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yuqing Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lian Guo
- Lab Testing Division, Department of DMPK Service, WuXi AppTec Co. Ltd., Nanjing, 210038, China
| | - Juan Chen
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lieming Ding
- Betta Pharmaceuticals Co., Ltd., Hangzhou, 311100, China
| | - Li Mao
- Betta Pharmaceuticals Co., Ltd., Hangzhou, 311100, China
| | - Yi Tao
- Lab Testing Division, Department of DMPK Service, WuXi AppTec Co. Ltd., Nanjing, 210038, China
| | - Chen Zhang
- Nulear Medicine Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Sijia Ding
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China. .,Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
27
|
Groenland SL, Geel DR, Janssen JM, de Vries N, Rosing H, Beijnen JH, Burgers JA, Smit EF, Huitema ADR, Steeghs N. Exposure-Response Analyses of Anaplastic Lymphoma Kinase Inhibitors Crizotinib and Alectinib in Non-Small Cell Lung Cancer Patients. Clin Pharmacol Ther 2020; 109:394-402. [PMID: 32686074 PMCID: PMC7891593 DOI: 10.1002/cpt.1989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Crizotinib and alectinib are anaplastic lymphoma kinase (ALK)-inhibitors indicated for the treatment of ALK-positive metastatic non-small cell lung cancer (NSCLC). At the currently used fixed doses, interindividual variability in exposure is high. The aim of this study was to investigate whether minimum plasma concentrations (Cmin ) of crizotinib and alectinib are related to efficacy and toxicity. An observational study was performed, in which ALK-positive NSCLC patients who were treated with crizotinib and alectinib and from whom pharmacokinetic samples were collected in routine care, were included in the study. Exposure-response analyses were explored using previously proposed Cmin thresholds of 235 ng/mL for crizotinib and 435 ng/mL for alectinib. Forty-eight crizotinib and 52 alectinib patients were included. For crizotinib, median progression-free survival (mPFS) was 5.7 vs. 17.4 months for patients with Cmin < 235 ng/mL (48%) and ≥ 235 ng/mL, respectively (P = 0.08). In multivariable analysis, Cmin < 235 ng/mL resulted in a hazard ratio (HR) of 1.79 (95% confidence interval (CI), 0.90-3.59, P = 0.100). In a pooled analysis of all crizotinib patients (not only ALK-positive, n = 79), the HR was 2.15 (95% CI, 1.21-3.84, P = 0.009). For alectinib, mPFS was 12.6 months vs. not estimable (95% CI, 19.8-not estimable) for patients with Cmin < 435 ng/mL (37%) and ≥ 435 ng/mL, respectively (P = 0.04). Multivariable analysis resulted in an HR of 4.29 (95% CI, 1.33-13.90, P = 0.015). In conclusion, PFS of crizotinib and alectinib treated NSCLC patients is prolonged in patients with Cmin ≥ 235 ng/mL and 435 ng/mL, respectively. Therefore, therapeutic drug monitoring should be part of routine clinical management for these agents.
Collapse
Affiliation(s)
- Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dieuwertje R Geel
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julie M Janssen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacobus A Burgers
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egbert F Smit
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12:134. [PMID: 31815659 PMCID: PMC6902404 DOI: 10.1186/s13045-019-0818-2] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
The biggest hurdle to targeted cancer therapy is the inevitable emergence of drug resistance. Tumor cells employ different mechanisms to resist the targeting agent. Most commonly in EGFR-mutant non-small cell lung cancer, secondary resistance mutations on the target kinase domain emerge to diminish the binding affinity of first- and second-generation inhibitors. Other alternative resistance mechanisms include activating complementary bypass pathways and phenotypic transformation. Sequential monotherapies promise to temporarily address the problem of acquired drug resistance, but evidently are limited by the tumor cells' ability to adapt and evolve new resistance mechanisms to persist in the drug environment. Recent studies have nominated a model of drug resistance and tumor progression under targeted therapy as a result of a small subpopulation of cells being able to endure the drug (minimal residual disease cells) and eventually develop further mutations that allow them to regrow and become the dominant population in the therapy-resistant tumor. This subpopulation of cells appears to have developed through a subclonal event, resulting in driver mutations different from the driver mutation that is tumor-initiating in the most common ancestor. As such, an understanding of intratumoral heterogeneity-the driving force behind minimal residual disease-is vital for the identification of resistance drivers that results from branching evolution. Currently available methods allow for a more comprehensive and holistic analysis of tumor heterogeneity in that issues associated with spatial and temporal heterogeneity can now be properly addressed. This review provides some background regarding intratumoral heterogeneity and how it leads to incomplete molecular response to targeted therapies, and proposes the use of single-cell methods, sequential liquid biopsy, and multiregion sequencing to discover the link between intratumoral heterogeneity and early adaptive drug resistance. In summary, minimal residual disease as a result of intratumoral heterogeneity is the earliest form of acquired drug resistance. Emerging technologies such as liquid biopsy and single-cell methods allow for studying targetable drivers of minimal residual disease and contribute to preemptive combinatorial targeting of both drivers of the tumor and its minimal residual disease cells.
