1
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive adaptation of Astyanax mexicanus under nutrient limitation. Dev Biol 2025; 523:82-98. [PMID: 40222642 PMCID: PMC12068995 DOI: 10.1016/j.ydbio.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus. This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, lower biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor (igf1ra) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus, which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
Affiliation(s)
- Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ana Santacruz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Di Wu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Elizabeth Fritz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
2
|
Chang Y, Wu CH, Chen JH, Inoue T, Chiang CK. Thallium-induced neurocardiotoxicity in zebrafish: Protective role of adaptive UPR and DNA repair. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118321. [PMID: 40373714 DOI: 10.1016/j.ecoenv.2025.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Thallium (Tl) is a hazardous heavy metal widely used in industrial applications, leading to significant environmental contamination. Tl concentrations in surface waters can reach up to 1520 μg/L, exceeding safe limits and posing risks to aquatic ecosystems and human health. Monovalent thallium [Tl(I)] is highly stable and bioaccumulative, readily accumulating in aquatic organisms, plants, and the human food chain. Exposure to Tl has been associated with neurotoxicity, kidney dysfunction, and cardiovascular diseases, particularly affecting children and pregnant women, and may increase the risk of neurodegenerative diseases and cardiac arrhythmias. However, effective strategies to mitigate Tl toxicity remain lacking. This study establishes a zebrafish embryo model to investigate the toxicological mechanisms of Tl and evaluate the protective effects of IXA4, a selective XBP1 activator. Our results show that Tl exposure increases mortality, reduces hatching rates, impairs swim bladder development, and causes pericardial edema and brain abnormalities. Transcriptomic and qPCR analyses confirm that Tl induces endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR), key pathways involved in cellular toxicity. Co-treatment with IXA4 significantly improves survival rates and developmental outcomes by upregulating DNA repair genes, particularly in the nucleotide excision repair (NER) pathway, thereby reducing cardiac and neural damage. This study provides novel insights into the mechanisms of Tl toxicity, underscores the urgent need for stricter regulatory measures, and highlights IXA4 as a potential intervention for mitigating heavy metal toxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Identification of molecular signatures for azole fungicide toxicity in zebrafish embryos by integrating transcriptomics and gene network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126215. [PMID: 40189088 DOI: 10.1016/j.envpol.2025.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Azoles control fungal growth by inhibiting sterol biosynthesis in fungi according to the fungicide resistance action committee. Furthermore, previous studies have highlighted several effects of azole fungicides in fish including endocrine disruption. In this study, we analysed the transcriptome responses of zebrafish embryos exposed to azole fungicides to identify gene expression fingerprints indicating toxic effects such as endocrine disruption induced by sterol biosynthesis inhibition. Firstly, a modified zebrafish embryo toxicity test was conducted following the OECD 236 guideline, exposing embryos to difenoconazole, epoxiconazole, and tebuconazole. After 96 h, RNA was extracted for transcriptome analysis, which revealed concentration-dependent responses for each fungicide. Additionally, overrepresentation analysis of significantly differentially expressed genes revealed biological functions related to sterol biosynthesis and endocrine disruption. A gene set with specific expression patterns was was identified as molecular signature for indicating adverse effects induced by sterol biosynthesis inhibitors in zebrafish embryos. After further validation, the gene expression fingerprints and biomarkers identified in this study may be used in the future to identify endocrine activity of substances under development in a pre-regulatory screening using the zebrafish embryo model.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
4
|
Duan X, Helal M, Wang X, Huang Y, Ebbesen MF, Brewer J, Wang S, Wu C, Holbech H, Xu EG. Swim in Plastics: Clean Nanoplastics Cause Minimal Mortality but Alter Neurobehavioral and Molecular Rhythms in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9387-9398. [PMID: 40183397 DOI: 10.1021/acs.est.4c10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Nanoplastics (NPs) pose potential ecological and health impacts. While previous studies have highlighted inconsistent toxicity levels of NPs, knowledge remains limited about the specific effects of different NPs on embryonic development, early life-stage behaviors, and bodily uptake. This study examines the effects of polystyrene NPs (PS-NPs) with different surface charges, plain polystyrene (PS), amino-modified (PS-NH2), and carboxyl-modified (PS-COOH) on zebrafish early life stages. High-resolution 3D bioimaging confirmed differential internalization: PS-COOH accumulated in the yolk and intestine, while PS-NH2 localized mainly in the intestine. PS-NPs up to 10 ppm did not significantly affect mortality or hatching rates, likely due to effective dialysis, minimizing toxic chemical leaching. PS-NP exposure led to noninflated swim bladders and affected swimming. RNA sequencing identified impacted neurological molecular pathways like circadian rhythm and visual function; weighted gene coexpression network analysis indicated strong correlations between key gene modules and phenotypic traits like eye development and dopamine level. We highlight the low acute toxicity of clean dialyzed NPs despite bodily uptake and surface-charge-dependent sublethal neurotoxicity. Overall, plain PS-NPs induced significant individual-level effects, while charged PS-NPs caused stronger molecular-level alterations; toxicity profiles varied across biological levels, complicating hazard assessment and underscoring the need for population-level studies on ecological impacts.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Mohamed Helal
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Xin Wang
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Yuyue Huang
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Morten Frendø Ebbesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
5
|
Lin Y, Zhang Q, Chen L, Liu Y, Lin X, Peng X, Cao H, Lei Y, Wang X. Neomycin affects cardiovascular and hematopoietic system via the PI3K/Akt pathway in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118203. [PMID: 40262245 DOI: 10.1016/j.ecoenv.2025.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Neomycin, a widely used aminoglycoside antibiotic, poses potential risks to organism and the environment that remain incompletely evaluated. This study systematically evaluates its toxic effects on zebrafish embryos across physiological, cellular, molecular, and behavioral dimensions. At the physiological level, neomycin exposure induces severe developmental abnormalities, including yolk sac edema, reduced body length, and craniofacial malformations. Developmental disorders of the cardiovascular and hematopoietic systems are confirmed in exposed larvae. In addition, zebrafish larvae exposed to neomycin exhibit significant locomotor deficits, including reduced swimming speed, distance traveled, and impaired responsiveness to light-dark stimulation, indicating reduced activity. Mechanically, neomycin triggers oxidative stress through a dose-dependent elevation of reactive oxygen species (ROS) levels and induces cellular apoptosis through the PI3K/Akt signaling pathway. Collectively, our findings demonstrate that neomycin exerts toxic effects on zebrafish embryonic development, highlighting concerns regarding neomycin exposure risks during early pregnancy and providing critical insights into its potential environmental hazards.
Collapse
Affiliation(s)
- Yuan Lin
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China
| | - Qiuping Zhang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China
| | - Yingying Liu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China
| | - Xiaoxi Lin
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China
| | - Xiaoyan Peng
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China
| | - Hua Cao
- Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yuqing Lei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China.
