1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Chen Y, Xie Y, Yu X. Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review. Front Med 2025:10.1007/s11684-025-1129-3. [PMID: 40347368 DOI: 10.1007/s11684-025-1129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/16/2024] [Indexed: 05/12/2025]
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut-bone axis and the gut-brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
Collapse
Affiliation(s)
- Yao Chen
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xie
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Internal medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ding H, Zhao X, Liu G, Wen H. Evaluation of causal links of gut microbiota and inflammatory cytokines with 10 fracture locations: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42353. [PMID: 40355229 PMCID: PMC12074065 DOI: 10.1097/md.0000000000042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Recent investigations have revealed an association of variations in gut microbiota (GM) composition and inflammatory cytokine (IC) levels with fracture risk; however, the causal relationship of GM or inflammatory factors with fracture risk remains unelucidated. The study utilized Mendelian randomization (MR) analyses, utilizing aggregated data from the genome-wide association study of GM, ICs, and 10 fracture locations. The primary aim was to examine the causal associations between GM, ICs, and 10 fracture locations. Furthermore, mediational analyses and multivariate MR were conducted to explore the potential mediating role of ICs in this relationship. MR analysis identified 35 positive and 53 negative causal associations between GM and 10 fracture locations. ICs showed 22 positive and 24 negative correlations with 10 fracture locations. However, after false discovery rate correction, most associations lost significance, leaving only 1 IC significant for foot fractures. Moreover, our findings suggest that the ICs may be act as a mediating factor in the pathway from GM to 10 fracture locations. GM and ICs exhibited a significant causal relationship with the 10 fracture locations; furthermore, ICs may function as mediators in the pathway from GM to fracture risk.
Collapse
Affiliation(s)
- Hong Ding
- Department of Physical Education and Arts, Bengbu Medical University, Bengbu, China
| | - Xiaojiang Zhao
- Department of Physical Education and Arts, Bengbu Medical University, Bengbu, China
| | - Guofeng Liu
- Basic Education Department, Shandong Labor Vocational and Technical College, Jinan, China
| | - Hebao Wen
- Department of Physical Education and Arts, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Fuggle N, Laslop A, Rizzoli R, Al-Daghri N, Alokail M, Balkowiec-Iskra E, Beaudart C, Bruyère O, Bemden ABV, Burlet N, Cavalier E, Cerreta F, Chandran M, Cherubini A, da Silva Rosa MMC, Conaghan P, Cortet B, Jentoft AC, Curtis EM, D'Amelio P, Dawson-Hughes B, Dennison EM, Hiligsmann M, Kaufman JM, Maggi S, Matijevic R, McCloskey E, Messina D, Pinto D, Yerro MCP, Radermecker RP, Rolland Y, Torre C, Veronese N, Kanis JA, Cooper C, Reginster JY, Harvey NC. Treatment of Osteoporosis and Osteoarthritis in the Oldest Old. Drugs 2025; 85:343-360. [PMID: 39969778 PMCID: PMC11891106 DOI: 10.1007/s40265-024-02138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 02/20/2025]
Abstract
Osteoporosis and osteoarthritis are key diseases of musculoskeletal ageing and are increasing in prevalence and burden with the progressively ageing population worldwide. These conditions are thus particularly common in 'the oldest old', and there are complexities of managing them within the context of extensive multimorbidity, physical and mental disability, and polypharmacy, the rates for all of which are high in this population. In this narrative review, we explore the epidemiology of osteoporosis and osteoarthritis in the oldest old before examining trials and real-world data relating to the pharmacological treatment of these diseases in older adults, including anti-resorptives and bone-forming agents in osteoporosis and symptomatic slow-acting drugs for osteoarthritis, paracetamol, and non-steroidal anti-inflammatory drugs in osteoarthritis, recognising that the oldest old are usually excluded from clinical trials. We then review the potential benefits of nutritional interventions and exercise therapy before highlighting the health economic benefits of interventions for osteoporosis and osteoarthritis. The high prevalence of risk factors for both disease and adverse events associated with treatment in the oldest old mean that careful attention must be paid to the potential benefits of intervention (including fracture risk reduction and improvements in osteoarthritis pain and function) versus the potential harms and adverse effects. Further direct evidence relating to such interventions is urgently needed from future research.
Collapse
Affiliation(s)
- Nicholas Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrea Laslop
- Scientific Office, Austrian Medicines and Medical Devices Agency, Vienna, Austria
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Majed Alokail
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ewa Balkowiec-Iskra
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Warsaw, Poland
| | - Charlotte Beaudart
- Clinical Pharmacology and Toxicology Research Unit, Department of Biomedical Sciences, Faculty of Medicine, NARILIS, University of Namur, Namur, Belgium
| | - Olivier Bruyère
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | | | - Nansa Burlet
- The European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, CHU de Liège, Liège, Belgium
| | | | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
- DUKE NUS Medical School, Singapore, Singapore
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Philip Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Bernard Cortet
- Department of Rheumatology, University of Lille, Lille, France
| | - Alfonso Cruz Jentoft
- Servicio de Geriatría. Hospital Universitario Ramón y Cajal (IRYIS), Madrid, Spain
| | - Elizabeth M Curtis
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
| | - Patrizia D'Amelio
- Department of Geriatrics and Geriatric Rehabilitation, Lausanne University Hospital, Lausanne, Switzerland
| | - Bess Dawson-Hughes
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
| | - Mickaël Hiligsmann
- Department of Health Services Research, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Radmila Matijevic
- Faculty of Medicine, Clinic for Orthopedic Surgery and Traumatology, Clinical Center of Vojvodina, University of Novi Sad, Novi Sad, Serbia
| | - Eugene McCloskey
- Division of Clinical Medicine, School of Medicine and Population Health, Centre for Integrated Research in Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
| | - Daniel Messina
- IRO Investigaciones Reumatologicas y Osteologicas SRL Collaborating Centre WHO, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pinto
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | | | - Régis Pierre Radermecker
- Department of Diabetes, Nutrition and Metabolic disorders, Clinical pharmacology, University of Liège, CHU de Liège, Liège, Belgium
| | - Yves Rolland
- IHU Health Age, CHU Toulouse, INSERM 1295, Toulouse, France
| | - Carla Torre
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Nicola Veronese
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
- Geriatric Unit, Department of Medicine, University of Palermo, 90127, Palermo, Italy
| | - John A Kanis
- Division of Clinical Medicine, School of Medicine and Population Health, Centre for Integrated Research in Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jean-Yves Reginster
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK.
| |
Collapse
|
5
|
Yin B, Yang M, Wang B, Zhang Y, Li N, Li Q, Li Y, Xian CJ, Li T, Zhai Y. Total flavonoids isolated from Eucommia ulmoides can alleviate bone loss and regulate intestinal microbiota in ovariectomized rats. Front Pharmacol 2025; 16:1513863. [PMID: 39989899 PMCID: PMC11842935 DOI: 10.3389/fphar.2025.1513863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Ethnopharmacological relevance Eucommia ulmoides, recognized as a traditional Chinese medicinal herb, can tonify liver and kidney and strengthen bones and muscles. Modern pharmacological research has proved that E. ulmoides could prohibit the occurrence of osteoporosis and arthritis. Aim To investigate the effect and action mechanism of total flavonoids isolated from the leaves of E. ulmoides (TFEL) on bone loss in ovariectomized (OVX) rats, and to study its effect on intestinal flora. Materials and methods The 3-month-old female rats were randomly divided into six groups: sham operation group, OVX model group, estradiol group, TFEL low (TFEL-L) (50), mid (-M) (100) and high (-H) (200 mg/kg/d) dose groups. After 13 weeks of treatment, the rats were sacrificed to measure bone turnover markers, related tissue biochemical indices, microstructure parameters, and osteoclastogenesis promotor RANKL and inhibitor OPG expression levels. Additionally, fecal samples were obtained for high-throughput sequencing to analyze the intestinal flora. Results Oral administration of TFEL for 13 weeks increased the serum level of bone formation marker PINP and decreased the level of bone resorption marker NTX-I. The femoral microstructure parameters of the TFEL-M and TFEL-H groups were significantly improved compared with the OVX group, which were also confirmed by H&E histological staining. High-throughput sequencing indicated that TFEL may regulate the composition of intestinal flora and intestinal microecology. Conclusion TFEL can prevent osteoporosis in OVX rats and has no toxic side effects. Meanwhile, TFEL can increase the diversity and improve the composition of intestinal flora in OVX rats.
