1
|
Vrindten KL, Lonati DP, Mazzocca JL, Matzkin EG. Thermal Modalities Including Hot Baths and Cold Plunges Play a Unique Role in Injury Prevention and Recovery. Arthrosc Sports Med Rehabil 2025; 7:101143. [PMID: 40297095 PMCID: PMC12034083 DOI: 10.1016/j.asmr.2025.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 04/30/2025] Open
Abstract
There are several different modalities for injury prevention to consider in order to help our patients' reach their ultimate goals. The purpose of this review is to analyze the use of hot and cold therapies to prevent injury. Thermotherapy has been used in clinical rehabilitation settings to treat health conditions. The therapeutic use of cold, known as cryotherapy, is historically the most popular treatment for acute musculoskeletal injury or fatigue. Cold therapy was seen to decrease delayed-onset muscle soreness and help resolve global or generalized muscle injury or fatigue. In sum, both cold and hot therapy play similar but unique roles in injury prevention and recovery. The key to effective use of either depends on understanding the nature of the injury and mastering the appropriate timing of therapeutic application. By leveraging the unique mechanisms of each modality, athletes can optimize their recovery process and reduce the risk of future injury. Level of Evidence Level V, expert opinion.
Collapse
Affiliation(s)
- Kiera L. Vrindten
- Rutgers Robert Wood Johnson Medical School, New Brunswick/Piscataway, New Jersey, U.S.A
| | - Danielle P. Lonati
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, Connecticut, U.S.A
| | - Jillian L. Mazzocca
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, U.S.A
| | - Elizabeth G. Matzkin
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, U.S.A
- Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
2
|
Fan R, Story G, Kim J, Li Z, Bannon ST, Cho H, Ranjan R, Kim YC, Layec G, Chung S. Heat treatment activates futile calcium cycling in brown adipose tissue to modulate energy metabolism and alters gut microbiota in C57BL/6 mice. Acta Physiol (Oxf) 2025; 241:e70025. [PMID: 40071450 DOI: 10.1111/apha.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
AIM Aging decreases the metabolic rate and increases the risk of metabolic diseases, highlighting the need for alternative strategies to improve metabolic health. Heat treatment (HT) has shown various metabolic benefits, but its ability to counteract aging-associated metabolic slowdown remains unclear. This study aimed to investigate the impact of whole-body HT on energy metabolism, explore the potential mechanism involving the heat sensor TRPV1, and examine the modulation of gut microbiota. METHODS Ten-month-old female C57BL/6 mice on a high-fat (HF) diet (45% calories from fat) were exposed to daily HT in a 40-41°C heat chamber for 30 min, 5 days a week for 6 weeks. Metabolic changes, including core body temperature and lipid metabolism transcription in adipose tissue and liver, were assessed. Human brown adipocytes were used to confirm metabolic effects in vitro. RESULTS HT significantly reduced serum lactate dehydrogenase levels, indicating mitigation of tissue damage. HT attenuated weight gain, improved insulin sensitivity, and increased beta-oxidation in the liver and brown fat. In thermogenic adipose tissue, HT enhanced TRPV1 and Ca2+/ATPase pump expression, suggesting ATP-dependent calcium cycling, which was confirmed in human brown adipocytes. Interestingly, HT also reduced the firmicutes/bacteroides ratio and altered gut microbiota, suppressing HF diet-enriched microbial genera such as Tuzzerella, Defluviitaleaceae_UCG-011, Alistipes, and Enterorhabdus. CONCLUSION HT attenuates aging- and diet-associated metabolic slowdown by increasing futile calcium cycling, enhancing energy expenditure, and altering gut microbiota in middle-aged female C57BL/6 mice. HT may offer a promising strategy to improve metabolic health, especially in aging populations.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| | - Galaxie Story
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Judy Kim
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhuoheng Li
- Department of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Sean T Bannon
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hyunji Cho
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
de Sire A, Marotta N, Prestifilippo E, Parente A, Lippi L, Invernizzi M, Longo UG, Ammendolia A. Effectiveness of physical agent modalities for pain relief in injured athletes: A systematic review. J Back Musculoskelet Rehabil 2025:10538127251314711. [PMID: 40129440 DOI: 10.1177/10538127251314711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
IntroductionFrom a rehabilitation perspective, various approaches can be applied to help athletes overcome injury, including drugs, physical agent modalities (PAMs) with conventional physical therapy. This systematic review aimed to evaluate the impact of physical agent modalities (PAMs) for pain relief in injured athletes.MethodsPubMed, Scopus, and Web of Science were systematically searched from inception until May 8th, 2024. The papers were considered eligible for review in compliance with the conditions determined by the following PICO model: P) Participants: injured athletes; I) Intervention: magnetic therapy, TENS, lasertherapy, ultrasound therapy, diathermy, and extracorporeal shockwave therapy (ESWT); C) Comparator: NA; O) Outcome measure: any pain assessment. PROSPERO registration number: CRD42024532304ResultsStudy selection reported a total of 785 records, resulting in 484 articles after duplicate removal. After the title and abstract screening, 433 papers were excluded and 51 articles were evaluated for eligibility. Therefore, 21 studies were included, involving a total of 806 subjects: 10 ESWT, 1 Cryotherapy, 2 Cryo + ultrasound, 3 diathermy, 1 NMES, 1 TENS, 2 Laser therapy, 1 combined procedure.ConclusionsThe systematic review indicated potential effectiveness of PAMs in managing and reducing pain in sport-related injuries. Taken together, our findings suggested a positive role of ESWT in term of pain relief, also considering that these PAMs are the most used in these subjects. However, the high heterogeneity of the results could not consent to define the specific effect of the single PAMs.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, Catanzaro, Italy
| | - Nicola Marotta
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, Catanzaro, Italy
- Physical Medicine and Rehabilitation Unit, Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emanuele Prestifilippo
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Andrea Parente
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Lorenzo Lippi
- Department of Scientific Research, Campus LUdeS, Off-Campus Semmelweis University of Budapest, Budapest, 1085, Hungary
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Umile Giuseppe Longo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, Catanzaro, Italy
| |
Collapse
|
4
|
Najm A, Bîrcă AC, Niculescu AG, Alberts A, Grumezescu AM, Gălățeanu B, Vasile BȘ, Beuran M, Gaspar BS, Hudiță A. Dipalmitoylphosphatidylcholine Lipid Vesicles for Delivering HMB, NMN, and L-Leucine in Sarcopenia Therapy. Molecules 2025; 30:1437. [PMID: 40286039 PMCID: PMC11990474 DOI: 10.3390/molecules30071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Sarcopenia, characterized by the degeneration of skeletal muscle tissue, has emerged as a significant concern in recent years. This increased awareness stems from advances in research focusing on elderly patients, which have revealed correlations between aging mechanisms and muscle degeneration, beyond the mere fact that tissues age and deteriorate over time. Consequently, the present study aims to address sarcopenia by developing and evaluating DPPC lipid vesicles that encapsulate three distinct drugs: HMB, NMN, and L-Leucine. These drugs are specifically selected for their properties, which facilitate effective interaction with the affected muscle tissue, thereby promoting desired therapeutic effects. Preliminary physicochemical analyses indicate the successful formation of spherical lipid vesicles, characterized by nanometric dimensions and stable membrane integrity. The biological investigations aimed to highlight the potential of DPPC lipid vesicles encapsulating HMB, NMN, and L-Leucine to alleviate sarcopenia-induced cytotoxicity and oxidative stress. Through a comparative evaluation of the three drug formulations, we demonstrate that drug-loaded DPPC vesicles effectively mitigate oxidative damage, preserve mitochondrial function, and maintain cytoskeletal integrity in H2O2-induced C2C12 myotubes, with HMB-loaded vesicles showing the strongest protective effects against muscle degeneration. These findings underscore the therapeutic potential of DPPC-based controlled release systems for sarcopenia treatment and highlight the need for further investigations into their mechanistic role in muscle preservation.
Collapse
Affiliation(s)
- Alfred Najm
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (A.A.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floreasca, Sector 1, 014461 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (B.G.); (A.H.)
| | - Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (A.A.); (M.B.); (B.S.G.)
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (B.G.); (A.H.)
| | - Bianca Gălățeanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (B.G.); (A.H.)
- Faculty of Biology, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.)
| | - Mircea Beuran
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (A.A.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floreasca, Sector 1, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (A.A.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floreasca, Sector 1, 014461 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (B.G.); (A.H.)
- Faculty of Biology, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
5
|
Ahokas EK, Hanstock HG, Kyröläinen H, Ihalainen JK. Effects of repeated use of post-exercise infrared sauna on neuromuscular performance and muscle hypertrophy. Front Sports Act Living 2025; 7:1462901. [PMID: 40104529 PMCID: PMC11913669 DOI: 10.3389/fspor.2025.1462901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose The aim of this study was to investigate whether regular use of infrared sauna (IRS) after training can promote neuromuscular performance and positive changes in body composition during a 6-week training period. Methods Forty female team sport athletes were pair-matched into two groups: IRS (n = 20) and control (CON; n = 20). Physical performance tests, body composition and hypertrophy measurements (dual-energy x-ray absorptiometry and ultrasound of m. vastus lateralis) were performed PRE and POST a 6-week strength and power training period, involving 2-3 sessions per week. Performance tests included a 20 m sprint, squat jump (SJ), countermovement jumps with body weight (CMJ) as well as with 15, 25, and 50% additional load (CMJ15%, CMJ25%, and CMJ50%), and a maximal isometric leg press (MVC). Participants in the IRS-group used IRS (10 min, 50℃) after training three times per week. Results Training improved neuromuscular performance and muscle hypertrophy in both groups (p < 0.05). Following the discovery of an interaction effect for CMJ15% height (p = 0.002) and peak power (p = 0.010), post hoc tests revealed higher jump height POST-IRS (p = 0.006) and PRE-CON (p = 0.023) compared to PRE-IRS, and higher peak power POST-IRS (p = 0.002) compared to PRE-IRS. Furthermore, an interaction effect was observed for 5 m split time of the 20 m sprint (p = 0.020), but no differences were found between groups and timepoints. There were no interactions for the hypertrophy measures. Conclusion Incorporating post-exercise IRS bathing does not significantly impact hypertrophy gains, but might boost long-term power production capabilities.