| |
Collapse
|
6
|
Feugere L, Silva De Freitas C, Bates A, Storey KB, Beltran-Alvarez P, Wollenberg Valero KC. Social context prevents heat hormetic effects against mutagens during fish development. FEBS Lett 2025. [PMID: 40265659 DOI: 10.1002/1873-3468.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Since stress can be transmitted to congeners via social metabolites, it is paramount to understand how the social context of abiotic stress influences aquatic organisms' responses to global changes. Here, we integrated the transcriptomic and phenotypic responses of zebrafish embryos to a UV damage/repair assay following scenarios of heat stress, its social context and their combination. Heat stress preceding UV exposure had a hormetic effect through the cellular stress response and DNA repair, rescuing and/or protecting embryos from UV damage. However, experiencing heat stress within a social context negated this molecular hormetic effect and lowered larval fitness. We discuss the molecular basis of interindividual chemical transmission within animal groups as another layer of complexity to organisms' responses to environmental stressors.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull, UK
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
- School of Biology and Environmental Science, University College Dublin, Ireland
- Conway Institute, University College Dublin, Ireland
| |
Collapse
|
7
|
Velumani K, Rajan PS, Shaik MR, Hussain SA, Shaik B, Guru A, Issac PK. Protective Effect of Artemisinin Against Luperox Induced Oxidative Stress and Insulin Resistance via Pi3k/Akt Pathway in Zebrafish Larvae. Cell Biochem Biophys 2025:10.1007/s12013-025-01747-w. [PMID: 40220071 DOI: 10.1007/s12013-025-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Oxidative stress plays a critical role in the development of insulin resistance (IR), a key factor in metabolic disorders such as diabetes. Plant active ingredients play a crucial role in protecting organisms from environmental stressors and have shown promising therapeutic potential against various metabolic disorders. Artemisinin (ART), a sesquiterpenoid with a lactone ring obtained from the herb Artemisia annua, exhibits promising therapeutic properties. This study investigates the potential of ART on Luperox (LUP)-induced oxidative stress and the resulting IR in zebrafish larvae, specifically investigating the involvement of the PI3K/AKT signaling pathway. Zebrafish larvae were chosen due to their high sensitivity to oxidative stress, well-characterized glucose metabolism, and genetic similarity to human metabolic pathways. They were exposed to LUP to induce oxidative stress, followed by treatment with ART. The effects were evaluated through biochemical assays, fluorescence staining and gene expression analysis. ART effectively restored key antioxidant enzymes (SOD, CAT, GSH) and mitigated oxidative stress evidenced by reduction in intercellular ROS and lipid peroxidation, as confirmed through DCFDA and DPPP staining assays. Additionally, ART improved glucose uptake and lowered blood glucose levels. Gene expression analysis further indicated increased levels of PI3K/Akt signalling components and antioxidant-related genes (NRF2, HO-1, GPx, and GSR). Our results indicate that artemisinin significantly alleviates oxidative stress by reducing ROS levels and enhancing antioxidant enzyme activity. Furthermore, artemisinin mitigates IR by restoring glucose metabolism and upregulating PI3K/AKT pathway components. These findings highlight the translational potential of plant active ingredients, particularly artemisinin, for the development of therapies targeting IR and oxidative stress-related metabolic disorders.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P Sundar Rajan
- Department of Chemical Engineering, Saveetha Engineering College, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Praveen Kumar Issac
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Chen X, Zheng J, Wang C, Teng M, Jiang J, Wu F. Exposure of Parental Zebrafish to Difenoconazole throughout Their Life Cycle May Lead to Developmental Toxicity in the F1 Generation through Epigenetic Changes in Gametes, Impaired Nutrient Supply from the Ovum, and Maternal Transfer of Difenoconazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6477-6487. [PMID: 40153714 DOI: 10.1021/acs.est.4c13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Difenoconazole is a widely used agricultural fungicide that has been frequently detected in aquatic environments. Given its stable presence in aquatic environments, long-term exposure of wild fish may pose a risk to offspring embryonic development. This study demonstrated that exposure of zebrafish to environmental concentrations of difenoconazole throughout their life cycle resulted in abnormal development of offspring embryos/larvae, including decreased heart rate, delayed hatching, increased malformation rate, shortened body length, and increased mortality. These changes were significantly correlated with the affected apoptosis, autophagy, energy metabolism and MAPK signaling pathways in F1 generation. This transgenerational toxic effect results from epigenetic alterations in gametes, impaired nutrient supply from the ovum, and maternal transfer of difenoconazole. After exposure to difenoconazole, the development of female fish offspring was affected more than that of male fish offspring, which was mainly caused by the impaired nutrient supply from the ovum and the maternal transfer of difenoconazole. Because this transgenerational developmental toxicity was observed at environmental levels, difenoconazole may pose a threat to the survival of wild larvae and therefore a risk to wild fish populations.
Collapse
Affiliation(s)
- Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiazhen Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Damodaran T, Yahaya NS, Mordi MN. Integrative toxicity assessment of tocotrienol-rich fraction from palm oil using in silico methods and zebrafish embryotoxicity model. Toxicol In Vitro 2025; 107:106062. [PMID: 40188856 DOI: 10.1016/j.tiv.2025.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Tocotrienol-rich fraction (TRF), a natural form of vitamin E derived from palm oil, possesses antioxidant properties. However, its potential embryonic developmental toxicity remains unclear. This study investigated TRF's toxicity using in silico methods and zebrafish embryos. Zebrafish embryos were exposed to TRF (31.25 to 2000 μg/mL) for 96 h post-fertilization (hpf). Mortality, hatching rate, heart rate, and morphological malformations were assessed at 24, 48, 72, and 96 hpf. In silico analysis predicted good pharmacokinetic properties and minimal side effects for five TRF constituents, except for hERG II inhibition, which is associated with cardiac toxicity. TRF exposure up to 96 hpf showed no embryotoxicity in zebrafish at ≤1000 μg/mL. However, TRF at concentrations of ≥1000 μg/mL significantly inhibited hatching rate at 72 hpf, indicating a delay in the hatching process. Additionally, 1000 μg/mL of TRF resulted in reduced heart rate and hypopigmentation in the embryos. Moreover, higher TRF concentrations (≥500 μg/mL) caused morphological malformations including spinal curvature, pericardial edema, and yolk sac edema, in the embryos. These findings suggest that TRF from palm oil is likely safe at concentrations below 500 μg/mL during embryonic development. However, the potential effects of long-term exposure and chronic toxicity warrant further investigation to ensure safety during early pregnancy.
Collapse
Affiliation(s)
- Thenmoly Damodaran
- Department of Basic Medical Sciences, Faculty of Dentistry, Aimst University, Bedong, Kedah, Malaysia.
| | - Najib Sani Yahaya
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Bayero University Kano, PMB 3011, Gwarzo Road Kano, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, George Town, Malaysia
| |
Collapse
|
10
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Features of the rare pathogen Meyerozyma guilliermondii strain SO and comprehensive in silico analyses of its adherence-contributing virulence factor agglutinin-like sequences. J Biomol Struct Dyn 2025; 43:3728-3748. [PMID: 38189364 DOI: 10.1080/07391102.2023.2300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Maia ME, Martins RX, Carvalho M, Félix LM, Marques-Santos LF, Farias D. Effects of atrazine, diuron and glyphosate mixtures on zebrafish embryos: acute toxicity and oxidative stress responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:304-316. [PMID: 39612104 DOI: 10.1007/s10646-024-02839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Synthetic pesticides are known for their toxic effects on non-target aquatic organisms. However, little is known about their effects when present in mixtures, which are closer to realistic exposure scenarios. Therefore, this study evaluates the toxicity of pesticides such as diuron, atrazine and glyphosate, individually and in combination, in zebrafish embryos, investigating their mechanisms of oxidative stress. The results revealed acute toxicity for diuron and atrazine, with LC50 values of 9.6 mg/L and 53.57 mg/L for 96-h-old zebrafish, respectively. On the other hand, no effect was observed for glyphosate alone at the maximum concentration tested (100 mg/L). The mixture of diuron and atrazine showed a synergistic effect, resulting in a decrease in the LC50 of each pesticide. Mixtures of diuron + glyphosate and atrazine + glyphosate were considered additive and antagonistic, respectively. All biomarkers analyzed (AChE, LDH, GST, CAT and GPx) showed significant changes. Furthermore, an increase in ROS production was observed in larvae exposed to individual and in the mixture composed of atrazine and diuron. These findings indicate that atrazine and diuron exhibit increased toxicity when combined, with their mechanisms of action-both in isolation and in mixtures-being at least partially linked to oxidative stress.
Collapse
Affiliation(s)
- Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Matheus Carvalho
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- InovAgro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil.
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
12
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive Adaptation of Astyanax mexicanus Under Nutrient Limitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638191. [PMID: 40027826 PMCID: PMC11870393 DOI: 10.1101/2025.02.13.638191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus . This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor ( igf1ra ) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus , which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
|
13
|
Kalisz G, Budzynska B, Sroka-Bartnicka A. The optimization of sample preparation on zebrafish larvae in vibrational spectroscopy imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125288. [PMID: 39437695 DOI: 10.1016/j.saa.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The zebrafish (Danio rerio) larvae are widely used in biomedical, pharmaceutical, and ecotoxicological studies. Their transparency and translational potential make them particularly valuable for fluorescence imaging. In addition to fluorescence imaging, microspectroscopy, which combines vibrational spectroscopy: Raman or Fourier transform infrared (FT-IR) with microscopy, allows the collection of spatially resolved, label-free information. According to available literature, it was the first application of FT-IR imaging in zebrafish larvae. This study aims to compare different fixation methods for 10-day post-fertilization (dpf) zebrafish larvae using vibrational spectroscopy imaging. Paraformaldehyde (PFA), glutaraldehyde (GA), low temperature, and embedding in gelatin and agarose were investigated. Amides, lipids, and phosphates distribution were more informative in embedded samples but with challenging handling of the sample due to stiffness at -20 °C. FT-IR and Raman mapping revealed that frozen samples had better-preserved tissue structure than chemical fixation. PFA showed uniform amide distribution, while GA treatment exhibited tissue disruptions and denser protein networks in both. Handling of embedded samples is challenging for an operator, but provides more reliable results in developmental biology or disease modeling, compared to chemical treatment.