Collapse
Affiliation(s)
- Baocang Yin
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Mingzhen Yang
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Bowen Wang
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Yun Zhang
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ningli Li
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Qin Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Yingying Li
- Osteoporosis Department, Luoyang Orthopedic-Traumatological Hospital, Luoyang, Henan, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tiejun Li
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuankun Zhai
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| |
Collapse
|
6
|
Al-Adham ISI, Agha ASAA, Al-Akayleh F, Al-Remawi M, Jaber N, Al Manasur M, Collier PJ. Prebiotics Beyond the Gut: Omics Insights, Artificial Intelligence, and Clinical Trials in Organ-Specific Applications. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10465-x. [PMID: 39878922 DOI: 10.1007/s12602-025-10465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications. Integrating these innovations with "omics" technologies enables precise microbial modulation, fostering personalized nutrition and precision therapies. This review examines organ-specific effects of prebiotics, highlights findings from clinical trials, and explores biotechnological innovations that enhance prebiotic efficacy, laying the groundwork for future personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Manar Al Manasur
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
7
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
8
|
Men D, Dai J, Lei Z, Tian L, Wang Z, Sheng J, Tian Y, Tao L. Preparation, characterization, stability and replenishing calcium ability of Moringa oleifera leaf peptide-calcium chelates. Food Res Int 2025; 200:115439. [PMID: 39779097 DOI: 10.1016/j.foodres.2024.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Calcium deficiency has garnered significant attention as a global public health issue. A new generation of calcium supplements, peptide-calcium chelates, is expected to increase in market value. In this study, we produced MORP (MW < 1 kDa) from Moringa oleifera leaf protein via enzymatic hydrolysis for chelation with Ca2+ to produce MORP-Ca. SEM, EDS, FTIR and FS characterized the structure of MORP-Ca. The results indicate alterations in both the appearance and internal structure of MORP following calcium chelation. The functional groups of N-H, C-H, C-N, -C = O, -COO-, C-O, and -OH in MORP are involved in chelating Ca2+ to form MORP-Ca. In addition, MORP-Ca exhibits poor stability in the stomach; however, it demonstrates high stability in the intestine and under various temperature conditions. The results of the cellular experiments demonstrated that MORP-Ca is an effective promoter of calcium transport and absorption. MORP-Ca effectively increased bone mineral density and improved bone formation in animal studies. In addition, MORP-Ca supplementation improved the gut microbiota imbalance in rats fed a calcium-deficient diet, resulting in an increase in Firmicutes and a decrease in Actinobacteria. Thus, there is a connection between altered gastrointestinal flora and calcium absorption. LC-MS/MS and molecular docking analyses identified ARNEGRDL, RELIIGDR, YTPDYETK, YYTPDYETK, and IKFEFPAVDTL as key peptide sequences for the calcium-supplementing role of MORP (MW < 1 kDa). These results establish a theoretical foundation for the use of MORP-Ca as a calcium supplement or functional food.
Collapse
Affiliation(s)
- Deying Men
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zhongyuan Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingyan Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
9
|
Turbić A, Vandenput L, Gandham A, Lorentzon M. Effects of Synbiotic Supplementation on Bone and Metabolic Health in Caucasian Postmenopausal Women: Rationale and Design of the OsteoPreP Trial. Nutrients 2024; 16:4219. [PMID: 39683612 DOI: 10.3390/nu16234219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Correction of decreased diversity of the gut microbiome, which is characteristic of menopause, by supplementation with a synbiotic may attenuate or prevent dysbiosis processes and preserve bone mass. We describe the rationale and design of the OsteoPreP trial aimed at evaluating the effects of 12 months of supplementation with a synbiotic on bone and metabolic health in postmenopausal Caucasian women. METHODS This is a randomized, double-blinded, placebo-controlled trial among 160 Caucasian, postmenopausal women with no current diagnosis of osteoporosis or supplementation with pro- or prebiotics, and no medical treatment affecting bone turnover. Dual-energy X-ray absorptiometry scans will be conducted at screening to confirm absence of osteoporosis. The primary outcome is the relative change (%) in total bone mineral density of the distal tibia at 12 months post-treatment between the active and placebo groups, as determined via high-resolution peripheral quantitative computed tomography. Secondary outcomes are the effects on immune system modulation and cognition, gut microbiota composition, and musculoskeletal and metabolic functions, with particular emphasis on blood glucose regulation. CONCLUSIONS The trial will inform on the efficacy and safety of a synbiotic containing both aerobic and anerobic bacterial strains and a prebiotic fiber on reduction in bone loss and on indices of blood glucose regulation. This trial may pave the way for an exciting field of translational research and be the underpinnings of the prevention strategy of osteoporosis and the management of metabolic dysfunction in postmenopausal women. The trial is registered with clinicaltrials.gov (NCT05348694).
Collapse
Affiliation(s)
- Alisa Turbić
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Liesbeth Vandenput
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Anoohya Gandham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, 43153 Mölndal, Sweden
| |
Collapse
|
10
|
Rizzoli R, Chevalley T. Nutrition and Osteoporosis Prevention. Curr Osteoporos Rep 2024; 22:515-522. [PMID: 39322861 PMCID: PMC11499541 DOI: 10.1007/s11914-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Osteoporosis affects 50% of women and 20% of men after the age of 50. Fractures are associated with significant morbidity, increased mortality and altered quality of life. Lifestyle measures for fragility fracture prevention include good nutrition including adequate protein and calcium intakes, vitamin D sufficiency, and regular weight bearing physical exercise. RECENT FINDINGS Dietary protein is one of the most important nutritional considerations as it affects bone mineral density, trabecular and cortical microstructure, and bone strength. When calcium intake is sufficient, higher dietary protein intake is associated with lower risk of fracture. Dairy products are a valuable source of calcium and high quality protein. Dairy product consumption, particularly fermented dairy products, are associated with a lower risk of hip fracture and vegan diets are associated with increased fracture risk. Other dietary factors associated with reduced fracture risk include at least 5 servings per day of fruits and vegetables, regular tea drinking, adherence to a Mediterranean diet and other dietary patterns which provide fibers, polyphenols and fermented dairy products. Such dietary patterns may confer health benefits through their effect on gut microbiota composition and/or function. A balanced diet including minerals, protein, fruits and vegetables is an important element in the prevention of osteoporosis and of fragility fracture.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Thierry Chevalley
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
11
|
Sevcikova A, Martiniakova M, Omelka R, Stevurkova V, Ciernikova S. The Link Between the Gut Microbiome and Bone Metastasis. Int J Mol Sci 2024; 25:12086. [PMID: 39596154 PMCID: PMC11593804 DOI: 10.3390/ijms252212086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiome is essential for regulating host metabolism, defending against pathogens, and shaping the host's immune system. Mounting evidence highlights that disruption in gut microbial communities significantly impacts cancer development and treatment. Moreover, tumor-associated microbiota, along with its metabolites and toxins, may contribute to cancer progression by promoting epithelial-to-mesenchymal transition, angiogenesis, and metastatic spread to distant organs. Bones, in particular, are common sites for metastasis due to a rich supply of growth and neovascularization factors and extensive blood flow, especially affecting patients with thyroid, prostate, breast, lung, and kidney cancers, where bone metastases severely reduce the quality of life. While the involvement of the gut microbiome in bone metastasis formation is still being explored, proposed mechanisms suggest that intestinal dysbiosis may alter the bone microenvironment via the gut-immune-bone axis, fostering a premetastatic niche and immunosuppressive milieu suitable for cancer cell colonization. Disruption in the delicate balance of bone modeling and remodeling may further create a favorable environment for metastatic growth. This review focuses on the link between beneficial or dysbiotic microbiome composition and bone homeostasis, as well as the role of the microbiome in bone metastasis development. It also provides an overview of clinical trials evaluating the impact of gut microbial community structure on bone parameters across various conditions or health-related issues. Dietary interventions and microbiota modulation via probiotics, prebiotics, and fecal microbiota transplantation help support bone health and might offer promising strategies for addressing bone-related complications in cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| |
Collapse
|
12
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Cao Y, Gao Y, Huang J. Perturbations in gut microbiota composition in osteoporosis: a systematic review and meta-analysis. J Bone Miner Metab 2024; 42:551-563. [PMID: 38864923 DOI: 10.1007/s00774-024-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Osteoporosis (OP) is a chronic bone metabolic disease, which causes a great social and economic burden. The gut microbiota (GM) has become a recent topic of interest in the role of many disease states. Changes in the GM are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial. We performed a mate-analysis to explore and compare the alterations of GM in OP patients. MATERIALS AND METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, CNKI, VIP, CBM, and Wanfang. In addition, we applied the Stata 17.0 software for data analysis. Bias controls were evaluated with the Newcastle-Ottawa scale (NOS), funnel plot analysis, and Egger's and Begg's tests. RESULTS This research ultimately considered 16 studies, which included the fecal GM data of 2340 people (664 with OP and 1676 healthy controls). The pooled estimate showed an increase of borderline significance on ACE index in patients with OP compared with control participants (SMD = 1.05; 95% CI 0.00-2.10; P = 0.05). There were no significant differences in Chao1, Shannon and Simpson indices. At the phylum level, no significant differences were observed between the OP patients and HCs in the overall analysis. At the genus level, the relative abundance of Blautia presented a decrease of borderline significance between OP and the control group (SMD = - 0.32, 95% CI - 0.65 to - 0.00, P = 0.05). CONCLUSION This systematic review and meta-analysis suggests that patients with OP may exhibit dysbiosis in their gut microbiota, characterized by a reduction in certain anti-inflammatory butyrate-producing bacteria and an enrichment of pro-inflammatory bacterial populations.
Collapse
Affiliation(s)
- Yun Cao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Gao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jiaqin Huang
- Department of Traditional Chinese Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Gvozdenović N, Šarac I, Ćorić A, Karan S, Nikolić S, Ždrale I, Milešević J. Impact of Vitamin D Status and Nutrition on the Occurrence of Long Bone Fractures Due to Falls in Elderly Subjects in the Vojvodina Region of Serbia. Nutrients 2024; 16:2702. [PMID: 39203838 PMCID: PMC11356805 DOI: 10.3390/nu16162702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bone fractures are a significant public health issue among elderly subjects. This study examines the impact of diet and vitamin D status on the risk of long bone fractures due to falls in elderly subjects in Vojvodina, Serbia. Conducted at the University Clinical Center of Vojvodina in autumn/winter 2022-2023, the study included 210 subjects >65 years: 105 (F: 80/M: 15) with long bone fractures due to falls and 105 (F: 80/M: 15) controls. Groups were similar regarding age and BMI. Dietary intakes (by two 24-h recalls) and serum vitamin D levels were analyzed. The fracture group had a significantly lower median daily vitamin D intake (1.4 μg/day vs. 5.8 μg/day), intake of calcium, energy, proteins, fats, fibers, dairy products, eggs, fish, edible fats/oils, and a higher intake of sweets (p < 0.001 for all). Serum vitamin D levels were significantly lower in the fracture group (40.0 nmol/L vs. 76.0 nmol/L, p < 0.001). Logistic regression identified serum vitamin D as the most important protective factor against fractures, and ROC curve analysis indicated that serum vitamin D levels > 50.5 nmol/L decreased fracture risk. Nutritional improvements (increased intake of vitamin D and protein sources such as fish, eggs, and dairy), increased sun exposure, and routine vitamin D supplementation during winter are advised.
