1
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
2
|
Kashikar R, Senapati S, Dudhipala N, Basu SK, Mandal N, Majumdar S. Ophthalmic Nanoemulsion Fingolimod Formulation for Topical Application. J Ocul Pharmacol Ther 2024; 40:504-512. [PMID: 38976488 DOI: 10.1089/jop.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Purpose: Fingolimod (FTY720; FT), a structural analog of sphingosine, has potential ocular applications. The goal of this study was to develop an FT-loaded nanoemulsion (NE; FT-NE) formulation for the efficient and prolonged delivery of FT to the posterior segment of the eye through the topical route. Methods: FT-NE formulations were prepared using homogenization followed by the probe sonication method. The lead FT-NE formulations (0.15% and 0.3% w/v loading), comprising soybean oil as oil and Tween® 80 and Poloxamer 188 as surfactants, were further evaluated for in vitro release, surface morphology, filtration sterilization, and stability at refrigerated temperature. Ocular bioavailability following topical application of FT-NE (0.3%) was examined in Sprague-Dawley rats. Results: The formulation, at both dose levels, showed desirable physicochemical characteristics, a nearly spherical shape with homogenous nanometric size distribution, and was stable for 180 days (last time point checked) at refrigerated temperature postfiltration through a polyethersulfone (0.22 µm) membrane. In vitro release studies showed prolonged release over 24 h, compared with the control FT solution (FT-S). In vivo studies revealed that effective concentrations of FT were achieved in the vitreous humor and retina following topical application of FT-NE. Conclusions: The results from these studies demonstrate that the FT-NE formulation can serve as a viable platform for the ocular delivery of FT through the topical route.
Collapse
Affiliation(s)
- Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
| | - Samir Senapati
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
| | - Sandip K Basu
- Department of Ophthalmology, The University of Tennessee Health Science Center, Hamilton Eye Institute, Memphis, Tennessee, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Center, Hamilton Eye Institute, Memphis, Tennessee, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Mississippi, USA
| |
Collapse
|
3
|
Orrù V, Serra V, Marongiu M, Lai S, Lodde V, Zoledziewska M, Steri M, Loizedda A, Lobina M, Piras MG, Virdis F, Delogu G, Marini MG, Mingoia M, Floris M, Masala M, Castelli MP, Mostallino R, Frau J, Lorefice L, Farina G, Fronza M, Carmagnini D, Carta E, Pilotto S, Chessa P, Devoto M, Castiglia P, Solla P, Zarbo RI, Idda ML, Pitzalis M, Cocco E, Fiorillo E, Cucca F. Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination. Front Immunol 2024; 15:1416464. [PMID: 39076966 PMCID: PMC11284103 DOI: 10.3389/fimmu.2024.1416464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Disease-modifying therapies (DMTs) have been shown to improve disease outcomes in multiple sclerosis (MS) patients. They may also impair the immune response to vaccines, including the SARS-CoV-2 vaccine. However, available data on both the intrinsic immune effects of DMTs and their influence on cellular response to the SARS-CoV-2 vaccine are still incomplete. Methods Here, we evaluated the immune cell effects of 3 DMTs on the response to mRNA SARS-CoV-2 vaccination by comparing MS patients treated with one specific therapy (fingolimod, dimethyl fumarate, or natalizumab) with both healthy controls and untreated patients. We profiled 23 B-cell traits, 57 T-cell traits, and 10 cytokines, both at basal level and after stimulation with a pool of SARS-CoV-2 spike peptides, in 79 MS patients, treated with DMTs or untreated, and 32 healthy controls. Measurements were made before vaccination and at three time points after immunization. Results and Discussion MS patients treated with fingolimod showed the strongest immune cell dysregulation characterized by a reduction in all measured lymphocyte cell classes; the patients also had increased immune cell activation at baseline, accompanied by reduced specific immune cell response to the SARS-CoV-2 vaccine. Also, anti-spike specific B cells progressively increased over the three time points after vaccination, even when antibodies measured from the same samples instead showed a decline. Our findings demonstrate that repeated booster vaccinations in MS patients are crucial to overcoming the immune cell impairment caused by DMTs and achieving an immune response to the SARS-CoV-2 vaccine comparable to that of healthy controls.
Collapse
Affiliation(s)
- Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Valentina Serra
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Sandra Lai
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Magdalena Zoledziewska
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Annalisa Loizedda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Monia Lobina
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Francesca Virdis
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maura Mingoia
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Masala
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Frau
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Lorena Lorefice
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Gabriele Farina
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Marzia Fronza
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Carmagnini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Carta
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Chessa
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Marcella Devoto
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Paolo Solla
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberto Ignazio Zarbo
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Eleonora Cocco
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Kar SS, Gharai SR, Sahu SK, Ravichandiran V, Swain SP. The Current Landscape in the Development of Small-molecule Modulators Targeting Sphingosine-1-phosphate Receptors to Treat Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:2431-2446. [PMID: 38676503 DOI: 10.2174/0115680266288509240422112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this via signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct actions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the approval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clinical trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are affected, and the structural characteristics of several small molecule S1P modulators, with a particular focus on their structure-activity connections.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Faculty of Pharmacy, C. V. Raman Global University, Mahura, Bhubaneswar, 752054, Odisha, India
| | - Soumya Ranjan Gharai
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Sujit Kumar Sahu
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
5
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
6
|
Vališ M, Achiron A, Hartung HP, Mareš J, Tichá V, Štourač P, Halusková S, Angelucci F, Pavelek Z. The Benefits and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Drugs R D 2023; 23:331-338. [PMID: 37640862 PMCID: PMC10676342 DOI: 10.1007/s40268-023-00434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects the central nervous system (CNS). Currently, MS treatment is limited to several Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved medications that slow disease progression by immunomodulatory action. Fingolimod and siponimod have similar mechanisms of action, and consequently, their therapeutic effects may be comparable. However, while fingolimod is mainly used for relapsing-remitting MS (RRMS), siponimod, according to EMA label, is recommended for active secondary progressive MS (SPMS). Clinicians and scientists are analysing whether patients can switch from fingolimod to siponimod and identifying the advantages or disadvantages of such a switch from a therapeutic point of view. In this review, we aim to discuss the therapeutic effects of these two drugs and the advantages/disadvantages of switching treatment from fingolimod to siponimod in patients with the most common forms of MS, RRMS and SPMS.