Collapse
Affiliation(s)
- Essi K Ahokas
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna K Ihalainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| |
Collapse
|
6
|
Cowper G, Goodall S, Hicks KM, Burnie L, Fox K, Duffy D, Briggs MA. The influence of passive heating garments worn in temperate and cold conditions prior to simulated performance for male soccer substitutes. Physiol Rep 2025; 13:e70189. [PMID: 39985142 PMCID: PMC11845320 DOI: 10.14814/phy2.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/16/2024] [Accepted: 12/23/2024] [Indexed: 02/24/2025] Open
Abstract
Lengthy periods of inactivity are experienced by substitutes during a soccer match, which can decrease muscle temperature, ultimately impacting performance. This study aimed to determine the effects of using a passive heat intervention in both a cold (2°C) and thermoneutral (18°C) environment on simulated soccer performance and perceptual responses. On four occasions, 14 trained male players, completed a pre-match warm-up, followed by 45 min of rest. After, players completed a half-time re-warm-up, followed by an additional 15 min of rest, simulating 60 min as a substitute. During these periods, players wore tracksuit bottoms (CON), or heated trousers (HEAT), over soccer attire. Once 60 min concluded, participants performed a Soccer Match Simulation (SMS) to assess physical performance. HEAT improved 15 m sprint performance in 2°C (2.8%; p < 0.001) and 18°C (2.6%; p < 0.001) conditions. Further, in HEAT, a significant trial and time effect on countermovement jump height and repeated sprint performance was observed in both 2 and 18°C. Upon match entry, participants felt warmer (p < 0.01), more comfortable (p < 0.01), and felt an increase in match readiness following HEAT, during both conditions. Applying heated garments before match entry for soccer substitutes positively impacts physical performance and match readiness in thermoneutral and cold environments.
Collapse
Affiliation(s)
- Gavin Cowper
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
| | - Stuart Goodall
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Kirsty M. Hicks
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
- Performance, Medical and Innovation Department, Washington Spirit Soccer ClubWashingtonDCUSA
| | - Louise Burnie
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
| | - Kai Fox
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
| | - David Duffy
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
| | - Marc A. Briggs
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle Upon TyneUK
| |
Collapse
|
7
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2025; 125:277-301. [PMID: 39607529 PMCID: PMC11829912 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
8
|
Linhares D, da Silva GCPSM, Meireles AS, Linhares BG, Dos Santos LL, de Souza Cordeiro L, Borba-Pinheiro CJ, de Souza Vale RG. Self-Esteem and Body Image in Older Women Practicing Taekwondo with Low Bone Density: A Randomized Clinical Trial. Curr Aging Sci 2025; 18:73-79. [PMID: 38910271 DOI: 10.2174/0118746098308597240527114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Physical exercise can take on a multivariate form, including combat sports, specifically Taekwondo, a Korean sport characterized by strikes involving the hands and feet. This sport has been gaining popularity worldwide in recent years and is being practiced by diverse populations, including the older women. OBJECTIVE This study aimed to investigate the effects of Taekwondo training on self-esteem and body image in older women with low bone mineral density (BMD). METHODS This is an experimental research with a two-group design, where assessments were conducted pre- and post during a 12-week intervention period. The sample consisted of 27 inexperienced older women in taekwondo practice, aged between 60 and 70 years, randomly distributed into the experimental group (n=14) and Control Group (n=13). BMD, self-esteem, and body image were assessed. For the evaluation of self-esteem, the Rosenberg Self-Esteem Scale (RSES) was utilized. For the evaluation of body images, the body image questionnaire was administered. RESULTS The results showed that the practice of taekwondo improved (p<0.001) body image in the variables, including physical condition, body skills, and health, while the variable appearance showed no difference (p=0.581). CONCLUSION The results of this experimental study indicate an improvement in the self-esteem and body image of older individuals practicing Taekwondo.
Collapse
Affiliation(s)
- Diego Linhares
- IEFD, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Bruno Gama Linhares
- Department of Physical Education and Sport, Porto University, Porto, Portugal
| | | | | | | | | |
Collapse
|
9
|
Trybulski R, Żebrowska A, Bichowska-Pawęska M, Kużdżał A, Ryszkiel I, Silva RM, Muracki J, Kawczyński A. The Effects of Combined Contrast Heat Cold Pressure Therapy on Post-Exercise Muscle Recovery in MMA Fighters: A Randomized Controlled Trial. J Hum Kinet 2024; 94:127-146. [PMID: 39563772 PMCID: PMC11571465 DOI: 10.5114/jhk/190220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 11/21/2024] Open
Abstract
The purpose of this study was to evaluate the effects of contrast heat and cold pressure therapy (CHCP) on muscle tone, elasticity, stiffness, perfusion unit, and muscle fatigue indices after plyometric training consisting of five sets of jumping on a 50-cm high box until exhaustion. A prospective, randomized, controlled single-blind study design was used. Twenty professional MMA fighters were included in the study. The experimental group (n = 10) was subjected to the CHCP protocol (eGR), while the control group (cGR) (n = 10) was subjected to sham therapy. Both protocols consisted of three CHCP sessions performed immediately after plyometric exercise, 24 and 48 h afterwards. Measurements were taken at the following time points: 1) at rest; 2) 1 min post-exercise; 3) 1 min post-CHCP therapy; 4) 24 h post-CHCP therapy; 5) 48 h post-CHCP therapy. The results of the eGR compared to the cGR showed significantly higher perfusion at time point 5 (p < 0.001), higher muscle tone at time points 1, and 3-5 (p < 0.001 for all), higher stiffness at time points 1, 3-5 (p < 0.001 for all) and a higher pain threshold at time points 1 and 5 (p < 0.001 for all). This study suggests a positive effect of CHCP therapy on muscle biomechanics, the pain threshold, and tissue perfusion, which may contribute to increasing the effectiveness of post-exercise muscle recovery in MMA athletes.
Collapse
Affiliation(s)
- Robert Trybulski
- Medical Department Wojciech Korfanty, Upper Silesian Academy, Katowice, Poland
- Provita Żory Medical Center, Żory, Poland
| | - Aleksandra Żebrowska
- Department of Physiological and Medical Sciences, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Marta Bichowska-Pawęska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Adrian Kużdżał
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, Rzeszów, Poland
| | - Ireneusz Ryszkiel
- Department of Descriptive and Topographic Anatomy, Medical University of Silesia, Katowice, Poland
| | - Rui Miguel Silva
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), Melgaço, Portugal
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Adam Kawczyński
- Department of Paralympics Sports, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Horgan BG, West NP, Tee N, Halson SL, Drinkwater EJ, Chapman DW, Haff GG. Effect of repeated post-resistance exercise cold or hot water immersion on in-season inflammatory responses in academy rugby players: a randomised controlled cross-over design. Eur J Appl Physiol 2024; 124:2615-2628. [PMID: 38613679 PMCID: PMC11365841 DOI: 10.1007/s00421-024-05424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/25/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Uncertainty exists if post-resistance exercise hydrotherapy attenuates chronic inflammatory and hormone responses. The effects of repeated post-resistance exercise water immersion on inflammatory and hormone responses in athletes were investigated. METHODS Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week programme divided into 3 × 4-week blocks of post-resistance exercise water immersion (either, no immersion control [CON]; cold [CWI]; or hot [HWI] water immersion), utilising a randomised cross-over pre-post design. Fasted, morning blood measures were collected prior to commencement of first intervention block, and every fourth week thereafter. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS Repeated CWI (p = 0.025, g = 0.05) and HWI (p < 0.001, g = 0.62) reduced creatine kinase (CK), compared to CON. HWI decreased (p = 0.013, g = 0.59) interleukin (IL)-1ra, compared to CON. HWI increased (p < 0.001-0.026, g = 0.06-0.17) growth factors (PDGF-BB, IGF-1), compared to CON and CWI. CWI increased (p = 0.004, g = 0.46) heat shock protein-72 (HSP-72), compared to HWI. CONCLUSION Post-resistance exercise CWI or HWI resulted in trivial and moderate reductions in CK, respectively, which may be partly due to hydrostatic effects of water immersion. Post-resistance exercise HWI moderately decreased IL-1ra, which may be associated with post-resistance exercise skeletal muscle inflammation influencing chronic resistance exercise adaptive responses. Following post-resistance exercise water immersion, CWI increased HSP-72 suggesting a thermoregulatory response indicating improved adaptive inflammatory responses to temperature changes, while HWI increased growth factors (PDGF-BB, IGF-1) indicating different systematic signalling pathway activation. Our data supports the continued use of post-resistance exercise water immersion recovery strategies of any temperature during in-season competition phases for improved inflammatory adaptive responses in athletes.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia.
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia.
- Brumbies Rugby, Bruce, ACT, Australia.
| | - Nicholas P West
- School of Medical Science, Menzies Health Institute QLD, Griffith University, Gold coast, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Shona L Halson
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale W Chapman
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Curtin University, Bentley, WA, 6102, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Directorate of Psychology and Sport, University of Salford, Greater Manchester, Salford, UK
| |
Collapse
|
11
|
Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides - a randomized controlled trial. Front Nutr 2024; 11:1384112. [PMID: 38590831 PMCID: PMC10999617 DOI: 10.3389/fnut.2024.1384112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Collagen peptide supplementation in conjunction with exercise has been shown to improve structural and functional adaptations of both muscles and the extracellular matrix. This study aimed to explore whether specific collagen peptide (SCP) supplementation combined with a concurrent training intervention can improve muscular stress after exercise-induced muscle damage, verified by reliable blood markers. Methods 55 sedentary to moderately active males participating in a concurrent training (CT) intervention (3x/week) for 12 weeks were administered either 15 g of SCP or placebo (PLA) daily. Before (T1) and after the intervention (T2), 150 muscle-damaging drop jumps were performed. Blood samples were collected to measure creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin (MYO) and high-sensitivity C-reactive protein (hsCRP) before, after, and at 2 h, 24 h and 48 h post exercise. Results A combination of concurrent training and SCP administration showed statistically significant interaction effects, implying a lower increase in the area under the curve (AUC) of MYO (p = 0.004, ηp2 = 0.184), CK (p = 0.01, ηp2 = 0.145) and LDH (p = 0.016, ηp2 = 0.133) in the SCP group. On closer examination, the absolute mean differences (ΔAUCs) showed statistical significance in MYO (p = 0.017, d = 0.771), CK (p = 0.039, d = 0.633) and LDH (p = 0.016, d = 0.764) by SCP supplementation. Conclusion In conclusion, 12 weeks of 15 g SCP supplementation combined with CT intervention reduced acute markers of exercise-induced muscle damage and improved post-exercise regenerative capacity, as evidenced by the altered post-exercise time course. The current findings indicate that SCP supplementation had a positive effect on the early phase of muscular recovery by either improving the structural integrity of the muscle and extracellular matrix during the training period or by accelerating membrane and cytoskeletal protein repair. Clinical trial registration https://www.clinicaltrials.gov/study/NCT05220371?cond=NCT05220371&rank=1, NCT05220371.