Collapse
Affiliation(s)
- Zuan-Fu Lim
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.,Cancer Cell Biology Program, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.,Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University, P.O. Box 850, Mail Code CH46, 500 University Drive, Hershey, PA, 17033-0850, USA
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University, P.O. Box 850, Mail Code CH46, 500 University Drive, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
29
|
Bearz A, Cecco S, Francescon S, Re FL, Corona G, Baldo P. Safety Profiles and Pharmacovigilance Considerations for Recently Patented Anticancer Drugs: Lung Cancer. Recent Pat Anticancer Drug Discov 2019; 14:242-257. [PMID: 31362665 DOI: 10.2174/1574892814666190726124735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lung cancer is the most frequent cause of cancer-related death. In the last decades, the introduction of targeted therapies and more recently, of immunotherapy, has led to significant improvements in different outcomes of this malignant neoplasm. OBJECTIVE The present review provides a balanced overview of most recent targeted therapies and immunotherapies patented for the treatment of lung cancer. METHODS An extensive scientific literature and patent databases search were performed to identify peerreviewed studies containing information on recently patented drugs for the treatment of lung cancer, with a particular focus on their safety data and recently patented combinations. RESULTS The development of therapies directed to different pathways involved in the tumor angiogenesis, proliferation, and metastasis has transformed the clinical practice of lung malignancies. Several clinical trials have shown an improvement in terms of progression-free survival and overall survival in patients with advanced/metastatic lung cancer. Safety data, extracted from clinical trials and from the WHO global database of adverse drug reactions (VigiAccessTM database), show that recently patented drugs for the treatment of lung cancer are well-tolerated and most of the adverse events reported are mild to moderate. CONCLUSION Currently, a consistent number of new drugs and combinations have been introduced for the treatment of patients with advanced-stage lung cancer. Safety data remain essential to better assess the long-term risk/benefit ratio of these valuable emerging therapies. The new patents' development could provide further significant improvements for lung cancer treatment.
Collapse
Affiliation(s)
- Alessandra Bearz
- Medical Oncology and Cancer Prevention Unit, Department of Clinical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Sara Cecco
- Pharmacy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Sara Francescon
- Pharmacy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Francesco Lo Re
- Pharmacy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Paolo Baldo
- Pharmacy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| |
Collapse
|
30
|
Hamilton G, Hochmair MJ. An evaluation of brigatinib as a promising treatment option for non-small cell lung cancer. Expert Opin Pharmacother 2019; 20:1551-1561. [PMID: 31328968 DOI: 10.1080/14656566.2019.1643839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Brigatinib is a second-line inhibitor for the treatment of rearranged anaplastic lymphoma kinase (ALK) in lung cancer patients which has significant activity against brain metastases. This tyrosine kinase inhibitor (TKI) overcomes a wide range of ALK mutations which confer therapeutic resistance and is increasingly applied in first-line therapy due to improved benefit for patients compared to crizotinib, the current standard of care. Areas covered: The authors review the development and characteristics of brigatinib and discuss the optimal clinical use and sequence of the application of ALK inhibitors in patients progressing under therapy. Expert opinion: ALK-rearranged NSCLC can be treated with a broad range of approved and novel inhibitors at various stages of therapy, including the second-line therapeutic brigatinib. Besides this TKI, the second-line ALK inhibitors alectinib and ceritinib, as well as the third-line lorlatinib are approved for the treatment of ALK-positive NSCLC patients. The main challenge is to find sequences and combinations of ALK inhibitors which provide the best benefit for the patients.
