1
|
Aghasizadeh M, Moghaddam T, Bahrami AR, Sadeghian H, Alavi SJ, Kazemi T, Matin MM. Evaluation of several farnesyloxycarbostyril derivatives as potential 15-LOX-1 inhibitors for prostate cancer treatment. Toxicol Appl Pharmacol 2025; 498:117293. [PMID: 40057000 DOI: 10.1016/j.taap.2025.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
The impact of 15-lipoxygenase-1 (15-LOX-1) in the progression of prostate cancer (PCa) is noteworthy, as it correlates with the Gleason score of the disease. Thus, development of specific 15-LOX-1 inhibitors would be desirable for targeted therapy of PCa. This study focused on evaluating the anti-prostate cancer potency of three farnesyloxycarbostyril derivatives, 6-, 7- and 8-farnesyloxycarbostyril (6-, 7- and 8-FQ), as potential inhibitors of 15-LOX-1 on PCa cells. To this end, the enzymatic activity of 15-LOX was first assessed in PCa and human dermal fibroblast (HDF) cells. Subsequently, the cytotoxic effects and apoptosis-inducing capabilities of the compounds were assessed through MTT assay and FITC-annexin V/PI staining, respectively. Among the compounds, 8-FQ was selected for further assessment in a mouse model bearing xenograft human PCa tumor. The results demonstrated that the most effective compound, 8-FQ, caused an 84-fold and 15.7-fold reduction in 15-LOX activity in PC-3 cells at 30 and 14 μM concentrations, respectively. The MTT assay revealed a dose- and time-dependent toxicity of the compounds on PCa cells, and flow cytometry results indicated that apoptosis served as the dominant mechanism of cell death. Given the upregulation of 15-LOX-1 in human PCa cells, the study concludes that the heightened sensitivity to 8-FQ is likely associated with elevated levels of 15-LOX-1. In vivo experiments using immunosuppressed C57BL/6 mice bearing human PC-3 tumors revealed that 8-FQ, at a dosage of 10 mg/kg, exhibited strong antitumor effects with minimal side effects, indicating its potential as a promising therapeutic agent for PCa following further optimization.
Collapse
Affiliation(s)
- Mehrdad Aghasizadeh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Jamal Alavi
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahmineh Kazemi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Han J, Zhai X, Tao X, Li Y, Zhao Z, Yu Z, Dong D, Yang S, Lv L. Pharmacovigilance study of adverse reactions of anti-HER-2 drugs for the treatment of HER-2-positive breast cancer based on the FAERS database. Breast Cancer Res 2025; 27:54. [PMID: 40205546 PMCID: PMC11983758 DOI: 10.1186/s13058-025-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVE There are three categories of drugs that treat human epidermal growth factor receptor type 2 (HER-2) positive breast cancer: monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and tyrosine kinase inhibitors (TKIs). The purpose of this study is to analyze and compare the adverse reactions of three classes of anti-HER-2 drugs to various body systems in patients based on the FDA Adverse Event Reporting System (FAERS). METHODS All data reports were extracted from the FAERS between 2004 and 2024. Data mining of adverse events associated with anti-HER-2 drugs was carried out using disproportionality analysis. A multivariate logistic regression analysis was conducted to explore the risk factors associated with AEs leading to hospitalization. RESULTS A total of 47,799 patients were screened for the three classes of drugs, among which ADC drugs caused the largest proportion of deaths. MAb has the strongest ADR signals associated with "cardiac disorders". Moreover, trastuzumab was associated with a greater risk of cardiotoxicity. Logistic regression analysis revealed that the treatment with mAbs should be wary of serious adverse reactions in "infections and infestations" and "metabolism and nutrition disorders". Moreover, "endocrine disorders" were the factor associated with the highest risk of prolonged hospitalization due to trastuzumab deruxtecan (T-DXd). The safety of tucatinib among TKI drugs is greater than that of other drugs. CONCLUSION In general, from the perspective of the effects of the three classes of drugs on the various body systems of patients, we should focus on mAb-associated "cardiac disorders", ADC-associated "hepatobiliary disorders", "respiratory, thoracic and mediastinal disorders", and TKI-associated "gastrointestinal disorders.
Collapse
Affiliation(s)
- Jinming Han
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Yunming Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Ziqi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116024, China.
| |
Collapse
|
3
|
Elkotamy MS, Elgohary MK, Elkelesh IA, Alkabbani MA, Khaleel EF, Eldehna WM, Abdel-Aziz HA. Design, synthesis, and molecular dynamics-driven evaluation of quinoline-sulfonamide derivatives as potent and selective EGFR inhibitors with promising anti-cancer efficacy and safety profiles. Bioorg Chem 2025; 157:108247. [PMID: 39983403 DOI: 10.1016/j.bioorg.2025.108247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/23/2025]
Abstract
The creation of new molecules that target EGFR is essential for the progression of cancer treatment. This study synthesized and evaluated 16 quinoline-sulfonamide derivatives for their potential as anti-cancer agents. Compound 8c, which contains a methoxy group on the benzenesulfonamide tail, exhibited notable EGFR inhibitory activity (IC50 = 0.161 µM), similar to that of Erlotinib (IC50 = 0.142 µM). Compound 8c demonstrated enhanced in-vitro cytotoxicity against HCT-116, MCF-7, HeLa, and HepG2 cancer cell lines. Studies on the cell cycle and apoptosis demonstrated that compound 8c caused G1/S arrest and markedly enhanced apoptosis in HepG2 cells. In-vivo, compound 8c demonstrated comparable and/or superior efficacy compared to doxorubicin in decreasing tumor volume, weight, TNF-alpha, and COX-2 levels in the SEC model, alongside improved histopathological and immunohistochemical results. Molecular docking and dynamic simulations confirmed its stable binding to EGFR, exhibiting superior stability metrics in comparison to Erlotinib. Pharmacokinetic and toxicity evaluations indicated that compound 8c exhibits favorable drug-like properties and a safer toxicity profile. These findings identify compound 8c as a potential candidate for the development of safe and effective anti-cancer therapies, necessitating additional preclinical investigations.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University Badr City 11829 Cairo Egypt.
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University Badr City 11829 Cairo Egypt
| | - Islam A Elkelesh
- Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University Badr City 11829 Cairo Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829 Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421 Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648 Egypt.
| |
Collapse
|
4
|
Sun Z, Huo D, Guo J, Yan A. Modeling and Interpretability Study of the Structure-Activity Relationship for Multigeneration EGFR Inhibitors. ACS OMEGA 2025; 10:11176-11187. [PMID: 40160792 PMCID: PMC11947818 DOI: 10.1021/acsomega.4c10464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
The fourth-generation EGFR inhibitors targeting L858R/T790M/C797S mutations are in clinical trials mostly, and it is necessary to develop new inhibitors. In this study, an internal data set containing 2302 multitarget EGFR inhibitors targeting the wild type (83%) and the L858R (92%), L858R/T790M (96%), and L858R/T790M/C797S (60%) mutations was collected. We established a structure-activity relationship model for predicting the bioactivities of multigeneration EGFR inhibitors by a multitask deep neural network (MT-DNN). We also constructed four single-task models on 1384 L858R/T790M/C797S (60%) mutation inhibitors by support vector machine (SVM), random forest (RF), XGBoost (XGB), and single-target neural network (ST-DNN), respectively. The MT-DNN model significantly outperformed single-task models on the external data set of 304 fourth-generation EGFR inhibitors. Furthermore, the combined application of MT-DNN and SHAP/delta-SHAP value interpretability analysis offers rigorous structural information from a global perspective. With SHAP/delta-SHAP methods, the MT-DNN model can mine the core scaffold and important fragments of multigeneration EGFR inhibitors and provide valuable information from a structure-activity relationship perspective to address the resistant mutation problem.
