1
|
Wang G, Ma P, Mo S, Liu W, Chen T, Huang Z, Xie J. Chemical characterization, antioxidant activity and activation of macrophages RAW264.7 via MAPK signaling pathway of the exopolysaccharide from Penicillium EF-2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4248-4260. [PMID: 39912408 DOI: 10.1002/jsfa.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Microbial exopolysaccharides represent a significant source of polysaccharides, with their production unconstrained by temporal or spatial limitations. Penicillium, a filamentous fungus widely recognized for its medicinal food applications, is known to produce exopolysaccharides that exhibit cancer-inhibitory properties. RESULTS In the present study, exopolysaccharides from Penicillium EF-2 (EPS) were extracted and structurally characterized using ion chromatograph, infrared spectroscopy and NMR. The in vitro antioxidant and immunomodulatory activities were also investigated. EPS has a molecular weight of 111.47 kDa, is primarily composed of mannose, glucose and galactose, possesses a crystalline region, and exhibits excellent thermal properties. In free radical scavenging assays, EPS demonstrated robust in vitro antioxidant activity. Furthermore, EPS activated the mitogen-activated protein kinase pathway, enhancing the immunomodulatory capacity of macrophages. CONCLUSION EPS has excellent antioxidant and biological activities. The present study provides a theoretical basis for the utilization of EPS and offers new ideas for active sources of Penicillium fermented foods. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shiru Mo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Wendong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Li J, Guo F, Bao Y, Si Q, Lu Y, Fu Q, Shi J. Cellulose-Based Electromagnetic Functional Aerogels: Mechanism, Fabrication, Structural Design, and Application. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27579-27604. [PMID: 40324338 DOI: 10.1021/acsami.4c22875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electromagnetic functional materials offer a promising solution to reduce impacts from electromagnetic pollution and interference, such as digital communications, national defenses, and military fields. Cellulose-based aerogels, featured with their hierarchical porous structure, high specific surface area, and surface activity, can be engineered to possess electromagnetic wave shielding and absorption capabilities through structural regulation, composition optimization, and material functionalization. Moreover, these cellulose-based aerogels exhibit remarkable renewability and biocompatibility, highlighting their significant potential in the field of electromagnetic functional materials. In this review, we stigmatically overview the state-of-the-art of cellulosic electromagnetic functional aerogels, which begins with elucidating the mechanisms behind electromagnetic interference shielding and microwave absorption. The material design based on the physical and chemical characteristics of cellulose aerogels is discussed. Furthermore, the hierarchical design strategies of the cellulosic electromagnetic functional aerogels are reviewed including macro-structures, micro/nanostructures, and supramolecular structures. Multifunctional applications of cellulose electromagnetic functional aerogels are presented, such as infrared and radar stealth materials, intelligent responsive electromagnetic devices, and radiation protection equipment. Finally, an up-to-date summary and an outlook on developing the cellulose-based electromagnetic functional aerogels are provided in the fields of electromagnetic interference shielding and microwave absorption, as well as outlining future research perspectives.
Collapse
Affiliation(s)
- Jiayao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fakun Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhui Bao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingshan Si
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Dehua TB New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Jiangtao Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Ge L, Shang S, Ma Y, Koudama TD, Yuan K, Liu W, Cui S. Overview of Aerogels for Thermal Insulation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26091-26116. [PMID: 40285716 DOI: 10.1021/acsami.4c22957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
With the development of building energy efficiency, battery thermal management, aerospace, and other fields, the performance requirements of thermal insulation materials are increasing. Aerogels are porous materials with three-dimensional nanostructures with extremely low density and thermal conductivity. In recent years, aerogels have attracted much attention in thermal insulation due to their excellent properties. This paper reviews the design, preparation, and thermal insulation application of aerogels. First, the preparation methods of oxides, carbides, nitrides, and polymer aerogels are introduced. Then, the application progress of aerogels in various thermal insulation scenarios is analyzed. In addition, the challenges and prospects of future research on aerogels for thermal insulation are discussed.