Collapse
Affiliation(s)
- Nemanja Gvozdenović
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Ivana Šarac
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia;
| | - Andrijana Ćorić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
| | - Saša Karan
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Stanislava Nikolić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Center of Laboratory Medicine, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Isidora Ždrale
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
| | - Jelena Milešević
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia;
| |
Collapse
|
15
|
Dzavakwa NV, Chisenga M, McHugh G, Filteau S, Gregson CL, Kasonka L, Kranzer K, Mabuda HB, Mujuru H, Redzo N, Rowland-Jones S, Schaible UE, Simms V, Ferrand RA. Update: Vitamin D 3 and calcium carbonate supplementation for adolescents with HIV to reduce musculoskeletal morbidity and immunopathology (VITALITY trial): study protocol for a randomised placebo-controlled trial. Trials 2024; 25:499. [PMID: 39039558 PMCID: PMC11264400 DOI: 10.1186/s13063-024-08342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Of the 2 million children living with HIV globally, 90% live in sub-Saharan Africa. Despite antiretroviral therapy, longstanding HIV infection is associated with several chronic complications in children including growth failure, particularly stunting and delayed puberty. Vitamin D deficiency, which is highly prevalent among children living with HIV in sub-Saharan Africa, has further adverse impact on bone health. This trial aims to establish whether supplementation with vitamin D3 and calcium carbonate improves musculoskeletal health among peripubertal children living with HIV. This paper is an update to an already existing protocol that was previously published in Trials in 2022 and details changes in the trial outcomes. METHODS/DESIGN We will conduct an individually randomised, double-blinded, placebo-controlled trial of weekly high-dose vitamin D3 (20,000 IU) plus daily calcium carbonate (500 mg) supplementation for 48 weeks. Eight hundred and forty children living with HIV aged 11-19 years taking ART for ≥ 6 months will be enrolled and followed up for 96 weeks. The primary outcome is DXA-measured total body less-head bone mineral density Z-score (TBLH-BMD) at 48 weeks and is an update to the previous primary outcome total body less-head bone mineral content adjusted for lean mass (TBLH-BMCLBM) Z-score. The primary outcome was updated to address the substantial differences in distributions of TBLH-BMCLBM Z-score between the two sites as a result of software differences of the DXA machines. Secondary outcomes are DXA-measured TBLH-BMD Z-score adjusted for height at 48 weeks a new secondary outcome, lumbar spine bone mineral apparent density Z-score, number of respiratory infections, lean muscle mass and grip-strength at 48 and 96 weeks, and TBLH-BMD Z-score at 96 weeks. Sub-studies will investigate the effect of the intervention on vitamin D3 pathway metabolites and markers of bone turnover, intestinal microbiota, and innate and acquired immune function. DISCUSSION This is the largest trial to date of vitamin D supplementation in children living with HIV. Intervening to address deficits in bone accrual through childhood is critical for optimising adolescent and early adult bone health, and prevention of later adult osteoporotic fractures. Trial results will draw attention to the need to screen for and treat long-term comorbidities in children living with HIV in resource-limited settings. TRIAL REGISTRATION Pan African Clinical Trials Registry PACTR20200989766029. Registered on September 3, 2020. URL of trial registry record: https://pactr.samrc.ac.za TRIAL STATUS: Participant follow-up completed; data analysis ongoing.
Collapse
Affiliation(s)
- Nyasha Veronica Dzavakwa
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe.
- London School of Hygiene & Tropical Medicine, London, UK.
| | | | - Grace McHugh
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
| | | | - Celia Louise Gregson
- Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Katharina Kranzer
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
- London School of Hygiene & Tropical Medicine, London, UK
- Division of Infectious and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany
| | | | - Hilda Mujuru
- Department of Paediatrics, University of Zimbabwe, Harare, Zimbabwe
| | - Nicol Redzo
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
| | | | | | - Victoria Simms
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Rashida Abbas Ferrand
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
16
|
Wang T, Xiong K, He Y, Feng B, Guo L, Gu J, Zhang M, Wang H, Wu X. Chronic pancreatitis-associated metabolic bone diseases: epidemiology, mechanisms, and clinical advances. Am J Physiol Endocrinol Metab 2024; 326:E856-E868. [PMID: 38656128 DOI: 10.1152/ajpendo.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disease with an increasing global prevalence. In recent years, a strong association between CP and metabolic bone diseases (MBDs), especially osteoporosis, has been identified, attracting significant attention in the research field. Epidemiological data suggest a rising trend in the incidence of MBDs among CP patients. Notably, recent studies have highlighted a profound interplay between CP and altered nutritional and immune profiles, offering insights into its linkage with MBDs. At the molecular level, CP introduces a series of biochemical disturbances that compromise bone homeostasis. One critical observation is the disrupted metabolism of vitamin D and vitamin K, both essential micronutrients for maintaining bone integrity, in CP patients. In this review, we provide physio-pathological perspectives on the development and mechanisms of CP-related MBDs. We also outline some of the latest therapeutic strategies for treating patients with CP-associated MBDs, including stem cell transplantation, monoclonal antibodies, and probiotic therapy. In summary, CP-associated MBDs represent a rising medical challenge, involving multiple tissues and organs, complex disease mechanisms, and diverse treatment approaches. More in-depth studies are required to understand the complex interplay between CP and MBDs to facilitate the development of more specific and effective therapeutic approaches.
Collapse
Affiliation(s)
- Tianlin Wang
- Department of Emergency, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ke Xiong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanli He
- Department of General Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binbin Feng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - LinBin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingliang Gu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengrui Zhang
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, California, United States
- Division of Immunology and Rheumatology, Stanford University, Stanford, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Hong Wang
- Department of General Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohao Wu
- Division of Immunology and Rheumatology, Stanford University, Stanford, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
17
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
18
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
19
|
Rizzoli R, Biver E. Role of fermented dairy products in the health benefits of a mediterranean diet. Aging Clin Exp Res 2024; 36:75. [PMID: 38502263 PMCID: PMC10950975 DOI: 10.1007/s40520-024-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Mediterranean diet includes fermented dairy products like yogurt and cheese. These foods provide calcium, phosphorus, fat, carbohydrates and protein, all nutrients influencing various systems including bone, cardiovascular system, intermediary metabolism, cancer, central nervous system, and inflammation. In addition, they contain prebiotics and provide probiotics which are capable of modifiying microbiota composition and metabolism, potentially acting also indirectly on the various systems. A large body of evidence indicates that fermented dairy products consumption significantly contributes to the beneficial effects of a Mediterranean diet on various systems' health.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
20
|
Vanitchanont M, Vallibhakara SAO, Sophonsritsuk A, Vallibhakara O. Effects of Multispecies Probiotic Supplementation on Serum Bone Turnover Markers in Postmenopausal Women with Osteopenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:461. [PMID: 38337745 PMCID: PMC10857023 DOI: 10.3390/nu16030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Probiotics have been found to have beneficial effects on bone metabolism. In this randomized, double-blind, placebo-controlled trial, the effects of multispecies probiotic supplementation on bone turnover markers were evaluated after 12 weeks. Forty postmenopausal women with osteopenia were included and randomly divided into two groups. The intervention group received multispecies probiotics, while the control group received identical placebo sachets daily. The baseline characteristics of both groups were similar. Still, the median serum bone resorption marker C-terminal telopeptide of type I collagen (CTX) was slightly higher in the multispecies probiotic group than in the placebo group (0.35 (0.12, 0.53) vs. 0.16 (0.06, 0.75); p-value = 0.004). After 12 weeks, the mean difference in serum CTX at baseline versus 12 weeks was significantly different between the multispecies probiotic and placebo groups (-0.06 (-0.29, 0.05) vs. 0.04 (-0.45, 0.67); p-value < 0.001). The multispecies probiotic group showed a significant decrease in serum CTX at 12 weeks compared with baseline (p-value 0.026). However, the placebo group showed no significant change in serum CTX (p-value 0.18). In conclusion, multispecies probiotics may have a preventive effect on bone through their antiresorptive effect in osteopenic postmenopausal women.