Collapse
Affiliation(s)
- Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel
- Neurology Department, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hans Peter Hartung
- Department of Neurology, Medical School, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
| | - Veronika Tichá
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Štourač
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Simona Halusková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Al-Kuraishy HM, Batiha GES, Al-Gareeb AI, Al-Harcan NAH, Welson NN. Receptor-dependent effects of sphingosine-1-phosphate (S1P) in COVID-19: the black side of the moon. Mol Cell Biochem 2023; 478:2271-2279. [PMID: 36652045 PMCID: PMC9848039 DOI: 10.1007/s11010-023-04658-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection leads to hyper-inflammation and amplified immune response in severe cases that may progress to cytokine storm and multi-organ injuries like acute respiratory distress syndrome and acute lung injury. In addition to pro-inflammatory cytokines, different mediators are involved in SARS-CoV-2 pathogenesis and infection, such as sphingosine-1-phosphate (S1P). S1P is a bioactive lipid found at a high level in plasma, and it is synthesized from sphingomyelin by the action of sphingosine kinase. It is involved in inflammation, immunity, angiogenesis, vascular permeability, and lymphocyte trafficking through G-protein coupled S1P receptors. Reduction of the circulating S1P level correlates with COVID-19 severity. S1P binding to sphingosine-1-phosphate receptor 1 (S1PR1) elicits endothelial protection and anti-inflammatory effects during SARS-CoV-2 infection, by limiting excessive INF-α response and hindering mitogen-activated protein kinase and nuclear factor kappa B action. However, binding to S1PR2 opposes the effect of S1PR1 with vascular inflammation, endothelial permeability, and dysfunction as the concomitant outcome. This binding also promotes nod-like receptor pyrin 3 (NLRP3) inflammasome activation, causing liver inflammation and fibrogenesis. Thus, higher expression of macrophage S1PR2 contributes to the activation of the NLRP3 inflammasome and the release of pro-inflammatory cytokines. In conclusion, S1PR1 agonists and S1PR2 antagonists might effectively manage COVID-19 and its severe effects. Further studies are recommended to elucidate the potential conflict in the effects of S1P in COVID-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
8
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
9
|
Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis 2023; 178:106028. [PMID: 36736923 DOI: 10.1016/j.nbd.2023.106028] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
10
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
11
|
Biernacki T, Sandi D, Füvesi J, Fricska-Nagy Z, Kincses TZ, Ács P, Rózsa C, Dobos E, Cseh B, Horváth L, Nagy Z, Csányi A, Kovács K, Csépány T, Vécsei L, Bencsik K, on the behalf of the study investigators. The safety and efficacy of fingolimod: Real-world data from a long-term, non-interventional study on the treatment of RRMS patients spanning up to 5 years from Hungary. PLoS One 2022; 17:e0267346. [PMID: 35452476 PMCID: PMC9032373 DOI: 10.1371/journal.pone.0267346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Fingolimod was approved and reimbursed by the healthcare provider in Hungary for the treatment of highly active relapsing-remitting multiple sclerosis (RRMS) in 2012. The present study aimed to assess the effectiveness, safety profile, and persistence to fingolimod in a real-life setting in Hungary in RRMS patients who were either therapy naïve before enrollment or have changed to fingolimod from another disease-modifying therapy (DMT) for any reason. METHODS This cross-sectional, observational study with prospective data collection was performed nationwide at 21 sites across Hungary. To avoid selection bias, sites were asked to document eligible patients in consecutive chronological order. Demographic, clinical, safety and efficacy data were analysed for up to 5 years from 570 consenting adult patients with RRMS who had received treatment with fingolimod for at least one year. RESULTS 69.6% of patients remained free from relapses for the whole study duration; in the first year, 85.1% of patients did not experience a relapse, which rose to 94.6% seen in the 5th year. Compared to baseline at study end, 28.2% had higher, and 9.1% had lower, meanwhile, 62.7% of the patients had stable EDSS scores. Overall, the annualized relapse rate decreased from 0.804 observed at baseline to 0.185, 0.149, 0.122, 0.091, and 0.097 (77.0%, 82.1%, 85.2%, 89.7%, and 89.0% relative reduction, respectively) after 1, 2, 3, 4, and 5 years of treatment. The greatest reduction rate was seen in the group of therapy naïve patients. Treatment persistence on fingolimod after 60 months was 73.4%. CONCLUSION In this nationwide Hungarian cohort, most patients under fingolimod treatment were free from relapses and disability progression. In addition, fingolimod has proven to be a well-tolerated DMT that has sustained its manageable safety profile, high efficacy, and positive benefit/risk ratio for up to 5 years in a real-life setting.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Judit Füvesi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsanett Fricska-Nagy
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Ács
- Department of Neurology, Faculty of General Medicine, University of Pécs, Pécs, Hungary
| | - Csilla Rózsa
- Jahn Ferenc South-Pest Hospital and Clinic, Budapest, Hungary
| | | | - Botond Cseh
- Borsod-Abaúj-Zemplén County Hospital, Miskolc, Hungary
| | | | - Zsuzsanna Nagy
- Szent Rafael Zala County Hospital, Zalaegerszeg, Hungary
| | | | | | - Tünde Csépány
- Department of Neurology, Faculty of General Medicine, University of Debrecen, Deberecen, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
12
|
Courtney R, Cock IE. Comparison of the antibacterial activity of Australian Terminalia spp. extracts against Klebsiella pneumoniae: a potential treatment for ankylosing spondylitis. Inflammopharmacology 2022; 30:207-223. [PMID: 34989930 DOI: 10.1007/s10787-021-00914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Traditional medicines prepared using Terminalia species have been used globally to treat inflammation and pathogenic infections. Recent studies have demonstrated that multiple Asian and African Terminalia spp. inhibit bacterial triggers of some autoimmune inflammatory diseases, including ankylosing spondylitis. Despite this, the effects of Australian Terminalia spp. on a bacterial trigger of ankylosing spondylitis (K. pneumoniae) remain unexplored. Fifty-five extracts from five Australian Terminalia spp. were investigated for K. pneumoniae growth inhibitory activity. Methanolic, aqueous and ethyl acetate extracts of most species and plant parts inhibited K. pneumoniae growth, with varying potencies. Methanolic leaf extracts were generally the most potent bacterial growth inhibitors, with minimum inhibitory concentration (MIC) values of 66 μg/mL (T. ferdinandiana), 128 μg/mL (T. carpenteriae) and 83 μg/mL (T. petiolares). However, the aqueous leaf extract was the most potent T. grandiflora extract (MIC = 87 μg/mL). All T. catappa extracts displayed low growth inhibitory activity. The Terminalia spp. methanolic leaf extracts were examined by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). All contained a relative abundance of simple gallotannins (particularly gallic and chebulic acids), the flavonoid luteolin, as well as the monoterpenoids cineole and terpineol. Notably, all Terminalia spp. were non-toxic or of low toxicity in ALA and HDF toxicity assays, highlighting their potential for preventing the onset of ankylosing spondylitis and treating its symptoms once the disease is established, although this needs to be verified in in vivo systems.
Collapse
Affiliation(s)
- Reece Courtney
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.,School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
| | - Ian Edwin Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia. .,School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
13
|
Gerossier E, Nayar S, Froidevaux S, Smith CG, Runser C, Iannizzotto V, Vezzali E, Pierlot G, Mentzel U, Murphy MJ, Martinic MM, Barone F. Cenerimod, a selective S1P 1 receptor modulator, improves organ-specific disease outcomes in animal models of Sjögren's syndrome. Arthritis Res Ther 2021; 23:289. [PMID: 34839819 PMCID: PMC8628476 DOI: 10.1186/s13075-021-02673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sjögren’s syndrome is a systemic autoimmune disease characterized by immune cells predominantly infiltrating the exocrine glands and frequently forming ectopic lymphoid structures. These structures drive a local functional immune response culminating in autoantibody production and tissue damage, associated with severe dryness of mucosal surfaces and salivary gland hypofunction. Cenerimod, a potent, selective and orally active sphingosine-1-phosphate receptor 1 modulator, inhibits the egress of lymphocytes into the circulation. Based on the mechanism of action of cenerimod, its efficacy was evaluated in two mouse models of Sjögren’s syndrome. Methods Cenerimod was administered in two established models of Sjögren’s syndrome; firstly, in an inducible acute viral sialadenitis model in C57BL/6 mice, and, secondly, in the spontaneous chronic sialadenitis MRL/lpr mouse model. The effects of cenerimod treatment were then evaluated by flow cytometry, immunohistochemistry, histopathology and immunoassays. Comparisons between groups were made using a Mann-Whitney test. Results In the viral sialadenitis model, cenerimod treatment reduced salivary gland immune infiltrates, leading to the disaggregation of ectopic lymphoid structures, reduced salivary gland inflammation and preserved organ function. In the MRL/lpr mouse model, cenerimod treatment decreased salivary gland inflammation and reduced T cells and proliferating plasma cells within salivary gland ectopic lymphoid structures, resulting in diminished disease-relevant autoantibodies within the salivary glands. Conclusions Taken together, these results suggest that cenerimod can reduce the overall autoimmune response and improve clinical parameters in the salivary glands in models of Sjögren’s syndrome and consequently may reduce histological and clinical parameters associated with the disease in patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02673-x.