Collapse
Affiliation(s)
- Kevin Bischof
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Larissa Bundschuh
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| | | | - Arnold Baca
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Daniel König
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Faculty of Life Sciences, Department for Nutrition, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Treigyte V, Chaillou T, Eimantas N, Venckunas T, Brazaitis M. Passive heating-induced changes in muscle contractile function are not further augmented by prolonged exposure in young males experiencing moderate thermal stress. Front Physiol 2024; 15:1356488. [PMID: 38476145 PMCID: PMC10928533 DOI: 10.3389/fphys.2024.1356488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Background: We investigated the impact of 1) passive heating (PH) induced by single and intermittent/prolonged hot-water immersion (HWI) and 2) the duration of PH, on muscle contractile function under the unfatigued state, and during the development of muscle fatigue. Methods: Twelve young males volunteered for this study consisting of two phases: single phase (SP) followed by intermittent/prolonged phase (IPP), with both phases including two conditions (i.e., four trials in total) performed randomly: control passive sitting (CON) and HWI (44-45°C; water up to the waist level). SP-HWI included one continuous 45-min bath (from 15 to 60 min). IPP-HWI included an initial 45-min bath (from 15 to 60 min) followed by eight additional 15-min baths interspaced with 15-min breaks at room temperature between 75 and 300 min. Intramuscular (Tmu; measured in the vastus lateralis muscle) and rectal (Trec) temperatures were determined. Neuromuscular testing (performed in the knee extensors and flexors) was performed at baseline and 60 min later during SP, and at baseline, 60, 90, 150 and 300 min after baseline during IPP. A fatiguing protocol (100 electrical stimulations of the knee extensors) was performed after the last neuromuscular testing of each trial. Results: HWI increased Tmu and Trec to 38°C-38.5°C (p < 0.05) during both SP and IPP. Under the unfatigued state, HWI did not affect electrically induced torques at 20 Hz (P20) and 100 Hz (P100). However, it induced a shift towards a faster contractile profile during both SP and IPP, as evidenced by a decreased P20/P100 ratio (p < 0.05) and an improved muscle relaxation (i.e., reduced half-relaxation time and increased rate of torque relaxation; p < 0.05). Despite a reduced voluntary activation (i.e., -2.63% ± 4.19% after SP-HWI and -5.73% ± 4.31% after IPP-HWI; condition effect: p < 0.001), HWI did not impair maximal isokinetic and isometric contraction torques. During the fatiguing protocol, fatigue index and the changes in muscle contractile properties were larger after HWI than CON conditions (p < 0.05). Finally, none of these parameters were significantly affected by the heating duration. Conclusion: PH induces changes in muscle contractile function which are not augmented by prolonged exposure when thermal stress is moderate.
Collapse
Affiliation(s)
- Viktorija Treigyte
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Nerijus Eimantas
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Sports Science and Innovation Institute, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
13
|
Yoshihara T, Dobashi S, Naito H. Effects of preconditioning with heat stress on acute exercise-induced intracellular signaling in male rat gastrocnemius muscle. Physiol Rep 2024; 12:e15913. [PMID: 38185480 PMCID: PMC10771927 DOI: 10.14814/phy2.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.
Collapse
Affiliation(s)
| | - Shohei Dobashi
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
- Institute of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Hisashi Naito
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
| |
Collapse
|
14
|
Yoshihara T, Dobashi S, Naito H. Pre-heating stress associated with acute oral leucine supplementation effects in rat gastrocnemius muscle: Implications for protein synthesis signaling pathways. J Therm Biol 2024; 119:103801. [PMID: 38310810 DOI: 10.1016/j.jtherbio.2024.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Skeletal muscle is a highly plastic tissue. The role of heat shock protein 72 (Hsp72) in heat stress-induced skeletal muscle hypertrophy has been well demonstrated; however, the precise mechanisms remain unclear. Essential amino acids, such as leucine, mainly mediate muscle protein synthesis. We investigated the effects of pre-heating and increased Hsp72 expression on the mechanistic target of rapamycin (mTOR) signaling and protein synthesis following leucine administration in rat gastrocnemius muscle. To ensure increased Hsp72 expression in both the red and white portions of the muscle, one leg of male Wistar rats (10-week-old, n = 23) was heat-stressed in 43 °C water for 30 min twice at a 48-h-interval (heat-stressed leg, HS leg). The contralateral leg served as a non-heated internal control (CT leg). After the recovery period (48 h), rats were divided into the pre-administration or oral leucine administration groups. We harvested the gastrocnemius muscle (red and white parts) prior to administration and 30 and 90 min after leucine treatment (n = 7-8 per group) and intramuscular signaling responses to leucine ingestion were determined using western blotting. Heat stress significantly upregulated the expression of Hsp72 and was not altered by leucine administration. Although the phosphorylation levels of mTOR/S6K1 and ERK were similar regardless of heating, 4E-BP1 was less phosphorylated in the HS legs than the CT legs after leucine administration in the red portion of the muscles (P < 0.05). Moreover, c-Myc expression differed significantly after leucine administration in both the red and white portions of the muscles. Our findings indicate that following oral leucine administration, pre-heating partially blunted the muscle protein synthesis signaling response in the rat gastrocnemius muscle.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Shohei Dobashi
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| |
Collapse
|
15
|
Zhang Z, Wang R, Xue H, Knoedler S, Geng Y, Liao Y, Alfertshofer M, Panayi AC, Ming J, Mi B, Liu G. Phototherapy techniques for the management of musculoskeletal disorders: strategies and recent advances. Biomater Res 2023; 27:123. [PMID: 38017585 PMCID: PMC10685661 DOI: 10.1186/s40824-023-00458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
Musculoskeletal disorders (MSDs), which include a range of pathologies affecting bones, cartilage, muscles, tendons, and ligaments, account for a significant portion of the global burden of disease. While pharmaceutical and surgical interventions represent conventional approaches for treating MSDs, their efficacy is constrained and frequently accompanied by adverse reactions. Considering the rising incidence of MSDs, there is an urgent demand for effective treatment modalities to alter the current landscape. Phototherapy, as a controllable and non-invasive technique, has been shown to directly regulate bone, cartilage, and muscle regeneration by modulating cellular behavior. Moreover, phototherapy presents controlled ablation of tumor cells, bacteria, and aberrantly activated inflammatory cells, demonstrating therapeutic potential in conditions such as bone tumors, bone infection, and arthritis. By constructing light-responsive nanosystems, controlled drug delivery can be achieved to enable precise treatment of MSDs. Notably, various phototherapy nanoplatforms with integrated imaging capabilities have been utilized for early diagnosis, guided therapy, and prognostic assessment of MSDs, further improving the management of these disorders. This review provides a comprehensive overview of the strategies and recent advances in the application of phototherapy for the treatment of MSDs, discusses the challenges and prospects of phototherapy, and aims to promote further research and application of phototherapy techniques.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Rhine, Germany
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
16
|
Silva G, Goethel M, Machado L, Sousa F, Costa MJ, Magalhães P, Silva C, Midão M, Leite A, Couto S, Silva R, Vilas-Boas JP, Fernandes RJ. Acute Recovery after a Fatigue Protocol Using a Recovery Sports Legging: An Experimental Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:7634. [PMID: 37688089 PMCID: PMC10490679 DOI: 10.3390/s23177634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Enhancing recovery is a fundamental component of high-performance sports training since it enables practitioners to potentiate physical performance and minimise the risk of injuries. Using a new sports legging embedded with an intelligent system for electrostimulation, localised heating and compression (completely embodied into the textile structures), we aimed to analyse acute recovery following a fatigue protocol. Surface electromyography- and torque-related variables were recorded on eight recreational athletes. A fatigue protocol conducted in an isokinetic dynamometer allowed us to examine isometric torque and consequent post-exercise acute recovery after using the sports legging. Regarding peak torque, no differences were found between post-fatigue and post-recovery assessments in any variable; however, pre-fatigue registered a 16% greater peak torque when compared with post-fatigue for localised heating and compression recovery methods. Our data are supported by recent meta-analyses indicating that individual recovery methods, such as localised heating, electrostimulation and compression, are not effective to recover from a fatiguing exercise. In fact, none of the recovery methods available through the sports legging tested was effective in acutely recovering the torque values produced isometrically.
Collapse
Affiliation(s)
- Gonçalo Silva
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Márcio Goethel
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Leandro Machado
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Filipa Sousa
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Mário Jorge Costa
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Pedro Magalhães
- Tintex Textiles S.A., 4924-909 Viana do Castelo, Portugal; (P.M.); (C.S.)
| | - Carlos Silva
- Tintex Textiles S.A., 4924-909 Viana do Castelo, Portugal; (P.M.); (C.S.)
| | - Marta Midão
- Centre of Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal
| | - André Leite
- Centre of Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal
| | | | | | - João Paulo Vilas-Boas
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Ricardo Jorge Fernandes
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
17
|
Jackman JS, Bell PG, Van Someren K, Gondek MB, Hills FA, Wilson LJ, Cockburn E. Effect of hot water immersion on acute physiological responses following resistance exercise. Front Physiol 2023; 14:1213733. [PMID: 37476688 PMCID: PMC10354234 DOI: 10.3389/fphys.2023.1213733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose: Hot water immersion (HWI) is a strategy theorised to enhance exercise recovery. However, the acute physiological responses to HWI following resistance exercise are yet to be determined. Methods: The effect of HWI on intramuscular temperature (IMT), muscle function, muscle soreness and blood markers of muscle cell disruption and inflammatory processes after resistance exercise was assessed. Sixteen resistance trained males performed resistance exercise, followed by either 10 min HWI at 40°C or 10 min passive recovery (PAS). Results: Post-intervention, the increase in IMT at all depths was greater for HWI compared to PAS, however this difference had disappeared by 1 h post at depths of 1 and 2 cm, and by 2 h post at a depth of 3 cm. There were no differences between groups for muscle function, muscle soreness or any blood markers. Conclusion: These results suggest that HWI is a viable means of heat therapy to support a greater IMT following resistance exercise. Recovery of muscle function and muscle soreness is independent of acute changes in IMT associated with HWI.