Collapse
Affiliation(s)
- Zhiqi Sun
- State Key Laboratory of Chemical
Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East
Road, Beijing 100029, China
| | - Donghui Huo
- State Key Laboratory of Chemical
Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East
Road, Beijing 100029, China
| | - Jiangyu Guo
- State Key Laboratory of Chemical
Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East
Road, Beijing 100029, China
| | - Aixia Yan
- State Key Laboratory of Chemical
Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East
Road, Beijing 100029, China
| |
Collapse
|
5
|
Varone E, Retini M, Cherubini A, Chernorudskiy A, Marrazza A, Guidarelli A, Cagnotto A, Beeg M, Gobbi M, Fumagalli S, Bolis M, Guarrera L, Barbera MC, Grasselli C, Bleve A, Generali D, Milani M, Mari M, Salmona M, Piersanti G, Bottegoni G, Broggini M, Janssen-Heininger YMW, Cho J, Cantoni O, Zito E. Small molecule-mediated inhibition of the oxidoreductase ERO1A restrains aggressive breast cancer by impairing VEGF and PD-L1 in the tumor microenvironment. Cell Death Dis 2025; 16:105. [PMID: 39962052 PMCID: PMC11833095 DOI: 10.1038/s41419-025-07426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Cancer cells adapt to harsh environmental conditions by inducing the Unfolded Protein Response (UPR), of which ERO1A is a mediator. ERO1A aids protein folding by acting as a protein disulfide oxidase, and under cancer-related hypoxia conditions, it favors the folding of angiogenic VEGFA, leading tumor cells to thrive and spread. The upregulation of ERO1A in cancer cells, oppositely to the dispensability of ERO1A activity in healthy cells, renders ERO1A a perfect target for cancer therapy. Here, we report the upregulation of ERO1A in a cohort of aggressive triple-negative breast cancer (TNBC) patients in which ERO1A levels correlate with a higher risk of breast tumor recurrence and metastatic spread. For ERO1A target validation and therapy in TNBC, we designed new ERO1A inhibitors in a structure-activity campaign of the prototype EN460. Cell-based screenings showed that the presence of the Micheal acceptor in the compound is necessary to engage the cysteine 397 of ERO1A but not sufficient to set out the inhibitory effect on ERO1A. Indeed, the ERO1 inhibitor must adopt a non-coplanar rearrangement within the ERO1A binding site. I2 and I3, two new EN460 analogs with different phenyl-substituted moieties, efficiently inhibited ERO1A, blunting VEGFA secretion. Accordingly, in vitro assays to measure ERO1A engagement and inhibition confirmed that I2 and I3 bind ERO1A and restrain its activity with a IC50 in a low micromolar range. EN460, I2 and I3 triggered breast cancer cytotoxicity while specifically inhibiting ERO1A in a dose-dependent manner. I2 more efficiently impaired cancer-relevant features such as VEGFA secretion and related cell migration. I2 also acted on the tumor microenvironment and viability of xenografts and syngeneic TNBC. Thus, small molecule-mediated ERO1A pharmacological inhibition is feasible and promises to lead to effective therapy for the still incurable TNBC.
Collapse
Affiliation(s)
- Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessandro Cherubini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alexander Chernorudskiy
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Alice Marrazza
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alfredo Cagnotto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marten Beeg
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Marco Bolis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Bioinformatics Core Unit, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Chiara Grasselli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Augusto Bleve
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Generali
- U.O. Patologia Mammaria e Tumori Cerebrali, Azienda Socio-Sanitaria Territoriale, Cremona, Italia
| | - Manuela Milani
- U.O. Patologia Mammaria e Tumori Cerebrali, Azienda Socio-Sanitaria Territoriale, Cremona, Italia
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mario Salmona
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giovanni Bottegoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Massimo Broggini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Yvonne M W Janssen-Heininger
- Departments of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
6
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Piha-Paul SA, Tseng C, Tran HT, Naing A, Dumbrava EE, Karp DD, Rodon J, Yap TA, Raghav KP, Damodaran S, Le X, Soliman PT, Lim J, Meric-Bernstam F. Phase I trial of the combination of the pan-ErbB inhibitor neratinib and mTOR inhibitor everolimus in advanced cancer patients with ErbB family gene alterations. ESMO Open 2025; 10:104136. [PMID: 39908697 PMCID: PMC11847258 DOI: 10.1016/j.esmoop.2025.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The ErbB family of receptor tyrosine kinases are key targets for antitumor therapy. Although neratinib, a pan-ErbB kinase inhibitor, is approved in ErbB2-positive breast cancer, drug resistance is common. Preclinical data suggest that combining neratinib with the mTOR inhibitor everolimus may overcome such resistance. PATIENTS AND METHODS Our trial evaluated this combination's safety and efficacy in advanced cancers with ErbB alterations. We conducted a phase I dose-escalation trial of neratinib and everolimus. Primary objectives were to assess safety, tolerability, and dose-limiting toxicities (DLTs) and establish the maximum tolerated dose (MTD). Secondary objectives included objective response by RECIST v1.1 and pharmacokinetic analyses. RESULTS Twenty-two patients (median age 61, median of four prior therapies) with ErbB alterations (mutations 63.6%, amplification 36.3%, or ErbB2-overexpressed by immunohistochemistry 9.1%) were enrolled. Common tumor types included breast (31.8%), colorectal (18.2%), cervical (9.1%), and endometrial (9.1%) cancers. Frequent grade (G) 3 treatment-related adverse events were diarrhea (18.2%), anemia (9.1%), mucositis (9.1%), and acute kidney injury (9.1%). DLTs included G3 mucositis and diarrhea at dose level (DL) 5, and G3 increased creatinine at DL4. The MTD was DL4: neratinib 240 mg with everolimus 7.5 mg. The objective response rate was 19% with partial response in four patients. Stable disease ≥16 weeks was seen in two patients (9.5%), resulting in a clinical benefit rate of 28.6%. CONCLUSION Pharmacokinetic data indicated reduced neratinib clearance possibly due to CYP3A4 pathway saturation by everolimus. Combination therapy with neratinib and everolimus has a tolerable safety profile and clinical activity in ErbB-altered patients. ErbB family receptors and the PI3K pathway are commonly implicated in oncogenesis. This clinical study of neratinib and everolimus demonstrated favorable clinical activity and tolerability.
Collapse
Affiliation(s)
- S A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA.
| | - C Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - H T Tran
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Naing
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - E E Dumbrava
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - D D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Rodon
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA; The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - T A Yap
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA; The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, USA; Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, USA
| | - K P Raghav
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Damodaran
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - X Le
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - P T Soliman
- Gynecologic Oncology & Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Lim
- Pharmacy Clinic Programs, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, USA; The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, USA; Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
8
|
Molitor M, Menge A, Mandel S, George S, Müller S, Knapp S, Hofmann B, Steinhilber D, Häfner AK. Unlocking the potential: unveiling tyrphostins with Michael-reactive cyanoacrylate motif as promising inhibitors of human 5-lipoxygenase. Pflugers Arch 2024; 476:1913-1928. [PMID: 39347835 PMCID: PMC11582101 DOI: 10.1007/s00424-024-03019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Human 5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes, mediators of the innate immune system that also play an important role in inflammatory diseases and cancer. In this study, we present compounds, containing a Michael-reactive cyanoacrylate moiety as potent inhibitors of 5-LO. Representatives of the tyrosine kinase inhibitor family called tyrphostins, structurally related to known 5-LO inhibitors, were screened for their 5-LO inhibitory properties using recombinant human 5-LO, intact human PMNL (polymorphonuclear leukocytes), and PMNL homogenates. Their mode of action was characterized by the addition of glutathione, using a fourfold cysteine 5-LO mutant and mass spectrometry analysis. SAR studies revealed several members of the tyrphostin family containing a Michael-reactive cyanoacrylate to efficiently inhibit 5-LO. We identified degrasyn (IC50 0.11 µM), tyrphostin A9 (IC50 0.8 µM), AG879 (IC50 78 nM), and AG556 (IC50 64 nM) as potent 5-LO inhibitors. Mass spectrometry analysis revealed that degrasyn and AG556 covalently bound to up to four cysteines, including C416 and/or C418 which surround the substrate entry site. Furthermore, the 5-LO inhibitory effect of degrasyn was remarkably impaired by the addition of glutathione or by the mutation of cysteines to serines at the surface of 5-LO. We successfully identified several tyrphostins as potent inhibitors of human 5-LO. Degrasyn and AG556 were able to covalently bind to 5-LO via their cyanoacrylate moiety. This provides a promising mechanism for targeting 5-LO by Michael acceptors, leading to new therapeutic opportunities in the field of inflammation and cancer.