Collapse
Affiliation(s)
- Estelle Gerossier
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Sylvie Froidevaux
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Celine Runser
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | - Enrico Vezzali
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Gabin Pierlot
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Ulrich Mentzel
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Mark J Murphy
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Marianne M Martinic
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK.,Rheumatology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
14
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
15
|
Askey H, Grayson JD, Tibbetts JD, Turner-Dore JC, Holmes JM, Kociok-Kohn G, Wrigley GL, Cresswell AJ. Photocatalytic Hydroaminoalkylation of Styrenes with Unprotected Primary Alkylamines. J Am Chem Soc 2021; 143:15936-15945. [PMID: 34543004 PMCID: PMC8499025 DOI: 10.1021/jacs.1c07401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/27/2022]
Abstract
Catalytic, intermolecular hydroaminoalkylation (HAA) of styrenes provides a powerful disconnection for pharmacologically relevant γ-arylamines, but current methods cannot utilize unprotected primary alkylamines as feedstocks. Metal-catalyzed HAA protocols are also highly sensitive to α-substitution on the amine partner, and no catalytic solutions exist for α-tertiary γ-arylamine synthesis via this approach. We report a solution to these problems using organophotoredox catalysis, enabling a direct, modular, and sustainable preparation of α-(di)substituted γ-arylamines, including challenging electron-neutral and moderately electron-rich aryl groups. A broad range of functionalities are tolerated, and the reactions can be run on multigram scale in continuous flow. The method is applied to a concise, protecting-group-free synthesis of the blockbuster drug Fingolimod, as well as a phosphonate mimic of its in vivo active form (by iterative α-C-H functionalization of ethanolamine). The reaction can also be sequenced with an intramolecular N-arylation to provide a general and modular access to valuable (spirocyclic) 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydronaphthyridines. Mechanistic and kinetic studies support an irreversible hydrogen atom transfer activation of the alkylamine by the azidyl radical and some contribution from a radical chain. The reaction is photon-limited and exhibits a zero-order dependence on amine, azide, and photocatalyst, with a first-order dependence on styrene.
Collapse
Affiliation(s)
- Hannah
E. Askey
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - James D. Grayson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Joshua D. Tibbetts
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Jake M. Holmes
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Kohn
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gail L. Wrigley
- Oncology
R&D, Research & Early Development, AstraZeneca, Darwin Building, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K.
| | | |
Collapse
|
16
|
Henry Blackwell J, Harris GR, Smith MA, Gaunt MJ. Modular Photocatalytic Synthesis of α-Trialkyl-α-Tertiary Amines. J Am Chem Soc 2021; 143:15946-15959. [PMID: 34551248 DOI: 10.1021/jacs.1c07402] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecules displaying an α-trialkyl-α-tertiary amine motif provide access to an important and versatile area of biologically relevant chemical space but are challenging to access through existing synthetic methods. Here, we report an operationally straightforward, multicomponent protocol for the synthesis of a range of functionally and structurally diverse α-trialkyl-α-tertiary amines, which makes use of three readily available components: dialkyl ketones, benzylamines, and alkenes. The strategy relies on the of use visible-light-mediated photocatalysis with readily available Ir(III) complexes to bring about single-electron reduction of an all-alkyl ketimine species to an α-amino radical intermediate; the α-amino radical undergoes Giese-type addition with a variety of alkenes to forge the α-trialkyl-α-tertiary amine center. The mechanism of this process is believed to proceed through an overall redox neutral pathway that involves photocatalytic redox-relay of the imine, generated from the starting amine-ketone condensation, through to an imine-derived product. This is possible because the presence of a benzylic amine component in the intermediate scaffold drives a 1,5-hydrogen atom transfer step after the Giese addition to form a stable benzylic α-amino radical, which is able to close the photocatalytic cycle. These studies detail the evolution of the reaction platform, an extensive investigation of the substrate scope, and preliminary investigation of some of the mechanistic features of this distinct photocatalytic process. We believe this transformation will provide convenient access to previously unexplored α-trialkyl-α-tertiary amine scaffolds that should be of considerable interest to practitioners of synthetic and medicinal chemistry in academic and industrial institutions.
Collapse
Affiliation(s)
- J Henry Blackwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georgia R Harris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Milo A Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Dowarah J, Marak BN, Yadav UCS, Singh VP. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem 2021; 114:105016. [PMID: 34144277 PMCID: PMC8143914 DOI: 10.1016/j.bioorg.2021.105016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023]
Abstract
While the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes. In the present article, we have brought together some of the candidate therapeutic drugs being repurposed or used in the clinical trials and discussed their clinical efficacy and safety for COVID-19.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N Marak
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Ved Prakash Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India; Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
18
|
Strasser DS, Froidevaux S, Sippel V, Gerossier E, Grieder U, Pierlot GM, Kieninger-Graefitsch A, Vezzali E, Stalder AK, Renault B, Ryge J, Hart A, Mentzel U, Groenen PMA, Keller MP, Trendelenburg M, Martinic MM, Murphy MJ. Preclinical to clinical translation of cenerimod, a novel S1P 1 receptor modulator, in systemic lupus erythematosus. RMD Open 2021; 6:rmdopen-2020-001261. [PMID: 32917831 PMCID: PMC7722385 DOI: 10.1136/rmdopen-2020-001261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 08/16/2020] [Indexed: 01/14/2023] Open
Abstract
Objectives: SLE is an autoimmune disease characterised by aberrant lymphocyte activation and autoantibody production. This study provides an in-depth preclinical and clinical characterisation of the treatment effect of cenerimod, a sphingosine-1-phosphate receptor type 1 (S1P1) modulator, in SLE. Methods: Cenerimod effect on lymphocyte numbers, organ pathology, inflammation, and survival was evaluated in the MRL/lpr lupus mouse model. Lymphocytes from healthy subjects and patients with SLE were assessed for cenerimod-induced S1P1 receptor internalisation. Lymphocyte subsets and inflammatory biomarkers were characterised in a 12-week phase 2 clinical study (NCT-02472795), where patients with SLE were treated with multiple doses of cenerimod or placebo. Results: In MRL/lpr mice treated with cenerimod, blood lymphocytes were reduced, leading to reduced immune infiltrates into tissue, and decreased tissue pathology, proteinuria, and inflammation, resulting in increased survival. Cenerimod was potent and efficacious in inducing S1P1 receptor internalisation in lymphocytes in both healthy subjects and patients with SLE. In patients with SLE, 12-week cenerimod treatment resulted in a dose-dependent reduction of blood lymphocytes, antibody-secreting cells (ASC), and plasma IFN-α. Conclusion: Cenerimod significantly ameliorated systemic and organ-specific pathology and inflammation in a mouse model of SLE. In lymphocytes from patients with SLE, the S1P1 receptor remained functional despite concomitant background medication. The preclinical lymphocyte reduction translated to patients with SLE and resulted in the normalisation of ASC and the reduction of IFN-associated biomarkers. The efficacy and safety of cenerimod is being further investigated in a long-term clinical study in patients with SLE (CARE; NCT-03742037).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jesper Ryge
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Aaron Hart
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | - Marten Trendelenburg
- Clinical Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | | |
Collapse
|
19
|
Kocovski P, Tabassum-Sheikh N, Marinis S, Dang PT, Hale MW, Orian JM. Immunomodulation Eliminates Inflammation in the Hippocampus in Experimental Autoimmune Encephalomyelitis, but Does Not Ameliorate Anxiety-Like Behavior. Front Immunol 2021; 12:639650. [PMID: 34177891 PMCID: PMC8222726 DOI: 10.3389/fimmu.2021.639650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system, characterized by an unpredictable disease course and a wide range of symptoms. Emotional and cognitive deficits are now recognized as primary disease manifestations and not simply the consequence of living with a chronic condition, raising questions regarding the efficacy of current therapeutics for these specific symptoms. Mechanisms underlying psychiatric sequelae in MS are believed to be similar to those underlying pathogenesis, that is mediated by cytokines and other inflammatory mediators. To gain insight into the pathogenesis of MS depression, we performed behavioral assays in the murine experimental autoimmune encephalomyelitis (EAE) MS model, in the presence or absence of immunomodulation using the drug FTY720, an analogue of the lipid signaling molecule sphingosine-1-phosphate (S1P). Specifically, mice were challenged with the elevated plus maze (EPM) test, a validated experimental paradigm for rodent-specific anxiety-like behavior. FTY720 treatment failed to ameliorate anxiety-like symptoms, irrespective of dosage. On the other hand, it was effective in reducing inflammatory infiltration, microglial reactivity and levels of pro-inflammatory molecules in the hippocampus, confirming the anti-inflammatory capacity of treatment. To explore the absence of FTY720 effect on behavior, we confirmed expression of S1P receptors (S1PR) S1PR1, S1PR3 and S1PR5 in the hippocampus and mapped the dynamics of these receptors in response to drug treatment alone, or in combination with EAE induction. We identified a complex pattern of responses, differing between (1) receptors, (2) dosage and (3) hippocampal sub-field. FTY720 treatment in the absence of EAE resulted in overall downregulation of S1PR1 and S1PR3, while S1PR5 exhibited a dose-dependent upregulation. EAE induction alone resulted in overall downregulation of all three receptors. On the other hand, combined FTY720 and EAE showed generally no effect on S1PR1 and S1PR3 expression except for the fimbrium region, but strong upregulation of S1PR5 over the range of doses examined. These data illustrate a hitherto undescribed complexity of S1PR response to FTY720 in the hippocampus, independent of drug effect on effector immune cells, but simultaneously emphasize the need to explore novel treatment strategies to specifically address mood disorders in MS.