Collapse
Affiliation(s)
- Joshua S. Jackman
- London Sport Institute, Middlesex University, London, United Kingdom
- Art Health Solutions, Newcastle, United Kingdom
| | - Phillip G. Bell
- Art Health Solutions, Newcastle, United Kingdom
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| | - Ken Van Someren
- Sports Lab Northwest, Atlantic Technological University, Donegal, Ireland
| | - Marcela B. Gondek
- Biomarker Research Group, Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Frank A. Hills
- Biomarker Research Group, Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Laura J. Wilson
- London Sport Institute, Middlesex University, London, United Kingdom
| | - Emma Cockburn
- London Sport Institute, Middlesex University, London, United Kingdom
- School of Biomedical Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
18
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The independent effects of local heat application on muscle growth program associated mRNA and protein phosphorylation. J Therm Biol 2023; 115:103602. [PMID: 37331320 PMCID: PMC10528064 DOI: 10.1016/j.jtherbio.2023.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/20/2023]
Abstract
The development and maintenance of skeletal muscle is crucial for the support of daily function. Recent evidence suggests that genes coded for proteins associated with the human muscle growth program (myogenic and proteolytic genes) are sensitive to local heat application. Therefore, the purpose of this investigation was to determine the effect of 4 h of local heat application to the vastus lateralis at rest on acute phosphorylation (mTORSer2448, p70-S6K1Thr389, and 4E-BP1Thr47/36) and gene expression changes for proteins associated with the muscle growth program. Intramuscular temperature of the HOT limb was 1.2 ± 0.2 °C higher than CON limb after 4 h of local heating. However, this local heat stimulus did not influence transcription of genes associated with myogenesis (MSTN, p = 0.321; MYF5, p = 0.445; MYF6, p = 0.895; MEF2a, p = 0.809; MYO-G, p = 0.766; MYO-D1, p = 0.118; RPS3, p = 0.321; and RPL-3L, p = 0.577), proteolysis (Atrogin-1, p = 0.573; FOXO3a, p = 0.452; MURF-1, p = 0.284), nor protein phosphorylation (mTORSer2448, p = 0.981; P70-S6K1Thr389, p = 0.583; 4E-BP1Thr37/46, p = 0.238) associated with the muscle growth program. These findings suggest little to no association between the local application of heat, at rest, and the activation of the observed muscle growth program-related markers.
Collapse
Affiliation(s)
- Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Alejandro M Rosales
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT, 59812, USA
| | - Christopher W Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Dustin R Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA; School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
19
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
20
|
Solsona R, Méline T, Borrani F, Deriaz R, Lacroix J, Normand-Gravier T, Candau R, Racinais S, Sanchez AM. Active recovery vs hot- or cold-water immersion for repeated sprint ability after a strenuous exercise training session in elite skaters. J Sports Sci 2023; 41:1126-1135. [PMID: 37722830 DOI: 10.1080/02640414.2023.2259267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
This study compared the acute effects of three recovery methods: active recovery (AR), hot- and cold-water immersion (HWI and CWI, respectively), used between two training sessions in elite athletes. Twelve national-team skaters (7 males, 5 females) completed three trials according to a randomized cross-over study. Fifteen minutes after an exhaustive ice-skating training session, participants underwent 20 min of HWI (41.1 ± 0.5°C), 15 min of CWI (12.1 ± 0.7°C) or 15 min of active recovery (AR). After 1 h 30 min of the first exercise, they performed a repeated-sprint cycling session. Average power output was slightly but significantly higher for AR (767 ± 179 W) and HWI (766 ± 170 W) compared to CWI (738 ± 156 W) (p = 0.026, d = 0.18). No statistical difference was observed between the conditions for both lactatemia and rating of perceived exertion. Furthermore, no significant effect of recovery was observed on the fatigue index calculated from the repeated sprint cycling exercises (p > 0.05). Finally, a positive correlation was found between the average muscle temperature measured during the recoveries and the maximal power output obtained during cycling exercises. In conclusion, the use of CWI in between high-intensity training sessions could slightly impair the performance outcomes compared to AR and HWI. However, studies with larger samples are needed to confirm these results, especially in less trained athletes.
Collapse
Affiliation(s)
- Robert Solsona
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
| | - Thibaut Méline
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
- University of Montpellier, Faculty of Sports Sciences, INRAE, Dynamique Musculaire et Métabolisme (DMEM), Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roméo Deriaz
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
| | - Jérôme Lacroix
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
- Service de médecine du sport, Centre Hospitalier Perpignan, Perpignan, France
| | - Tom Normand-Gravier
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
- University of Montpellier, Faculty of Sports Sciences, INRAE, Dynamique Musculaire et Métabolisme (DMEM), Montpellier, France
| | - Robin Candau
- University of Montpellier, Faculty of Sports Sciences, INRAE, Dynamique Musculaire et Métabolisme (DMEM), Montpellier, France
| | | | - Anthony Mj Sanchez
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
| |
Collapse
|
21
|
Horgan BG, Tee N, West NP, Drinkwater EJ, Halson SL, Colomer CME, Fonda CJ, Tatham J, Chapman DW, Haff GG. Acute Performance, Daily Well-Being, and Hormone Responses to Water Immersion After Resistance Exercise in Junior International and Subelite Male Volleyball Athletes. J Strength Cond Res 2023:00124278-990000000-00243. [PMID: 37043600 DOI: 10.1519/jsc.0000000000004428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
ABSTRACT Horgan, BG, Tee, N, West, NP, Drinkwater, EJ, Halson, SL, Colomer, CME, Fonda, CJ, Tatham, J, Chapman, DW, and Haff, GG. Acute performance, daily well-being and hormone responses to water immersion after resistance exercise in junior international and subelite male volleyball athletes. J Strength Cond Res XX(X): 000-000, 2023-Athletes use postexercise hydrotherapy strategies to improve recovery and competition performance and to enhance adaptative responses to training. Using a randomized cross-over design, the acute effects of 3 postresistance exercise water immersion strategies on perceived recovery, neuromuscular performance, and hormone concentrations in junior international and subelite male volleyball athletes (n = 18) were investigated. After resistance exercise, subjects randomly completed either 15-minute passive control (CON), contrast water therapy (CWT), cold (CWI), or hot water immersion (HWI) interventions. A treatment effect occurred after HWI; reducing perceptions of fatigue (HWI > CWT: p = 0.05, g = 0.43); improved sleep quality, compared with CON (p < 0.001, g = 1.15), CWI (p = 0.017, g = 0.70), and CWT (p = 0.018, g = 0.51); as well as increasing testosterone concentration (HWI > CWT: p = 0.038, g = 0.24). There were trivial to small (p < 0.001-0.039, g = 0.02-0.34) improvements (treatment effect) in jump performance (i.e., squat jump and countermovement jump) after all water immersion strategies, as compared with CON, with high variability in the individual responses. There were no significant differences (interaction effect, p > 0.05) observed between the water immersion intervention strategies and CON in performance (p = 0.153-0.99), hormone (p = 0.207-0.938), nor perceptual (p = 0.368-0.955) measures. To optimize recovery and performance responses, e.g., during an in-season competition phase, postresistance exercise HWI may assist with providing small-to-large improvements for up to 38 hours in perceived recovery (i.e., increased sleep quality and reduced fatigue) and increases in circulating testosterone concentration. Practitioners should consider individual athlete neuromuscular performance responses when prescribing postexercise hydrotherapy. These findings apply to athletes who aim to improve their recovery status, where postresistance exercise HWI optimizes sleep quality and next-day perceptions of fatigue.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Brumbies Rugby, Bruce, Australian Capital Territory, Australia
| | - Nicolin Tee
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
- Australian Catholic University, Watson, Australian Capital Territory, Australia
| | - Nicholas P West
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Center for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Shona L Halson
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
- Australian Catholic University, McAuley at Banyo, Queensland, Australia
| | - Carmen M E Colomer
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| | - Christopher J Fonda
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| | - James Tatham
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
- Volleyball Australia, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| | - Dale W Chapman
- Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin University, Perth, Western Australia, Australia; and
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Directorate of Psychology and Sport, University of Salford, Salford, Greater Manchester, United Kingdom
| |
Collapse
|
22
|
No effect of repeated post-resistance exercise cold or hot water immersion on in-season body composition and performance responses in academy rugby players: a randomised controlled cross-over design. Eur J Appl Physiol 2023; 123:351-359. [PMID: 36284024 PMCID: PMC9895015 DOI: 10.1007/s00421-022-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Following resistance exercise, uncertainty exists as to whether the regular application of cold water immersion attenuates lean muscle mass increases in athletes. The effects of repeated post-resistance exercise cold versus hot water immersion on body composition and neuromuscular jump performance responses in athletes were investigated. METHODS Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week (4-week × 3-intervention, i.e., control [CON], cold [CWI] or hot [HWI] water immersion) resistance exercise programme, utilising a randomised cross-over pre-post-design. Body composition measures were collected using dual-energy X-ray absorptiometry prior to commencement and every fourth week thereafter. Neuromuscular squat (SJ) and counter-movement jump (CMJ) performance were measured weekly. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS There were no changes in lean (p = 0.960) nor fat mass (p = 0.801) between interventions. CON (p = 0.004) and CWI (p = 0.003) increased (g = 0.08-0.19) SJ height, compared to HWI. There were no changes in CMJ height (p = 0.482) between interventions. CONCLUSION Repeated post-resistance exercise whole-body CWI or HWI does not attenuate (nor promote) increases in lean muscle mass in athletes. Post-resistance exercise CON or CWI results in trivial increases in SJ height, compared to HWI. During an in-season competition phase, our data support the continued use of post-resistance exercise whole-body CWI by athletes as a recovery strategy which does not attenuate body composition increases in lean muscle mass, while promoting trivial increases in neuromuscular concentric-only squat jump performance.