Collapse
Affiliation(s)
- Maximilian Molitor
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Sebastian Mandel
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
9
|
Zheng S, Chen R, Zhang L, Tan L, Li L, Long F, Wang T. Unraveling the future: Innovative design strategies and emerging challenges in HER2-targeted tyrosine kinase inhibitors for cancer therapy. Eur J Med Chem 2024; 276:116702. [PMID: 39059182 DOI: 10.1016/j.ejmech.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane receptor-like protein with tyrosine kinase activity that plays a vital role in processes such as cell proliferation, differentiation, and angiogenesis. The degree of malignancy of different cancers, notably breast cancer, is strongly associated with HER2 amplification, overexpression, and mutation. Currently, widely used clinical HER2 tyrosine kinase inhibitors (TKIs), such as lapatinib and neratinib, have several drawbacks, including susceptibility to drug resistance caused by HER2 mutations and adverse effects from insufficient HER2 selectivity. To address these issues, it is essential to create innovative HER2 TKIs with enhanced safety, effectiveness against mutations, and high selectivity. Typically, SPH5030 has advanced to phase I clinical trials for its strong suppression of four HER2 mutations. This review discusses the latest research progress in HER2 TKIs, with a focus on the structural optimization process and structure-activity relationship analysis. In particular, this study highlights promising design strategies to address these challenges, providing insightful information and inspiration for future development in this field.
Collapse
Affiliation(s)
- Sixiang Zheng
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ruixian Chen
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lele Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lintao Li
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
10
|
Liang L, Zhang Z, You Q, Guo X. Recent advances in the design of small molecular drugs with acrylamides covalent warheads. Bioorg Med Chem 2024; 112:117902. [PMID: 39236467 DOI: 10.1016/j.bmc.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
In the development of covalent inhibitors, acrylamides warhead is one of the most popular classes of covalent warheads. In recent years, researchers have made different structural modifications to acrylamides warheads, resulting in the creation of fluorinated acrylamide warheads and cyano acrylamide warheads. These new warheads exhibit superior selectivity, intracellular accumulation, and pharmacokinetic properties. Additionally, although ketoamide warheads have been applied in the design of covalent inhibitors for viral proteins, it has not received sufficient attention. Combined with the studies in kinase inhibitors and antiviral drugs, this review presents the structural features and the progression of acrylamides warheads, offering a perspective on future research and development in this field.
Collapse
Affiliation(s)
- Luxia Liang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ze Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Ni H, Wang Z, Tang Y, Lu J, Zhu Z, Qiu Y, Chen Z, Wang Z. Tyrosine kinase inhibitors in the treatment of leptomeningeal carcinomatosis. Cell Biol Int 2024; 48:1450-1462. [PMID: 39136350 DOI: 10.1002/cbin.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Leptomeningeal carcinomatosis (LMC) is a devastating complication of advanced cancers, such as lung cancer and breast cancer, which is usually indicative of a poor prognosis. The current treatments for LMC include palliative care, with others aiming to prolong survival and relieve neurological symptoms. Traditional treatments for LMC include radiotherapy, systemic chemotherapy, and intrathecal injection. Furthermore, the application of molecularly targeted agents, such as antiepidermal growth factor receptor (anti-EGFR), antihuman epidermal growth factor receptor 2 (anti-HER2), and anti-PD-1 monoclonal antibody, have prolonged the survival of LMC patients. Targeted therapy with tyrosine kinase inhibitors has also been proven to be an effective treatment. Tyrosine kinases can be overactive or expressed at high levels in some cancer cells; therefore, the use of tyrosine kinase inhibitors may prevent the activation of tumor-related pathways, preventing cancer cell growth. The EGFR family are cell surface receptors directly related to tumor occurrence with tyrosine kinase activity; it is the most widely used target for tyrosine kinase inhibitors in the treatment of LMC. In this review, we introduced the clinical manifestation and diagnostic criteria of LMC, clarified the treatment mechanism of tyrosine kinase inhibitors for LMC with mutations in EGFR, HER2, or anaplastic lymphoma kinase, reviewed the current application of various generation tyrosine kinase inhibitors in patients with LMC, and discussed new clinical trials and the future directions of tyrosine kinase inhibitor therapy.
Collapse
Affiliation(s)
- Hanyu Ni
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Zilan Wang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yanbing Tang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaye Lu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zixiang Zhu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Youjia Qiu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhouqing Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Fan Y, Wu T, Xu P, Yang C, An J, Zhang H, Abbas M, Dong X. Neratinib safety evaluation: real-world adverse event analysis from the FAERS database. Front Pharmacol 2024; 15:1425171. [PMID: 39346561 PMCID: PMC11427278 DOI: 10.3389/fphar.2024.1425171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Aims Neratinib has emerged as significant theraputic option for breast cancer treatment. However, despite its approval, numerous adverse drug events (ADEs) associated to it remain unrecognized and unreported. This study aims to mine and analyze the signals of ADEs related to neratinib from the US Food and Drug Administration Adverse Event Reporting System (FAERS) database, providing insights for safe and rational clinical use of drug. Methods All the neratinib-related ADEs data were collected from FAERS database from the third quarter (Q3) of 2017 to the fourth quarter (Q4) of 2023. After standardizing the data, 4 disproportionality methods were used to assess the correlation between neratinib and ADEs. Results Of the 1,544 ADEs implicating neratinib as the primary suspected drug, a combined total of 48 preferred terms (PTs) and 10 system organ classes (SOCs) showed significant disproportionality accross all four algorithms simultaneously. These SOCs included gastrointestinal disorders (n = 2,564, ROR 7.14), general disorders and administration site conditions (n = 958, ROR 0.77) and injury poisoning and procedural complications (n = 474, ROR 0.58) among others. Upon comparison with the neratinib manual, 34 ADEs not documented in the manual were found at the PT level. Conclusion Our study provide new real-world evidence for drug safety information of neratinib. While the majority of our findings were aligned with the information provided in the manual. We identified additional ADEs not previously documented. Consequently, further studies are needed to validate unreported ADEs to ensure the efficacy and safety of neratinib for patients.
Collapse
Affiliation(s)
- Yunhe Fan
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Teng Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyang Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chuanli Yang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Jie An
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haijia Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Mureed Abbas
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
13
|
Jones L, Cunningham D, Starling N. HER-2 directed therapies across gastrointestinal tract cancers - A new frontier. Cancer Treat Rev 2024; 129:102789. [PMID: 38959629 DOI: 10.1016/j.ctrv.2024.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Gastrointestinal (GI) cancers are common and in the metastatic setting they have a poor prognosis. The current mainstay of treatment of GI cancers is chemotherapy; however, the biomarker-directed treatment landscape is evolving. HER-2 is overexpressed in a portion of GI cancers and is an emerging target for therapy, with recent FDA tumor agnostic approval for trastuzumab deruxtecan. Testing for HER-2 expression is not standardized across GI cancers, methodology requires further optimization and standardization as HER-2 targeted therapy emerges into the treatment landscape. There is established rationale for use of HER-2 targeted therapy in first line treatment of metastatic gastric cancer, and emerging evidence with variable benefit in bile duct, pancreatic and colorectal cancers.
Collapse
Affiliation(s)
- Lauren Jones
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation Trust, London, Sutton, UK
| | - David Cunningham
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation Trust, London, Sutton, UK
| | - Naureen Starling
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation Trust, London, Sutton, UK.
| |
Collapse
|
14
|
Enoma D. Genomics in Clinical trials for Breast Cancer. Brief Funct Genomics 2024; 23:325-334. [PMID: 38146120 DOI: 10.1093/bfgp/elad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
Breast cancer (B.C.) still has increasing incidences and mortality rates globally. It is known that B.C. and other cancers have a very high rate of genetic heterogeneity and genomic mutations. Traditional oncology approaches have not been able to provide a lasting solution. Targeted therapeutics have been instrumental in handling the complexity and resistance associated with B.C. However, the progress of genomic technology has transformed our understanding of the genetic landscape of breast cancer, opening new avenues for improved anti-cancer therapeutics. Genomics is critical in developing tailored therapeutics and identifying patients most benefit from these treatments. The next generation of breast cancer clinical trials has incorporated next-generation sequencing technologies into the process, and we have seen benefits. These innovations have led to the approval of better-targeted therapies for patients with breast cancer. Genomics has a role to play in clinical trials, including genomic tests that have been approved, patient selection and prediction of therapeutic response. Multiple clinical trials in breast cancer have been done and are still ongoing, which have applied genomics technology. Precision medicine can be achieved in breast cancer therapy with increased efforts and advanced genomic studies in this domain. Genomics studies assist with patient outcomes improvement and oncology advancement by providing a deeper understanding of the biology behind breast cancer. This article will examine the present state of genomics in breast cancer clinical trials.