Collapse
Affiliation(s)
- Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Nuzhat Tabassum-Sheikh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Stephanie Marinis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Phuc T. Dang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Matthew W. Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Ghiasian M, Nafisi H, Ranjbar A, Mohammadi Y, Ataei S. Antioxidative effects of silymarin on the reduction of liver complications of fingolimod in patients with relapsing-remitting multiple sclerosis: A clinical trial study. J Biochem Mol Toxicol 2021; 35:e22800. [PMID: 33934443 DOI: 10.1002/jbt.22800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease that affects the central nervous system and is characterized by inflammation, demyelination, and degenerative changes. Relapsing-remitting MS (RRMS) is the most common form of MS. Fingolimod (FTY720) is a once-daily disease-modifying agent approved to treat RRMS, and it binds to sphingosine 1-phosphate receptors. Milk thistle (silybum marianum; SM) is an herb generally used to protect the liver with antioxidant and antifibrotic effects. The purpose of this study was to evaluate the effects of silymarin on reducing liver complications of FTY720 in patients with RRMS and decrease the oxidative stress that plays an important role in the pathogenesis of this disease. Forty-eight patients with RRMS were divided into two groups using random assignment: the placebo and drug-treated groups. Participants of intervention and control groups took FTY720 with silymarin and placebo without silymarin per day for six months. Findings showed a significant reduction in the level of ALT and AST, reduction of main pathogenic factors in MS containing malondialdehyde, and also a significant rise in total antioxidant capacity, and total thiol groups in the serum of patients treated with silymarin as compared with the placebo group. Our outcomes propose the practical effects of silymarin in multiple sclerosis and reduction of hepatic side effects of fingolimod.
Collapse
Affiliation(s)
- Masoud Ghiasian
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Nafisi
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Department of Epidemiology, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Lattanzi S, Rocchi C, Danni M, Taffi R, Cerqua R, Carletti S, Silvestrini M. Long-term outcome in multiple sclerosis patients treated with fingolimod. Mult Scler Relat Disord 2020; 45:102416. [DOI: 10.1016/j.msard.2020.102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
|
22
|
Barrero F, Mallada-Frechin J, Martínez-Ginés ML, Marzo ME, Meca-Lallana V, Izquierdo G, Ara JR, Oreja-Guevara C, Meca-Lallana J, Forero L, Sánchez-Vera I, Moreno MJ, in representation of the MS NEXT study investigators. Spanish real-world experience with fingolimod in relapsing-remitting multiple sclerosis patients: MS NEXT study. PLoS One 2020; 15:e0230846. [PMID: 32240213 PMCID: PMC7117743 DOI: 10.1371/journal.pone.0230846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/10/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose The objective of this study was to characterize the demographic and clinical profile of RRMS patients receiving fingolimod in Spain, and to evaluate drug effectiveness and safety in clinical practice. Methods This observational, retrospective, multicentre, nationwide study was performed at 56 Spanish hospitals and involved 804 RRMS patients who received oral fingolimod (0.5 mg) since November 2011, with a minimum follow-up of 12 months. Results The mean annualized relapse rate (ARR) in the year before fingolimod was 1.08 and the median EDSS was 3; patients were exposed to fingolimod for 2.2 years as average; regarding magnetic resonance imaging (MRI) activity, more than half of the patients had >20 lesions at baseline. Patients were previously treated with first-line injectable DMTs (60.3%), or natalizumab (31.3%), and 8.3% were naïve patients. Overall, the ARR significantly decreased to 0.28, 0.22 and 0.17 (74.1%, 79.7% and 83.5% of relative reduction, respectively) after 12, 24 and 36 months of treatment, P<0.001. The ARR of patients who switched from natalizumab to fingolimod was stable over the study. Most of the patients (88.7%) were free from confirmed disability and MRI activity (67.3%) after 24 months. The persistence after 12 months on fingolimod was 93.9%. Conclusions The subgroups of patients analysed showed differential baseline demographic and clinical characteristics. The analysis of patients who received fingolimod in routine clinical practice confirmed adequate efficacy and safety, even for long-term treatment. The present data also confirmed the positive benefit/risk balance with fingolimod in real-world clinical practice setting.
Collapse
Affiliation(s)
- Francisco Barrero
- Neurology Department, Hospital Uniersitario San Cecilio de Granada, Granada, Spain
| | | | | | | | | | - Guillermo Izquierdo
- Neurology Department, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - José Ramón Ara
- Neurology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Celia Oreja-Guevara
- Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | - Lucía Forero
- Neurology Department, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | | |
Collapse
|
23
|
Gopinath R, Narenderan ST, Kumar M, Babu B. A sensitive liquid chromatography-tandem mass spectrometry method for quantitative bioanalysis of fingolimod in human blood: Application to pharmacokinetic study. Biomed Chromatogr 2020; 34:e4822. [PMID: 32153027 DOI: 10.1002/bmc.4822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 11/07/2022]
Abstract
A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of fingolimod in human blood. The analyte and internal standard fingolimod-d4 were extracted from 300 μl of human blood using protein precipitation coupled with solid-phase extraction method. The chromatographic separation was achieved with a Kinetex biphenyl column (100 × 4.6 mm, 2.6 μm) under isocratic conditions at the flow rate of 0.8 ml/min and column temperature was maintained at 45°C. The detection of analyte and internal standard was carried out by tandem mass spectrometry, operated in positive ion and multiple reaction monitoring acquisition mode. The method was fully validated for its selectivity, precision, accuracy, linearity, stability, detection and quantification limit. The extraction recovery of fingolimod in human blood ranged from 98.39 to 99.54%. The developed method was linear over the concentration range of 5-2500 pg/ml with a detection limit of 1 pg/ml. The developed method was validated and successfully applied for pharmacokinetic study after oral administration of fingolimod capsules.