Collapse
Affiliation(s)
- G Hamilton
- Department of Surgery, Medical University of Vienna , Vienna , Austria
| | - M J Hochmair
- Respiratory Oncology Unit, Otto Wagner Hospital , Vienna , Austria
| |
Collapse
|
31
|
Tugnait M, Gupta N, Hanley MJ, Sonnichsen D, Kerstein D, Dorer DJ, Venkatakrishnan K, Narasimhan N. Effects of Strong CYP2C8 or CYP3A Inhibition and CYP3A Induction on the Pharmacokinetics of Brigatinib, an Oral Anaplastic Lymphoma Kinase Inhibitor, in Healthy Volunteers. Clin Pharmacol Drug Dev 2019; 9:214-223. [PMID: 31287236 PMCID: PMC7027746 DOI: 10.1002/cpdd.723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
In vitro data support involvement of cytochrome P450 (CYP)2C8 and CYP3A4 in the metabolism of the anaplastic lymphoma kinase inhibitor brigatinib. A 3‐arm, open‐label, randomized, single‐dose, fixed‐sequence crossover study was conducted to characterize the effects of the strong inhibitors gemfibrozil (of CYP2C8) and itraconazole (of CYP3A) and the strong inducer rifampin (of CYP3A) on the single‐dose pharmacokinetics of brigatinib. Healthy subjects (n = 20 per arm) were administered a single dose of brigatinib (90 mg, arms 1 and 2; 180 mg, arm 3) alone in treatment period 1 and coadministered with multiple doses of gemfibrozil 600 mg twice daily (BID; arm 1), itraconazole 200 mg BID (arm 2), or rifampin 600 mg daily (QD; arm 3) in period 2. Compared with brigatinib alone, coadministration of gemfibrozil with brigatinib did not meaningfully affect brigatinib area under the plasma concentration‐time curve (AUC0–inf; geometric least‐squares mean [LSM] ratio [90%CI], 0.88 [0.83‐0.94]). Coadministration of itraconazole with brigatinib increased AUC0–inf (geometric LSM ratio [90%CI], 2.01 [1.84‐2.20]). Coadministration of rifampin with brigatinib substantially reduced AUC0–inf (geometric LSM ratio [90%CI], 0.20 [0.18‐0.21]) compared with brigatinib alone. The treatments were generally tolerated. Based on these results, strong CYP3A inhibitors and inducers should be avoided during brigatinib treatment. If concomitant use of a strong CYP3A inhibitor is unavoidable, the results of this study support a dose reduction of brigatinib by approximately 50%. Furthermore, CYP2C8 is not a meaningful determinant of brigatinib clearance, and no dose modifications are needed during coadministration of brigatinib with CYP2C8 inhibitors.
Collapse
Affiliation(s)
- Meera Tugnait
- ARIAD Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| | - Neeraj Gupta
- Millennium Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| | - Michael J. Hanley
- Millennium Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| | | | - David Kerstein
- ARIAD Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| | - David J. Dorer
- ARIAD Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| | - Narayana Narasimhan
- ARIAD Pharmaceuticals, Inca wholly owned subsidiary of Takeda Pharmaceutical Company LimitedMAUSA
| |
Collapse
|
32
|
Puccini A, Marín-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, Loupakis F, Battaglin F. Safety and Tolerability of c-MET Inhibitors in Cancer. Drug Saf 2019; 42:211-233. [PMID: 30649748 PMCID: PMC7491978 DOI: 10.1007/s40264-018-0780-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of aberrant hepatocyte growth factor receptor (c-MET, also known as tyrosine-protein kinase MET)/hepatocyte growth factor (HGF) signaling in cancer progression and invasion has been extensively studied. c-MET inhibitors have shown promising pre-clinical and early phase clinical trial anti-tumor activity in several tumor types, although results of most phase III trials with these agents have been negative. To date, two small molecule c-MET inhibitors, cabozantinib and crizotinib, have been approved by regulatory authorities for the treatment of selected cancer types, but several novel c-MET inhibitors (either monoclonal antibodies or small molecule c-MET tyrosine kinase inhibitors) and treatment combinations are currently under study in different settings. Here we provide an overview of the mechanism of action and rationale of c-MET inhibition in cancer, the efficacy of approved agents, and novel promising c-MET-inhibitors and novel targeted combination strategies under development in different cancer types, with a focus on the safety profile and tolerability of these compounds.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nagore I Marín-Ramos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Bergamo
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Schirripa
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
| | - Fotios Loupakis
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA.
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|