Collapse
Affiliation(s)
- Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland.
| | - Barbara Budzynska
- Independent Unit of Behavioral Studies, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
14
|
Botteon CA, Pereira ADES, de Castro LP, Justino IA, Fraceto LF, Bastos JK, Marcato PD. Toxicity Assessment of Biogenic Gold Nanoparticles on Crop Seeds and Zebrafish Embryos: Implications for Agricultural and Aquatic Ecosystems. ACS OMEGA 2025; 10:1032-1046. [PMID: 39829554 PMCID: PMC11740149 DOI: 10.1021/acsomega.4c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms. In this study, we evaluated the benefits and toxicity of gold nanoparticles (GNPs), synthesized via green chemistry, on the growth of cultivated plants and in the zebrafish embryo model. GNPs were synthesized through an economical and environmentally friendly method using Brazilian red propolis (BRP) extract (BRP-GNPs). BRP-GNPs exhibited negative and positive effects on plant germination, depending on the concentration tested and the plant species involved. Moreover, BRP-GNPs induced developmental toxicity in fish embryos in a dose-dependent manner. Our results provide valuable insights for assessing the environmental risks of biogenic GNPs.
Collapse
Affiliation(s)
- Caroline
E. A. Botteon
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | | | - Larissa P. de Castro
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Isabela A. Justino
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Leonardo F. Fraceto
- Institute
of Science and Technology, São Paulo
State University, Sorocaba 18087-180, Brazil
| | - Jairo K. Bastos
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Priscyla D. Marcato
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| |
Collapse
|
15
|
Wu L, Wang J, Ye H, Yao Y, Hu M, Cheng J, Kong L, Liu W, Ge F. Impacts of hexafluoropropylene oxide tetrameric acid (HFPO-TeA) on neurodevelopment and GABAergic signaling in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117424. [PMID: 39616666 DOI: 10.1016/j.ecoenv.2024.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025]
Abstract
Hexafluoropropylene oxide oligomer acids (HFPOs), an emerging environmental pollutant, are increasingly utilized in the manufacture of fluorinated synthetic materials as a substitute for traditional perfluorooctanoic acid (PFOA), resulting in a corresponding rise in detection rates in aquatic environments, which may present inherent safety hazards to ecosystems and public health. However, few data are available on the issue of their toxicity and mechanism. This study aimed to investigate the potential toxic effects of hexafluoroepoxypropane tetrameric acid (HFPO-TeA), a typical HFPO, on the early developmental stages of zebrafish larvae. It revealed that HFPO-TeA exposure resulted in significant detrimental effects, including adverse impacts on general morphological characteristics, such as eye area, heart rate, and swimming bladder, in zebrafish embryos and larvae. Targeted metabolomics and transcriptomics inquiries clarified that HFPO-TeA exposure reduced the levels of the neurotransmitter gamma-aminobutyric acid (GABA) and downregulated the expression of genes related to the GABA pathway. Simultaneously, transgenic zebrafish exhibited that exposure to HFPO-TeA impedes the growth of GABAergic neurons. Moreover, the molecular docking analysis indicated that GABAA receptors might be the potential targets of HFPO-TeA. Taken together, the current data highlights that the HFPO-TeA might not be safe alternatives to PFOA. This study presented a model for HFPO-TeA-induced neurotoxicity in developing zebrafish that can aid in ecological risk assessments.
Collapse
Affiliation(s)
- Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyang Yao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miaoyang Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cheng
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingcan Kong
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China.
| |
Collapse
|
16
|
Bansal P, Roitman MF, Jung EE. d-Amphetamine and Feeding States Cohesively Affect Locomotion and Motor Neuron Response in Zebrafish Larvae. Brain Behav 2024; 14:e70173. [PMID: 39643450 PMCID: PMC11624004 DOI: 10.1002/brb3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE Amphetamine (AMPH) increases locomotor activities in animals, and the locomotor response to AMPH is further modulated by caloric deficits such as food deprivation and restriction. The increment in locomotor activity regulated by AMPH-caloric deficit concomitance can be further modulated by varying feeding schedules (e.g., acute and chronic food deprivation and acute feeding after chronic food deprivation). However, the effects of different feeding schedules on AMPH-induced locomotor activity are yet to be explicated. Here, we have explored the stimulatory responses of acutely administered D-amphetamine in locomotion under systematically varying feeding states (fed/sated and food deprivation) and schedules (chronic and acute) in zebrafish larvae. METHOD We exposed wild-type and transgenic [Tg(mnx1:GCaMP5)] zebrafish larvae to 0.7 µM concentration of AMPH and measured swimming activity and spinal motor neuron activity in vivo in real time. The analysis involved time-elapsed and cumulative manner pre- and post-AMPH treatment in four different caloric states including acute and chronic schedules of feeding and hunger. Both locomotor and motor neuron activities were compared in all four states in both fish lines. FINDINGS Our results show that locomotion and motor neuron activity increased in both chronic and acute food deprivation post-AMPH treatment cumulatively. A steady increase in locomotion was observed in acute food deprivation compared to an immediate abrupt increase in chronic food-deprivation state. The ad libitum-fed larvae exhibited a moderate increase both in locomotion and motor neuron activity. Conversely to all other caloric states, food-sated (acute feeding after chronic food deprivation) larvae moved moderately less and exhibited a mild decrease in motor neuron activity after AMPH treatment. CONCLUSION These results reveal the importance of cohesive effects of feeding schedule and AMPH treatment by revealing the changes in stimulatory characteristics of AMPH on locomotion and motor neuron activity in acute and chronic feeding states.
Collapse
Affiliation(s)
- Pushkar Bansal
- Department of Mechanical and Industrial EngineeringThe University of Illinois at ChicagoChicagoIllinoisUSA
| | - Mitchell F. Roitman
- Department of PsychologyThe University of Illinois at ChicagoChicagoIllinoisUSA
| | - Erica E. Jung
- Department of Mechanical and Industrial EngineeringThe University of Illinois at ChicagoChicagoIllinoisUSA
- Department of BioengineeringThe University of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
17
|
Mesmar F, Muhsen M, Mirchandani R, Tourigny JP, Tennessen JM, Bondesson M. The herbicide acetochlor causes lipid peroxidation by inhibition of glutathione peroxidase activity. Toxicol Sci 2024; 202:302-313. [PMID: 39240656 PMCID: PMC11589103 DOI: 10.1093/toxsci/kfae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high-cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we performed transcriptomic and lipidomic analyses of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting GPX activity, resulting in the accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contains the chloroacetamide group, inhibition of GPX activity may represent a novel, common molecular initiating event of metabolic disruption.
Collapse
Affiliation(s)
- Fahmi Mesmar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Rachna Mirchandani
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| |
Collapse
|
18
|
Abbas A, Hammad AS, Zakaria ZZ, Al-Asmakh M, Hussain K, Al-Shafai M. gnas Knockdown Induces Obesity and AHO Features in Early Zebrafish Larvae. Int J Mol Sci 2024; 25:12674. [PMID: 39684386 DOI: 10.3390/ijms252312674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
GNAS (Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gsα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in GNAS, resulting in Gsα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gsα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity. This study was prompted by identifying several GNAS variants of uncertain significance (VUSs) in pediatric patients presenting with unexplained, severe, early-onset obesity at Sidra Medicine in Qatar. To functionally characterize these variants, we developed the first zebrafish model of Gsα deficiency, offering numerous advantages over other model systems. This was achieved by knockdown of the ortholog through microinjection of translation-blocking Morpholino antisense oligonucleotides into the yolks of 1-8-cell-stage zebrafish embryos. The morphant larvae displayed an obese phenotype, marked by significantly enlarged yolk sacs, increased neutral lipid accumulation, and reduced metabolic rates, among other developmental abnormalities resembling those in AHO. This zebrafish model lays the foundation for efficient functional characterization of GNAS VUSs and paves the way for enhancing our understanding of Gsα deficiency-associated early-onset obesity.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Zain Z Zakaria
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
19
|
Kollayan BY, Cansiz D, Beler M, Unal I, Emekli-Alturfan E, Yalcinkaya SE. Effects of low-dose ionizing radiation on the molecular pathways linking neurogenesis and autism spectrum disorders in zebrafish embryos. Drug Chem Toxicol 2024; 47:960-973. [PMID: 38384198 DOI: 10.1080/01480545.2024.2318444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Prenatal exposure to environmental factors may play an important role in the aetiopathogenesis of autism spectrum disorder (ASD). We aim to investigate the potential effects of low-dose x-rays from dental diagnostic x-rays on neurodevelopment and molecular mechanisms associated with ASD in developing zebrafish embryos. Zebrafish embryos were divided into four groups and exposed using a dental x-ray unit: control, 0.08, 0.15 and 0.30 seconds, which are exemplary exposure settings for periapical imaging. These exposure times were measured as 7.17, 23.17 and 63.83 mSv using optical stimulated luminescence dosimeters. At the end of 72 hours post-fertilization, locomotor activity, oxidant-antioxidant status, and acetylcholine esterase (AChE) activity were analyzed. Expression of genes related to apoptosis (bax, bcl2a, p53), neurogenesis (α1-tubulin, syn2a, neurog1, elavl3) and ASD (eif4eb, adsl2a, shank3) was determined by RT-PCR. Even at reduced doses, developmental toxicity was observed in three groups as evidenced by pericardial edema, yolk sac edema and scoliosis. Deleterious effects of dental x-rays on neurogenesis through impaired locomotor activity, oxidative stress, apoptosis and alterations in genes associated with neurogenesis and ASD progression were more pronounced in the 0.30s exposure group. Based on these results we suggest that the associations between ASD and low-dose ionizing radiation need a closer look.