Collapse
Affiliation(s)
- R Gopinath
- Faculty of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be university), Salem, Tamilnadu, India
| | - S T Narenderan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - M Kumar
- Faculty of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be university), Salem, Tamilnadu, India
| | - B Babu
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
24
|
Alizadeh AA, Jafari B, Dastmalchi S. Alignment independent 3D-QSAR studies and molecular dynamics simulations for the identification of potent and selective S1P 1 receptor agonists. J Mol Graph Model 2019; 94:107459. [PMID: 31589999 PMCID: PMC7110456 DOI: 10.1016/j.jmgm.2019.107459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/14/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023]
Abstract
Sphingosine 1-phosphate type 1 (S1P1) receptors are expressed on lymphocytes and regulate immune cells trafficking. Sphingosine 1-phosphate and its analogues cause internalization and degradation of S1P1 receptors, preventing the auto reactivity of immune cells in the target tissues. It has been shown that S1P1 receptor agonists such as fingolimod can be suitable candidates for treatment of autoimmune diseases. The current study aimed to generate GRIND-based 3D-QSAR predictive models for agonistic activities of 2-imino-thiazolidin-4-one derivatives on S1P1 to be used in virtual screening of chemical libraries. The developed model for the S1P1 receptor agonists showed appropriate power of predictivity in internal (r2acc 0.93 and SDEC 0.18) and external (r2 0.75 and MAE (95% data), 0.28) validations. The generated model revealed the importance of variables DRY-N1 and DRY-O in the potency and selectivity of these compounds towards S1P1 receptor. To propose potential chemical entities with S1P1 agonistic activity, PubChem chemicals database was searched and the selected compounds were virtually tested for S1P1 receptor agonistic activity using the generated models, which resulted in four potential compounds with high potency and selectivity towards S1P1 receptor. Moreover, the affinities of the identified compounds towards S1P1 receptor were evaluated using molecular dynamics simulations. The results indicated that the binding energies of the compounds were in the range of −39.31 to −46.18 and −3.20 to −9.75 kcal mol−1, calculated by MM-GBSA and MM-PBSA algorithms, respectively. The findings in the current work may be useful for the identification of potent and selective S1P1 receptor agonists with potential use in diseases such as multiple sclerosis. A set of S1P1 and S1P3 receptor agonists was used to develop 3D-QSAR predictive models. The predictivity of the generated models were validated using external and internal validation methods. PubChem chemicals database was searched for identification of selective S1P1 receptor agonists. Molecular dynamics simulations were used to calculate ligands binding energies to S1P1 receptor.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Design, synthesis and anticancer activity of constrained sphingolipid-phenoxazine/phenothiazine hybrid constructs targeting protein phosphatase 2A. Bioorg Med Chem Lett 2019; 29:2681-2685. [PMID: 31383588 DOI: 10.1016/j.bmcl.2019.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Inspired by the cytotoxicity of perphenazine toward cancer cells and its ability to activate the serine/threonine protein phosphatase 2A (PP2A), we prepared series of ether-carbon linked analogs of a constrained synthetic sphingolipid analog 3, known for its cytotoxicity, nutrient transporter down-regulation and vacuolation properties, incorporating the tricyclic neuroleptics phenoxazine and phenothiazine to represent hybrid structures with possible synergistic cytotoxic activity. While the original activity of the lead compound 3 was diminished by fusion with the phenoxazine or phenothiazine tethered moieties, the corresponding 3-pyridyltetryl ether analog 10 showed cytotoxicity and nutrient transporter down-regulation similar to the lead compound 3, although it separated these PP2A-dependent phenotypes from that of vacuolation.
Collapse
|
26
|
Lund B, Stone R, Levy A, Lee S, Amundson E, Kashani N, Rodgers K, Kelland E. Reduced disease severity following therapeutic treatment with angiotensin 1–7 in a mouse model of multiple sclerosis. Neurobiol Dis 2019; 127:87-100. [DOI: 10.1016/j.nbd.2019.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
|
27
|
Kim SW, Lee T, Oh YS, Shin SM, Lee JY, Kim S, Baek DJ, Park EY. Synthesis and Biological Evaluation of PF-543 Derivative Containing Aliphatic Side Chain. Chem Pharm Bull (Tokyo) 2019; 67:599-603. [PMID: 31155566 DOI: 10.1248/cpb.c18-00724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PF-543 is known as a potent and selective inhibitor of sphingosine kinase (SK) 1 amongst all the SK inhibitors known to date. In a recently reported study by Pfizer on the synthesis of PF-543 derivatives and the SK inhibitory effects, the introduction of propyl moiety into sulfonyl group of PF-543 in the case of 26b revealed an excellent result of 1.7 nM of IC50 of SK1, suggesting the potential substitution of chain structure for benzenesulfonyl structure. In the present work, we aimed for identification of antitumor activity and inhibitory effects of PF-543 derivative containing aliphatic long chain (similar to known SK inhibitors) on SK1. The synthesized compound 2 exhibited an inhibitory effect on SK1 in a manner similar to that of PF-543; the PF-543 derivative manifested similar antitumor activity on HT29, HCT116 (colorectal cancer cell line), and AGS (gastric cancer cell line) cells. Also, from the docking study conducted with PF-543 and compound 2, it was apparent that the aliphatic chain in compound 2 could probably replace benzenesulfonyl structure of PF-543.
Collapse
Affiliation(s)
- Seon Woong Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University
| | | | - Joo-Youn Lee
- College of Pharmacy, Seoul National University.,Korea Chemical Bank, Korea Research Institute of Chemical Technology
| | - Sanghee Kim
- College of Pharmacy, Seoul National University
| | - Dong Jae Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University
| |
Collapse
|
28
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
29
|
Zhang X, Hu Q, Weng Q. Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Adv 2018; 9:172-184. [PMID: 35521576 PMCID: PMC9059538 DOI: 10.1039/c8ra09039d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Both Isaria cicadae and Isaria tenuipes are important entomopathogenic fungi used in health foods and traditional herbal medicines in East Asia. However, the safety concerns for both fungal species have been attracting significant attention. Thus, surveying their secondary metabolites (SMs) will be beneficial to improving the safety of their fungal products. In the case of I. cicadae, its SMs mainly include nucleosides, amino acids, beauvericins, myriocin, and oosporein. In contrast, trichothecene derivatives, isariotins, cyclopenta benzopyrans and PKs, are found in the case of I. tenuipes. Among them, beauvericins, myriocin, oosporein and many trichothecene derivatives are toxic compounds. The toxicity and side effects of the fungal products may be related to these SMs. Thus, to ensure the safety of fungal products, the residues standards of SMs need to be reported. Furthermore, methods for the detection of their SMs and biological identification of their strains must be considered. This review gives new insight into the secondary metabolites of medical and edible fungi.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| | - Qiongbo Hu
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| | - Qunfang Weng
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
30
|
Xiang AS, Meikle PJ, Carey AL, Kingwell BA. Brown adipose tissue and lipid metabolism: New strategies for identification of activators and biomarkers with clinical potential. Pharmacol Ther 2018; 192:141-149. [DOI: 10.1016/j.pharmthera.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Qiu X, Guo Q, Liu X, Luo H, Fan D, Deng Y, Cui H, Lu C, Zhang G, He X, Lu A. Pien Tze Huang Alleviates Relapsing-Remitting Experimental Autoimmune Encephalomyelitis Mice by Regulating Th1 and Th17 Cells. Front Pharmacol 2018; 9:1237. [PMID: 30429789 PMCID: PMC6220046 DOI: 10.3389/fphar.2018.01237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating inflammatory cells and demyelinating lesions, and T helper (Th) cells play critical roles in the pathogenesis of MS. There is still lack of effective treatments currently. Pien Tze Huang (PZH), a traditional Chinese medicine formula, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. However, whether PZH can be used to treat MS is still obscure. This study aimed to investigate the possible therapeutic effect and the underlying action mechanism of PZH in relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mice. Female SJL/J mice were immunized with myelin proteolipid protein 139–151 (PLP139−151) and pertussis toxin to establish RR-EAE model. Mice were then randomly divided into normal group, model group, PZH group and positive control group (fingolimod, FTY-720), and drugs were orally administered for 60 days from the day 10 after immunization. Sera of mice were collected for ELISA detection. Tissues of CNS were harvested for hematoxylin-eosin (H-E) and luxol fast blue (LFB) staining. Furthermore, Th1, Th17 cells and their related cytokines in the CNS were detected by flow cytometry and quantitative real-time PCR, respectively. Proteins involved in STAT and NF-κB signaling pathways were detected by western blot. The results showed that PZH-treated mice displayed mild or moderate clinical symptoms compared with untreated EAE mice that exhibited severe clinical symptoms. PZH remarkably reduced inflammatory cell infiltration and myelin damage in the CNS of EAE mice. It markedly down-regulated the levels of IFN-γ and IL-17A in sera of EAE mice. Moreover, PZH could reduce the percentages of Th1 and Th17 cells. It also suppressed the production of transcription factors ROR-γt and T-bet as well as the mRNA levels of their downstream pro-inflammatory cytokines, such as IFN-γ and IL-17A. Furthermore, PZH could inhibit the phosphorylation of some key proteins in the STAT and NF-κB signaling pathways. In conclusion, the study demonstrated that PZH had a therapeutic effect on RR-EAE mice, which was associated with the modulation effect on Th1 and Th17 cells.