Collapse
|
23
|
Horgan BG, West NP, Tee N, Drinkwater EJ, Halson SL, Vider J, Fonda CJ, Haff GG, Chapman DW. Acute Inflammatory, Anthropometric, and Perceptual (Muscle Soreness) Effects of Postresistance Exercise Water Immersion in Junior International and Subelite Male Volleyball Athletes. J Strength Cond Res 2022; 36:3473-3484. [PMID: 34537801 DOI: 10.1519/jsc.0000000000004122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Horgan, BG, West, NP, Tee, N, Drinkwater, EJ, Halson, SL, Vider, J, Fonda, CJ, Haff, GG, and Chapman, DW. Acute inflammatory, anthropometric, and perceptual (muscle soreness) effects of postresistance exercise water immersion in junior international and subelite male volleyball athletes. J Strength Cond Res 36(12): 3473-3484, 2022-Athletes use water immersion strategies to recover from training and competition. This study investigated the acute effects of postexercise water immersion after resistance exercise. Eighteen elite and subelite male volleyball athletes participated in an intervention using a randomized cross-over design. On separate occasions after resistance exercise, subjects completed 1 of 4 15-minute interventions: control (CON), cold water immersion (CWI), contrast water therapy (CWT), or hot water immersion (HWI). Significance was accepted at p ≤ 0.05. Resistance exercise induced significant temporal changes (time effect) for inflammatory, anthropometric, perceptual, and performance measures. Serum creatine kinase was reduced ( g = 0.02-0.30) after CWI ( p = 0.007), CWT ( p = 0.006), or HWI ( p < 0.001) vs. CON, whereas it increased significantly ( g = 0.50) after CWI vs. HWI. Contrast water therapy resulted in significantly higher ( g = 0.56) interleukin-6 concentrations vs. HWI. Thigh girth increased ( g = 0.06-0.16) after CWI vs. CON ( p = 0.013) and HWI ( p < 0.001) and between CWT vs. HWI ( p = 0.050). Similarly, calf girth increased ( g = 0.01-0.12) after CWI vs. CON ( p = 0.039) and CWT ( p = 0.018), and HWI vs. CON ( p = 0.041) and CWT ( p = 0.018). Subject belief in a postexercise intervention strategy was associated with HSP72 ("believer">"nonbeliever," p = 0.026), muscle soreness ("believer">"nonbeliever," p = 0.002), and interleukin-4 ("nonbeliever">"believer," p = 0.002). There were no significant treatment × time (interaction effect) pairwise comparisons. Choice of postexercise water immersion strategy (i.e., cold, contrast, or hot) combined with a belief in the efficacy of that strategy to enhance recovery or performance improves biological and perceptual markers of muscle damage and soreness. On same or subsequent days where resistance exercise bouts are performed, practitioners should consider athlete beliefs when prescribing postexercise water immersion, to reduce muscle soreness.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport, Bruce, ACT, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Brumbies Rugby, Bruce, ACT, Australia
| | - Nicholas P West
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport, Bruce, ACT, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Center for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Shona L Halson
- Australian Institute of Sport, Bruce, ACT, Australia.,Australian Catholic University, McAuley at Banyo, Brisbane, Queensland, Australia
| | - Jelena Vider
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | | | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Directorate of Psychology and Sport, University of Salford, Salford, Greater Manchester, United Kingdom; and
| | - Dale W Chapman
- Australian Institute of Sport, Bruce, ACT, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,New South Wales Institute of Sport, Sydney Olympic Park, New South Wales, Australia
| |
Collapse
|
24
|
Chaillou T, Treigyte V, Mosely S, Brazaitis M, Venckunas T, Cheng AJ. Functional Impact of Post-exercise Cooling and Heating on Recovery and Training Adaptations: Application to Resistance, Endurance, and Sprint Exercise. SPORTS MEDICINE - OPEN 2022; 8:37. [PMID: 35254558 PMCID: PMC8901468 DOI: 10.1186/s40798-022-00428-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
The application of post-exercise cooling (e.g., cold water immersion) and post-exercise heating has become a popular intervention which is assumed to increase functional recovery and may improve chronic training adaptations. However, the effectiveness of such post-exercise temperature manipulations remains uncertain. The aim of this comprehensive review was to analyze the effects of post-exercise cooling and post-exercise heating on neuromuscular function (maximal strength and power), fatigue resistance, exercise performance, and training adaptations. We focused on three exercise types (resistance, endurance and sprint exercises) and included studies investigating (1) the early recovery phase, (2) the late recovery phase, and (3) repeated application of the treatment. We identified that the primary benefit of cooling was in the early recovery phase (< 1 h post-exercise) in improving fatigue resistance in hot ambient conditions following endurance exercise and possibly enhancing the recovery of maximal strength following resistance exercise. The primary negative impact of cooling was with chronic exposure which impaired strength adaptations and decreased fatigue resistance following resistance training intervention (12 weeks and 4–12 weeks, respectively). In the early recovery phase, cooling could also impair sprint performance following sprint exercise and could possibly reduce neuromuscular function immediately after endurance exercise. Generally, no benefits of acute cooling were observed during the 24–72-h recovery period following resistance and endurance exercises, while it could have some benefits on the recovery of neuromuscular function during the 24–48-h recovery period following sprint exercise. Most studies indicated that chronic cooling does not affect endurance training adaptations following 4–6 week training intervention. We identified limited data employing heating as a recovery intervention, but some indications suggest promise in its application to endurance and sprint exercise.
Collapse
|
25
|
Mikšiūnas R, Labeit S, Bironaitė D. The Effect of Heat Shock on Myogenic Differentiation of Human Skeletal-Muscle-Derived Mesenchymal Stem/Stromal Cells. Cells 2022; 11:3209. [PMID: 36291076 PMCID: PMC9600296 DOI: 10.3390/cells11203209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/18/2023] Open
Abstract
Muscle injuries, degenerative diseases and other lesions negatively affect functioning of human skeletomuscular system and thus quality of life. Therefore, the investigation of molecular mechanisms, stimulating myogenic differentiation of primary skeletal-muscle-derived mesenchymal stem/stromal cells (SM-MSCs), is actual and needed. The aim of the present study was to investigate the myogenic differentiation of CD56 (neural cell adhesion molecule, NCAM)-positive and -negative SM-MSCs and their response to the non-cytotoxic heat stimulus. The SM-MSCs were isolated from the post operation muscle tissue, sorted by flow cytometer according to the CD56 biomarker and morphology, surface profile, proliferation and myogenic differentiation has been investigated. Data show that CD56(+) cells were smaller in size, better proliferated and had significantly higher levels of CD146 (MCAM) and CD318 (CDCP1) compared with the CD56(-) cells. At control level, CD56(+) cells significantly more expressed myogenic differentiation markers MYOD1 and myogenin (MYOG) and better differentiated to the myogenic direction. The non-cytotoxic heat stimulus significantly stronger stimulated expression of myogenic markers in CD56(+) than in CD56(-) cells that correlated with the multinucleated cell formation. Data show that regenerative properties of CD56(+) SM-MSCs can be stimulated by an extracellular stimulus and be used as a promising skeletal muscle regenerating tool in vivo.
Collapse
Affiliation(s)
- Rokas Mikšiūnas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08460 Vilnius, Lithuania
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Daiva Bironaitė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08460 Vilnius, Lithuania
| |
Collapse
|
26
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
27
|
Bartolomé I, Toro-Román V, Siquier-Coll J, Muñoz D, Robles-Gil MC, Maynar-Mariño M. Acute Effect of Exposure to Extreme Heat (100 ± 3 °C) on Lower Limb Maximal Resistance Strength. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710934. [PMID: 36078656 PMCID: PMC9517895 DOI: 10.3390/ijerph191710934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 05/06/2023]
Abstract
The aim of this study was to evaluate the acute effect of a single dry sauna bath lasting twelve minutes on the indirect determination of the one maximum repetition (1RM) leg press among trained and untrained participants. Thirty young men participated in the study, a trained group (TG; n = 15; age: 20.97 ± 0.44 years) and an untrained group (UG; n = 15; age: 21.03 ± 0.11 years). Subjects in the TG had performed resistance training for at least two years before the beginning of the experiment. All participants performed two indirect tests of their one maximum repetition leg press on two different days, with a rest period of three weeks between tests. Additionally, anthropometric, body composition, blood pressure, body temperature, and rated perceived exertion were evaluated. On the second testing day, all of the participants took a dry sauna bath lasting 12 min immediately before performing the leg press test. In the second evaluation (pre-heating in the sauna), the UG experienced increases in absolute RM (178.48 ± 56.66 to 217.60 ± 59.18 kg; p < 0.05; R = 0.798), relative RM (2.65 ± 0.61 to 3.24 ± 0.58 kg·g body mass-1; p < 0.05; R = 0.798), and muscular RM (5.64 ± 1.20 to 6.77 ± 1.14 kg·kg muscle mass-1; p < 0.05; R = 0.797). The TG also increased their values on the second day in absolute RM (284.96 ± 62.41 to 314.92 ± 1.04 kg; p < 0.01; R = 0.886), in relative RM (3.61 ± 0.88 to 3.99 ± 1.85 kg*kg body mass-1; p < 0.01; R = 0.886), and muscular RM (7.83 ± 1.69 to 8.69 ± 1.85 kg·kg muscle mass-1; p < 0.01; R = 0.854). A passive, extreme-heat sauna bath lasting 12 min taken immediately before a relative maximum repetition test seems to provoke clear positive responses for the development of strength.
Collapse
Affiliation(s)
- Ignacio Bartolomé
- Faculty of Health Sciences, University Isabel I, 09003 Burgos, Spain
| | - Víctor Toro-Román
- School of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain
- Correspondence: ; Tel.: +34-927-257-460 (ext. 57833)
| | - Jesús Siquier-Coll
- SER Research Group, Center of Higher Education Alberta Giménez (Affiliated to Comillas Pontifical University), 07011 Palma de Mallorca, Spain
| | - Diego Muñoz
- School of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain
| | - María C. Robles-Gil
- School of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain
| | - Marcos Maynar-Mariño
- School of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain
| |
Collapse
|
28
|
Fennel ZJ, Amorim FT, Deyhle MR, Hafen PS, Mermier CM. The Heat Shock Connection: Skeletal Muscle Hypertrophy and Atrophy. Am J Physiol Regul Integr Comp Physiol 2022; 323:R133-R148. [PMID: 35536704 DOI: 10.1152/ajpregu.00048.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is an integral tissue system that plays a crucial role in the physical function of all vertebrates and is a key target for maintaining or improving health and performance across the lifespan. Based largely on cellular and animal models, there is some evidence that various forms of heat stress with or without resistance exercise may enhance skeletal muscle growth or reduce its loss. It is not clear whether these stimuli are similarly effective in humans or meaningful in comparison to exercise alone across various heating methodologies. Furthermore, the magnitude by which heat stress may influence whole body thermoregulatory responses and the connection to skeletal muscle adaptation remains ambiguous. Finally, the underlying mechanisms, which may include interaction between relevant heat shock proteins and intracellular hypertrophy and atrophy related factors, remain unclear. In this narrative mini-review we examine the relevant literature regarding heat stress alone or in combination with resistance exercise emphasizing skeletal muscle hypertrophy and atrophy across cellular and animal models, as well as human investigations. Additionally, we present working mechanistic theories for heat shock protein mediated signaling effects regarding hypertrophy and atrophy related signaling processes. Importantly, continued research is necessary to determine the practical effects and mechanisms of heat stress with and without resistance exercise on skeletal muscle function via growth and maintenance.