Collapse
Affiliation(s)
- Burcu Yeliz Kollayan
- Institute of Health Sciences, Department of Oral and Maxillofacial Radiology, Marmara University, Istanbul, Turkey
| | - Derya Cansiz
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ismail Unal
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Sebnem Ercalik Yalcinkaya
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
20
|
Özokan G, Bilginer A, Mızrak Z, Işıkoğlu S, Beler M, Ünal İ, Cansız D, Alturfan AA, Emekli-Alturfan E. Comparison of the cytotoxicity and zebrafish embryo toxicity of insect repellent ingredients: p-Menthane-3,8-diol synthesized by green chemistry from Eucalyptus citriodora and N,N-diethyl-meta-toluamide. Drug Chem Toxicol 2024; 47:1193-1204. [PMID: 38738628 DOI: 10.1080/01480545.2024.2350664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
Bio-sourced insect repellents are becoming more popular due to their safer applications. Known for its strong fly-repellent property, Cis, trans-para-menthane-3,8-diol (PMD) is the main component of the lemon eucalyptus essential oil and is synthesized from citronellal. In April 2005, US Centers for Disease Control approved two fly repellents that do not contain N,N-diethyl-meta-toluamide (DEET), including PMD. Due to the intentional and pervasive human exposure caused by DEET as insect repellent, concerns have been raised about its toxicological profile and potential harm to people. We hypothesized PMD would have a different toxicological profile than DEET. We synthesized PMD from Eucalyptus citriodora using green chemistry methods and analyzed its structures by 1H-NMR,13C-NMR, and GC/MS spectral methods. We used MTS assay to determine the percentage inhibition of PMD and DEET on keratinocyte (human epidermal keratinocyte [HaCaT]) cells. The xCelligence system was used and followed at real time. Effects of PMD and DEET on zebrafish embryo development were monitored and levels of lipid peroxidation, glutathione-S-transferase (GST), superoxide dismutase (SOD), and acetylcholinesterase (AchE) were evaluated at 72 h post-fertilization using spectrophotometric methods. Our results showed that while DEET inhibited human keratinocyte cell growth, while imporved cell viability and proliferation was exposed in PMD exposed group. In zebrafish embryos, PMD was less toxic in terms of development, oxidant-antioxidant status, and AChE activities than DEET. Based on these results we suggest an efficient method using green chemistry for the synthesis of PMD, which is found to be less toxic in zebrafish embryos and human keratinocyte cells.
Collapse
Affiliation(s)
- Gökhan Özokan
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Turkey
| | - Abdulkerim Bilginer
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Turkey
| | - Zülal Mızrak
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Semanur Işıkoğlu
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Medical Biochemistry Department, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Derya Cansız
- Medical Biochemistry Department, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
21
|
Guo C, Wu Y, Wang Q, Li X, Deng T, Xia X, Li L, Li H, Lin C, Zhu C, Liu F. Super-resolution imaging lysosome vesicles and establishing a gallbladder-visualizable zebrafish model via a fluorescence probe. Talanta 2024; 279:126656. [PMID: 39098243 DOI: 10.1016/j.talanta.2024.126656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Advanced probes for imaging viscous lipids microenvironment in vitro and in vivo are desirable for the study of membranous organelles and lipids traffic. Herein, a reaction-based dihydroquinoline probe (DCQ) was prepared via linking a diethylamino coumarin fluorophore with a N-methylquinoline moiety. DCQ is stable in low viscous aqueous mediums and exhibits green fluorescence, which undergoes fast autoxidation in high viscous mediums to form a fluorescent product with deep-red to near-infrared (NIR) emission, rendering the ability for dual-color imaging. Living cell imaging indicated that DCQ can effectively stain lysosomal membranes with deep-red fluorescence. Super-resolution imaging of lysosome vesicles has been achieved by DCQ and stimulated emission depletion (STED) microscopy. In addition, DCQ realizes multiple organs imaging in zebrafish, whose dual-color emission can perfectly discriminate zebrafish's yolk sac, digestive tract and gallbladder. Most importantly, DCQ has been successfully used to establish a gallbladder-visualizable zebrafish model for the evaluation of drug stress.
Collapse
Affiliation(s)
- Chengxi Guo
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yufang Wu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiling Wang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Li
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, 528000, China
| | - Xiaotong Xia
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Huan Li
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Fang Liu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
23
|
Niaz K, McAtee D, Adhikari P, Rollefson P, Ateia M, Abdelmoneim A. Assessing the effects of fluorine-free and PFAS-containing firefighting foams on development and behavioral responses using a zebrafish-based platform. CHEMOSPHERE 2024; 365:143361. [PMID: 39303789 DOI: 10.1016/j.chemosphere.2024.143361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Significant progress has been made in developing fluorine-free firefighting foams (F3) as alternatives to perfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFF) to help eliminate the health and environmental concerns linked to PFAS exposure. However, developing viable F3 options hinges on a thorough assessment of potential risks alongside the technical performance evaluations. This study showcases the capability of a zebrafish-based platform to discern the developmental and behavioral toxicities associated with exposure to one AFFF and two F3 formulations. To facilitate direct exposure to the chemicals, embryos were enzymatically dechorionated and then exposed to the diluted formulations (6-120 hours post fertilization (hpf)) at concentrations folding from 0.1% of the manufacturer-recommended working concentrations. The exposure regimen also included daily automated media changes (50%) and mortality assessments (24 and 120 hpf). At 120 hpf, a comprehensive assessment encompassing overall development, prevalence of morphological defects, and behavioral responses to acute stressors (visual, acoustic, and peripheral irritant) was conducted. Exposure to both F3s significantly increased larval mortalities to percentages exceeding 90%, whereas AFFF exposures did not cause any significant effect. Overall development, marked by total larval length, was significantly impacted following exposures to all foams. Behavioral responses to acute stressors were also significantly altered following exposures to both F3s, whereas the AFFF did not alter behavior at the concentrations tested. Our findings demonstrate toxicities associated with tested F3 formulations that encompass several endpoints and highlight the utility of the proposed platform in evaluating the developmental toxicities of current and future foam formulations.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA; Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Pranup Adhikari
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Patrik Rollefson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, 45220, USA.