Collapse
Affiliation(s)
- Marut Vanitchanont
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (M.V.); (A.S.)
| | - Sakda Arj-Ong Vallibhakara
- Child Safety Promotion and Injury Prevention Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Areepan Sophonsritsuk
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (M.V.); (A.S.)
| | - Orawin Vallibhakara
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (M.V.); (A.S.)
| |
Collapse
|
21
|
Zhao J, Dou Y, Liang G, Huang H, Hong K, Yang W, Zhou G, Sha B, Liu J, Zeng L. Global Publication Trends and Research Hotspots of the Immune System and Osteoporosis: A Bibliometric and Visualization Analysis from 2012 to 2022. Endocr Metab Immune Disord Drug Targets 2024; 24:455-467. [PMID: 37881072 DOI: 10.2174/0118715303257269231011073100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone metabolism disorder in which the immune system and bone metabolism interact. OBJECTIVE The purpose of this study was to explore the research status, hot spots and trends regarding the influence of the immune system on OP and to provide a basis for research directions and applications in this field. METHODS We searched and collected literature about the immune system and OP published from 2012 to 2022 in the Web of Science Core Collection database. All the included studies were subjected to bibliometrics analysis using Hiplot Pro, VOSviewer and CiteSpace software to produce statistics and visual analyses of the literature output, countries, institutions, authors, keywords and journals. RESULTS A total of 1201 papers were included, and the number of citations of these articles reached 31,776. The number of publications and citations on the immune system and OP has increased year by year. The top three countries with the greatest number of papers published were China, the United States of America (USA) and Italy. The two institutions with the largest number of papers published were Sichuan University and Soochow University, both located in China. De Martinis Massimo (Italy) and Ginaldi Lia (Italy) are prolific authors in this field. The representative academic journals are Osteoporosis International, Frontiers in Immunology, Journal of Bone and Mineral Research, PloS One and Bone. The results of the keyword cooccurrence analysis showed that the research topics in this field mainly focused on T cells, cytokines, signaling pathways, vitamin D, postmenopausal OP and immune diseases. The keyword burst results showed that zoledronic acid, chain fatty acids and gut microbiota are the frontiers and trends of future research on this topic. CONCLUSION The influence of the immune system on OP has been widely studied, and the current research in this field focuses on the effect or mechanism of immune-related cytokines, signaling pathways and vitamin D on OP. Future research trends in this field should focus on the immune regulation mechanism and clinical transformation of zoledronic acid, chain fatty acids and the gut microbiota in OP.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yaoxing Dou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Guanghui Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bangxin Sha
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Lingfeng Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Recent findings in the influence of dietary patterns, dairy products, beverages and microbiota composition and function on bone health are reviewed and discussed. RECENT FINDINGS Evidence is accumulating on the increased risk of fracture in individuals following a vegan diet. Meta-analysis of randomized controlled trials indicates a favourable, though of low amplitude, effect of dairy products on bone mass accrual during childhood and adolescence. Though mostly based on results from observational studies, it seems that dairy product consumption, particularly fermented dairy products, is associated with a lower risk of hip fracture. Regular green tea drinkers may have a lower fracture risk than tea abstainers. Magnesium intake is beneficial for bone health. Prune supplements prevents bone loss in untreated postmenopausal women. This seems to be associated with modification of gut microbiota. SUMMARY This information should help the medical practitioners facing questions from their patients on how to protect bone health through nutrition.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | |
Collapse
|
23
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
24
|
Xie Z, Qin Y. Is diet related to osteoarthritis? A univariable and multivariable Mendelian randomization study that investigates 45 dietary habits and osteoarthritis. Front Nutr 2023; 10:1278079. [PMID: 38035348 PMCID: PMC10687195 DOI: 10.3389/fnut.2023.1278079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Background Diet is a safe intervention for many chronic diseases as a modifiable lifestyle. However, the potential causal effect of many dietary intake habits on the risk of osteoarthritis has not been fully understood. The purpose of this study was to reveal the potential causal relationship of 45 genetically predicted dietary intakes with osteoarthritis and its subtypes. Methods Data on 45 dietary intakes were obtained from the UK Biobank study of approximately 500,000 participants, and data on six osteoarthritis-related phenotypes were obtained from the Genetics of Osteoarthritis Consortium study of 826,690 participants. We performed univariable Mendelian randomization (MR), multivariable MR and linkage disequilibrium score regression (LDSC) analyses. Results In univariate analyses, 59 potential associations between diet and osteoarthritis were found. After false discovery rate (FDR) correction and sensitivity analyses, 23 reliable causal evidence were identified. In multivariate analyses, controlling separately for the effects of body mass index, total body bone mineral density, and smoking status, eight robust causal relationships remained: Muesli intake was negatively associated with knee osteoarthritis, spine osteoarthritis and total knee replacement. Dried fruit intake had a negative association with osteoarthritis of knee and total knee replacement. Eating cheese may reduce the risk of osteoarthritis in the knee and spine. And alcohol usually taken with meals was associated with a reduced risk of total knee replacement. LDSC analyses showed significant genetic correlations between all exposures and their corresponding outcomes, respectively, in these eight causal relationships. Conclusion Evidence of dietary effects on osteoarthritis is provided in our study, which has important implications for the prevention, management, and intervention of osteoarthritis in common sites through rational dietary modification.
Collapse
Affiliation(s)
| | - Yanguo Qin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Bailey S, Fraser K. Advancing our understanding of the influence of drug induced changes in the gut microbiome on bone health. Front Endocrinol (Lausanne) 2023; 14:1229796. [PMID: 37867525 PMCID: PMC10588641 DOI: 10.3389/fendo.2023.1229796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiome has been implicated in a multitude of human diseases, with emerging evidence linking its microbial diversity to osteoporosis. This review article will explore the molecular mechanisms underlying perturbations in the gut microbiome and their influence on osteoporosis incidence in individuals with chronic diseases. The relationship between gut microbiome diversity and bone density is primarily mediated by microbiome-derived metabolites and signaling molecules. Perturbations in the gut microbiome, induced by chronic diseases can alter bacterial diversity and metabolic profiles, leading to changes in gut permeability and systemic release of metabolites. This cascade of events impacts bone mineralization and consequently bone mineral density through immune cell activation. In addition, we will discuss how orally administered medications, including antimicrobial and non-antimicrobial drugs, can exacerbate or, in some cases, treat osteoporosis. Specifically, we will review the mechanisms by which non-antimicrobial drugs disrupt the gut microbiome's diversity, physiology, and signaling, and how these events influence bone density and osteoporosis incidence. This review aims to provide a comprehensive understanding of the complex interplay between orally administered drugs, the gut microbiome, and osteoporosis, offering new insights into potential therapeutic strategies for preserving bone health.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
26
|
Chen S, Han H, Sun X, Zhou G, Zhou Q, Li Z. Causal effects of specific gut microbiota on musculoskeletal diseases: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2023; 14:1238800. [PMID: 37664120 PMCID: PMC10469765 DOI: 10.3389/fmicb.2023.1238800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Recent observational studies and clinical trials demonstrated an association between gut microbiota and musculoskeletal (MSK) diseases. Nonetheless, whether the gut microbiota composition has a causal effect on the risk of MSK diseases remains unclear. Methods Based on large-scale genome-wide association studies (GWAS), we performed a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between gut microbiota and six MSK diseases, namely osteoporosis (OP), fracture, sarcopenia, low back pain (LBP), rheumatoid arthritis (RA), and ankylosing spondylitis (AS). Instrumental variables for 211 gut microbiota taxa were obtained from the largest available GWAS meta-analysis (n = 18,340) conducted by the MiBioGen consortium. And the summary-level data for six MSK diseases were derived from published GWAS. The inverse-variance weighted (IVW) method was conducted as a primary analysis to estimate the causal effect, and the robustness of the results was tested via sensitivity analyses using multiple methods. The Bonferroni-corrected test was used to determine the strength of the causal relationship between gut microbiota and various MSK diseases. Finally, a reverse MR analysis was applied to evaluate reverse causality. Results According to the IVW method, we found 57 suggestive causal relationships and 3 significant causal relationships between gut microbiota and MSK diseases. Among them, Genus Bifidobacterium (β: 0.035, 95% CI: 0.013-0.058, p = 0.0002) was associated with increased left handgrip strength, Genus Oxalobacter (OR: 1.151, 95% CI: 1.065-1.245, p = 0.0003) was correlated with an increased risk of LBP, and Family Oxalobacteraceae (OR: 0.792, 95% CI: 0.698-0.899, p = 0.0003) was linked with a decreased risk of RA. Subsequently, sensitivity analyses revealed no heterogeneity, directional pleiotropy, or outliers for the causal effect of specific gut microbiota on MSK diseases (p > 0.05). Reverse MR analysis showed fracture may result in a higher abundance of Family Bacteroidales (p = 0.030) and sarcopenia may lead to a higher abundance of Genus Sellimonas (p = 0.032). Conclusion Genetic evidence suggested a causal relationship between specific bacteria taxa and six MSK diseases, which highlights the association of the "gut-bone/muscle" axis. Further exploration of the potential microbiota-related mechanisms of bone and muscle metabolism might provide novel insights into the prevention and treatment of MSK diseases.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohe Sun
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Zhou
- Department of Ophthalmology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Chen S, Zhou G, Han H, Jin J, Li Z. Causal effects of specific gut microbiota on bone mineral density: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1178831. [PMID: 37645419 PMCID: PMC10461557 DOI: 10.3389/fendo.2023.1178831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 08/31/2023] Open
Abstract
Background Recent studies have reported that the gut microbiota is essential for preventing and delaying the progression of osteoporosis. Nonetheless, the causal relationship between the gut microbiota and the risk of osteoporosis has not been fully revealed. Methods A two-sample Mendelian randomization (MR) analysis based on a large-scale genome-wide association study (GWAS) was conducted to investigate the causal relationship between the gut microbiota and bone mineral density (BMD). Instrumental variables for 211 gut microbiota taxa were obtained from the available GWAS meta-analysis (n = 18,340) conducted by the MiBioGen consortium. The summary-level data for BMD were from the Genetic Factors for Osteoporosis (GEFOS) Consortium, which involved a total of 32,735 individuals of European ancestry. The inverse variance-weighted (IVW) method was performed as a primary analysis to estimate the causal effect, and the robustness of the results was tested via sensitivity analyses by using multiple methods. Finally, a reverse MR analysis was applied to evaluate reverse causality. Results According to the IVW method, we found that nine, six, and eight genetically predicted gut microbiota were associated with lumbar spine (LS) BMD, forearm (FA) BMD, and femoral neck (FN) BMD, respectively. Among them, the higher genetically predicted Genus Prevotella9 level was correlated with increased LS-BMD [β = 0.125, 95% confidence interval (CI): 0.050-0.200, P = 0.001] and FA-BMD (β = 0.129, 95% CI: 0.007-0.251, P = 0.039). The higher level of genetically predicted Family Prevotellaceae was associated with increased FA-BMD (β = 0.154, 95% CI: 0.020-0.288, P = 0.025) and FN-BMD (β = 0.080, 95% CI: 0.015-0.145, P = 0.016). Consistent directional effects for all analyses were observed in both the MR-Egger and weighted median methods. Subsequently, sensitivity analyses revealed no heterogeneity, directional pleiotropy, or outliers for the causal effect of specific gut microbiota on BMD (P > 0.05). In reverse MR analysis, there was no evidence of reverse causality between LS-BMD, FA-BMD, and FN-BMD and gut microbiota (P > 0.05). Conclusion Genetic evidence suggested a causal relationship between the gut microbiota and BMD and identified specific bacterial taxa that regulate bone mass variation. Further exploration of the potential microbiota-related mechanisms of bone metabolism might provide new approaches for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Lecomte M, Tomassi D, Rizzoli R, Tenon M, Berton T, Harney S, Fança-Berthon P. Effect of a Hop Extract Standardized in 8-Prenylnaringenin on Bone Health and Gut Microbiome in Postmenopausal Women with Osteopenia: A One-Year Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:2688. [PMID: 37375599 DOI: 10.3390/nu15122688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Estrogen deficiency increases the risk of osteoporosis and fracture. The aim of this study was to investigate whether a hop extract standardized in 8-prenylnaringenin (8-PN), a potent phytoestrogen, could improve bone status of osteopenic women and to explore the gut microbiome roles in this effect. In this double-blind, placebo-controlled, randomized trial, 100 postmenopausal, osteopenic women were supplemented with calcium and vitamin D3 (CaD) tablets and either a hop extract (HE) standardized in 8-PN (n = 50) or a placebo (n = 50) for 48 weeks. Bone mineral density (BMD) and bone metabolism were assessed by DXA measurements and plasma bone biomarkers, respectively. Participant's quality of life (SF-36), gut microbiome composition, and short-chain fatty acid (SCFA) levels were also investigated. In addition to the CaD supplements, 48 weeks of HE supplementation increased total body BMD (1.8 ± 0.4% vs. baseline, p < 0.0001; 1.0 ± 0.6% vs. placebo, p = 0.08), with a higher proportion of women experiencing an increase ≥1% compared to placebo (odds ratio: 2.41 ± 1.07, p < 0.05). An increase in the SF-36 physical functioning score was observed with HE versus placebo (p = 0.05). Gut microbiome α-diversity and SCFA levels did not differ between groups. However, a higher abundance of genera Turicibacter and Shigella was observed in the HE group; both genera have been previously identified as associated with total body BMD. These results suggest that an 8-PN standardized hop extract could beneficially impact bone health of postmenopausal women with osteopenia.