Collapse
Affiliation(s)
- Xuemei Qiu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qingqing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Xue Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hui Luo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongqi Deng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hua Cui
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China.,E-Institute of Internal Medicine of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Shortening the washout to 4 weeks when switching from natalizumab to fingolimod and risk of disease reactivation in multiple sclerosis. Mult Scler Relat Disord 2018; 25:14-20. [PMID: 30014876 DOI: 10.1016/j.msard.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is limited evidence about the optimal length of washout when switching from natalizumab to fingolimod. OBJECTIVE To study if a washout period of 4 weeks is associated with less disease activity compared to 8 weeks. METHODS 25 patients with Relapsing Remitting Multiple Sclerosis were included in an open label, prospective study with a follow-up of 108 weeks. The primary endpoint (PE) was defined as "time to first relapse or MRI disease activity up to week 56". In addition, a recurrent event analysis (REA) was performed up to week 108. RESULTS The PE was not met (HR 0.67, 95% CI [0.22,1.97], p = 0.462). Number of relapses before stopping natalizumab was positively associated with the hazard of relapse (HR 3.91, p = 0.0117, 95% CI [1.36, 11.28]). The REA showed a reduction of the hazard to develop a relapse by 77% (HR 0.23, 95% CI [0.08, 0.69], p = 0.00854) in favor of the cohort with 4 weeks washout. CONCLUSIONS Our study suggests that switching from natalizumab to fingolimod with a shorter washout of 4 weeks might reduce the risk of disease reactivation after switching.
Collapse
|
33
|
Pirttisalo AL, Sipilä JOT, Soilu-Hänninen M, Rautava P, Kytö V. Adult hospital admissions associated with multiple sclerosis in Finland in 2004-2014. Ann Med 2018; 50:354-360. [PMID: 29629575 DOI: 10.1080/07853890.2018.1461919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Treatment of multiple sclerosis (MS) has developed significantly and several new immunotherapeutic drugs have become available in Finland since 2004. We studied whether this is associated with changes in hospital admission frequencies and healthcare costs and whether admission rates due to infection have increased. METHODS The national Care Register for Health Care was searched for all discharges from neurological, medical, surgical, neurosurgical and intensive care units with MS as a primary diagnosis or an auxiliary diagnosis for primary infection diagnosis in 2004-2014. Only patients ≥16 years of age were included. RESULTS We identified 12,276 hospital admissions for 4296 individuals. The number of admissions declined by 4.6% annually (p = .0024) in both genders. Proportion of admissions with an infection as the primary diagnosis increased but no change in their frequency was found. They were longer than admissions with MS as the primary diagnosis and were associated with increased in-hospital mortality. The annual aggregate cost of hospital admissions declined by 51% during the study period. CONCLUSIONS This study shows that hospital admission rates and costs related to MS hospital admissions have markedly declined from 2004 to 2014 in Finland, which coincides with an increase in the use of disease-modifying therapies. Key message Hospital admission rates and costs related to MS hospital admissions have markedly declined from 2004 to 2014 in Finland. Proportion of admission related to infection has increased and they are associated with longer hospitalizations and increased in-hospital mortality pointing out the importance of infection prevention.
Collapse
Affiliation(s)
- Anna-Leena Pirttisalo
- a Division of Clinical Neurosciences , Turku University Hospital , Turku , Finland.,b Department of Neurology , University of Turku , Turku , Finland
| | - Jussi O T Sipilä
- a Division of Clinical Neurosciences , Turku University Hospital , Turku , Finland.,b Department of Neurology , University of Turku , Turku , Finland.,c North Karelia Central Hospital , Joensuu , Finland
| | - Merja Soilu-Hänninen
- a Division of Clinical Neurosciences , Turku University Hospital , Turku , Finland.,b Department of Neurology , University of Turku , Turku , Finland
| | - Päivi Rautava
- d Department of Public Health , University of Turku and Turku Clinical Research Centre, Turku University Hospital , Turku , Finland
| | - Ville Kytö
- e Heart Center , Turku University Hospital , Turku , Finland.,f Research Center of Applied and Preventive Cardiovascular Medicine , University of Turku , Turku , Finland
| |
Collapse
|
34
|
García Nores GD, Ly CL, Cuzzone DA, Kataru RP, Hespe GE, Torrisi JS, Huang JJ, Gardenier JC, Savetsky IL, Nitti MD, Yu JZ, Rehal S, Mehrara BJ. CD4 + T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun 2018; 9:1970. [PMID: 29773802 PMCID: PMC5958132 DOI: 10.1038/s41467-018-04418-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
T cell-mediated responses have been implicated in the development of fibrosis, impaired lymphangiogenesis, and lymphatic dysfunction in secondary lymphedema. Here we show that CD4+ T cells are necessary for lymphedema pathogenesis by utilizing adoptive transfer techniques in CD4 knockout mice that have undergone tail skin and lymphatic excision or popliteal lymph node dissection. We also demonstrate that T cell activation following lymphatic injury occurs in regional skin-draining lymph nodes after interaction with antigen-presenting cells such as dendritic cells. CD4+ T cell activation is associated with differentiation into a mixed T helper type 1 and 2 phenotype, as well as upregulation of adhesion molecules and chemokines that promote migration to the skin. Most importantly, we find that blocking T cell release from lymph nodes using a sphingosine-1-phosphate receptor modulator prevents lymphedema, suggesting that this approach may have clinical utility.