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
24
|
Wu Y, Wang Y, Tong Z, Xie W, Wang A, Song C, Yao W, Wang J. Pyraclostrobin induces developmental toxicity and cardiotoxicity through oxidative stress and inflammation in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124490. [PMID: 38960114 DOI: 10.1016/j.envpol.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 μg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weihong Xie
- Hangzhou Criminal Science and Technology Institute, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chian Song
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
25
|
Haridevamuthu B, Nayak SPRR, Murugan R, Sudhakaran G, Pachaiappan R, Manikandan K, Chitra V, Almutairi MH, Almutairi BO, Kathiravan MK, Arockiaraj J. Co-occurrence of azorubine and bisphenol A in beverages increases the risk of developmental toxicity: A study in zebrafish model. Food Chem Toxicol 2024; 191:114861. [PMID: 38992409 DOI: 10.1016/j.fct.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 600077, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
26
|
Velumani K, John A, Shaik MR, Hussain SA, Guru A, Issac PK. Exploring sesquiterpene lactone as a dual therapeutic agent for diabetes and oxidative stress: insights into PI3K/AKT modulation. 3 Biotech 2024; 14:205. [PMID: 39170770 PMCID: PMC11333395 DOI: 10.1007/s13205-024-04050-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetic mellitus (DM) is characterized by hyperglycaemia and defective macromolecular metabolism, arising from insulin resistance or lack of insulin production. The present study investigates the potential of artemisinin, a sesquiterpene lactone isolated from Artemisia annua, to exert anti-diabetic and antioxidant effects through modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. Our computational analyses demonstrated a high binding affinity of artemisinin with proteins belonging to the PI3K/AKT signalling cascade. α-Amylase and α-glucosidase studies revealed a notable increase in inhibition percentages with artemisinin treatment across concentrations ranging from 10 to 160 µM. A similar significant (p < 0.05) dose-dependent inhibition of free radicals was observed for the in vitro anti-oxidant assays. Further, toxicological profiling of artemisinin in the in vivo zebrafish embryo-larvae model from 4 to 96 h post-fertilization (hpf) did not exhibit any harmful repercussions. In addition, gene expression investigations confirmed artemisinin's potential mechanism in modulating hyperglycaemia and oxidative stress through the regulation of the PI3K/AKT pathway. Overall, our investigation suggests that artemisinin can be used as a therapeutic intervention for diabetes and oxidative stress, opening up opportunities for future investigation in clinical settings. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04050-2.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| | - Arun John
- Institute of Bioinformatics, Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh , 11451 Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh, 11451 Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| |
Collapse
|
27
|
van den Boom R, Vergauwen L, Knapen D. Effects of Metabolic Disruption on Lipid Metabolism and Yolk Retention in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1880-1893. [PMID: 38860666 DOI: 10.1002/etc.5930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
A subgroup of endocrine-disrupting chemicals have the ability to disrupt metabolism. These metabolism-disrupting chemicals (MDCs) can end up in aquatic environments and lead to adverse outcomes in fish. Although molecular and physiological effects of MDCs have been studied in adult fish, few studies have investigated the consequences of metabolic disruption in fish during the earliest life stages. To investigate the processes affected by metabolic disruption, zebrafish embryos were exposed to peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the PPARγ antagonist T0070907, and the well-known environmentally relevant MDC bisphenol A. Decreased apolipoprotein Ea transcript levels indicated disrupted lipid transport, which was likely related to the observed dose-dependent increases in yolk size across all compounds. Increased yolk size and decreased swimming activity indicate decreased energy usage, which could lead to adverse outcomes because the availability of energy reserves is essential for embryo survival and growth. Exposure to T0070907 resulted in a darkened yolk. This was likely related to reduced transcript levels of genes involved in lipid transport and fatty acid oxidation, a combination of responses that was specific to exposure to this compound, possibly leading to lipid accumulation and cell death in the yolk. Paraoxonase 1 (Pon1) transcript levels were increased by rosiglitazone and T0070907, but this was not reflected in PON1 enzyme activities. The present study shows how exposure to MDCs can influence biochemical and molecular processes involved in early lipid metabolism and may lead to adverse outcomes in the earliest life stages of fish. Environ Toxicol Chem 2024;43:1880-1893. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
28
|
Baker CE, Marta AG, Zimmerman ND, Korade Z, Mathy NW, Wilton D, Simeone T, Kochvar A, Kramer KL, Stessman HAF, Shibata A. CPT2 Deficiency Modeled in Zebrafish: Abnormal Neural Development, Electrical Activity, Behavior, and Schizophrenia-Related Gene Expression. Biomolecules 2024; 14:914. [PMID: 39199302 PMCID: PMC11353230 DOI: 10.3390/biom14080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Carnitine palmitoyltransferase 2 (CPT2) is an inner mitochondrial membrane protein of the carnitine shuttle and is involved in the beta-oxidation of long chain fatty acids. Beta-oxidation provides an alternative pathway of energy production during early development and starvation. CPT2 deficiency is a genetic disorder that we recently showed can be associated with schizophrenia. We hypothesize that CPT2 deficiency during early brain development causes transcriptional, structural, and functional abnormalities that may contribute to a CNS environment that is susceptible to the emergence of schizophrenia. To investigate the effect of CPT2 deficiency on early vertebrate development and brain function, CPT2 was knocked down in a zebrafish model system. CPT2 knockdown resulted in abnormal lipid utilization and deposition, reduction in body size, and abnormal brain development. Axonal projections, neurotransmitter synthesis, electrical hyperactivity, and swimming behavior were disrupted in CPT2 knockdown zebrafish. RT-qPCR analyses showed significant increases in the expression of schizophrenia-associated genes in CPT2 knockdown compared to control zebrafish. Taken together, these data demonstrate that zebrafish are a useful model for studying the importance of beta-oxidation for early vertebrate development and brain function. This study also presents novel findings linking CPT2 deficiency to the regulation of schizophrenia and neurodegenerative disease-associated genes.
Collapse
Affiliation(s)
- Carly E. Baker
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Aaron G. Marta
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Nathan D. Zimmerman
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Zeljka Korade
- Department of Pediatrics, Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68178, USA;
| | - Nicholas W. Mathy
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Delaney Wilton
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| |
Collapse
|
29
|
Wang X, Li X, Wang Y, Ren Z, Du X, Gao J, Ji G, Liu Z. Nkx1.2 deletion decreases fat production in zebrafish. Obesity (Silver Spring) 2024; 32:1315-1328. [PMID: 38798028 DOI: 10.1002/oby.24043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of Nkx1-2, a transcription factor with the NK homeobox domain, in the regulation of fat production. METHODS Gene expression was analyzed using quantitative real-time polymerase chain reaction or transcriptome sequencing. CRISPR/Cas9 technology was employed to generate nkx1.2 knockout zebrafish and nkx1.2-deleted 3T3-L1 cells. Lipid droplet production in zebrafish larvae was visually quantified using Nile red staining, whereas lipid droplets in 3T3-L1 cells were stained with Oil red O. The binding of Nkx1-2 to the promoter was verified through an electrophoretic mobility shift assay experiment. RESULTS Nkx1-2 plays crucial roles in the regulation of fat production in zebrafish. Knockout of nkx1.2 in zebrafish leads to weight loss, accompanied by significantly reduced lipid droplet production and decreased visceral and liver fat content. Furthermore, genes related to lipid biosynthesis are significantly downregulated. In 3T3-L1 preadipocytes, Nkx1-2 induces differentiation into mature adipocytes by binding to the cebpa promoter, thereby activating its transcription. Additionally, the expression of nkx1.2 is regulated by the p38 MAPK, JNK, or Smad2/3 signaling pathways in 3T3-L1 cells. CONCLUSIONS Our findings suggest that Nkx1-2 functions as a positive regulator of fat production, playing a critical role in adipocyte differentiation and lipid biosynthesis.
Collapse
Affiliation(s)
- Xinyuan Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinyi Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhongmei Ren
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xueqing Du
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jing Gao
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Guangdong Ji
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Zhenhui Liu
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| |
Collapse
|
30
|
Jurgelėnė Ž, Jagminas A, Montvydienė D, Stankevičiūtė M, Sauliutė G, Pažusienė J, Butrimienė R, Mikalauskaitė A, Jokšas K, Kazlauskienė N, Karabanovas V. Toxicity of different-sized cobalt ferrite (CoFe 2O 4) nanoparticles to Oncorhynchus mykiss at early development stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39735-39747. [PMID: 38833050 DOI: 10.1007/s11356-024-33841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
As innovative and versatile agents with potential applications in a wide range of fields including medicine, electronics, wastewater treatment, cosmetics, and energy storage devices, magnetic nanoparticles (NPs) are significant attention. However, our knowledge of the harmful effects of different-sized NPs, particularly of their effects on aquatic animals, is limited. In this study, we evaluated the impact of different-sized (sub-2, 5, and 15 nm) cobalt ferrite (CoFe2O4) NPs on the biological parameters of rainbow trout (Oncorhynchus mykiss) embryos and larvae. The NPs were characterized using techniques such as high-resolution transmission electron microscopy (HRTEM) for imaging, X-ray diffraction (XRD) for crystallographic analysis, and energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, and were tested for impact through a series of toxicity, genotoxicity, and biochemical assays at a concentration of 100 mg/L. The obtained results showed that toxicity of CoFe2O4 NPs depended on the size of NPs and the developmental stage of the fish. Our results, which revealed significant changes in biological parameters of O. mykiss under exposure to CoFe2O4 NPs, imply that these NPs may be not environmentally safe. The hierarchical cluster analysis showed that embryos of the control group were clearly separated from those exposed to NPs of various sizes. However, in the exposed larvae, the effects of control and the smallest-sized NPs (sub-2 nm) differed from those induced by larger NPs (5 nm and 15 nm). Additional research is necessary to comprehend the mechanisms underlying the observed variations, which would be advantageous for both managing the risk of NPs to humans and advancing the field of aquatic nanotoxicology.
Collapse
Affiliation(s)
- Živilė Jurgelėnė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania.