Collapse
Affiliation(s)
| | | | - René Rizzoli
- Service of Bone Disease, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | | | | | - Sinead Harney
- Rheumatology Department, Cork University Hospital, T12 DFK4 Cork, Ireland
| | | |
Collapse
|
30
|
Artoni de Carvalho JA, Magalhães LR, Polastri LM, Batista IET, de Castro Bremer S, Caetano HRDS, Rufino MN, Bremer-Neto H. Prebiotics improve osteoporosis indicators in a preclinical model: systematic review with meta-analysis. Nutr Rev 2022; 81:nuac097. [PMID: 36474436 DOI: 10.1093/nutrit/nuac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
CONTEXT Studies using experimental models have demonstrated that prebiotics are involved in antiosteoporotic mechanisms. OBJECTIVE This study was conducted to determine the impact of supplementation with prebiotics in the basal diet of ovariectomized rats with induced osteoporosis as a preclinical model. METHODS A comprehensive systematic search was carried out in the electronic databases PubMed, Science Direct, Web of Science, Scielo, and Google through March 2022 for studies that investigated the impact of prebiotics on bone mineral density (BMD), bone mineral content (BMC), and bone biomechanics. RESULTS The search returned 844 complete articles, abstracts, or book chapters. After detailed screening, 8 studies met the inclusion criteria. Rats (n = 206), were randomly divided between control and treatment groups. Weighted mean differences (WMDs) with the 95%CIs were used to estimate the combined effect size. Compared with the control group, dietary intake of prebiotics significantly increased bone density in the BMD subgroups, with WMDs as follows: 0.03 g/cm3, 95%CI, 0.01-0.05, P < 0.00001, n = 46; and 0.00 g/cm2, 95%CI, 0.00-0.02, P < 0.00001, n = 81; total BMD: WMD, 0.01, 95%CI, 0.01-0.02, P < 0.00001, n = 127; bone content in BMC: WMD, 0.02 g, 95%CI, 0.00-0.04, P = 0.05, n = 107; and the 3-point-bend test: WMD, 15.20 N, 95%CI, 5.92-24.47, P = 0.00001, n = 120. CONCLUSION Prebiotics improve indicators of osteoporosis, BMD, BMC, and bone biomechanics in ovariectomized rats. More studies are needed to increase the level of evidence. SYSTEMIC REVIEW REGISTRATION Systematic Review Protocol for Animal Intervention Studies.
Collapse
Affiliation(s)
- João Alberto Artoni de Carvalho
- Department of Orthopedics and Traumatology, Medicine School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| | - Leticia Rocha Magalhães
- Department of Orthopedics and Traumatology, Medicine School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| | - Laryssa Mayara Polastri
- Department of Orthopedics and Traumatology, Medicine School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| | - Ingrid Eloise Trombine Batista
- Department of Orthopedics and Traumatology, Medicine School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| | | | - Heliard Rodrigues Dos Santos Caetano
- Department of Functional Sciences, Health Technology Assessment Nucleus of the Medical School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| | - Marcos Natal Rufino
- Department of Functional Sciences, Health Technology Assessment Nucleus of the Medical School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| | - Hermann Bremer-Neto
- Department of Functional Sciences, Health Technology Assessment Nucleus of the Medical School of Presidente Prudente, Western Sao Paulo University, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
31
|
Seijo M, Bonanno MN, Bryk G, Zeni Coronel ME, Pita Martin de Portela ML, Zeni SN. Does Vitamin D Insufficiency Influence Prebiotic Effect on Calcium Absorption and Bone Retention? Calcif Tissue Int 2022; 111:300-312. [PMID: 35505249 DOI: 10.1007/s00223-022-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Higher calcium (Ca) absorption would partially compensate for Ca intake below requirements for bone health. Previously, we found that GOS/FOS prebiotic mixture (PM) increases Ca absorption in the colon and retention in bone. Ca absorption and retention are regulated by vitamin D (VD). Hence, it is relevant to explore whether VD insufficiency influences the effect of the PM in the colon. The effect of the PM on Ca, phosphate (IP), and magnesium (Mg) absorption and retention under conditions of VD sufficiency and insufficiency (VDInsuff) was compared using a preclinical model of VDInsuff and low bone mass. Ovariectomized rats were fed isocaloric semisynthetic diets according to AIN-93 M. The diets varied in Ca (0.5% or 0.3%), VD [100 IU% (+ D) or 0 IU% (- D)], and PM (2.5% or 0%) content. The following eight groups were studied: + D0.5; + D0.3; + DPM0.5; + DPM0.3; - D0.5; - D0.3; - DPM0.5; and - DPM0.3. Irrespective of Ca content, VDInsuff did not affect the prebiotic effect of the PM on caecum pH, lactobacillus colony growth, or Mg absorption but significantly decreased its effect on colonic crypt length and cell/crypt and Ca and IP absorption. The PM failed to counterbalance the pro-inflammatory effect of VDInsuff. Moreover, bone retention i.e., bone mineral content and density, bone volume, and bone quality parameters were significantly lower (p < 0.05) and bone turnover significantly was higher (p < 0.05). Although the PM is a useful tool to improve mineral absorption and bone retention, it would seem important to monitor VD nutritional status to ensure the full prebiotic effect in the large intestine.
Collapse
Affiliation(s)
- Mariana Seijo
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
| | - Marina N Bonanno
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Embryology and Histology, School of Dentistry, UBA, Buenos Aires, Argentina
| | - Gabriel Bryk
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Laboratory Division, Assuta Ashdod Medical Center, Faculty of Health Sciences, Ben-Gurion University, Ashdod, Israel
| | - Magali E Zeni Coronel
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Biostatistics, School of Veterinary Sciences (FVet), UBA, Buenos Aires, Argentina
| | | | - Susana N Zeni
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina.