Collapse
Affiliation(s)
- David Enoma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
15
|
Li Q, Cheng Y, Tong Z, Liu Y, Wang X, Yan M, Chang J, Wang S, Du C, Li L, Wu C, Wang M, Wang Z, Wu Z, Wang X, Jin Y, Diao L, Sun Y, Zhang Y, Hui AM, Xu B. HER2-targeting antibody drug conjugate FS-1502 in HER2-expressing metastatic breast cancer: a phase 1a/1b trial. Nat Commun 2024; 15:5158. [PMID: 38886347 PMCID: PMC11183070 DOI: 10.1038/s41467-024-48798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Currently approved HER2-targeting antibody-drug conjugates (ADCs) for HER2-positive breast cancer (BC) are associated with safety concerns. In this multicenter, single-arm, dose-escalation (phase 1a) and dose-expansion (phase 1b) phase 1 trial (NCT03944499), patients with HER2-expressing advanced solid tumors received FS-1502 (an anti-HER2 ADC) with a 3 + 3 design in phase 1a; patients with metastatic HER2-positive BC received FS-1502 at the recommended phase 2 dose (RP2D) in phase 1b. The primary end points were dose-limiting toxicities (DLTs), maximum tolerated dose (MTD) and RP2D for phase 1a and objective response rate (ORR) for phase 1b. A total of 150 patients with HER2-expressing solid tumors (n = 5) and BC (n = 145) were enrolled (female, n = 146, 97.3%). One DLT each was reported at 3.0 and 3.5 mg/kg; the MTD was not reached. The RP2D was 2.3 mg/kg once every 3 weeks. Five (3.3%) patients experienced pneumonitis; four (2.7%) had grade 3 reversible ocular events. Of 67 HER2-positive BC patients receiving the RP2D, the best ORR was 53.7% (95% CI, 41.1-66.0%), including PRs confirmed (confirmed ORR, 37.5%) and pending for confirmation. FS-1502 was well tolerated with limited ocular and pulmonary findings and demonstrated promising antitumor activity in HER2-positive BC patients.
Collapse
Affiliation(s)
- Qiao Li
- Department of Medical Oncology, State Key Laboratory, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Cheng
- Department of Oncology, Jilin Cancer Hospital, Changchun, China
| | - Zhongsheng Tong
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yunjiang Liu
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Yan
- Department of Breast Medicine, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jianhua Chang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Caiwen Du
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Liang Li
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Chunjiao Wu
- Department of Oncology, Jilin Cancer Hospital, Changchun, China
| | - Mingxia Wang
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuli Wu
- Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd., Shanghai, China
| | - Xingli Wang
- Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd., Shanghai, China
| | - Yongli Jin
- Shanghai Fosun Pharmaceutical Development Co., Ltd., Shanghai, China
| | - Lei Diao
- Shanghai Fosun Pharmaceutical Development Co., Ltd., Shanghai, China
| | - Yi Sun
- Shanghai Fosun Pharmaceutical Development Co., Ltd., Shanghai, China
| | - Yongjiao Zhang
- Shanghai Fosun Pharmaceutical Development Co., Ltd., Shanghai, China
| | | | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Li W, Fu P, Shi P, Hu B, Li H. Neratinib stimulates senescence of mammary cancer cells by reducing the levels of SIRT1. Aging (Albany NY) 2024; 16:9547-9557. [PMID: 38829772 PMCID: PMC11210222 DOI: 10.18632/aging.205882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 06/05/2024]
Abstract
Neratinib, a typical small-molecule, pan-human tyrosine kinase inhibitor (TKI), has been licensed for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, the underlying pharmacological mechanism is still unknown. In the current study, we report a novel function of Neratinib by showing that its treatment stimulates senescence of the mammary cancer AU565 cells. Our results demonstrate that Neratinib induces mitochondrial injury by increasing mitochondrial reactive oxygen species (ROS) and reducing intracellular adenosine triphosphate (ATP). Also, we found that Neratinib induced DNA damage by increasing the levels of 8-Hydroxy-desoxyguanosine (8-OHdG) and γH2AX in AU565 cells. Additionally, Neratinib reduced the levels of telomerase activity after 7 and 14 days incubation. Importantly, the senescence-associated-β-galactosidase (SA-β-Gal) assay revealed that Neratinib stimulated senescence of AU565 cells. Neratinib decreased the gene levels of human telomerase reverse transcriptase (hTERT) but increased those of telomeric repeat-binding factor 2 (TERF2) in AU565 cells. Further study displayed that Neratinib upregulated the expression of K382 acetylation of p53 (ac-K382) and p21 but reduced the levels of sirtuin-1 (SIRT1). However, overexpression of SIRT1 abolished the effects of Neratinib in cellular senescence. These findings provide strong preclinical evidence of Neratinib's treatment of breast cancer.
Collapse
Affiliation(s)
- Wenhuan Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengfei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Hu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hai Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
17
|
Li CY, Wang W, Leung CH, Yang GJ, Chen J. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Mol Cancer 2024; 23:109. [PMID: 38769556 PMCID: PMC11103982 DOI: 10.1186/s12943-024-02011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China.
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Macau, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Chen N, He L, Zou Q, Deng H. HER2 targeted therapy in colorectal Cancer: Current landscape and future directions. Biochem Pharmacol 2024; 223:116101. [PMID: 38442793 DOI: 10.1016/j.bcp.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Colorectal cancer (CRC) is one of the most common causes of tumor-related deaths globally. Despite recent improvements in the comprehensive therapy of malignancy, metastatic CRC continues to have a poor prognosis. Human epidermal growth factor receptor 2 (HER2) is an established oncogenic driver, which is successfully targeted for breast and gastric cancers. Approximately 5% of CRC patients carry somatic HER2 mutations or gene amplification. In 2019, the U.S. Food and Drug Administration have approved trastuzumab and pertuzumab in combination with chemotherapy for the treatment of HER2-positive metastatic CRC. This approval marked a significant milestone in the treatment of CRC, as HER2-positive patients now have access to targeted therapies that can improve their outcomes. Yet, assessment for HER2 overexpression/ amplification in CRC has not been standardized. The resistance mechanisms to anti-HER2 therapy have been not clearly investigated in CRC. Although many unknowns remain, an improved understanding of these anti-HER2 agents will be essential for advanced CRC. In this review, we provide an overview of the role of HER2 in CRC as an oncogenic driver, a prognostic and predictive biomarker, and a clinically actionable target, as well as the current progress and challenges in the field.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China; Center of Science and Research, Chengdu Medical College, Chengdu, 610500, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiang Zou
- Center of Science and Research, Chengdu Medical College, Chengdu, 610500, China.
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
20
|
Tang X, Niu Y, Jian J, Guo Y, Wang Y, Zhu Y, Liu B. Potential applications of ferroptosis inducers and regulatory molecules in hematological malignancy therapy. Crit Rev Oncol Hematol 2024; 193:104203. [PMID: 37979734 DOI: 10.1016/j.critrevonc.2023.104203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Ferroptosis, a novel form of iron-dependent cell death, has emerged as a potential avenue for promoting tumor cell death by causing cell membrane rupture and the accumulation of lipid peroxides (LPO) in the cell. Since its discovery in 2012, extensive research has been conducted to explore the mechanism of ferroptosis inducers, including erastin, sulfasalazine, and sorafenib. These compounds inhibit system XC-, while Ras-selective lethal small molecule 3 (RSL3) and FION2 specifically target GPX4 to promote ferroptosis. Therefore, targeting ferroptosis presents a promising therapeutic approach for malignant tumors. While the study of ferroptosis in solid tumors has made significant progress, there is limited information available on its role in hematological tumors. This review aims to summarize the molecular mechanisms of ferroptosis inducers and discuss their clinical applications in hematological malignancies. Furthermore, the identification of non-coding RNAs (ncRNAs) and genes that regulate key molecules in the ferroptosis pathway could provide new targets and establish a molecular theoretical foundation for exploring novel ferroptosis inducers in hematological malignancies.