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3B, 08660, Vilnius, Lithuania.
| | - Arūnas Jagminas
- State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Av. 3, 10257, Vilnius, Lithuania
| | | | | | - Gintarė Sauliutė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania
| | - Janina Pažusienė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania
| | | | - Agnė Mikalauskaitė
- State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Av. 3, 10257, Vilnius, Lithuania
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania
| | | | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3B, 08660, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Av. 11, 10223, Vilnius, Lithuania
| |
Collapse
|
31
|
Shi Y, Wei X, Zhang Z, Wang S, Liu H, Cui D, Hua W, Fu Y, Chen Y, Xue Z, Li X, Wang W. Developmental toxicity and potential mechanisms exposed to polystyrene microplastics and polybrominated diphenyl ethers during early life stages of fat greenling (Hexagrammos otakii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106933. [PMID: 38705000 DOI: 10.1016/j.aquatox.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The occurrence of microplastics (MPs) in aquatic ecosystems and their ability to absorb hydrophobic pollutants, such as persistent organic pollutants (POPs), is currently a significant concern. MPs, which are the main breakdown product of plastics, have been frequently detected in the environment, posing serious threats to organisms' health. One particular pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a dominant congener of PBDEs and is highly toxic to organisms. However, there is limited knowledge regarding the exposure of marine fishes to PBDEs through MPs and their combined toxic effects. In this study, the embryo toxicity of Hexagrammos otakii was conducted to investigate the combined effects of MPs and BDE-47. The results showed that MPs and BDE-47 co-exposure had detrimental effects on embryonic development, such as reduced hatchability, increased mortality, decreased heart rate, and body malformation. Moreover, the combined toxicity of these substances appeared more pronounced harmful effects compared to exposure to BDE-47 alone. Histopathological examination revealed that co-exposure can cause greater damage to hatching glands and yolk. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included phagosome, metabolism of xenobiotics by cytochrome P450, TCA cycle, and Wnt signaling pathway, which are closely related to embryonic growth. BDE-47 and MPs may activate the Wnt signaling pathway to affect the normal development of embryos. Our results suggest that MPs and BDE-47 exposure may cause growth disorders in the early life stages of H.otakii, leading to abnormal embryonic development. All these results will contribute to the further study of the ecological risk assessment and toxicity of MPs and organic pollutant mixtures in marine fish.
Collapse
Affiliation(s)
- Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Dandan Cui
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yanxin Fu
- Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
32
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
33
|
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy AR. Comparing the effects of developmental exposure to alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS) in zebrafish (Danio rerio). Food Chem Toxicol 2024; 186:114560. [PMID: 38432440 PMCID: PMC11034762 DOI: 10.1016/j.fct.2024.114560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce β-cell lipotoxicity, indicating that changes in β-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARɣ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.
Collapse
Affiliation(s)
- Madeline C Tompach
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Charlotte K Gridley
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
34
|
Bertoni Í, Sales BCP, Viriato C, Peixoto PVL, Pereira LC. Embryotoxicity Induced by Triclopyr in Zebrafish ( Danio rerio) Early Life Stage. TOXICS 2024; 12:255. [PMID: 38668478 PMCID: PMC11054795 DOI: 10.3390/toxics12040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/29/2024]
Abstract
Triclopyr, an auxin-like herbicide that is widely employed for managing weeds in food crops and pastures, has been identified in various environmental settings, particularly aquatic ecosystems. Limited understanding of the environmental fate of this herbicide, its potential repercussions for both the environment and human health, and its insufficient monitoring in diverse environmental compartments has caused it to be recognized as an emerging contaminant of concern. In this study, we have investigated how triclopyr affects zebrafish, considering a new alternative methodology. We focused on the endpoints of developmental toxicity, neurotoxicity, and behavior of zebrafish embryos and larvae. We determined that triclopyr has a 96 h median lethal concentration of 87.46 mg/L (341.01 µM). When we exposed zebrafish embryos to sublethal triclopyr concentrations (0.5, 1, 5, 10, and 50 μM) for up to 144 h, we found that 50 µM triclopyr delayed zebrafish egg hatchability. Yolk sac malabsorption was significant at 0.5, 1, 5, and 10 µM triclopyr. In zebrafish larvae, uninflated swim bladder was significant only at 50 µM triclopyr. Furthermore, zebrafish larvae had altered swimming activity after exposure to 10 µM triclopyr for 144 h. In summary, these comprehensive results indicate that even low triclopyr concentrations can elicit adverse effects during early zebrafish development.
Collapse
Affiliation(s)
- Ítalo Bertoni
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil; (B.C.P.S.); (P.V.L.P.)
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
| | - Bianca Camargo Penteado Sales
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil; (B.C.P.S.); (P.V.L.P.)
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
| | - Cristina Viriato
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, Brazil
| | - Paloma Vitória Lima Peixoto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil; (B.C.P.S.); (P.V.L.P.)
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
| | - Lílian Cristina Pereira
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu 18618-687, Brazil; (C.V.); (L.C.P.)
- School of Agriculture, São Paulo State University (Unesp), Botucatu 18610-034, Brazil
| |
Collapse
|
35
|
Abe FR, Dorta DJ, Gravato C, de Oliveira DP. Elucidating the effects of pure glyphosate and a commercial formulation on early life stages of zebrafish using a complete biomarker approach: All-or-nothing! THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170012. [PMID: 38246377 DOI: 10.1016/j.scitotenv.2024.170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
The search for new methods in the toxicology field has increased the use of early life stages of zebrafish (Danio rerio) as a versatile organism model. Here, we use early stages of zebrafish to evaluate glyphosate as pure active ingredient and within a commercial formulation in terms of oxidative stress. Biomarkers involved in the oxidative status were evaluated along with other markers of neurotoxicity, genotoxicity, cytotoxicity, energy balance and motor performance, and the selected tools were evaluated by its sensitivity in determining early-warning events. Zebrafish embryos exposed to glyphosate active ingredient and glyphosate-based formulation were under oxidative stress, but only the commercial formulation delayed the embryogenesis, affected the cholinergic neurotransmission and induced DNA damage. Both altered the motor performance of larvae at very low concentrations, becoming larvae hypoactive. The energy balance was also impaired, as embryos under oxidative stress had lower lipids reserves. Although data suggest that glyphosate-based formulation has higher toxicity than the active ingredient itself, the most sensitive biomarkers detected early-warning effects at very low concentrations of the active ingredient. Biochemical biomarkers of defense system and oxidative damage were the most sensitive tools, detecting pro-oxidant responses at very low concentrations, along with markers of motor performance that showed high sensitivity and high throughput, suitable for detecting early effects linked to neurotoxicity. Alterations on morphology during embryogenesis showed the lowest sensitivity, thus morphological alterations appeared after several alterations at biochemical levels. Tools evaluating DNA damage and cell proliferation showed mid-sensitivity, but low throughput, thus they could be used as complementary markers.
Collapse
Affiliation(s)
- Flavia Renata Abe
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Danielle Palma de Oliveira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
36
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
37
|
Ribeiro J, Araújo-Silva H, Fernandes M, da Silva JA, Pinto FDCL, Pessoa ODL, Santos HS, de Menezes JESA, Gomes AC. Petrosamine isolated from marine sponge Petrosia sp. demonstrates protection against neurotoxicity in vitro and in vivo. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:16. [PMID: 38383833 PMCID: PMC10881933 DOI: 10.1007/s13659-024-00439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
According to The World Alzheimer Report 2023 by Alzheimer's Disease International (ADI) estimates that 33 to 38.5 million people worldwide suffer from Alzheimer's Disease (AD). A crucial hallmark associated with this disease is associated with the deficiency of the brain neurotransmitter acetylcholine, due to an affected acetylcholinesterase (AChE) activity. Marine organisms synthesize several classes of compounds, some of which exhibit significant AChE inhibition, such as petrosamine, a coloured pyridoacridine alkaloid. The aim of this work was to characterize the activity of petrosamine isolated for the first time from a Brazilian marine sponge, using two neurotoxicity models with aluminium chloride, as exposure to aluminium is associated with the development of neurodegenerative diseases. The in vitro model was based in a neuroblastoma cell line and the in vivo model exploited the potential of zebrafish (Danio rerio) embryos in mimicking hallmarks of AD. To our knowledge, this is the first report on petrosamine's activity over these parameters, either in vitro or in vivo, in order to characterize its full potential for tackling neurotoxicity.
Collapse
Affiliation(s)
- Joana Ribeiro
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Henrique Araújo-Silva
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mário Fernandes
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joilna Alves da Silva
- Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco das Chagas L Pinto
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdenia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Santos
- Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Ceará, Brazil
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
38
|
Takemura Mariano MV, Paganotto Leandro L, Gomes KK, Dos Santos AB, de Rosso VO, Dafre AL, Farina M, Posser T, Franco JL. Assessing the disparity: comparative toxicity of Copper in zebrafish larvae exposes alarming consequences of permissible concentrations in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:166-184. [PMID: 38073470 DOI: 10.1080/15287394.2023.2290630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.