Collapse
Affiliation(s)
| | | | | | - Paul Samuel Hafen
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States.,Indiana University School of Medicine Department of Anatomy, Cell Biology, and Physiology; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States
| | | |
Collapse
|
29
|
Bi J, Jing H, Zhou C, Gao P, Han F, Li G, Zhang S. Regulation of skeletal myogenesis in C2C12 cells through modulation of Pax7, MyoD, and myogenin via different low-frequency electromagnetic field energies. Technol Health Care 2022; 30:371-382. [PMID: 35124612 PMCID: PMC9028610 DOI: 10.3233/thc-thc228034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: A low-frequency electromagnetic field (LF-EMF) exerts important biological effects on the human body. OBJECTIVE: We previously studied the immunity and atrophy of gastrocnemius muscles in rats with spinal cord injuries and found that LF-EMF with a magnetic flux density of 1.5 mT exerted excellent therapeutic and preventive effects on reducing myotubes and increasing spatium intermusculare. However, the effects of LF-EMF on all stages of skeletal myogenesis, such as activation, proliferation, differentiation, and fusion of satellite cells to myotubes as stimulated by myogenic regulatoryfactors (MRFs), have not been fully elucidated. METHODS: This study investigated the optimal LF-EMF magnetic flux density that exerted maximal effects on all stages of C2C12 cell skeletal myogenesis as well as its impact on regulatory MRFs. RESULTS: The results showed that an LF-EMF with a magnetic flux density of 2.0 mT could activate C2C12 cells and upregulate the proliferation-promoting transcription factor PAX7. On the other hand, 1.5 mT EMF could upregulate the expression of MyoD and myogenin. CONCLUSION: LF-EMF could prevent the disappearance of myotubes, with different magnetic flux densities of LF-EMF exerting independent and positive effects on skeletal myogenesis such as satellite cell activation and proliferation, muscle cell differentiation, and myocyte fusion.
Collapse
Affiliation(s)
- Jiaqi Bi
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
- Emergency Department, SongBei Hospital of The Fourth Hospital Affiliated of Harbin Medical University, Harbin, Heilongjiang, China
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
| | - Hong Jing
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
| | - ChenLiang Zhou
- Emergency Department, SongBei Hospital of The Fourth Hospital Affiliated of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Gao
- The First Department of General Surgery, Harbin Children’s Hospital, Harbin, Heilongjiang, China
| | - Fujun Han
- Emergency Department, SongBei Hospital of The Fourth Hospital Affiliated of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Li
- The Second Department of Orthopedics, The First Hospital of Yichun, Yichun, Heilongjiang, China
| | - Shiwei Zhang
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Odabasi E, Turan M. The importance of body core temperature evaluation in balneotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:25-33. [PMID: 34623501 DOI: 10.1007/s00484-021-02201-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is not wrong to say that there are no application standards or best practices in balneotherapy considering traditional applications. There is not enough information about how changes in body temperature, duration, and frequency of exposure to heat affect therapeutic outcomes of balneotherapeutic applications. Body core temperature (BCT) is probably the best parameter for expressing the heat load of the body and can be used to describe the causal relationship between heat exposure and its effects. There are several reasons to take BCT changes into account; for example, it can be used for individualized treatment planning, defining the consequences of thermal effects, developing disease-specific approaches, avoiding adverse effects, and designing clinical trials. The reasons why BCT changes should be considered instead of conventional measures will be discussed while explaining the effects of balneotherapy in this article, along with a discussion of BCT measurement in balneotherapy practice.
Collapse
Affiliation(s)
- Ersin Odabasi
- Department of Medical Ecology and Hydroclimatology, Gulhane Faculty of Medicine, University of Health Science, Gulhane EAH, 06018, Etlik, Ankara, Turkey.
| | - Mustafa Turan
- Department of Medical Education and Informatics, TOBB Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
31
|
Sabapathy M, Tan F, Al Hussein S, Jaafar H, Brocherie F, Racinais S, Ihsan M. Effect of heat pre-conditioning on recovery following exercise-induced muscle damage. Curr Res Physiol 2021; 4:155-162. [PMID: 34746835 PMCID: PMC8562196 DOI: 10.1016/j.crphys.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2022] Open
Abstract
This study investigated the influence of heat pre-conditioning on the recovery of muscle torque, microvascular function, movement economy and stride mechanics following exercise-induced muscle damage (EIMD). Twenty male participants were equally assigned to a control (CON) and an experimental group (HEAT), and performed a 30-min downhill run (DHR) to elicit EIMD. HEAT group received three consecutive days of heat exposure (45.1 ± 3.2 min of hot water immersion at 42 °C) prior to DHR. Microvascular function (near-infrared spectroscopy), maximal voluntary contraction (MVC) torque of the knee extensors, as well as two treadmill-based steady-state runs performed below (SSR-1) and above (SSR-2) the first ventilatory threshold were assessed prior to DHR and repeated for four consecutive days post-DHR (D1-POST to D4-POST). The decline in MVC torque following EIMD was attenuated in HEAT compared with CON at D1-POST (p = 0.037), D3-POST (p = 0.002) and D4-POST (p = 0.022). Muscle soreness increased in both CON and HEAT, but was significantly attenuated in HEAT compared with CON at D2-POST (p = 0.024) and D3-POST (p = 0.013). Microvascular function decreased in CON from D1-POST to D3-POST (p = 0.009 to 0.018), and was lower compared with HEAT throughout D1-POST to D3-POST (p = 0.003 to 0.017). Pre-heat treatment decreased the magnitude of strength loss and muscle soreness, as well as attenuated the decline in microvascular function following EIMD. Heat treatment appears a promising pre-conditioning strategy when embarking on intensified training periods or competition. Three days of heat pre-conditioning decreases the extent of strength loss, soreness and microvascular function after EIMD. Pre heat treatment might be a promising preconditioning tool prior to intensified training periods or competition. Heat tretament may positively impact activities of daily living, training quality and adherence to training programs.
Collapse
Affiliation(s)
- Murali Sabapathy
- Sport Physiology, Sport Science and Medicine, Singapore Sport Institute, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Frankie Tan
- Sport Physiology, Sport Science and Medicine, Singapore Sport Institute, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Shadiq Al Hussein
- Sport Physiology, Sport Science and Medicine, Singapore Sport Institute, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Haiyum Jaafar
- Football Science and Medicine, Football Association of Singapore, Republic of Singapore
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Sebastien Racinais
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Mohammed Ihsan
- Sport Physiology, Sport Science and Medicine, Singapore Sport Institute, Republic of Singapore
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
- Corresponding author. Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore. 10 Medical Drive, 117597, Singapore.
| |
Collapse
|
32
|
BI JIAQI, JING HONG, ZHOU CHENLIANG, GAO PENG, HAN FUJUN, LI GANG, SHI DONGFANG. EFFECT OF LOW-FREQUENCY ELECTROMAGNETICS (LFE) ON MUSCLE SATELLITE CELLS DIFFERENTIATION AND IMMUNE SYSTEM IN RAT. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) is a severe neurological disease. Although surgery within 8[Formula: see text]h after SCI can substantially reduce paraplegia, most patients still suffer from hypomusculariasis after neuron recovery, which results in insufficient lower limb muscles to support bodyweight. Currently, there is no effective method to prevent muscle atrophy. Previous studies have shown that low-frequency electromagnetics (LFE) can stimulate the differentiation, proliferation and fusion of muscle satellite cells, however, the optimal electromagnetic strength and effects on the immune system have not been established. Here, we investigated the influence of LFE at different electromagnetic strengths on muscle cell recovery and assessed the impact of chronic LFE on the immune system of SCI rats. The rat immune system was rapidly activated after SCI. High-energy LFE provoked intensive immune responses, while low-energy LFE did not affect immune responses. Simultaneously, LFE effectively prevented myotube reduction and atrophy in SCI rats. The mRNA and protein levels of Pax7 and MyoD were increased after LFE at both high and low electromagnetic strengths, with the latter leading to more robust increases. Indeed, LFE remarkably induced muscle cell fusion. Together, our results demonstrated that LFE activates muscle satellite cells via stimulating myogenic factors. Chronic low-energy LFE is a safe therapy with no adverse impact on the immune system of SCI rats. LFE with 1.5 mT energy should be considered as an optimal therapeutic strategy.
Collapse
Affiliation(s)
- JIAQI BI
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, P. R. China
- Harbin Children’s Hospital, Harbin 150010, Heilongjiang, P. R. China
| | - HONG JING
- Harbin Children’s Hospital, Harbin 150010, Heilongjiang, P. R. China
| | - CHENLIANG ZHOU
- Emergency Department, SongBei Hospital of The Fourth Hospital, Affiliated of Harbin Medical University, Harbin 150021, Heilongjiang, P. R. China
| | - PENG GAO
- The First Department of General Surgery, Harbin Children’s Hospital, Harbin 150010, Heilongjiang, P. R. China
| | - FUJUN HAN
- Emergency Department, SongBei Hospital of The Fourth Hospital, Affiliated of Harbin Medical University, Harbin 150021, Heilongjiang, P. R. China
| | - GANG LI
- The Second Department of Orthopedics, The First Hospital of Yichun Yichun, 153000, Heilongjiang, P. R. China
| | - DONGFANG SHI
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang, P. R. China
| |
Collapse
|
33
|
Thorpe RT. Post-exercise Recovery: Cooling and Heating, a Periodized Approach. Front Sports Act Living 2021; 3:707503. [PMID: 34541521 PMCID: PMC8440788 DOI: 10.3389/fspor.2021.707503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
- Robin T Thorpe
- Football Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
34
|
Indirect Structural Muscle Injuries of Lower Limb: Rehabilitation and Therapeutic Exercise. J Funct Morphol Kinesiol 2021; 6:jfmk6030075. [PMID: 34564194 PMCID: PMC8482242 DOI: 10.3390/jfmk6030075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle injuries are the most common trauma in team and individual sports. The muscles most frequently affected are those of the lower limb, and in particular hamstrings, adductors, rectus femoris and calf muscles. Although several scientific studies have tried to propose different rehabilitation protocols, still too often the real rehabilitation process is not based on scientific knowledge, especially in non-elite athletes. Moreover, the growing use of physical and instrumental therapies has made it increasingly difficult to understand what can be truly effective. Therefore, the aim of the present paper is to review proposed therapeutic algorithms for muscle injuries, proposing a concise and practical summary. Following a three-phase rehabilitation protocol, this review aims to describe the conservative treatment of indirect structural muscle injuries, which are the more routinely found and more challenging type. For each phase, until return to training and return to sport are completed, the functional goal, the most appropriate practitioner, and the best possible treatment according to current evidence are expressed. Finally, the last section is focused on the specific exercise rehabilitation for the four main muscle groups with a structured explanatory timetable.