- , Cordoba Ave 2351, 8th floor, Zip Code 1120, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Orwoll ES, Parimi N, Wiedrick J, Lapidus J, Napoli N, Wilkinson JE, Huttenhower C, Langsetmo L, Kiel DP. Analysis of the Associations Between the Human Fecal Microbiome and Bone Density, Structure, and Strength: The Osteoporotic Fractures in Men (MrOS) Cohort. J Bone Miner Res 2022; 37:597-607. [PMID: 35119137 PMCID: PMC9605688 DOI: 10.1002/jbmr.4518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
In preclinical models, the composition and function of the gut microbiota have been linked to bone growth and homeostasis, but there are few available data from studies of human populations. In a hypothesis-generating experiment in a large cohort of community-dwelling older men (n = 831; age range, 78-98 years), we explored the associations between fecal microbial profiles and bone density, microarchitecture, and strength measured with total hip dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HRpQCT) (distal radius, distal and diaphyseal tibia). Fecal samples were collected and the 16S rRNA gene V4 hypervariable region sequenced. Sequences were bioinformatically processed through the DADA2 pipeline and then taxonomically assigned using SILVA. Generalized linear models as implemented in microbiome multivariable association with linear models (MaAsLin 2) were used to test for associations between skeletal measures and specific microbial genera. The abundances of four bacterial genera were weakly associated with bone density, structure, or strength (false discovery rate [FDR] ≤ 0.05), and the measured directions of associations of genera were generally consistent across multiple bone measures, supporting a role for microbiota on skeletal homeostasis. However, the associated effect sizes were small (log2 fold change < ±0.35), limiting power to confidently identify these associations even with high resolution skeletal imaging phenotypes, and we assessed the resulting implications for the design of future cohort-based studies. As in analogous examples from genomewide association studies, we find that larger cohort sizes will likely be needed to confidently identify associations between the fecal microbiota and skeletal health relying on 16S sequencing. Our findings bolster the view that the gut microbiome is associated with clinically important measures of bone health, while also indicating the challenges in the design of cohort-based microbiome studies. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eric S Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Neeta Parimi
- San Francisco Coordinating Center, San Francisco, CA, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Jodi Lapidus
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.,Oregon Health & Science University - Portland State University School of Public Health, Portland, OR, USA
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy.,Division of Bone and Mineral Diseases, Washington University, St Louis, MO, USA
| | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisa Langsetmo
- School of Public Health, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
33
|
Dietary Complex and Slow Digestive Carbohydrates Promote Bone Mass and Improve Bone Microarchitecture during Catch-Up Growth in Rats. Nutrients 2022; 14:nu14061303. [PMID: 35334960 PMCID: PMC8951765 DOI: 10.3390/nu14061303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Catch-up growth is a process that promotes weight and height gains to recover normal growth patterns after a transient period of growth inhibition. Accelerated infant growth is associated with reduced bone mass and quality characterized by poor bone mineral density (BMD), content (BMC), and impaired microarchitecture. The present study evaluated the effects of a diet containing slow (SDC) or rapid (RDC) digestible carbohydrates on bone quality parameters during the catch-up growth period in a model of diet-induced stunted rats. The food restriction period negatively impacted BMD, BMC, and microarchitecture of appendicular and axial bones. The SDC diet was shown to improve BMD and BMC of appendicular and axial bones after a four-week refeeding period in comparison with the RDC diet. In the same line, the micro-CT analysis revealed that the trabecular microarchitecture of tibiae and vertebrae was positively impacted by the dietary intervention with SDC compared to RDC. Furthermore, features of the cortical microstructure of vertebra bones were also improved in the SDC group animals. Similarly, animals allocated to the SDC diet displayed modest improvements in growth plate thickness, surface, and volume compared to the RDC group. Diets containing the described SDC blend might contribute to an adequate bone formation during catch-up growth thus increasing peak bone mass, which could be linked to reduced fracture risk later in life in individuals undergoing transient undernutrition during early life.
Collapse
|
34
|
Dzavakwa NV, Chisenga M, McHugh G, Filteau S, Gregson CL, Kasonka L, Kranzer K, Mabuda HB, Mujuru H, Redzo N, Rowland-Jones S, Schaible UE, Simms V, Ferrand RA. Vitamin D 3 and calcium carbonate supplementation for adolescents with HIV to reduce musculoskeletal morbidity and immunopathology (VITALITY trial): study protocol for a randomised placebo-controlled trial. Trials 2022; 23:78. [PMID: 35081986 PMCID: PMC8790223 DOI: 10.1186/s13063-021-05985-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/26/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Of the 2 million children living with HIV globally, 90% live in sub-Saharan Africa. Despite antiretroviral therapy, longstanding HIV infection is associated with several chronic complications in children including growth failure, particularly stunting and delayed puberty. Vitamin D deficiency, which is highly prevalent among children living with HIV in sub-Saharan Africa, has a further adverse impact on bone health. This trial aims to establish whether supplementation with vitamin D3 and calcium carbonate improves musculoskeletal health among peripubertal children living with HIV. METHODS/DESIGN We will conduct an individually randomised, double-blinded, placebo-controlled trial of weekly high-dose vitamin D3 (20,000 IU) plus daily calcium carbonate (500mg) supplementation for 48 weeks. Eight hundred and forty children living with HIV aged 11-19 years taking ART for ≥6 months will be enrolled and followed up for 96 weeks. The primary outcome is total body less-head bone mineral content for lean mass adjusted for height (TBLH-BMCLBM) Z-score at 48 weeks, measured by dual-energy X-ray absorptiometry (DEXA). Secondary outcomes are DEXA-measured lumbar spine bone mineral apparent density Z-score, number of respiratory infections, lean muscle mass and grip strength at 48 and 96 weeks and TBLH-BMCLBM Z-scores at 96 weeks. Sub-studies will investigate the effect of the intervention on vitamin D3 pathway metabolites and markers of bone turnover, intestinal microbiota, and innate and acquired immune function. DISCUSSION This is the largest trial to date of vitamin D supplementation in children living with HIV. Intervening to address deficits in bone accrual in childhood is critical for optimising adolescent and early adult bone health and prevention of later adult osteoporotic fractures. Trial results will draw attention to the need to screen for and treat long-term comorbidities in children living with HIV in resource-limited settings. TRIAL REGISTRATION Pan African Clinical Trials Registry PACTR20200989766029 . Registered on 3 September 2020.
Collapse
Affiliation(s)
| | | | - Grace McHugh
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
| | | | - Celia Louise Gregson
- Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Katharina Kranzer
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
- London School of Hygiene & Tropical Medicine, London, UK
- Division of Infectious and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany
| | | | - Hilda Mujuru
- Department of Paediatrics, University of Zimbabwe, Harare, Zimbabwe
| | - Nicol Redzo
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
| | | | | | - Victoria Simms
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Rashida Abbas Ferrand
- Biomedical Research and Training Institute, 10 Seagrave Road, Harare, Zimbabwe
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
35
|
Abstract
Bone mineral mass, geometry and microstructure, hence determinants of fracture risk, result bone accrual during growth and bone loss later in life. Peak bone mass, which is reached by the end of the second decade of life, is mainly determined by genetic factors. Among other factors influencing bone capital, dietary intakes, particularly calcium and protein, play a significant role in peak bone mass attainment. Both nutrients are provided in dairy products, which accounts for 50-60% and 20-30% of the daily calcium and protein intakes, respectively. Children avoiding dairy products are at higher risk of fracture, as are adults or older individuals following a diet devoid of dairy products, like vegans. Various intervention trials have shown some beneficial effects of dairy products on bone capital accumulation during growth and on bone turnover in adults. In observational studies, dairy products intake, particularly the fermented ones, which also provide probiotics in addition to calcium, phosphorus and protein, appear to be associated with a lower risk of hip fracture.
Collapse
|
36
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
37
|
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021; 9:606-621. [PMID: 34242583 DOI: 10.1016/s2213-8587(21)00119-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Osteoporotic or fragility fractures affect one in two women and one in five men who are older than 50. These events are associated with substantial morbidity, increased mortality, and an impaired quality of life. Recommended general measures for fragility fracture prevention include a balanced diet with an optimal protein and calcium intake and vitamin D sufficiency, together with regular weight-bearing physical exercise. In this narrative Review, we discuss the role of nutrients, foods, and dietary patterns in maintaining bone health. Much of this information comes from observational studies. Bone mineral density, microstructure-estimated bone strength, and trabecular and cortical microstructure are positively associated with total protein intake. Several studies indicate that fracture risk might be lower with a higher dietary protein intake, provided that the calcium supply is sufficient. Dairy products are a valuable source of these two nutrients. Hip fracture risk appears to be lower in consumers of dairy products, particularly fermented dairy products. Consuming less than five servings per day of fruit and vegetables is associated with a higher hip fracture risk. Adherence to a Mediterranean diet or to a prudent diet is associated with a lower fracture risk. These various nutrients and dietary patterns influence gut microbiota composition or function, or both. The conclusions of this Review emphasise the importance of a balanced diet including minerals, protein, and fruit and vegetables for bone health and in the prevention of fragility fractures.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Guo D, Zhao M, Xu W, He H, Li B, Hou T. Dietary interventions for better management of osteoporosis: An overview. Crit Rev Food Sci Nutr 2021; 63:125-144. [PMID: 34251926 DOI: 10.1080/10408398.2021.1944975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a public health concern and a cause of bone loss, increased risk of skeletal fracture, and a heavy economic burden. It is common in postmenopausal women and the elderly and is impacted by dietary factors, lifestyle and some secondary factors. Although many drugs are available for the treatment of osteoporosis, these therapies are accompanied by subsequent side effects. Hence, dietary interventions are highly important to prevent osteoporosis. This review was aimed to provide a comprehensive understanding of the roles of dietary nutrients derived from natural foods and of common dietary patterns in the regulation of osteoporosis. Nutrients from daily diets, such as unsaturated fatty acids, proteins, minerals, peptides, phytoestrogens, and prebiotics, can regulate bone metabolism and reverse bone loss. Meanwhile, these nutrients generally existed in food groups and certain dietary patterns also play critical roles in skeletal health. Appropriate dietary interventions (nutrients and dietary patterns) could be primary and effective strategies to prevent and treat osteoporosis across the lifespan for the consumers and food enterprises.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Zhou T, Sun D, Li X, Heianza Y, LeBoff MS, Bray GA, Sacks FM, Qi L. Genetically determined SCFA concentration modifies the association of dietary fiber intake with changes in bone mineral density during weight loss: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Am J Clin Nutr 2021; 114:42-48. [PMID: 33829223 PMCID: PMC8246619 DOI: 10.1093/ajcn/nqab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND SCFAs are involved in regulation of body weight and bone health. OBJECTIVES We aimed to examine whether genetic variations related to butyrate modified the relation between dietary fiber intake and changes in bone mineral density (BMD) in response to weight-loss dietary interventions. METHODS In the 2-y Preventing Overweight Using Novel Dietary Strategies trial, 424 participants with BMD measured by DXA scan were randomly assigned to 1 of 4 diets varying in macronutrient intakes. A polygenic score (PGS) was calculated based on 7 genetic variants related to the production of butyrate for 370 of the 424 participants. RESULTS SCFA PGS significantly modified the association between baseline dietary fiber intake and sex on 2-y changes in whole-body BMD (P-interaction = 0.049 and 0.008). In participants with the highest tertile of SCFA PGS, higher dietary fiber intake was related to a greater increase in BMD (β: 0.0022; 95% CI: 0.0009, 0.0035; P = 0.002), whereas no such association was found for participants in the lower tertiles. In the lowest tertiles of SCFA PGS, men showed a significant increase in whole-body BMD (β: 0.0280; 95% CI: 0.0112, 0.0447; P = 0.002) compared with women. In the highest tertile, no significant difference was found for the change in BMD between men and women. CONCLUSIONS Our data indicate that genetic variants related to butyrate modify the relations of dietary fiber intake and sex with long-term changes in BMD in response to weight-loss diet interventions.