Collapse
Affiliation(s)
- Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yujie Niu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Jinli Jian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yuancheng Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China; Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou 730099, China.
| |
Collapse
|
21
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
22
|
Xia X, Gong C, Zhang Y, Xiong H. The History and Development of HER2 Inhibitors. Pharmaceuticals (Basel) 2023; 16:1450. [PMID: 37895921 PMCID: PMC10610116 DOI: 10.3390/ph16101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
HER2 is highly expressed in a variety of malignant tumors and affects the prognosis of patients, making it a highly sensitive target for cancer therapy. Since the approval of the first HER2 inhibitor, trastuzumab, in 1998, HER2-targeted drugs have rapidly evolved. Currently, targeting HER2 drugs mainly include monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs), and antibody-drug conjugates (ADCs). This article reviews the development of HER2 inhibitors for various tumors over the past 20 years.
Collapse
Affiliation(s)
- Xiaohui Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Guo L, Shao W, Zhou C, Yang H, Yang L, Cai Q, Wang J, Shi Y, Huang L, Zhang J. Neratinib for HER2-positive breast cancer with an overlooked option. Mol Med 2023; 29:134. [PMID: 37803271 PMCID: PMC10559443 DOI: 10.1186/s10020-023-00736-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Positive human epidermal growth factor receptor 2 (HER2) expression is associated with an increased risk of metastases especially those to the brain in patients with advanced breast cancer (BC). Neratinib as a tyrosine kinase inhibitor can prevent the transduction of HER1, HER2 and HER4 signaling pathways thus playing an anticancer effect. Moreover, neratinib has a certain efficacy to reverse drug resistance in patients with BC with previous HER2 monoclonal antibody or targeted drug resistance. Neratinib, as monotherapy and in combination with other therapies, has been tested in the neoadjuvant, adjuvant, and metastatic settings. Neratinib with high anticancer activity is indicated for the prolonged adjuvant treatment of HER2-positive early BC, or in combination with other drugs including trastuzumab, capecitabine, and paclitaxel for the treatment of advanced HER2-positive BC especially cancers with central nervous system (CNS) metastasis to reduce the risk of BC recurrence. This article reviewed the pharmacological profiles, efficacy, safety, tolerability, and current clinical trials pertaining to neratinib, with a particular focus on the use of neratinib in patients with metastatic breast cancer (MBC) involving the CNS. We further discussed the use of neratinib for HER2-negative and HER2-mutant breast cancers, and mechanisms of resistance to neratinib. The current evidence suggests that neratinib has promising efficacy in patients with BC which is at least non-inferior compared to previous therapeutic regimens. The most common AE was diarrhea, and the incidence, severity and duration of neratinib-related grade 3 diarrhea can be reduced with loperamide. Of note, neratinib has the potential to effectively control and prevent brain metastasis in patients with advanced BC, providing a therapeutic strategy for HER2-positive BC.
Collapse
Affiliation(s)
- Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Weiwei Shao
- Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liu Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Gaoqiao Town, Shanghai, 200137, China.
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Medical Center on Aging of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| |
Collapse
|
24
|
Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol 2023; 13:1258371. [PMID: 37752992 PMCID: PMC10518470 DOI: 10.3389/fonc.2023.1258371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Spontaneous dimerization of EGF receptors (EGFR) and dysregulation of EGFR signaling has been associated with the development of different cancers. Under normal physiological conditions and to maintain homeostatic cell growth, once EGFR signaling occurs, it needs to be attenuated. Activated EGFRs are rapidly internalized, sorted through early endosomes, and ultimately degraded in lysosomes by a process generally known as receptor down-regulation. Through alterations to EGFR trafficking, tumors develop resistance to current treatment strategies, thus highlighting the necessity for combination treatment strategies that target EGFR trafficking. This review covers EGFR structure, trafficking, and altered surface expression of EGFR receptors in cancer, with a focus on how therapy targeting EGFR trafficking may aid tyrosine kinase inhibitor treatment of cancer.
Collapse
Affiliation(s)
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
25
|
Chen H, Si Y, Wen J, Hu C, Xia E, Wang Y, Wang O. P110α inhibitor alpelisib exhibits a synergistic effect with pyrotinib and reverses pyrotinib resistant in HER2+ breast cancer. Neoplasia 2023; 43:100913. [PMID: 37348428 PMCID: PMC10314290 DOI: 10.1016/j.neo.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) plays a critical role in breast cancer progression in patients with HER2 overexpression, thereby driving the development of targeted drugs and advancing therapy strategies targeting this gene. Pyrotinib is a novel irreversible pan-ErbB kinase inhibitor, primarily suppresses the downstream MAPK and PI3K/AKT pathways. Alpelisib, a selective PI3K p110α inhibitor, has been approved for clinical application in HR+, HER2-, PIK3CA mutated breast cancers and is also being developed for use in other breast cancer subtypes. In this study, we hypothesised that combining pyrotinib with alpelisib would yield superior results compared to single-drug treatment. Our data demonstrated that the combination of alpelisib and pyrotinib exhibited a synergistic effect in HER2+ breast cancer both in vitro and in vivo. This combination led to decreased cell proliferation and migration, G0-G1 cell cycle arrest, and increased apoptosis rates. Additionally, the deactivation of ErbB receptors and sustained activation of PI3K/AKT pathway by upstream compensatory pathways induced acquired pyrotinib resistant cells resistant to pyrotinib treatment, thus alpelisib combined with pyrotinib showed a tremendous synergistic effect and reverse pyrotinib resistance in acquired pyrotinib resistant cells by suppressing the activated PI3K/AKT pathway. Our results revealed a combination of pyrotinib and alpelisib as an effective therapeutic strategy in treating HER2+ breast cancer, whether sensitive or resistant to pyrotinib treatment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yuhao Si
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jialiang Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chunlei Hu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Bansal I, Pandey AK, Ruwali M. Small-molecule inhibitors of kinases in breast cancer therapy: recent advances, opportunities, and challenges. Front Pharmacol 2023; 14:1244597. [PMID: 37711177 PMCID: PMC10498465 DOI: 10.3389/fphar.2023.1244597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and despite significant advancements in detection, treatment, and management of cancer, it is still the leading cause of malignancy related deaths in women. Understanding the fundamental biology of breast cancer and creating fresh diagnostic and therapeutic strategies have gained renewed focus in recent studies. In the onset and spread of breast cancer, a group of enzymes known as kinases are extremely important. Small-molecule kinase inhibitors have become a promising class of medications for the treatment of breast cancer owing to their capacity to specifically target kinases involved in the growth and progression of cancer. The creation of targeted treatments that block these kinases and the signalling pathways that they activate has completely changed how breast cancer is treated. Many of these targeted treatments have been approved for the treatment of breast cancer as clinical trials have demonstrated their great efficacy. CDK4/6 inhibitors, like palbociclib, abemaciclib, and ribociclib, EGFR inhibitors such as gefitinib and erlotinib and HER2-targeting small-molecule kinases like neratinib and tucatinib are some examples that have shown potential in treating breast cancer. Yet, there are still difficulties in the development of targeted medicines for breast cancer, such as figuring out which patient subgroups may benefit from these therapies and dealing with drug resistance problems. Notwithstanding these difficulties, kinase-targeted treatments for breast cancer still have a lot of potential. The development of tailored medicines will continue to be fuelled by the identification of novel targets and biomarkers for breast cancer as a result of advancements in genomic and proteomic technology.