Collapse
Affiliation(s)
- Longhui Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Sisi Shang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Yuecheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Tete Daniel Koudama
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Ke Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Xiang L, Pan D, Lei J, AlMasoud N, Alomar TS, Issaulu IG, Wang Y, El-Bahy ZM, Liu C, Guo Z, Ainur S, Toktarbay Z. Sodium alginate aerogel derived SiC@Co-C 3D network enhances electromagnetic wave absorption and thermal conductivity of PDMS based composite. Int J Biol Macromol 2025; 306:141539. [PMID: 40049476 DOI: 10.1016/j.ijbiomac.2025.141539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Interface packaging materials with both electromagnetic wave absorption and high thermal conductivity remains a research hotspot in modern electronics industry and aerospace field. In this paper, the cobalt alginate aerogel derived from biomass sodium alginate was carbothermal reduced to obtain a three-dimensional skeleton structure composed of zero-dimensional Co metal particles, one-dimensional silicon carbide (SiC) whiskers and biomass derived carbon (C). The dielectric-electromagnetic effect of the filler network makes the obtained polydimethylsiloxane (PDMS) based composite (PDMS/SiC@Co-C) exhibits good electromagnetic wave absorption performance, with the lowest reflection loss (RLmin) value can reach -40.08 dB, and the effective absorption bandwidth (EABmax) can reach 4.16 GHz at the thickness of 1.9 mm. The unique three-dimensional overlapping structure makes the thermal conductivity of PDMS/SiC@Co-C increase to 1.856 W/m·K, which is 1345 % higher than that of PDMS. This work provides an important reference value for the development of interface packaging materials used in microelectronics and aerospace fields.
Collapse
Affiliation(s)
- Lilin Xiang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Junting Lei
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Issayev Gani Issaulu
- Department of Biology, Faculty of Natural Science, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarkhanov 29, Turkistan, 161200, Republic of Kazakhstan.
| | - Yaming Wang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8, UK
| | - Seilkhan Ainur
- Department of Сhemistry, Faculty of Natural Sciences and Geography, Abai Kazakh National Pedagogical University, 13 Dostyk Ave., Almaty 050010, Kazakhstan
| | - Zhexenbek Toktarbay
- Department of Сhemistry, Faculty of Natural Sciences and Geography, Abai Kazakh National Pedagogical University, 13 Dostyk Ave., Almaty 050010, Kazakhstan
| |
Collapse
|
5
|
Tan Z, Dong L, Lyu Z. Silicon Carbide Aerogels: Fabrication, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500907. [PMID: 40289457 DOI: 10.1002/smll.202500907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Silicon carbide (SiC) aerogels are advanced materials distinguished by their low density, high porosity, exceptional thermal resistance, and tunable dielectric properties, making them highly promising for applications in thermal insulation, environmental protection, and electromagnetic wave absorption. Despite their potential, the fabrication of SiC aerogels with optimized performance presents significant challenges, including scalability issues, cost constraints, and difficulties in achieving precise control over material properties and architectures. This review comprehensively examines fabrication methods for SiC aerogels, such as sol-gel processing, electrospinning, 3D printing, and emerging synthesis techniques. It emphasizes their impact on key properties, including thermal conductivity, chemical stability, and mechanical properties. The recent advancements in the application of SiC aerogels for thermal insulation, electromagnetic wave absorption, environmental protection, sensing, and catalysis are discussed. This review concludes with an evaluation of the advantages and limitations of SiC aerogels and proposes future research directions to support their broader industrial adoption.