Collapse
|
35
|
Bartolomé I, Siquier-Coll J, Pérez-Quintero M, Robles-Gil MC, Grijota FJ, Muñoz D, Maynar-Mariño M. 3-Week passive acclimation to extreme environmental heat (100± 3 °C) in dry sauna increases physical and physiological performance among young semi-professional football players. J Therm Biol 2021; 100:103048. [PMID: 34503795 DOI: 10.1016/j.jtherbio.2021.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
This manuscript aims to evaluate the influence of a novel passive heat acclimation program among human participants in the physical performance, as well as in several physiological parameters. 36 male football players were acclimated using a dry sauna bath to extreme hot (100 ± 3 °C), performing a total of nine sauna sessions with a weekly frequency of three sessions. The players were randomly into the sauna group (SG; n = 18; age: 20.69 ± 2.09 years) and the control group (CG; n = 18; age: 20.23 ± 1.98 years). All participants performed maximal effort test until exhaustion as well as hamstring flexibility test before and after the acclimation program. Anthropometric, respiratory, circulatory, hematological and physiological variables were evaluated at the beginning and at the end of the survey. Statistical analysis consisted of a Mann-Whitney U test to determine differences between groups at the beginning and at the end of the survey and a Wilcoxon test for paired samples to compare the differences for each group separately. Additionally, size effects of the pre-post acclimation changes were calculated. After the acclimation program SG participants experienced a diminution in body weight (p < 0.01), body mass index (p < 0.01), body fat (p < 0.05) and fat percentage (p < 0.05) decreased. Hamstring flexibility (p < 0.05) and work capacity (p < 0.05) increased. External basal temperature decreased (p < 0.05) as well as post-exercise systolic and diastolic blood pressures (p < 0.05). Finally, maximal oxygen uptake (ml Kg-1 min-1) (p < 0.05), maximal minute ventilation (p < 0.05) and maximal breath frequency (p < 0.05) increased at the end of the intervention. There were no significant changes in the CG in any variable. Favorable adaptations have been observed in this survey, suggesting a beneficial effect of extreme heat acclimation on physical performance. Several of the observed responses seem interesting for sport performance and health promotion as well. However, this is a novel, extreme protocol which requires further research.
Collapse
Affiliation(s)
- I Bartolomé
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - J Siquier-Coll
- Movement, Brain and Health Research Group (MOBhE), Center of Higher Education Alberta Giménez (Comillas Pontifical University), Palma de Mallorca, Balearic Islands, Spain.
| | - M Pérez-Quintero
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - M C Robles-Gil
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - F J Grijota
- Faculty of Language and Education, University of Nebrija, Campus La Berzosa, Calle del Hostal, 28248, Hoyo de Manzanares, Madrid, Spain
| | - D Muñoz
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| | - M Maynar-Mariño
- Sport Sciences Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003, Cáceres, Spain
| |
Collapse
|
36
|
The Use of Recovery Strategies in Professional Soccer: A Worldwide Survey. Int J Sports Physiol Perform 2021; 16:1804-1815. [PMID: 34051698 DOI: 10.1123/ijspp.2020-0799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To survey soccer practitioners' recovery strategy: (1) use, (2) perceived effectiveness, and (3) factors influencing their implementation in professional soccer. METHODS A cross-sectional convenience sample of professional soccer club/confederation practitioners completed a web-based survey (April to July 2020). Pearson chi-square and Fisher exact tests with Cramer V (φ - c) assessed relationships and their strength, respectively, between the perceived effectiveness and frequency of strategy use. RESULTS A total of 80 soccer practitioners (13 countries) completed the survey. The 3 most important recovery objectives were "alleviating muscle damage/fatigue," "minimizing injury risk," and "performance optimization." The most frequently used strategies were active recovery, structured recovery day, extra rest day, massage, cold-water therapy, and carbohydrate provision (predominantly on match day and match day + 1). Relationships were identified between perceived effectiveness and frequency of strategy use for sleep medication (P < .001, φ - c = 0.48), carbohydrate provision (P = .007, φ - c = 0.60), protein provision (P = .007, φ - c = 0.63), an extra rest day (P < .001, φ - c = 0.56), and a structured recovery day (P = .049, φ - c = 0.50). CONCLUSIONS The study demonstrates that professional soccer practitioners have a range of objectives geared toward enhancing player recovery. A disconnect is apparent between the perceived effectiveness of many recovery strategies and their frequency of use in an applied setting. Novel data indicate that strategies are most frequently employed around match day. Challenges to strategy adoption are mainly competing disciplinary interests and resource limitations. Researchers and practitioners should liaise to ensure that the complexities involved with operating in an applied environment are elucidated and apposite study designs are adopted, in turn, facilitating the use of practically effective and compatible recovery modalities.
Collapse
|
37
|
Bartolomé I, Siquier-Coll J, Pérez-Quintero M, Robles-Gil MC, Muñoz D, Maynar-Mariño M. Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105240. [PMID: 34069110 PMCID: PMC8156655 DOI: 10.3390/ijerph18105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/04/2022]
Abstract
The aim of this study was to evaluate the acute and adaptive effects of passive extreme heat (100 ± 3 °C) exposition in combination with a strength training protocol on maximal isometric handgrip strength. Fifty-four untrained male university students participated in this investigation. Twenty-nine formed the control group (NG) and 25 the heat-exposed group (HG). All the participants performed a 3-week isotonic handgrip strength training program twice a week with a training volume of 10 series of 10 repetitions with 45-s rest between series, per session. All the subjects only trained their right hand, leaving their left hand untrained. HG performed the same training protocol in hot (100 ± 3 °C) conditions in a dry sauna. Maximal isometric handgrip strength was evaluated each training day before and after the session. NG participants did not experience any modifications in either hand by the end of the study while HG increased maximal strength values in both hands (p < 0.05), decreased the difference between hands (p < 0.05), and recorded higher values than the controls in the trained (p < 0.05) and untrained (p < 0.01) hands after the intervention period. These changes were not accompanied by any modification in body composition in either group. The performance of a unilateral isotonic handgrip strength program in hot conditions during the three weeks induced an increase in maximal isometric handgrip strength in both hands without modifications to bodyweight or absolute body composition.
Collapse
Affiliation(s)
- Ignacio Bartolomé
- Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (I.B.); (M.P.-Q.); (M.M.-M.)
| | - Jesús Siquier-Coll
- Movement, Brain and Health Research Group (MOBhE), Center of Higher Education Alberta Giménez, Comillas Pontifical University, 07013 Palma de Mallorca, Spain
- Correspondence:
| | - Mario Pérez-Quintero
- Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (I.B.); (M.P.-Q.); (M.M.-M.)
| | - María Concepción Robles-Gil
- Department of Didactics of Musical, Plastic and Corporal Expression, School of Teacher Training, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (D.M.)
| | - Diego Muñoz
- Department of Didactics of Musical, Plastic and Corporal Expression, School of Teacher Training, University of Extremadura, 10003 Cáceres, Spain; (M.C.R.-G.); (D.M.)
| | - Marcos Maynar-Mariño
- Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (I.B.); (M.P.-Q.); (M.M.-M.)
| |
Collapse
|
38
|
Postexercise Hot-Water Immersion Does Not Further Enhance Heat Adaptation or Performance in Endurance Athletes Training in a Hot Environment. Int J Sports Physiol Perform 2021; 16:480-488. [DOI: 10.1123/ijspp.2020-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022]
Abstract
Purpose: Hot-water immersion (HWI) after training in temperate conditions has been shown to induce thermophysiological adaptations and improve endurance performance in the heat; however, the potential additive effects of HWI and training in hot outdoor conditions remain unknown. Therefore, this study aimed to determine the effect of repeated postexercise HWI in athletes training in a hot environment. Methods: A total of 13 (9 female) elite/preelite racewalkers completed a 15-day training program in outdoor heat (mean afternoon high temperature = 34.6°C). Athletes were divided into 2 matched groups that completed either HWI (40°C for 30–40 min) or seated rest in 21°C (CON), following 8 training sessions. Pre–post testing included a 30-minute fixed-intensity walk in heat, laboratory incremental walk to exhaustion, and 10,000-m outdoor time trial. Results: Training frequency and volume were similar between groups (P = .54). Core temperature was significantly higher during immersion in HWI (38.5 [0.3]) than CON (37.8°C [0.2°C]; P < .001). There were no differences between groups in resting or exercise rectal temperature or heart rate, skin temperature, sweat rate, or the speed at lactate threshold 2, maximal O2 uptake, or 10,000-m performance (P > .05). There were significant (P < .05) pre–post differences for both groups in submaximal exercising heart rate (∼11 beats·min−1), sweat rate (0.34–0.55 L·h−1) and thermal comfort (1.2–1.5 arbitrary units), and 10,000-m racewalking performance time (∼3 min). Conclusions: Both groups demonstrated significant improvement in markers of heat adaptation and performance; however, the addition of HWI did not provide further enhancements. Improvements in adaptation appeared to be maximized by the training program in hot conditions.
Collapse
|
39
|
Hirunsai M, Srikuea R. Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sci 2021; 275:119352. [PMID: 33771521 DOI: 10.1016/j.lfs.2021.119352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
AIMS The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles. MAIN METHODS Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days). KEY FINDINGS Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined. SIGNIFICANCE Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand.
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
40
|
Influence of post-exercise hot-water therapy on adaptations to training over 4 weeks in elite short-track speed skaters. J Exerc Sci Fit 2021; 19:134-142. [PMID: 33603794 PMCID: PMC7859300 DOI: 10.1016/j.jesf.2021.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of regular hot water bathing (HWB), undertaken 10 min after the last training session of the day, on chronic adaptations to training in elite athletes. Six short-track (ST) speed skaters completed four weeks of post-training HWB and four weeks of post-training passive recovery (PR) according to a randomized cross-over study. During HWB, participants sat in a jacuzzi (40 °C; 20 min). According to linear mixed models, maximal isometric strength of knee extensor muscles was significantly increased for training with HWB (p < 0.0001; d = 0.41) and a tendency (p = 0.0529) was observed concerning V˙O2max. No significant effect of training with PR or HWB was observed for several variables (p > 0.05), including aerobic peak power output, the decline rate of jump height during 1 min-continuous maximal countermovement jumps (i.e. anaerobic capacity index), and the force-velocity relationship. Regarding specific tasks on ice, a small effect of training was found on both half-lap time and total time during a 1.5-lap all-out exercise (p = 0.0487; d = 0.23 and p = 0.0332; d = 0.21, respectively) but no additional effect of HWB was observed. In summary, the regular HWB protocol used in this study can induce additional effects on maximal isometric strength without compromising aerobic and anaerobic adaptations or field performance in these athletes.