Collapse
Affiliation(s)
- Isha Bansal
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-Ahmedabad), Gandhinagar, Gujarat, India
| | - Munindra Ruwali
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| |
Collapse
|
27
|
Piha-Paul SA, Tseng C, Tran HT, Gao M, Karp DD, Subbiah V, Tsimberidou AM, Kawedia JD, Fu S, Pant S, Yap TA, Morris VK, Kee BK, Blum Murphy M, Lim J, Meric-Bernstam F. A phase I trial of the pan-ERBB inhibitor neratinib combined with the MEK inhibitor trametinib in patients with advanced cancer with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation or KRAS mutation. Cancer Chemother Pharmacol 2023; 92:107-118. [PMID: 37314501 PMCID: PMC10326142 DOI: 10.1007/s00280-023-04545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Aberrant alterations of ERBB receptor tyrosine kinases lead to tumorigenesis. Single agent therapy targeting EGFR or HER2 has shown clinical successes, but drug resistance often develops due to aberrant or compensatory mechanisms. Herein, we sought to determine the feasibility and safety of neratinib and trametinib in patients with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation and KRAS mutation. METHODS Patients with actionable somatic mutations or amplifications in ERBB genes or actionable KRAS mutations were enrolled to receive neratinib and trametinib in this phase I dose escalation trial. The primary endpoint was determination of the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT). Secondary endpoints included pharmacokinetic analysis and preliminary anti-tumor efficacy. RESULTS Twenty patients were enrolled with a median age of 50.5 years and a median of 3 lines of prior therapy. Grade 3 treatment-related toxicities included: diarrhea (25%), vomiting (10%), nausea (5%), fatigue (5%) and malaise (5%). The MTD was dose level (DL) minus 1 (neratinib 160 mg daily with trametinib 1 mg, 5 days on and 2 days off) given 2 DLTs of grade 3 diarrhea in DL1 (neratinib 160 mg daily with trametinib 1 mg daily). The treatment-related toxicities of DL1 included: diarrhea (100%), nausea (55.6%) and rash (55.6%). Pharmacokinetic data showed trametinib clearance was significantly reduced leading to high drug exposures of trametinib. Two patients achieved stable disease (SD) ≥ 4 months. CONCLUSION Neratinib and trametinib combination was toxic and had limited clinical efficacy. This may be due to suboptimal drug dosing given drug-drug interactions. TRIAL REGISTRATION ID NCT03065387.
Collapse
Affiliation(s)
- Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA.
| | - Chieh Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Hai T Tran
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Gao
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Apostolia Maria Tsimberidou
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Jitesh D Kawedia
- Pharmacy Pharmacology Research, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
- Department of Thoracic, Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariela Blum Murphy
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JoAnn Lim
- Pharmacy Clinical Programs, Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, TX, 77030, USA
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Zhang XN, Gao Y, Zhang XY, Guo NJ, Hou WQ, Wang SW, Zheng YC, Wang N, Liu HM, Wang B. Detailed curriculum vitae of HER2-targeted therapy. Pharmacol Ther 2023; 245:108417. [PMID: 37075933 DOI: 10.1016/j.pharmthera.2023.108417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
With the booming development of precision medicine, molecular targeted therapy has been widely used in clinical oncology treatment due to a smaller number of side effects and its superior accuracy compared to that of traditional strategies. Among them, human epidermal growth factor receptor 2 (HER2)-targeted therapy has attracted considerable attention and has been used in the clinical treatment of breast and gastric cancer. Despite excellent clinical effects, HER2-targeted therapy remains in its infancy due to its resulting inherent and acquired resistance. Here, a comprehensive overview of HER2 in numerous cancers is presented, including its biological role, involved signaling pathways, and the status of HER2-targeted therapy.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Wen-Qing Hou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Shu-Wu Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China.
| | - Bo Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Ninck S, Halder V, Krahn JH, Beisser D, Resch S, Dodds I, Scholtysik R, Bormann J, Sewald L, Gupta MD, Heilmann G, Bhandari DD, Morimoto K, Buscaill P, Hause B, van der Hoorn RAL, Kaschani F, Kaiser M. Chemoproteomics Reveals the Pan-HER Kinase Inhibitor Neratinib To Target an Arabidopsis Epoxide Hydrolase Related to Phytohormone Signaling. ACS Chem Biol 2023; 18:1076-1088. [PMID: 37115018 DOI: 10.1021/acschembio.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.
Collapse
Affiliation(s)
- Sabrina Ninck
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Vivek Halder
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
- Chemical Biology Laboratory, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jan H Krahn
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Daniela Beisser
- Department of Biodiversity, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45117 Essen, Germany
| | - Sarah Resch
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - René Scholtysik
- Genomics and Transcriptomics Facility, Institute for Cell Biology (Tumour Research), University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Leonard Sewald
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Mainak D Gupta
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Geronimo Heilmann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Bettina Hause
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| |
Collapse
|
30
|
Zhang J, Zou M, Tian Q, Sun Z, Chu W. N-Cyano-2,2'-biphenyldicarboimide as a Cyanation Reagent for Co(III)-Catalyzed C-H Cyanation of Indoles in Ionic Liquids. Org Lett 2023; 25:1436-1440. [PMID: 36856532 DOI: 10.1021/acs.orglett.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A mild strategy for Co(III)-catalyzed C(sp2)-H cyanation of indoles was developed by using NCBLD as an electrophilic cyanation reagent and 1-butyl-3-acetylimidazole ditrifluoromethylsulfonimide ([BAIM]NTf2) as an environmentally friendly and recyclable solvent, and a series of 2-cyano products were obtained at room temperature. Adopting this strategy, the unnatural nucleotide fragment precursor of Remdesivir, which was a drug for COVID-19, was synthesized through cyano transformation, further proving the practicability of this cyanation method.
Collapse
Affiliation(s)
- Jingchao Zhang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - MengQi Zou
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - QinYe Tian
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
31
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
32
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|
33
|
Qi D, Dou Y, Zhang W, Wang M, Li Y, Zhang M, Qin J, Cao J, Fang D, Ma J, Yang W, Xie S, Sun H. The influence of verapamil on the pharmacokinetics of the pan-HER tyrosine kinase inhibitor neratinib in rats: the role of P-glycoprotein-mediated efflux. Invest New Drugs 2023; 41:13-24. [PMID: 36331675 DOI: 10.1007/s10637-022-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Neratinib, an irreversible pan-HER tyrosine kinase inhibitor, has been approved for the treatment of HER2-positive (HER2+) early-stage and brain metastatic breast cancer. Thus far, the pharmacology effects and pharmacodynamics of neratinib have been well studied. However, the disposition of neratinib and its influencing factors in vivo remain unclear. P-glycoprotein (P-gp), one of the most extensively studied transporters, substantially restricts penetration of drugs into the body or deeper compartments (i.e., blood-brain barrier, BBB), regarding drug resistance and drug-drug interactions. Thereby, the aim of this study was to investigate the influence of verapamil (a P-gp inhibitor) on the pharmacokinetics of neratinib in rats. Here, we have established a high specific, selective and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify plasma concentrations of neratinib in rats. Pharmacokinetic results showed that verapamil significantly increased the system exposure of neratinib, as Cmax increased by 2.09-fold and AUC0-t increased by 1.64-fold, respectively. Additionally, the in vitro transport of neratinib was evaluated using Madin-Darby canine kidney II (MDCK II) and human MDR1 gene overexpressed MDCK (MDCK-MDR1) cell line models. As a result, the net flux ratio was over than 2 and decreased over 50% by verapamil, suggesting that neratinib was a substrate of P-gp. Hence, our findings have highlighted the important role of P-gp in the system exposure of neratinib in vivo, and drug-drug interaction should be considered when coadministration of P-gp inhibitors with neratinib. These findings may support the further clinical development and application of neratinib.
Collapse
Affiliation(s)
- Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Mingzhu Zhang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jia Qin
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jinlan Cao
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Dong Fang
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jing Ma
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research), Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd, Guangzhou, 510980, Guangdong, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
| |
Collapse
|
34
|
An anti-EGFR antibody-drug conjugate overcomes resistance to HER2-targeted drugs. Cancer Lett 2023; 554:216024. [PMID: 36455759 DOI: 10.1016/j.canlet.2022.216024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) that was approved in 2013 to treat HER2+ breast cancer. Despite its efficacy in the clinic, some patients exhibit intrinsic or acquired resistance to such ADC. To characterize mechanisms of resistance to T-DM1, we isolated several HER2+ resistant clones derived from the HCC1954 HER2+ cell line. The isolated clones were different as per their transcriptomic profiles. However, all the T-DM1-resistant clones showed decreased HER2 levels. Yet, the clones were still oncogenically dependent on HER2, as indicated by knock down experiments. The decrease in HER2 expression caused acquired resistance to T-DM1 and to other anti-HER2 therapies. Antibody array analyses showed that the epidermal growth factor receptor (EGFR) was expressed in these T-DM1-resistant HCC1954 clones. Indeed, therapies targeting EGFR, particularly cetuximab-DM1, demonstrated a strong anti-proliferative action on cells with acquired resistance to T-DM1 and HER2 loss. The expression of EGFR in cells resistant to T-DM1 offers the possibility of using therapies directed to this receptor to combat resistance to anti-HER2 drugs and loss of HER2 overexpression.