Collapse
Affiliation(s)
- Gabriela D García Nores
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Catherine L Ly
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Daniel A Cuzzone
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Geoffrey E Hespe
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Jeremy S Torrisi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Jung Ju Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Jason C Gardenier
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Ira L Savetsky
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Matthew D Nitti
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Jessie Z Yu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Sonia Rehal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Suite MRI 1006, New York, NY, 10065, USA.
| |
Collapse
|
35
|
Update on monitoring and adverse effects of approved second-generation disease-modifying therapies in relapsing forms of multiple sclerosis. Curr Opin Neurol 2018; 29:278-85. [PMID: 27027553 DOI: 10.1097/wco.0000000000000321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW There has been a considerable increase in the number of disease-modifying therapies (DMTs) in recent years. It appears that the number of approved DMTs is going to continue to increase in the coming years. The growing number of DMTs has provided a challenge to the clinician to tailor their therapeutic recommendations based on patients' needs and preferences. To choose between these DMTs, knowledge of side-effect profiles is imperative. RECENT FINDINGS Alemtuzumab, a humanized recombinant monoclonal antibody, was recently approved for the management of relapsing forms of multiple sclerosis. Its use seems to be limited by significant adverse effects and regular monitoring requirement. In 2014, the first case of progressive multifocal leukoencephalopathy (PML) was diagnosed in a patient with relapsing remitting multiple sclerosis who received extended dimethyl fumarate without any significant confounding factors. Among patients receiving fingolimod after previous natalizumab treatment, there have been 17 suspected cases of PML. There have also been three confirmed cases of PML in individuals who received fingolimod without previous natalizumab treatment. SUMMARY In this review, we outline the potential adverse effects and recommended laboratory studies as part of the monitoring strategy following initiation of various DMTs.
Collapse
|
36
|
|
37
|
Heydemann A. Severe murine limb-girdle muscular dystrophy type 2C pathology is diminished by FTY720 treatment. Muscle Nerve 2017; 56:486-494. [PMID: 27935071 DOI: 10.1002/mus.25503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Limb-girdle muscular dystrophy type 2C (LGMD-2C) is caused by mutations in γ-sarcoglycan and is a devastating, progressive, and fully lethal human muscle-wasting disease that has no effective treatment. This study examined the efficacy of the sphingosine-1-phosphate receptor modulator FTY720 in treating Sgcg-/- DBA2/J, a severe mouse model of LGMD-2C. FTY720 treatment was expected to target LGMD-2C disease progression at 2 key positions by reducing chronic inflammation and fibrosis. METHODS The treatment protocol was initiated at age 3 weeks and was continued with alternate-day injections for 3 weeks. RESULTS The treatment produced significant functional benefit by plethysmography and significant reductions of membrane permeability and fibrosis. Furthermore, the protocol elevated protein levels of δ-sarcoglycan, a dystrophin-glycoprotein family member. CONCLUSION This study showed that FTY720 is an effective muscular dystrophy treatment when therapy is initiated early in the disease progression. Muscle Nerve 56: 486-494, 2017.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, COMRB 2035, MC 901, Chicago, Illinois, 60612, USA.,The Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Schnute ME, McReynolds MD, Carroll J, Chrencik J, Highkin MK, Iyanar K, Jerome G, Rains JW, Saabye M, Scholten JA, Yates M, Nagiec MM. Discovery of a Potent and Selective Sphingosine Kinase 1 Inhibitor through the Molecular Combination of Chemotype-Distinct Screening Hits. J Med Chem 2017; 60:2562-2572. [DOI: 10.1021/acs.jmedchem.7b00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Jill Chrencik
- Medicine
Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ghiani CA, Faundez V. Cellular and molecular mechanisms of neurodevelopmental disorders. J Neurosci Res 2017; 95:1093-1096. [PMID: 28225560 DOI: 10.1002/jnr.24041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Cristina A Ghiani
- Departments of Pathology & Laboratory Medicine and Psychiatry & Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Victor Faundez
- Department of Cell Biology and the Center for Social Translational Neuroscience, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
40
|
Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. Neuropharmacology 2017; 113:597-607. [DOI: 10.1016/j.neuropharm.2016.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
|
41
|
|
42
|
Błogowski W, Bodnarczuk T, Starzyńska T. Concise Review: Pancreatic Cancer and Bone Marrow-Derived Stem Cells. Stem Cells Transl Med 2016; 5:938-45. [PMID: 27217346 PMCID: PMC4922853 DOI: 10.5966/sctm.2015-0291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Pancreatic adenocarcinoma remains one of the most challenging diseases of modern gastroenterology, and, even though considerable effort has been put into understanding its pathogenesis, the exact molecular mechanisms underlying the development and/or systemic progression of this malignancy still remain unclear. Recently, much attention has been paid to the potential role of bone marrow-derived stem cells (BMSCs) in this malignancy. Hence, herein, we comprehensively review the most recent discoveries and current achievements and concepts in this field. Specifically, we discuss the significance of identifying pancreatic cancer stem cells and novel therapeutic approaches involving molecular interference of their metabolism. We also describe advances in the current understanding of the biochemical and molecular mechanisms responsible for BMSC mobilization during pancreatic cancer development and systemic spread. Finally, we summarize experimental, translational, and/or clinical evidence regarding the contribution of bone marrow-derived mesenchymal stem cells, endothelial progenitor cells, hematopoietic stem/progenitor cells, and pancreatic stellate cells in pancreatic cancer development/progression. We also present their potential therapeutic value for the treatment of this deadly malignancy in humans. SIGNIFICANCE Different bone marrow-derived stem cell populations contribute to the development and/or progression of pancreatic cancer, and they might also be a promising "weapon" that can be used for anticancer treatments in humans. Even though the exact role of these stem cells in pancreatic cancer development and/or progression in humans still remains unclear, this concept continues to drive a completely novel scientific avenue in pancreatic cancer research and gives rise to innovative ideas regarding novel therapeutic modalities that can be safely offered to patients.
Collapse
Affiliation(s)
- Wojciech Błogowski
- Department of Internal Medicine, University of Zielona Góra, Zielona Góra, Poland
| | - Tomasz Bodnarczuk
- Division of Internal Medicine, 109th Military Hospital, Szczecin, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
43
|
Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol 2016; 279:243-260. [PMID: 26980486 DOI: 10.1016/j.expneurol.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes.
Collapse
Affiliation(s)
- Sofia Anastasiadou
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
44
|
Sharim J, Tashjian R, Golzy N, Pouratian N. Glioblastoma following treatment with fingolimod for relapsing-remitting multiple sclerosis. J Clin Neurosci 2016; 30:166-168. [PMID: 26970935 DOI: 10.1016/j.jocn.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
Glioblastoma is an uncommon and aggressive primary brain tumor with incidence of 3 per 100,000 annually. We report a 50-year-old woman diagnosed with glioblastoma within threeyears of induction of fingolimod therapy for relapsing-remitting multiple sclerosis. Fingolimod, an immunomodulating agent used in the treatment of relapsing-remitting multiple sclerosis, has also been suggested to impart a cardioprotective role in heart failure and arrhythmia via activation of P21-activated kinase-1 (Pak1). In the brain, Pak1 activation has been shown to correlate with decreased survival time amongst patients with glioblastoma. A molecular mechanism underlying a link between fingolimod use and glioblastoma development may involve activation of Pak1. To our knowledge, this is the first report of a potential association between fingolimod use and glioblastoma development.