Collapse
|
41
|
Wang Y, Li S, Zhang Y, Chen Y, Yan F, Han L, Ma Y. Heat and cold therapy reduce pain in patients with delayed onset muscle soreness: A systematic review and meta-analysis of 32 randomized controlled trials. Phys Ther Sport 2021; 48:177-187. [PMID: 33493991 DOI: 10.1016/j.ptsp.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this review and meta-analysis was to evaluate the effect of heat and cold therapy on the treatment of delayed onset muscle soreness (DOMS). METHODS We followed our protocol that was registered in PROSPERO with ID CRD42020170632. A systematic review and meta-analysis of randomized controlled trials (RCT) was conducted. Nine databases were searched up to December 2020. Data was extracted from the retained studies and underwent methodological quality assessment and meta-analysis. RESULTS A total of 32 RCTs involving 1098 patients were included. Meta-analysis showed that, the application of cold therapy within 1 h after exercise could reduce the pain of DOMS patients within 24 h (≤24 h) after exercise (SMD -0.57,95%CI -0.89 to -0.25, P = 0.0005) and had no obvious effect within more than 24 h (>24 h) (P = 0.05). In cold therapies, cold water immersion (SMD -0.48, 95%CI -0.84 to -0.13, P = 0.008) and other cold therapies (SMD -0.68, 95%CI -1.28 to -0.08, P = 0.03) had the significant effects within 24 h. Heat treatment could reduce the pain of patients. It had obvious effects on the pain within 24 h (SMD -1.17, 95%CI -2.62 to -0.09, P = 0.03) and over 24 h (SMD -0.82, 95%CI -1.38 to -0.26, P = 0.004). Hot pack effect was the most obvious, which reduced the pain within 24 h (SMD -2.31, 95%CI -4.33 to -0.29, P = 0.03) and over 24 h (SMD -1.78, 95%CI -2.97 to -0.59, P = 0.003). Other thermal therapies were not statistically significant (P > 0.05). Both cold and heat showed effect in reducing pain of patients, however there was no significant difference between cold and heat group (P = 0.16). CONCLUSIONS The current evidence indicated that the application of cold and heat therapy within 1 h after exercise could effectively reduce the pain degree of DOMS patients for 24 h cold water immersion and hot pack therapy, which had the best effect, could promote the recovery of DOMS patients. But more high-quality studies are needed to confirm whether cold or heat therapy work better.
Collapse
Affiliation(s)
- Yutan Wang
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China
| | - Sijun Li
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China
| | - Yuanyuan Zhang
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China
| | - Yanru Chen
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China
| | - Fanghong Yan
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China
| | - Lin Han
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China; Department of Nursing, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yuxia Ma
- Evidence-Based Nursing Center, School of Nursing of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
42
|
Sagarra-Romero L, Viñas-Barros A. COVID-19: Short and Long-Term Effects of Hospitalization on Muscular Weakness in the Elderly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8715. [PMID: 33255233 PMCID: PMC7727674 DOI: 10.3390/ijerph17238715] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has recently been the cause of a global public health emergency. Frequently, elderly patients experience a marked loss of muscle mass and strength during hospitalization, resulting in a significant functional decline. This paper describes the impact of prolonged immobilization and current pharmacological treatments on muscular metabolism. In addition, the scientific evidence for an early strength intervention, neuromuscular electrical stimulation or the application of heat therapy during hospitalization to help prevent COVID-19 functional sequels is analyzed. This review remarks the need to: (1) determine which potential pharmacological interventions have a negative impact on muscle quality and quantity; (2) define a feasible and reliable pharmacological protocol to achieve a balance between desired and undesired medication effects in the treatment of this novel disease; (3) implement practical strategies to reduce muscle weakness during bed rest hospitalization and (4) develop a specific, early and safe protocol-based care of functional interventions for older adults affected by COVID-19 during and after hospitalization.
Collapse
|
43
|
Muscle temperature kinetics and thermoregulatory responses to 42 °C hot-water immersion in healthy males and females. Eur J Appl Physiol 2020; 120:2611-2624. [DOI: 10.1007/s00421-020-04482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|
44
|
Effects of passive heating intervention on muscle hypertrophy and neuromuscular function: A preliminary systematic review with meta-analysis. J Therm Biol 2020; 93:102684. [PMID: 33077110 DOI: 10.1016/j.jtherbio.2020.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Passive heating has been therapeutically used to treat a range of health conditions. Further, this intervention presents as a potential exercise mimetic strategy showing acute and chronic effects on skeletal muscle adaptation and neuromuscular systems. This systematic review and meta-analysis aimed to synthesise the existing evidence on the effects of passive heating on muscle hypertrophy and neuromuscular function. Seven databases were searched (i.e., PubMed, Web of Science, Scopus, CINAHL, EMBASE, Cochrane, and SPORTDiscus) from 1937 to October 2019. Eligible studies included original papers using healthy animals or human samples (≥18 years; both sexes) that have used a control group or condition. Ten original articles were included in this review and four in the meta-analysis. The meta-analysis detected an increase in muscle mass in animal samples seven days after passive heating (I2 = 65%, P < 0.01). The systematic review showed preliminary evidence that repeated passive heating exposures may promote muscle hypertrophy in animals and humans. Moreover, augmented muscle strength (involuntary and voluntary) may be observed after long-term passive heating (animals and humans) and increases in corticospinal excitability in humans after a single passive heating session. Passive heating has shown some potential benefits for skeletal muscle mass gain and muscle force improvement. Therefore, it is plausible to suggest that passive heating might be a worthwhile alternative to be recommended as an exercise mimetic for those people who lack or are unable to complete sufficient exercise.
Collapse
|
45
|
Kim K, Monroe JC, Gavin TP, Roseguini BT. Local Heat Therapy to Accelerate Recovery After Exercise-Induced Muscle Damage. Exerc Sport Sci Rev 2020; 48:163-169. [PMID: 32658042 DOI: 10.1249/jes.0000000000000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prolonged impairment in muscle strength, power, and fatigue resistance after eccentric exercise has been ascribed to a plethora of mechanisms, including delayed muscle refueling and microvascular and mitochondrial dysfunction. This review explores the hypothesis that local heat therapy hastens functional recovery after strenuous eccentric exercise by facilitating glycogen resynthesis, reversing vascular derangements, augmenting mitochondrial function, and stimulating muscle protein synthesis.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | | | | | | |
Collapse
|
46
|
Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985) 2020; 129:353-365. [PMID: 32644914 DOI: 10.1152/japplphysiol.00322.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Kim K, Monroe JC, Gavin TP, Roseguini BT. Skeletal muscle adaptations to heat therapy. J Appl Physiol (1985) 2020; 128:1635-1642. [PMID: 32352340 DOI: 10.1152/japplphysiol.00061.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The therapeutic effects of heat have been harnessed for centuries to treat skeletal muscle disorders and other pathologies. However, the fundamental mechanisms underlying the well-documented clinical benefits associated with heat therapy (HT) remain poorly defined. Foundational studies in cultured skeletal muscle and endothelial cells, as well as in rodents, revealed that episodic exposure to heat stress activates a number of intracellular signaling networks and promotes skeletal muscle remodeling. Renewed interest in the physiology of HT in recent years has provided greater understanding of the signals and molecular players involved in the skeletal muscle adaptations to episodic exposures to HT. It is increasingly clear that heat stress promotes signaling mechanisms involved in angiogenesis, muscle hypertrophy, mitochondrial biogenesis, and glucose metabolism through not only elevations in tissue temperature but also other perturbations, including increased intramyocellular calcium and enhanced energy turnover. The few available translational studies seem to indicate that the earlier observations in rodents also apply to human skeletal muscle. Indeed, recent findings revealed that both local and whole-body HT may promote capillary growth, enhance mitochondrial content and function, improve insulin sensitivity and attenuate disuse-induced muscle wasting. This accumulating body of work implies that HT may be a practical treatment to combat skeletal abnormalities in individuals with chronic disease who are unwilling or cannot participate in traditional exercise-training regimens.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Jacob C Monroe
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
48
|
Fuchs CJ, Smeets JSJ, Senden JM, Zorenc AH, Goessens JPB, van Marken Lichtenbelt WD, Verdijk LB, van Loon LJC. Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males. J Appl Physiol (1985) 2020; 128:1012-1022. [PMID: 32191599 DOI: 10.1152/japplphysiol.00836.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to assess the impact of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates during recovery from a single bout of resistance-type exercise in healthy, young men. Twelve healthy, adult men (age: 23 ± 1 y) performed a single bout of resistance-type exercise followed by 20 min of water immersion of both legs. One leg was immersed in hot water [46°C: hot-water immersion (HWI)], while the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein with 45 g of carbohydrates. In addition, primed continuous L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5-h recovery period. Muscle temperature immediately after water immersion was higher in the HWI compared with the CON leg (37.5 ± 0.1 vs. 35.2 ± 0.2°C; P < 0.001). Incorporation of dietary protein-derived L-[1-13C]-phenylalanine into myofibrillar protein did not differ between the HWI and CON leg during the 5-h recovery period (0.025 ± 0.003 vs. 0.024 ± 0.002 MPE; P = 0.953). Postexercise myofibrillar protein synthesis rates did not differ between the HWI and CON leg based upon L-[1-13C]-leucine (0.050 ± 0.005 vs. 0.049 ± 0.002%/h; P = 0.815) and L-[ring-2H5]-phenylalanine (0.048 ± 0.002 vs. 0.047 ± 0.003%/h; P = 0.877), respectively. Hot-water immersion during recovery from resistance-type exercise does not increase the postprandial rise in myofibrillar protein synthesis rates. In addition, postexercise hot-water immersion does not increase the capacity of the muscle to incorporate dietary protein-derived amino acids in muscle tissue protein during subsequent recovery.NEW & NOTEWORTHY This is the first study to assess the effect of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates and the incorporation of dietary protein-derived amino acids into muscle protein. We observed that hot-water immersion during recovery from a single bout of resistance-type exercise does not further increase myofibrillar protein synthesis rates or augment the postprandial incorporation of dietary protein-derived amino acids in muscle throughout 5 h of postexercise recovery.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
49
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Casso AG, Brunt VE. Preventing endothelial cell-mediated muscle satellite cell dysfunction: a new hot topic? J Physiol 2019; 598:225-226. [PMID: 31816107 DOI: 10.1113/jp279117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Abigail G Casso
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|