Collapse
Affiliation(s)
- Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
- Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Vitor Oliveira de Rosso
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group. Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, Brazil
| |
Collapse
|
39
|
Wei YL, Lin XC, Liu YY, Lei YQ, Zhuang XD, Zhang HT, Wang XR. Effects of water fluoridation on early embryonic development of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115907. [PMID: 38176185 DOI: 10.1016/j.ecoenv.2023.115907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.
Collapse
Affiliation(s)
- Ya-Lan Wei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Ying-Ying Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu-Qing Lei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xu-Dong Zhuang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hai-Tao Zhang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Rui Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
40
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
41
|
McKay ME, Baseler L, Beblow J, Cleveland M, Marlatt VL. Comparative subchronic toxicity of copper and a tertiary copper mixture to early life stage rainbow trout (Oncorhynchus mykiss): impacts on growth, development, and histopathology. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1-21. [PMID: 38112924 DOI: 10.1007/s10646-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
This research aimed to characterize and compare the subchronic impacts of Cu to a Cu, Cd, and Zn mixture in early life stages of rainbow trout (Oncorhynchus mykiss) by examining uptake, survival, growth, development, and histopathology parameters. To accomplish this, rainbow trout were exposed for 31 days from eyed embryos to the swim-up fry life stage to waterborne Cu (31, 47, 70, and 104 μg/L) individually or as mixture containing Cd (4.1, 6.2, 9.3, and 14 μg/L) and Zn (385, 578, 867, and 1300 μg/L). Exposures elicited pronounced effects on survival when Cu was administered as a mixture (LC25 = 32.9 μg/L Cu) versus individually (LC25 = 46.3 μg/L Cu). Mixtures of Cu, Cd, and Zn also elicited more pronounced sublethal toxicity relative to equivalent Cu treatments with respect to reduced yolk sac resorption and increased incidence and/or severity of gill, liver, and kidney lesions. Our findings of reduced body weight (EC10, Cu = 55.0 μg/L Cu; EC10, Cu+Cd+Zn = 58.9 μg/L Cu), yolk sac resorption (LOECCu = 70 μg/L Cu; LOECCu+Cd+Zn = 70 μg/L Cu), coelomic fat (LOECCu = 47 μg/L Cu; LOECCu+Cd+Zn = 70 μg/L Cu), and increased hepatocellular cytoplasmic vacuolation (LOECCu = 70 μg/L Cu; LOECCu+Cd+Zn = 47 μg/L Cu) collectively indicate a complicated metabolic interference by metals in exposed fish. These lethal and sublethal effects observed in the laboratory could translate to reduced survival and fitness of wild salmonid populations inhabiting waterbodies receiving wastewater or runoff containing multiple metals at elevated concentrations.
Collapse
Affiliation(s)
- Michael E McKay
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | | | - Jordan Beblow
- Gitanyow Fisheries Authority, Kitwanga, BC, V0J 2A0, Canada
| | - Mark Cleveland
- Gitanyow Fisheries Authority, Kitwanga, BC, V0J 2A0, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
42
|
Dong G, Wang N, Xu T, Liang J, Qiao R, Yin D, Lin S. Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18127-18138. [PMID: 36971266 DOI: 10.1021/acs.est.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using in vivo models. Herein, we propose a deep learning-based morphometric analysis (DLMA) to quantitatively identify eight abnormal phenotypes (head hemorrhage, jaw malformation, uninflated swim bladder, pericardial edema, yolk edema, bent spine, dead, unhatched) and eight vital organ features (eye, head, jaw, heart, yolk, swim bladder, body length, and curvature) of zebrafish larvae. A data set composed of 2532 bright-field micrographs of zebrafish larvae at 120 h post fertilization was generated from toxicity screening of three categories of chemicals, i.e., endocrine disruptors (perfluorooctanesulfonate and bisphenol A), heavy metals (CdCl2 and PbI2), and emerging organic pollutants (acetaminophen, 2,7-dibromocarbazole, 3-monobromocarbazo, 3,6-dibromocarbazole, and 1,3,6,8-tetrabromocarbazo). Two typical deep learning models, one-stage and two-stage models (TensorMask, Mask R-CNN), were trained to implement phenotypic feature classification and segmentation. The accuracy was statistically validated with a mean average precision >0.93 in unlabeled data sets and a mean accuracy >0.86 in previously published data sets. Such a method effectively enables subjective morphometric analysis of zebrafish larvae to achieve efficient hazard identification of both chemicals and environmental pollutants.
Collapse
Affiliation(s)
- Gongqing Dong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Nan Wang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Ting Xu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jingyu Liang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Ruxia Qiao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
43
|
Chen J, Zhang X, Zhang Y, Zhang H, Zhang Q. The primary neurotoxic factor, Lansamide I, from Clausena lansium fruits and metabolic dysfunction invoked. Food Chem Toxicol 2023; 181:114087. [PMID: 37804914 DOI: 10.1016/j.fct.2023.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Wampee (Clausena lansium) is a common fruit in South Asia. The pulp is a tasty food, and the seed is a typical traditional herb in China. However, we identified a primary toxic compound, Lansamide I, by NMR and X-ray diffraction of single-crystal. The compound occurred at 4.17 ± 0.16 mg/kg of dried seed and 0.08 ± 0.01 g/kg of fresh fruit. In our phenotype-based toxicity investigation, the compound caused decreased hatchability of zebrafish eggs, increased malformations such as enlarged yolk sacs and pericardial edema, and delayed body length development. Moreover, the compound also caused nerve cell damage and decreased locomotor activity. The compound caused an increase in peroxidation levels in vivo, with increases in both malondialdehyde and superoxide dismutase levels, but did not interfere with acetylcholinesterase levels. Metabolomic studies found that the compound caused significant up-regulation of 16 metabolites, mainly amino acids and peptides, which were involved in the nucleotide metabolism pathway and the betaine biosynthesis module. The qRT-PCR revealed that the substance interfered with the mRNA expression of tat and dctpp. These discoveries offer fresh perspectives on the toxicity mechanisms and metabolic response to the primary harmful molecules in wampee, which could inform the rational usage of wampee resources.
Collapse
Affiliation(s)
- Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, Shaanxi, China
| | - Xiaoyue Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Yuru Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, Shaanxi, China
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, Shaanxi, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China.
| |
Collapse
|
44
|
Tarbashevich K, Ermlich L, Wegner J, Pfeiffer J, Raz E. The mitochondrial protein Sod2 is important for the migration, maintenance, and fitness of germ cells. Front Cell Dev Biol 2023; 11:1250643. [PMID: 37954204 PMCID: PMC10639133 DOI: 10.3389/fcell.2023.1250643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
To maintain a range of cellular functions and to ensure cell survival, cells must control their levels of reactive oxygen species (ROS). The main source of these molecules is the mitochondrial respiration machinery, and the first line of defense against these toxic substances is the mitochondrial enzyme superoxide dismutase 2 (Sod2). Thus, investigating early expression patterns and functions of this protein is critical for understanding how an organism develops ways to protect itself against ROS and enhance tissue fitness. Here, we report on expression pattern and function of zebrafish Sod2, focusing on the role of the protein in migration and maintenance of primordial germ cells during early embryonic development. We provide evidence that Sod2 is involved in purifying selection of vertebrate germ cells, which can contribute to the fitness of the organism in the following generations.
Collapse
Affiliation(s)
- Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Laura Ermlich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Julian Wegner
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Jana Pfeiffer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation (ZMBE), Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
45
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Selvaraj K, Palanisamy P, Ramakrishna B, Pamanji R, Selvin J, Srikanth K, Nasiri S, Kment S, Nutalapati V. Fluoranthene-terminated terpyridine ensemble for fluorescence light up and ratiometric chemical sensor for multi toxic metals. Anal Chim Acta 2023; 1274:341526. [PMID: 37455068 DOI: 10.1016/j.aca.2023.341526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
A novel π-electron rich fluoranthene embellished with a phenyl spacer and coupled with terpyridine (TS1) was developed through Diels-Alder reaction. Single crystal X-ray structure evidences the variations in dihedral angles between the fluoranthene and the phenyl unit responsible for development of non-coplanar interactions and stabilized by a wave-like molecular packing in the crystal lattice with weak π-π interaction of 4.125 Å. The peripheral terpyridine of TS1 endows an efficient binding with multiple metal ions by colorimetric and fluorometric methods. TS1 exhibits a ratiometric fluorescence response from sky blue to yellow colour upon the addition of Zn2+ ions with a limit of detection (LOD) of 0.05 ppm. The other metal ions such as Cu2+, Co2+ and Fe2+ demonstrate fluorescence quenching behaviour with LODs of 0.1, 0.3 and 0.7 ppm, respectively. The intramolecular charge transfer (ICT) shows the variation in TS1 emission behaviour upon metal ions interaction and quantitatively discriminates the metal ion concentrations. TS1 conferred a visual colorimetric change from colourless to magenta, enabling naked-eye detection of Fe2+ and showing clear discrimination between Fe2+ and Fe3+ ions for the real-time water samples. Furthermore, we have investigated the effect of TS1 in Zebrafish larvae/embryos and cytotoxicity in human urinary tract transitional cell carcinoma cells (UM-UC-3).