Collapse
Affiliation(s)
- Justin Sharim
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Randy Tashjian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nima Golzy
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Suneetha A, Raja Rajeswari K. A high throughput flow gradient LC-MS/MS method for simultaneous determination of fingolimod, fampridine and prednisone in rat plasma, application to in vivo perfusion study. J Pharm Biomed Anal 2016; 120:10-8. [PMID: 26686828 DOI: 10.1016/j.jpba.2015.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022]
Abstract
In this study a selective and high throughput liquid chromatography-mass spectrometry method was developed and validated for the simultaneous quantification of fingolimod (FLD), fampridine (FMP) and prednisone (PDN) in rat plasma using imipramine (IMP) as internal standard (ISTD). In this LC-MS method, following protein precipitation extraction (PPE), the analytes and ISTD were run on XBridge C18 column (150×4.6mm, 5μm) using gradient mobile phase consisting of 5mM ammonium formate in water (pH 9.0) and acetonitrile in a flow gradience program. The drug precursor and product ions were monitored on a triple quadrupole instrument that was operated in positive ionization mode. The method was validated over a concentration range of 0.1-100ng/mL for all the three analytes with relative recoveries ranging from 69 to 82%. The intra and inter batch precision (% CV) across four validation runs were less than 13.4%. The accuracy determined at four QC levels (LLOQ, LQC, MQC and HQC) were within ±6.5% of CV values. The method proved to be highly reproducible and sensitive that was successfully applied in a pharmacokinetic study after single dose oral administration to the rats and also in perfusion study sample analysis.
Collapse
Affiliation(s)
- A Suneetha
- Department of Pharmaceutical Analysis, Hindu College of Pharmacy, Amaravathi Road, Guntur 522 002, Andhra Pradesh, India.
| | - K Raja Rajeswari
- College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, Andhra Pradesh, India
| |
Collapse
|
46
|
Chen B, Roy SG, McMonigle RJ, Keebaugh A, McCracken AN, Selwan E, Fransson R, Fallegger D, Huwiler A, Kleinman MT, Edinger AL, Hanessian S. Azacyclic FTY720 Analogues That Limit Nutrient Transporter Expression but Lack S1P Receptor Activity and Negative Chronotropic Effects Offer a Novel and Effective Strategy to Kill Cancer Cells in Vivo. ACS Chem Biol 2016; 11:409-14. [PMID: 26653336 DOI: 10.1021/acschembio.5b00761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.
Collapse
Affiliation(s)
- Bin Chen
- Department
of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Saurabh G. Roy
- Department
of Developmental and Cell Biology, University of California, Irvine, 2128 Natural Sciences 1, California 92697-2300, United States
| | - Ryan J. McMonigle
- Department
of Developmental and Cell Biology, University of California, Irvine, 2128 Natural Sciences 1, California 92697-2300, United States
| | - Andrew Keebaugh
- Community & Environmental Medicine, University of California, Irvine, FRF 100, California 92697-1825, United States
| | - Alison N. McCracken
- Department
of Developmental and Cell Biology, University of California, Irvine, 2128 Natural Sciences 1, California 92697-2300, United States
| | - Elizabeth Selwan
- Department
of Developmental and Cell Biology, University of California, Irvine, 2128 Natural Sciences 1, California 92697-2300, United States
| | - Rebecca Fransson
- Department
of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Daniel Fallegger
- Institute
of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Andrea Huwiler
- Institute
of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Michael T. Kleinman
- Community & Environmental Medicine, University of California, Irvine, FRF 100, California 92697-1825, United States
| | - Aimee L. Edinger
- Department
of Developmental and Cell Biology, University of California, Irvine, 2128 Natural Sciences 1, California 92697-2300, United States
| | - Stephen Hanessian
- Department
of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
47
|
Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a Cancer Drug of Fungal Origin. Med Res Rev 2015; 35:937-67. [PMID: 25850821 PMCID: PMC4529806 DOI: 10.1002/med.21348] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.
Collapse
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/0, 70126 Bari, Italy
| | - Véronique Mathieu
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme; Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
48
|
Ziemssen T, De Stefano N, Sormani MP, Van Wijmeersch B, Wiendl H, Kieseier BC. Optimizing therapy early in multiple sclerosis: An evidence-based view. Mult Scler Relat Disord 2015; 4:460-469. [DOI: 10.1016/j.msard.2015.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/01/2015] [Accepted: 07/15/2015] [Indexed: 01/26/2023]
|
49
|
Fragoso YD, Alves-Leon SV, Barreira AA, Callegaro D, Brito Ferreira ML, Finkelsztejn A, Gomes S, Magno Goncalves MV, Moraes Machado MI, Marques VD, Cunha Matta AP, Papais-Alvarenga RM, Apostolos Pereira SL, Tauil CB. Fingolimod Prescribed for the Treatment of Multiple Sclerosis in Patients Younger Than Age 18 Years. Pediatr Neurol 2015; 53:166-8. [PMID: 26026897 DOI: 10.1016/j.pediatrneurol.2015.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND There have been no clinical trials for approval of medications for treating multiple sclerosis in patients younger than age 18 years. All treatments are based on personal experience and data from open observational studies. Fingolimod is an oral drug for multiple sclerosis that has been shown to be efficient and safe in adults. The aim of our study is to describe patients with multiple sclerosis who started treatment with fingolimod before the age of 18 years. PARTICIPANTS AND METHODS Seventeen patients treated with fingolimod were identified in the Brazilian database of children and adolescents with multiple sclerosis. The average time of use of the drug was 8.6 months. RESULTS Fingolimod showed a good safety and efficacy profile in these patients, all of whom had very active multiple sclerosis. After starting treatment with fingolimod, only one patient had a relapse and a new lesion on magnetic resonance imaging. The patients' degree of disability did not progress. No major adverse events were reported in relation to the first dose of the drug, nor in the short- and medium-term treatment. No patient has been followed for longer than 18 months, thus limiting long-term conclusions. CONCLUSIONS Off-label use of fingolimod in patients younger than age 18 years may be a good therapeutic option for multiple sclerosis control.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Department of Neurology and MS Unit, Universidade Metropolitana de Santos, Santos, SP, Brazil.
| | - Soniza Vieira Alves-Leon
- Department of Neurology and MS Unit, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Neurology and MS Unit, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Dagoberto Callegaro
- Department of Neurology and MS Unit, Hospital das Clinicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Alessandro Finkelsztejn
- Department of Neurology and MS Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Sidney Gomes
- Department of Neurology and MS Unit, Hospital Beneficencia Portuguesa and Hospital Paulistano, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | | - Carlos Bernardo Tauil
- Department of Neurology and MS Unit, Hospital de Base do Distrito Federal, Brasilia, DF, Brazil
| |
Collapse
|
50
|
Thati S, Kuehl C, Hartwell B, Sestak J, Siahaan T, Forrest ML, Berkland C. Routes of administration and dose optimization of soluble antigen arrays in mice with experimental autoimmune encephalomyelitis. J Pharm Sci 2014; 104:714-21. [PMID: 25447242 DOI: 10.1002/jps.24272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023]
Abstract
Soluble antigen arrays (SAgAs) were developed for treating mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. SAgAs are composed of hyaluronan with grafted EAE antigen and LABL peptide (a ligand of ICAM-1). SAgA dose was tested by varying injection volume, SAgA concentration, and administration schedule. Routes of administration were explored to determine the efficacy of SAgAs when injected intramuscularly, subcutaneously, intraperitoneally, intravenously, or instilled into lungs. Injections proximal to the central nervous system (CNS) were compared with distal injection sites. Intravenous dosing was included to determine if SAgA efficiency results from systemic exposure. Pulmonary instillation (p.i.) was included as reports suggest T cells are licensed in the lungs before moving to the CNS. Decreasing the volume of injection or SAgA dose reduced treatment efficacy. Treating mice with a single injection on day 4, 7, and 10 also reduced efficacy compared with injecting on all three days. Surprisingly, changing the injection site did not lead to a significant difference in efficacy. Intravenous administration showed efficacy similar to other routes, suggesting SAgAs act systemically. When SAgAs were delivered via p.i., however, EAE mice failed to develop any symptoms, suggesting a unique lung mechanism to ameliorate EAE in mice.
Collapse
Affiliation(s)
- Sharadvi Thati
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | |
Collapse
|