Collapse
|
35
|
Jin N, Xia Y, Gao Q. Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review). Int J Oncol 2023; 62:28. [PMID: 36601757 PMCID: PMC9851129 DOI: 10.3892/ijo.2023.5476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP‑ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.
Collapse
Affiliation(s)
- Ning Jin
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Xia
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qinglei Gao
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
36
|
Wu Z, Wang J, You F, Li X, Xiao C. The role of irreversible pan-HER tyrosine kinase inhibitors in the treatment of HER2-Positive metastatic breast cancer. Front Pharmacol 2023; 14:1142087. [PMID: 36937848 PMCID: PMC10018043 DOI: 10.3389/fphar.2023.1142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) is the leading cause of cancer death in women. For patients with HER2-positive MBC, after the failure of multiple lines of treatment, there is no optimal line of therapy. A series of clinical trials confirmed that treatment with irreversible pan-HER tyrosine kinase inhibitors (TKIs) in combination with chemotherapy significantly improves patients' survival outcomes. This review focuses on the pathogenesis of HER2-positive breast cancer, current standard treatments, mechanisms of approved irreversible TKIs, and key clinical trials. The available findings suggest that irreversible pan-HER TKIs, such as pyrotinib and neratinib, in combination with chemotherapy, represent a beneficial salvage therapy for patients with HER2-positive MBC with manageable toxicity. However, further studies are needed to assess the efficacy and safety of this combination therapy.
Collapse
Affiliation(s)
| | | | | | - Xueke Li
- *Correspondence: Xueke Li, ; Chong Xiao,
| | - Chong Xiao
- *Correspondence: Xueke Li, ; Chong Xiao,
| |
Collapse
|
37
|
Luo Y, Jiang H, Liu C, Zhang C. Axillary Downstaging and the Impact of Clinical Axillary Status on Efficacy of Neoadjuvant Therapy for HER2-Positive Breast Cancer: A Network Meta-Analysis. Technol Cancer Res Treat 2023; 22:15330338221150325. [PMID: 36660776 PMCID: PMC9893393 DOI: 10.1177/15330338221150325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Lymph node downstaging and the achievement of total-pCR (ypT0/is ypN0) after neoadjuvant therapy are of great importance in HER-2 positive breast cancer. We aim to provide an overall review of neoadjuvant regimens for lymph node downstaging and to indirectly compare the total-pCR by various neoadjuvant regimens with network meta-analysis in HER2-positive patients according to their clinical lymph node status. Methods: Five English databases were searched comprehensively and systematically for relevant RCTs and case-control studies. The data extracted from the included studies were analyzed with the use of Review Manager 5.3 or STATA 15.0 software. Results: A total of 1508 published manuscripts were identified, and 17 studies including 4747 patients were finally included in our analysis. The network meta-analysis of total-pCR showed that dual-target therapy is significantly better than single-target therapy in clinically node-positive patients, and carboplatin performed significantly better than anthracycline in single-target condition. Lapatinib performed poorly in clinically node-positive patients. However, lapatinib in combination with trastuzumab was ranked at the top in the clinically node-negative group, and pertuzumab showed dissatisfied performance in contrast to the primacy of pertuzumab in clinically node-positive groups. Conclusion: In summary, different lymph node statuses led to the diverse first choice of neoadjuvant regimen. We highly recommended TCbHP as the first choice for the neoadjuvant treatment in clinically node-positive HER-2 positive breast cancer. Since lapatinib with trastuzumab ranked top in the clinically node-negative group, we looked forward to discovering the potential value of TKI in clinically node-negative patients, which needs further analysis in the future.
Collapse
Affiliation(s)
- Yunzhao Luo
- Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Hongchuan Jiang
- Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | | | - Chao Zhang
- Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Srisongkram T, Weerapreeyakul N. Drug Repurposing against KRAS Mutant G12C: A Machine Learning, Molecular Docking, and Molecular Dynamics Study. Int J Mol Sci 2022; 24:ijms24010669. [PMID: 36614109 PMCID: PMC9821013 DOI: 10.3390/ijms24010669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The Kirsten rat sarcoma viral G12C (KRASG12C) protein is one of the most common mutations in non-small-cell lung cancer (NSCLC). KRASG12C inhibitors are promising for NSCLC treatment, but their weaker activity in resistant tumors is their drawback. This study aims to identify new KRASG12C inhibitors from among the FDA-approved covalent drugs by taking advantage of artificial intelligence. The machine learning models were constructed using an extreme gradient boosting (XGBoost) algorithm. The models can predict KRASG12C inhibitors well, with an accuracy score of validation = 0.85 and Q2Ext = 0.76. From 67 FDA-covalent drugs, afatinib, dacomitinib, acalabrutinib, neratinib, zanubrutinib, dutasteride, and finasteride were predicted to be active inhibitors. Afatinib obtained the highest predictive log-inhibitory concentration at 50% (pIC50) value against KRASG12C protein close to the KRASG12C inhibitors. Only afatinib, neratinib, and zanubrutinib covalently bond at the active site like the KRASG12C inhibitors in the KRASG12C protein (PDB ID: 6OIM). Moreover, afatinib, neratinib, and zanubrutinib exhibited a distance deviation between the KRASG2C protein-ligand complex similar to the KRASG12C inhibitors. Therefore, afatinib, neratinib, and zanubrutinib could be used as drug candidates against the KRASG12C protein. This finding unfolds the benefit of artificial intelligence in drug repurposing against KRASG12C protein.
Collapse
|
39
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
40
|
Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022; 27:molecules27227728. [PMID: 36431829 PMCID: PMC9694382 DOI: 10.3390/molecules27227728] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.
Collapse
|
41
|
Wang N, Cao Y, Si C, Shao P, Su G, Wang K, Bao J, Yang L. Emerging Role of ERBB2 in Targeted Therapy for Metastatic Colorectal Cancer: Signaling Pathways to Therapeutic Strategies. Cancers (Basel) 2022; 14:5160. [PMID: 36291943 PMCID: PMC9600272 DOI: 10.3390/cancers14205160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Despite recent improvements in the comprehensive therapy of malignancy, metastatic colorectal cancer (mCRC) continues to have a poor prognosis. Notably, 5% of mCRC cases harbor Erb-B2 receptor tyrosine kinase 2 (ERBB2) alterations. ERBB2, commonly referred to as human epidermal growth factor receptor 2, is a member of the human epidermal growth factor receptor family of protein tyrosine kinases. In addition to being a recognized therapeutic target in the treatment of gastric and breast malignancies, it is considered crucial in the management of CRC. In this review, we describe the molecular biology of ERBB2 from the perspective of biomarkers for mCRC-targeted therapy, including receptor structures, signaling pathways, gene alterations, and their detection methods. We also discuss the relationship between ERBB2 aberrations and the underlying mechanisms of resistance to anti-EGFR therapy and immunotherapy tolerance in these patients with a focus on novel targeted therapeutics and ongoing clinical trials. This may aid the development of a new standard of care in patients with ERBB2-positive mCRC.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yuepeng Cao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Chengshuai Si
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Peng Shao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Guoqing Su
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ke Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Jun Bao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| |
Collapse
|
42
|
Wu X, Yang H, Yu X, Qin JJ. Drug-resistant HER2-positive breast cancer: Molecular mechanisms and overcoming strategies. Front Pharmacol 2022; 13:1012552. [PMID: 36210846 PMCID: PMC9540370 DOI: 10.3389/fphar.2022.1012552] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies and the leading cause of cancer-related death in women. HER2 overexpression is a factor for poor prognosis in breast cancer, and anti-HER2 therapy improves survival in these patients. A dual-targeted combination of pertuzumab and trastuzumab, alongside cytotoxic chemotherapy, constitutes the primary treatment option for individuals with early-stage, HER2-positive breast cancer. Antibody-drug conjugate (ADC) and tyrosine kinase inhibitors (TKI) also increase the prognosis for patients with metastatic breast cancer. However, resistance to targeted therapy eventually occurs. Therefore, it is critical to investigate how HER2-positive breast cancer is resistant to targeted therapy and to develop novel drugs or strategies to overcome the resistance simultaneously. This review aims to provide a comprehensive discussion of the HER2-targeted agents currently in clinical practice, the molecular mechanisms of resistance to these drugs, and the potential strategies for overcoming resistance.