Collapse
Affiliation(s)
- Tao Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Meryl S LeBoff
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
40
|
Keshavarz Azizi Raftar S, Hoseini Tavassol Z, Amiri M, Ejtahed HS, Zangeneh M, Sadeghi S, Ashrafian F, Kariman A, Khatami S, Siadat SD. Assessment of fecal Akkermansia muciniphila in patients with osteoporosis and osteopenia: a pilot study. J Diabetes Metab Disord 2021; 20:279-284. [PMID: 34222066 PMCID: PMC8212221 DOI: 10.1007/s40200-021-00742-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Osteoporosis is characterized by slow deterioration in bone mass and disruption of its structure, leading to an increased risk of bone fractures. Gut microbiota plays an important role in the transport and absorption of nutrients needed for bone health. Akkermansia muciniphila is one of the gut microbiota members that its beneficial role in prevention of metabolic disorder was suggested. The aim of the current pilot study was the assessment of fecal A. muciniphila in patients with osteoporosis and osteopenia. METHODS A total of 36 subjects including eight with osteoporosis (three men and five women), eight with osteopenia (two men and six women), and 20 normal controls (six men and 14 women) were selected. Microbial genome was extracted from fresh stool samples. The bacterial load was determined by quantitative real-time PCR using 16S rRNA specific primers. RESULTS The participants' mean age in the osteoporosis, osteopenia and control groups were 61.71, 45 and 45.05 years, respectively. The majority of osteoporosis patients were post-menopause women, while in osteopenia group was pre-menopause. There were significant differences in terms of age, T-score, Z-score, and menopause among groups (P value < 0.05). The presence of A. muciniphila was higher in the healthy group compared to osteopenia group; however, these differences were not statistically significant. CONCLUSIONS In conclusion, however, there was no statistically significant difference between the study groups; it seems that the load of A. muciniphila may be related to bone health. Further in vivo and in vitro studies are needed to investigate the immunological and biochemical pathways.
Collapse
Affiliation(s)
- Shahrbanoo Keshavarz Azizi Raftar
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Amiri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrangiz Zangeneh
- Department of Infectious Disease, Faculty of Medicine, Tehran Medical science, Islamic Azad University, Tehran, Iran
| | - Sedigheh Sadeghi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Lee EJ, Shin CM, Lee DH, Han K, Park SH, Kim YJ, Yoon H, Park YS, Kim N. The Association Between Cholecystectomy and the Risk for Fracture: A Nationwide Population-Based Cohort Study in Korea. Front Endocrinol (Lausanne) 2021; 12:657488. [PMID: 34122336 PMCID: PMC8190474 DOI: 10.3389/fendo.2021.657488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Objectives To evaluate the risk of fracture in individuals with a history of cholecystectomy in Korean population. Methods Individuals (n = 143,667) aged ≥ 40 y who underwent cholecystectomy between 2010 and 2015 and the controls (n = 255,522), matched by age and sex, were identified from the database of the Korean National Health Insurance Services. The adjusted hazard ratio (aHR) and 95% confidence interval (CI) of fracture were estimated following cholecystectomy, and a Cox regression analysis was performed. Results The incidence rates of all fractures, vertebral, and hip fractures were 14.689, 6.483 and 1.228 cases per 1000 person-years respectively in the cholecystectomy group, whereas they were 13.862, 5.976, and 1.019 cases per 1000 person-years respectively in the control group. After adjustment for age, sex, income, place of residence, diabetes mellitus, hypertension, dyslipidemia, smoking, alcohol drinking, exercise, and body mass index, patients who underwent cholecystectomy showed an increased risk of all fractures, vertebral fractures, and hip fractures (aHR [95% CI]: 1.095 [1.059-1.132], 1.134 [1.078-1.193], and 1.283 [1.139-1.444] for all fractures, vertebral fractures, and hip fractures, respectively). The risk of vertebral fractures following cholecystectomy was more prominent in the young age group (40 to 49 y) than in the old age group (≥ 65 y) (1.366 [1.082-1.724] vs. 1.132 [1.063-1.206], respectively). However, the incidence of hip fractures following cholecystectomy was not affected by age. Conclusion Individuals who underwent cholecystectomy have an increased risk of fracture. In the younger population, the risk of vertebral fractures may be further increased following cholecystectomy.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Sang Hyun Park
- Department of Medical Statistics, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Yoo Jin Kim
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young Soo Park
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
42
|
Arnold A, Dennison E, Kovacs CS, Mannstadt M, Rizzoli R, Brandi ML, Clarke B, Thakker RV. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021; 17:261-275. [PMID: 33727709 DOI: 10.1038/s41574-021-00477-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Biomineralization is the process by which organisms produce mineralized tissues. This crucial process makes possible the rigidity and flexibility that the skeleton needs for ambulation and protection of vital organs, and the hardness that teeth require to tear and grind food. The skeleton also serves as a source of mineral in times of short supply, and the intestines absorb and the kidneys reclaim or excrete minerals as needed. This Review focuses on physiological and pathological aspects of the hormonal regulation of biomineralization. We discuss the roles of calcium and inorganic phosphate, dietary intake of minerals and the delicate balance between activators and inhibitors of mineralization. We also highlight the importance of tight regulation of serum concentrations of calcium and phosphate, and the major regulators of biomineralization: parathyroid hormone (PTH), the vitamin D system, vitamin K, fibroblast growth factor 23 (FGF23) and phosphatase enzymes. Finally, we summarize how developmental stresses in the fetus and neonate, and in the mother during pregnancy and lactation, invoke alternative hormonal regulatory pathways to control mineral delivery, skeletal metabolism and biomineralization.
Collapse
Affiliation(s)
- Andrew Arnold
- Division of Endocrinology & Metabolism and Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Liu H, Xu Y, Cui Q, Liu N, Chu F, Cong B, Wu Y. Effect of Psoralen on the Intestinal Barrier and Alveolar Bone Loss in Rats With Chronic Periodontitis. Inflammation 2021; 44:1843-1855. [PMID: 33839980 DOI: 10.1007/s10753-021-01462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
To study the effects of psoralen on the intestinal barrier and alveolar bone loss (ABL) in rats with chronic periodontitis. Fifty-two 8-week-old specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were randomly divided into the following four groups: Control group (Control), psoralen group of healthy rats (Pso), periodontitis model group (Model), and psoralen group of periodontitis rats (Peri+Pso). The alveolar bone resorption of maxillary molars was observed via haematoxylin-eosin staining and micro-computed tomography. The expression level of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues was evaluated by immunofluorescence staining. The changes in serum tumour necrosis factor (TNF)-α, interleukin (IL)-10, IL-6, intestinal mucosal occludin, and claudin-5 were detected using enzyme-linked immunosorbent assay (ELISA). The level of intestinal mucosal NOD2 was detected using immunohistochemical methods. DNA was extracted from the intestinal contents and the 16s rRNA gene was sequenced using an Illumina MiSeq platform. The expression of NOD2 protein in the intestinal tract of periodontitis rats decreased after intragastric psoralen administration. Psoralen increased the intestinal microbiota diversity of rats. The level of serum pro-inflammatory factor TNF-α decreased and the level of anti-inflammatory factor IL-10 increased. ABL was observed to be significantly decreased in rats treated with psoralen. Psoralen decreased the RANKL/OPG ratio of periodontitis rats. Psoralen may affect the intestinal immune barrier and ecological barrier, mediate immune response, promote the secretion of anti-inflammatory factor IL-10, and reduce the secretion of the pro-inflammatory factor TNF-α, thus reducing ABL in experimental periodontitis in rats.