Collapse
Affiliation(s)
- Zhongwei Tan
- School of Mechanical Engineering, Xihua University, Chengdu, 610039, China
| | - Lin Dong
- School of Mechanical Engineering, Xihua University, Chengdu, 610039, China
- Institute of Modern Agricultural Equipment, Xihua University, Chengdu, 610039, China
| | - Zhiyang Lyu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
6
|
Xie X, Wu J, Ma Y, Li S, Yan J. Low Dielectric and High Thermal Conductive Phononic Crystal Nanofiber Metamaterial Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502146. [PMID: 40269598 DOI: 10.1002/adma.202502146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The rapid advancement of 3D heterogeneous integration technology has created stringent requirements for the thermal conductivity of low dielectric materials. However, common low dielectric materials generally have low thermal conductivity, which hinders the ability to simultaneously optimize signal transmission and heat dissipation in integrated systems. Here, a crystallization control strategy is proposed to tackle the challenge of balancing high thermal conductivity with a low dielectric constant. Through precise control of synthesis parameters, a phononic crystal nanofiber (NF) metamaterial film composed of boron nitride nanosheets (BNNS) and crystalline polyimide (PI) bridges has been successfully developed. The crystalline PI bridging structure and BNNS synergistically form a phononic crystal-like metamaterial inside the fiber, enhancing lattice vibration and facilitating heat transfer. Meanwhile, the PI around the fiber maintains a long-range disordered structure, hindering the arrangement of dipoles. The synergistic effect enables the phononic crystal NF film to achieve a high thermal conductivity of up to 6.51 W/(m·k) and a relatively low dielectric constant of 2.63, thereby enhancing the energy efficiency of 3D integrated systems.
Collapse
Affiliation(s)
- Xiaoyun Xie
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiawei Wu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yanyan Ma
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shouzhu Li
- Xinjiang Key Laboratory of New Energy and Energy Storage Technology, Xinjiang Institute of Technology, Akesu, 843100, China
| | - Jianhua Yan
- College of Textiles, Donghua University, Shanghai, 201620, China
- Xinjiang Key Laboratory of New Energy and Energy Storage Technology, Xinjiang Institute of Technology, Akesu, 843100, China
| |
Collapse
|
7
|
Li M, Han S, Dan C, Wu T, You F, Jiang X, Wu Y, Dang ZM. Boron Nitride-Polymer Composites with High Thermal Conductivity: Preparation, Functionalization Strategy and Innovative Structural Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412447. [PMID: 40159842 DOI: 10.1002/smll.202412447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The escalating thermal challenges posed by increasing power densities in electronic devices emerge as a critical barrier to maintain their sustained and reliable operation. Addressing this issue requires the strategic development of materials with superior thermal conductivity properties to facilitate progress in high-power electronics development. Thermal conductive polymer composites by incorporating ceramic material renowned for their exceptional thermal conductivity adjustability, insulating properties, and moldability, are emerging as a promising solution to this urgent challenge. Hexagonal boron nitride (h-BN) nanomaterials emerge as highly promising candidates for thermal management applications, owing to their exceptional mechanical properties, superior thermal stability, remarkable thermal conductivity coefficients, minimal thermal expansion characteristics, and outstanding chemical inertness. In this work, the progress of ≈10 years on high thermal conductive boron nitride-filled polymer composites is thoroughly summarized. Moreover, strategies for h-BN and other boron nitride nanomaterials-filled polymer composites at synthesis, functionalization, and innovative structural design are discussed in detail. The main challenges and future development of boron nitride-polymer composites in thermal management are also proposed, which will provide meaningful guidance for the design and practical applications of thermal management materials.
Collapse
Affiliation(s)
- Mengsha Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shufen Han
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Chun Dan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tao Wu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yunhui Wu
- Guangdong Provincial Engineering Technology Research Center of Key Materials for High-Performance Copper Clad Laminates, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Zhi-Min Dang
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Zhao H, Sun J, Yang X, Ma Y, Xiang Y, Yu X, Yang W, Liu J, Jin C, Cheng Y. Synthesis of a Leaf-Like Co/C Nanosheet for Efficient Microwave Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5970-5980. [PMID: 39992163 DOI: 10.1021/acs.langmuir.4c04686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Elaborate engineering of the microstructure of electromagnetic (EM) absorption materials affords infinite potential for achieving superior EM wave absorption performance. In this work, a leaf-like Co/C nanosheet was rationally fabricated by a facile pyrolysis of a CoZn-based zeolitic imidazolate framework-L (Co/Zn-ZIF-L) precursor. Herein, Co nanoparticles (NPs) are uniformly confined in the leaf-like porous carbon matrix, forming attractive heterostructures. A suitable 2D morphology and Co/C binary components endow the composite with superior impedance matching and synergetic EM losses for excellent microwave absorption and radar stealth performance. When the filler content is as low as 25 wt %, the strong absorption intensity of -47.6 dB is reached at a thickness of 2.1 mm, and a broad effective bandwidth of 4.9 GHz is achieved at a thickness of only 1.6 mm. At the detection theta of 0°, the maximum radar cross-sectional (RCS) reduction value reaches 17.9 dB·m2. Hence, it is expected that the leaf-like Co/C nanosheet exhibits significant advantages in the field of EM wave absorption and radar stealth, which paves the way for future exploration of high-performance EM wave absorption materials.