Collapse
Affiliation(s)
| | | | - Xingfei Yu
- *Correspondence: Xingfei Yu, ; Jiang-Jiang Qin,
| | | |
Collapse
|
43
|
Dent P, Booth L, Poklepovic A, Hancock JF. Neratinib as a Potential Therapeutic for Mutant RAS and Osimertinib-Resistant Tumours. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10197202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neratinib was developed as an irreversible catalytic inhibitor of ERBB2, which also acts to inhibit ERBB1 and ERBB4. Neratinib is U.S. Food and Drug Administration (FDA)-approved as a neo-adjuvant therapy for use in HER2+ breast cancer. More recently, chemical biology analyses and the authors’ own bench work have demonstrated that neratinib has additional targets, which open up the possibility of using the drug in cell types that either lack ERBB receptor family expression or who rely on survival signalling downstream of growth factor receptors. Neratinib rapidly disrupted mutant RAS nanoclustering, which was followed by mutant rat sarcoma virus proteins translocating via LC3-associated phagocytosis into the cytosol where they were degraded by macroautophagy. Neratinib catalytically inhibited the MAP4K mammalian STE20-like protein kinase 4 and also caused its degradation via macroautophagy. This resulted in ezrin dephosphorylation and the plasma membrane becoming flaccid. Neratinib disrupted the nanoclustering of RAC1, which was associated with dephosphorylation of PAK1 and Merlin, and with increased phosphorylation of the Merlin binding partners large tumour suppressor kinase 1/2, YAP, and TAZ. YAP and TAZ exited the nucleus. Neratinib retained its anti-tumour efficacy against NSCLC cells made resistant to either afatinib or to osimertinib. Collectively, these findings argue that the possibilities for the further development of neratinib as cancer therapeutic in malignancies that do not express or over-express members of the ERBB receptor family are potentially wide-ranging.
Collapse
|
44
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
45
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
46
|
Sun J, Li X, Chen P, Gao Y. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. J Inflamm Res 2022; 15:4061-4085. [PMID: 35873388 PMCID: PMC9304417 DOI: 10.2147/jir.s368138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Current Therapeutic modalities provide no survival advantage to gastric cancer (GC) patients. Targeting the human epidermal growth factor receptor-2 (HER-2) is a viable therapeutic strategy against advanced HER-2 positive GC. Antibody-drug conjugates, small-molecule tyrosine kinase inhibitors (TKIs), and bispecific antibodies are emerging as novel drug forms that may abrogate the resistance to HER-2-specific drugs and monoclonal antibodies. Chimeric antigen receptor-modified T cells (CAR-T) targeting HER-2 have shown considerable therapeutic potential in GC and other solid tumors. However, due to the high heterogeneity along with the complex tumor microenvironment (TME) of GC that often leads to immune escape, the immunological treatment of GC still faces many challenges. Here, we reviewed and discussed the current progress in the research of anti-HER-2-CAR-T cell immunotherapy against GC.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xiaojing Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peng Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| |
Collapse
|
47
|
Rezende Miranda R, Zhang C. Reactivity-based chemical-genetic study of protein kinases. RSC Med Chem 2022; 13:783-797. [PMID: 35923719 PMCID: PMC9298188 DOI: 10.1039/d1md00389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
The human protein kinase superfamily comprises over 500 members that operate in nearly every signal transduction pathway and regulate essential cellular processes. Deciphering the functional roles of protein kinases with small-molecule inhibitors is essential to enhance our understanding of cell signaling and to facilitate the development of new therapies. However, it is rather challenging to identify selective kinase inhibitors because of the conserved nature of the ATP binding site. A number of chemical-genetic approaches have been developed during the past two decades to enable selective chemical perturbation of the activity of individual kinases. Herein, we review the development and application of chemical-genetic strategies that feature the use of covalent inhibitors targeting cysteine residues to dissect the cellular functions of protein kinases.
Collapse
Affiliation(s)
- Renata Rezende Miranda
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester New York 14623 USA
| | - Chao Zhang
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- USC Norris Comprehensive Cancer Center, University of Southern California Los Angeles California 90089 USA
| |
Collapse
|
48
|
Shah PA, Sharma VS, Vanol PG, Sanyal M, Shrivastav PS. Hybrid SPE to overcome interference due to phospholipids for determination of neratinib in human plasma using UPLC-MS/MS. Biomed Chromatogr 2022; 36:e5416. [PMID: 35624555 DOI: 10.1002/bmc.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/05/2022]
Abstract
A reliable and robust bioanalytical method is developed to quantify neratinib, a tyrosine kinase inhibitor in human plasma using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The extraction of neratinib and its deuterated internal standard, neratinib-d6 was successfully performed on hybrid solid phase extraction (SPE) ultra-cartridges to remove the interference of phospholipids and proteins. Chromatographic analysis was done on UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using 0.1% formic acid and acetonitrile under gradient conditions. The total analysis time was 1.5 min. The quantification of neratinib was achieved using electrospray ionization source operated in the positive ion multiple reaction monitoring mode. The mass transitions of neratinib and neratinib were m/z 557.3/112.1 and m/z 563.1/118.2, respectively. The linear concentration range for neratinib was 0.5-500 ng/mL, which adequately covers concentration levels expected in real subject samples. The assay was extensively validated for various validation parameters following standard guidelines for a bioanalytical assay. The intra- and inter-batch precision was ≤ 4.6 % and neratinib was found to be stable under various stability conditions. The mean IS-normalized matrix factor and recovery was 0.997 and 95.4 %, respectively. The validated method was successfully applied to a pharmacokinetic study in healthy subjects with different doses.
Collapse
Affiliation(s)
- Priyanka A Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Vinay S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Pravin G Vanol
- Department of Chemistry, St. Xavier's College, Navrangpura, Ahmedabad, India
| | - Mallika Sanyal
- Department of Chemistry, St. Xavier's College, Navrangpura, Ahmedabad, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
49
|
The HER family as therapeutic targets in colorectal cancer. Crit Rev Oncol Hematol 2022; 174:103681. [PMID: 35462030 DOI: 10.1016/j.critrevonc.2022.103681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor (HER, ErbB) family has four members, epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. Although distinct in ligands and functions, all of the HER family members are receptor tyrosine kinases playing important roles in the pathogenesis of cancers. In the era of precision medicine, the HER family is one of the most important and successful cancer therapeutic targets, hallmarked by the approval of anti-EGFR therapies for the treatment of colorectal cancer and non-small cell lung cancer, and anti-HER2 therapies for the treatment of breast cancer and gastric cancer. This review briefly discusses how HER family members were discovered, their functions and roles in cancer, and most importantly, the developmental history and recent updates of therapies targeting HER family members, with colorectal cancer as a focus. We also discussed the patient selection and drug resistance to anti-EGFR therapies in the treatment of colorectal cancer.
Collapse
|
50
|
Sochacka-Ćwikła A, Mączyński M, Regiec A. FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072259. [PMID: 35408658 PMCID: PMC9000317 DOI: 10.3390/molecules27072259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Solid cancers are the most common types of cancers diagnosed globally and comprise a large number of deaths each year. The main challenge currently in drug development for tumors raised from solid organs is to find more selective compounds, which exploit specific molecular targets. In this work, the small molecule drugs registered by the Food and Drug Administration (FDA) for solid cancers treatment between 2011 and 2022 were identified and analyzed by investigating a type of therapy they are used for, as well as their structures and mechanisms of action. On average, 4 new small molecule agents were introduced each year, with a few exceptions, for a total of 62 new drug approvals. A total of 50 of all FDA-approved drugs have also been authorized for use in the European Union by the European Medicines Agency (EMA). Our analysis indicates that many more anticancer molecules show a selective mode of action, i.e., 49 targeted agents, 5 hormone therapies and 3 radiopharmaceuticals, compared to less specific cytostatic action, i.e., 5 chemotherapeutic agents. It should be emphasized that new medications are indicated for use mainly for monotherapy and less for a combination or adjuvant therapies. The comprehensive data presented in this review can serve for further design and development of more specific targeted agents in clinical usage for solid tumors.
Collapse
|