Collapse
Affiliation(s)
- Hua Liu
- Department of Stomatology, School of Stomatology of Qingdao University, Qingdao, 266003, Shandong Province, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Qi Cui
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Ning Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Fuhang Chu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong Province, China.
| |
Collapse
|
44
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Zhou T, Wang M, Ma H, Li X, Heianza Y, Qi L. Dietary Fiber, Genetic Variations of Gut Microbiota-derived Short-chain Fatty Acids, and Bone Health in UK Biobank. J Clin Endocrinol Metab 2021; 106:201-210. [PMID: 33051670 PMCID: PMC8186524 DOI: 10.1210/clinem/dgaa740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Dietary fiber intake may relate to bone health. OBJECTIVE To investigate whether dietary fiber intake is associated with bone mineral density (BMD), and the modification effect of genetic variations related to gut microbiota-derived short-chain fatty acids (SCFAs). DESIGN The associations of dietary fiber intake with estimated BMD derived from heel ultrasound and fractures were assessed in 224 630 and 384 134 participants from the UK Biobank. SETTING UK Biobank. MAIN OUTCOME MEASURES Estimated BMD derived from heel ultrasound. RESULTS Higher dietary fiber intake (per standard deviation) was significantly associated with higher heel-BMD (β [standard error] = 0.0047 [0.0003], P = 1.10 × 10-54). Similarly significant associations were observed for all the fiber subtypes including cereal, fruit (dried and raw), and vegetable (cooked and raw) (all P < .05). A positive association was found in both women and men but more marked among men except for dietary fiber in cooked vegetables (all Pinteraction < .05). A protective association was found between dietary fiber intake and hip fracture (hazard ratio, 95% confidence interval: 0.94, 0.89-0.99; P = 3.0 × 10-2). In addition, the association between dietary fiber and heel BMD was modified by genetically determined SCFA propionate production (Pinteraction = 5.1 × 10-3). The protective association between dietary fiber and heel BMD was more pronounced among participants with lower genetically determined propionate production. CONCLUSIONS Our results indicate that greater intakes of total dietary fiber and subtypes from various food sources are associated with higher heel-BMD. Participants with lower genetically determined propionate production may benefit more from taking more dietary fiber.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Mengying Wang
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
- Department of Epidemiology and Biostatistics, School of Public Health,
Peking University Health Science Center, Beijing, China
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham
and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts
- Correspondence and Reprint Requests: Dr Lu Qi, Department of Epidemiology, School of Public Health and
Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. E-mail:
| |
Collapse
|
46
|
A Multi-Omic Analysis for Low Bone Mineral Density in Postmenopausal Women Suggests a RELATIONSHIP between Diet, Metabolites, and Microbiota. Microorganisms 2020; 8:microorganisms8111630. [PMID: 33105628 PMCID: PMC7690388 DOI: 10.3390/microorganisms8111630] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The effect of microbiota composition and its health on bone tissue is a novel field for research. However, their associations with bone mineral density (BMD) have not been established in postmenopausal women. The present study investigates the relation of diet, the microbiota composition, and the serum metabolic profile in postmenopausal women with normal-BMD or with low-BMD. Ninety-two Mexican postmenopausal women were classified into normal-BMD (n = 34) and low-BMD (n = 58). The V4 hypervariable region was sequenced using the Miseq platform. Serum vitamin D was determined by chemiluminescence immunoassay. Serum concentrations of acyl-carnitines and amino acids were determined by electrospray tandem mass spectrometry. Diet was assessed by a food frequency questionnaire. The low-BMD group had fewer observed species, higher abundance of γ-Proteobacteria, lower consumption of lycopene, and lower concentrations of leucine, valine, and tyrosine compared with the normal-BMD group. These amino acids correlated positively with the abundance of Bacteroides. Lycopene consumption positively correlated with Oscillospira and negatively correlated with Pantoea genus abundance. Finally, the intestinal microbiota of women with vitamin D deficiency was related to Erysipelotrichaceae and Veillonellaceae abundance compared to the vitamin D non-deficient group. Associations mediated by the gut microbiota between diet and circulating metabolites with low-BMD were identified.
Collapse
|
47
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|
48
|
Papageorgiou M, Merminod F, Chevalley T, van Rietbergen B, Ferrari S, Rizzoli R, Biver E. Associations between age-related changes in bone microstructure and strength and dietary acid load in a cohort of community-dwelling, healthy men and postmenopausal women. Am J Clin Nutr 2020; 112:1120-1131. [PMID: 32678420 DOI: 10.1093/ajcn/nqaa191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The importance of dietary acid load (DAL) in the pathogenesis of osteoporosis is still debated. Age-related changes in bone microstructure and strength in relation to DAL remain largely unexplored. OBJECTIVES We investigated the associations between changes in areal and volumetric bone mineral density (BMD), bone microstructure and strength, fracture risk, and DAL in a prospective cohort of 65-y-old healthy men and postmenopausal women. METHODS Potential renal acid load (PRAL; mEq/d) was calculated as a DAL proxy to characterize participants' diet as alkaline (Alk-D; PRAL < -5), neutral (Neut-D; -5 ≤ PRAL ≤ 5), or acidic (Acid-D; PRAL >5). We measured areal BMD (aBMD) by DXA, and distal radius and tibia bone microstructure using high-resolution peripheral quantitative computed tomography, at baseline (n = 853) and after 6.1 ± 1.4 y (n = 708). Bone strength was estimated using finite element analyses at baseline and after 3.0 ± 0.5 y (n = 613). Prevalent and incident fractures were recorded. RESULTS The majority of the participants (59%) had an Alk-D, while 23% had a Neut-D, and 18% an Acid-D. Baseline aBMD and bone microstructure and strength did differ or were slightly better in women or men with an Acid-D versus those consuming an Alk-D or Neut-D. Indeed, women with an Acid-D had higher trabecular number (P = 0.010 vs. Alk-D; P = 0.001 vs. Neut-D), while men had higher hip and radius aBMD (P = 0.008 and 0.024 vs. Neut-D, respectively) and radius strength (P = 0.026 vs. Neut-D). Over the follow-up, women in the Acid-D group experienced lower cortical and endocortical bone loss at the radius than did the Alk-D and Neut-D groups (cortical thickness, P = 0.008 and < 0.001; trabecular area, P = 0.001 and < 0.001, respectively). No association between fractures and PRAL was observed. CONCLUSIONS These null or favourable associations between baseline values or changes in aBMD, bone microstructure and strength, and DAL in this cohort of 65-y-old healthy individuals do not support adverse DAL-mediated effects on bone. This trial was registered at http://www.isrctn.com as ISRCTN11865958.
Collapse
Affiliation(s)
- Maria Papageorgiou
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fanny Merminod
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Kumar A, Palit P, Thomas S, Gupta G, Ghosh P, Goswami RP, Kumar Maity T, Dutta Choudhury M. Osteoarthritis: Prognosis and emerging therapeutic approach for disease management. Drug Dev Res 2020; 82:49-58. [PMID: 32931079 DOI: 10.1002/ddr.21741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA), a disorder of joints, is prevalent in older age. The contemporary cure for OA is aimed to confer symptomatic relief, consisting of temporary pain and swelling relief. In this paper, we discuss various modalities responsible for the onset of OA and associated with its severity. Inhibition of chondrocytes receptors such as DDR2, SDF-1, Asporin, and CXCR4 by specific pharmacological inhibitors attenuates OA, a critical step for finding potential disease modifying drugs. We critically analyzed recent OA studies with an emphasis on intermediate target molecules for OA intervention. We also explored some novel and safe treatments for OA by considering disease prognosis crosstalk with cellular signaling pathways.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Sabu Thomas
- Department of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.,Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, Rajasthan, India
| | - Parasar Ghosh
- Department of Rheumatology, Institute of Post Graduate Medical Education &Research, Kolkata, India
| | | | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | |
Collapse
|
50
|
Chen C, Dong B, Wang Y, Zhang Q, Wang B, Feng S, Zhu Y. The role of Bacillus acidophilus in osteoporosis and its roles in proliferation and differentiation. J Clin Lab Anal 2020; 34:e23471. [PMID: 32779308 PMCID: PMC7676190 DOI: 10.1002/jcla.23471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Osteoporosis is one of the most closely related diseases associated with the elderly. In recent years, the studies found that gut microbiota can cause osteoporosis. We evaluated the role of Bacillus acidophilus in osteoporosis and its roles in proliferation and differentiation. Methods We selected 5 healthy people and 10 osteoporosis patients and analyzed their level of 25‐hydroxyvitamin D and procollagen type I N‐terminal peptide (PINP), the characteristic of gut microbiota. The effect of lactobacillus acidophilus and Lactobacillus rhamnosus supernatant and butanoic acids on proliferation, differentiation, and maturity of osteoblasts MC3T3‐E1 and osteoclasts RAW 264.7 cells and the activity of alkaline phosphatase, concentration of osteocalcin, and the expression of RUNX2, RANK, NFATc1, cathepsin K, DC‐STAMP, OSCAR, WNT2, and CTNNB1 were measured in the above cell lines. Results The diversity of gut microbiota in osteoporosis patients is decreased and imbalanced with lower abundance of lactobacillus and butyric acid bacteria; meanwhile, 25‐hydroxyvitamin D and PINP of osteoporosis patient were significantly lower than the normal group. The proliferation, differentiation, and maturity of MC3T3‐E1 cells were stimulated; the activity of alkaline phosphatase, concentration of osteocalcin, and the expression of RUNX2, NFATc1, cathepsin K, DC‐STAMP, OSCAR, WNT2, and CTNNB1 were improved by supernatant of lactobacillus acidophilus, Lactobacillus rhamnosus and butanoic acids; however, the proliferation, differentiation, maturity, and the expression of RANK, NFATc1, cathepsin K, DC‐STAMP, OSCAR, WNT2, and CTNNB1 in RAW 264.7 cells were suppressed. Conclusions The lactobacillus acidophilus and Lactobacillus rhamnosus supernatant could stimulate the proliferation, differentiation, and maturation of osteoblasts; the production of butyric acid may be the potential mechanism.
Collapse
Affiliation(s)
- Chen Chen
- Department of Geriatric, Tianjin Medical University General Hospital, Tianjin, China
| | - Baokang Dong
- Department of Orthopedics, Tianjin First Center Hospital Tianjin, China
| | - Yuming Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Zhang
- Department of Geriatric, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuzhi Feng
- Department of Geriatric, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Haihe Hospital, Tianjin, China
| |
Collapse
|