Collapse
Affiliation(s)
- Huanqin Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Jiachen Sun
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Xin Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Yongzhen Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Yang Xiang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Xue Yu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Wentian Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Junyi Liu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Changqin Jin
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, PR China
| | - Yan Cheng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
9
|
Chen C, Shan Z, Li B, Wang J, Liu T, Li SF, Yang H, Su J, Zhang G. Construction of 1D Molecular Conductive Wires Through a Polarized Gene Weaving Strategy for Efficient Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409786. [PMID: 39690892 DOI: 10.1002/smll.202409786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Indexed: 12/19/2024]
Abstract
The growing threat of electromagnetic pollution has become a pressing safety concern. Metal-organic framework (MOF) derivatives are considered ideal candidates for mitigating electromagnetic radiation. However, due to the limitations imposed by complex post-processing and disruption of pristine crystal structures, the mechanisms of electromagnetic wave absorption remain unclear, let alone achieving atomic-level regulation in MOF derivatives. Moreover, research on MOF-based electromagnetic wave absorbers (EMWA) has predominantly focused on 2D and 3D structures, leaving 1D MOFs largely unexplored. To address these challenges, a bottom-up polarization gene weaving strategy is proposed to integrate polarizable conjugated groups, thieno(3,2-b)thiophene (TBTT), into two types of conductive MOFs by fine-tuning self-assembly conditions. As expected, both MOFs exhibited strong natural polarization effects. Among them, the 1D linear coordination mode of CuTBTT-1D demonstrated enhanced charge carrier mobility and geometric effects compared to the 2D structure, CuTBTT-2D. The synthesized 1D molecular polarization wire, with a thickness of 2.2 mm, achieved ultra-high reflection loss (-77 dB) and super-wide absorption bandwidth (6.52 GHz). Its performance surpasses that of all known MOF-based EMWAs. This study provides a valuable strategy for the rational design of next-generation 1D MOF EMWA with atomic precision.
Collapse
Affiliation(s)
- Congjie Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Shan
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bocong Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinjian Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tongtong Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shu-Fan Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongwei Yang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jian Su
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gen Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Zhao C, Jiang C, Li B, Tang Y, Wu X, Liu C, He Y, Yu W, Li Y. Multiscale Modeling of Heat Conduction in a Hydroxyethyl Cellulose/Boron Nitride Composite Realizing Ultrahigh Thermal Conductivity via a "Moisture-Activated" Strategy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2081-2092. [PMID: 39700508 DOI: 10.1021/acsami.4c20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Polymer-based thermally conductive composites are widely used in microelectronics for heat dissipation and packaging, for which the filler arrangement and the filler/matrix interfacial thermal resistance (ITR) are key factors limiting superior thermal conduction realization. This work reveals the effects of filler modification and orientation on thermal duction in the boron nitride (BN)/hydroxyethyl cellulose (HEC) through multiscale simulation approaches. Nonequilibrium molecular dynamics (NEMD) identifies that the thermal conductivity of the BN molecule is not size-dependent and proves that thermal resistance is dramatically reduced after hydroxylation modification (BNOH). Finite element simulation (FEM) reveals that maintaining a proper tilt of BN may improve both the cross-plane and in-plane thermal conductivity of the composite. Experimentally, BNOH/HEC composites with high self-viscosity are prepared via a "moisture-activated" strategy, for which the introduction of BNOH and wet hot pressing contribute to the thermal resistance reduction and filler orientation, respectively. The in-plane thermal conductivity reaches 30.64 W/mK with a cross-plane thermal conductivity of 5.06 W/mK. The films show good adaptability to surface morphology with the thermal resistance decreasing to 1.42 K·cm2/W. Practical thermal management demonstrates that the incorporation of BNOH/HEC facilitates a 15.05 °C reduction of the LED Al substrate compared to the common composite film.