Collapse
Affiliation(s)
- Kasthuri Selvaraj
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, India
| | - Prasanth Palanisamy
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, 632014, India
| | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Chinna Kalapet, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Chinna Kalapet, Puducherry, 605014, India
| | - Koigoora Srikanth
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, 522213, Guntur, Andhra Pradesh, India
| | - Sohrab Nasiri
- Faculty of Mechanical Engineering, Optical Measurement Laboratory, Kaunas University of Technology, Studentu Street 56, L-116, Kaunas, LT 51373, Lithuania
| | - Stepan Kment
- Regional Center of Advanced Technologies and Materials, Slechtitelu 27, Olomouc, 78371, Czech Republic
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, India.
| |
Collapse
|
47
|
Ulhaq ZS, Tse WKF. Perfluorohexanesulfonic acid (PFHxS) induces oxidative stress and causes developmental toxicities in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131722. [PMID: 37263022 DOI: 10.1016/j.jhazmat.2023.131722] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a short-chain perfluoroalkyl substance widely used to replace the banned perfluorooctanesulfonic acid (PFOS) in different industrial and household products. It has currently been identified in the environment and human bodies; nonetheless, the possible toxicities are not well-known. Zebrafish have been used as a toxicant screening model due to their fast and transparent developmental processes. In this study, zebrafish embryos were exposed to PFHxS for five days, and various experiments were performed to monitor the developmental and cellular processes. Liquid chromatography-mass spectrometry (LC/MS) analysis confirmed that PFHxS was absorbed and accumulated in the zebrafish embryos. We reported that 2.5 µM or higher PFHxS exposure induced phenotypic abnormalities, marked by developmental delay in the mid-hind brain boundary and yolk sac edema. Additionally, larvae exposed to PFHxS displayed facial malformation due to the reduction of neural crest cell expression. RNA sequencing analysis further identified 4643 differentiated expressed transcripts in 5 µM PFHxS-exposed 5-days post fertilization (5-dpf) larvae. Bioinformatics analysis revealed that glucose metabolism, lipid metabolism, as well as oxidative stress were enriched in the PFHxS-exposed larvae. To validate these findings, a series of biological experiments were conducted. PFHxS exposure led to a nearly 4-fold increase in reactive oxygen species, possibly due to hyperglycemia and impaired glutathione balance. The Oil Red O' staining and qPCR analysis strengthens the notions that lipid metabolism was disrupted, leading to lipid accumulation, lipid peroxidation, and malondialdehyde formation. All these alterations ultimately affected cell cycle events, resulting in S and G2/M cell cycle arrest. In conclusion, our study demonstrated that PFHxS could accumulate and induce various developmental toxicities in aquatic life, and such data might assist the government to accelerate the regulatory policy on PFHxS usage.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan.
| |
Collapse
|
48
|
Gong C, He J, Guo D, Zhang L, Shi Z, Wang X. Identification of zebrafish GIGYF2 presents in egg/embryo as an antibacterial protein. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108957. [PMID: 37467901 DOI: 10.1016/j.fsi.2023.108957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Previous studies have shown that GIGYF2 plays multiple roles, but its overall biological function remains poor-defined. Here we clearly demonstrated that zebrafish (Danio rerio) GIGYF2 has GYF domain and gigyf2 mainly expressed in caudal fin, brain, eyes and testis in a tissue specific manner, and was most abundant in brain and testis. GYF domain of GIGYF2 was a peptidoglycan (PGN), lipopolysaccharide (LPS)- and lipoteichoic acid (LTA)- binding protein abundantly stored in the testis/embryos of zebrafish, acting not only as a pattern recognition receptor, but also as an effector molecule, capable of inhibiting the growth of gram-positive and -negative bacteria. Furthermore, we reveal that the residues of GIGYF2 positioned at 582-601 and 848-865 were indispensable for GIGYF2 antibacterial activity. Additionally, site-directed mutation could improve antibacterial activities. Collectively, our results indicate that zebrafish GYF domain of GIGYF2 recognize bacterial characteristic molecules PGN, LPS and LTA, and directly kill bacteria as an antibacterial effector. This work also provides another angle for understanding the biological roles of GIGYF2.
Collapse
Affiliation(s)
- Chengming Gong
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing He
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dongqiu Guo
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liqiao Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenping Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
49
|
An G, Kim M, Park J, Park H, Hong T, Lim W, Song G. Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109617. [PMID: 36965842 DOI: 10.1016/j.cbpc.2023.109617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Chloroxylenol is an extensively consumed anti-microbial compound. Since its usage is on the rise due to the coronavirus pandemic and ban on other antimicrobial ingredients, recent studies have suggested the necessity of estimating its potential for ecotoxicity. The detrimental effect of chloroxylenol on zebrafish (Danio rerio) viability has been reported; however, research on the mechanisms underlying its toxicity is quite limited. Therefore, we applied the zebrafish model for elucidating responses against chloroxylenol to predict its toxicity toward human health and ecology. Zebrafish exposed to chloroxylenol (0, 0.5, 1, 2.5, 5, and 10 mg/L) at the embryonic stage (from 6 h post-fertilization (hpf) to 96 hpf) showed impaired viability and hatchability, and pathological phenotypes. To address these abnormalities, cellular responses such as oxidative stress, inflammation, and apoptosis were confirmed via in vivo imaging of a fluorescent dye or measurement of the transcriptional changes related to each response. In particular, developmental defects in the cardiovascular system of zebrafish exposed to 0, 0.5, 1, and 2.5 mg/L of chloroxylenol from 6 to 96 hpf were identified by structural analyses of the system in the flk1:eGFP transgenic line. Additional experiments were conducted using human umbilical vein endothelial cells (HUVECs) to predict the adverse impacts of chloroxylenol on the human vascular system. Chloroxylenol impairs the viability and tube formation ability of HUVECs by modulating ERK signaling. The findings obtained using the zebrafish model provide evidence of the possible risks of chloroxylenol exposure and suggest the importance of more in-depth ecotoxicological studies.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Miji Kim
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
50
|
Torres-Ruiz M, de Alba González M, Morales M, Martin-Folgar R, González MC, Cañas-Portilla AI, De la Vieja A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162406. [PMID: 36841402 DOI: 10.1016/j.scitotenv.2023.162406] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NP) are present in aquatic and terrestrial ecosystems. Humans can be exposed to them through contaminated water, food, air, or personal care products. Mechanisms of NP toxicity are largely unknown and the Zebrafish embryo poses an ideal model to investigate them due to its high homology with humans. Our objective in the present study was to combine a battery of behavioral assays with the study of endocrine related gene expression, to further explore potential NP neurotoxic effects on animal behavior. Polystyrene nanoplastics (PSNP) were used to evaluate NP toxicity. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. Results show PSNP accumulated in eyes, neuromasts, brain, and digestive system organs. PSNP inhibited acetylcholinesterase and altered endocrine-related gene expression profiles both in the thyroid and glucocorticoid axes. At the whole organism level, we observed altered behaviors such as increased activity and anxiety at lower doses and lethargy at a higher dose, which could be due to a variety of complex mechanisms ranging from sensory organ and central nervous system effects to others such as hormonal imbalances. In addition, we present a hypothetical adverse outcome pathway related to these effects. In conclusion, this study provides new understanding into NP toxic effects on zebrafish embryo, emphasizing a critical role of endocrine disruption in observed neurotoxic behavioral effects, and improving our understanding of their potential health risks to human populations.
Collapse
Affiliation(s)
- Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| | - Mercedes de Alba González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Ctra. de Las Rozas al Escorial Km 5, 28232 Las Rozas, Madrid, Spain
| | - Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Ctra. de Las Rozas al Escorial Km 5, 28232 Las Rozas, Madrid, Spain
| | - Mª Carmen González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Ana I Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| | - Antonio De la Vieja
- Endocrine Tumor Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| |
Collapse
|