Collapse
Affiliation(s)
- Chenggong Zhao
- School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
- School of Energy and Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chen Jiang
- School of Energy and Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| | - Bingheng Li
- School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yuanzheng Tang
- School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Xinfeng Wu
- School of Energy and Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| | - Changqing Liu
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, Hunan 422001, China
| | - Yan He
- School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Wei Yu
- School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
- School of Energy and Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| | - Yifan Li
- School of Energy and Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
11
|
Hyeong J, Koo J, Rim M, Wi Y, Ko H, Yu D, Kim S, Kim N, Yoo MJ, Jeong KU. Stretchable Heat Transfer Eco-Materials: Mesogen Grafted NR-Based Nanocomposites with High Thermal Conductivity and Low Dielectric Constant. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406066. [PMID: 39221661 DOI: 10.1002/smll.202406066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Biomass-based functional polymers have received significant attention across various fields, in view of eco-friendly human society and sustainable growth. In this context, there are efforts to functionalize the biomass polymers for next-generation polymer materials. Here, stretchable heat transfer materials are focused on which are essential for stretchable electronics and future robotics. To achieve this goal, natural rubber (NR) is chemically modified with a thiol-terminated phenylnaphthalene (TTP), and then utilized as a thermally conductive NR (TCNR) matrix. Hexagonal boron nitride (h-BN), renowned for its high thermal conductivity and low electrical conductivity, is incorporated as a filler to develop stretchable heat transfer eco-materials. The optimized TCNR/h-BN composite elongates to 140% due to great elasticity of NR, and exhibits excellent dielectric properties (a low dielectric constant of 2.26 and a low dielectric loss of 0.006). Furthermore, synergetic phonon transfer of phenylnaphthalene crystallites and h-BN particles in the composite results in a high thermal conductivity of 0.87 W m-1 K-1. The outstanding thermal, mechanical, and dielectric properties of the newly developed TCNR/h-BN composite enable the successful demonstration as stretchable and shape-adaptable thermal management materials.
Collapse
Affiliation(s)
- Jaeseok Hyeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dongmin Yu
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sanghee Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Namil Kim
- Department of Chemical Engineering, Hannam University, Daejeon, 34054, Republic of Korea
| | - Myong Jae Yoo
- Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute (KETI), Seongnam, 13509, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
12
|
Liu Y, Wang Z, Song X, Shen X, Wei Y, Hua C, Shao P, Qu D, Jiang J, Liu Y. 3D Printing-Induced Hierarchically Aligned Nanocomposites With Exceptional Multidirectional Strain Sensing Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404810. [PMID: 39252642 DOI: 10.1002/smll.202404810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
High-performance sensors capable of detecting multidirectional strains are indispensable to understand the complex motions involved in flexible electronics. Conventional isotropic strain sensors can only measure uniaxial deformations or single stimuli, hindering their practical application fields. The answer to such challenge resides in the construction of engineered anisotropic sensing structures. Herein, a hierarchically aligned carbon nanofiber (CNF)/polydimethylsiloxane nanocomposite strain sensor is developed by one-step 3D printing. The precisely controlled printing path and shear flow bring about highly aligned nanocomposite filaments at macroscale and orientated CNF network within each filament at microscale. The periodically orientated nanocomposite filaments along with the inner aligned CNF network successfully control the strain distribution and the appearance of microcracks, giving rise to anisotropic structural response to external deformations. The synergetic effect of the multiscale structural design leads to distinguishable gauge factors of 164 and 0.5 for applied loadings along and transverse to the alignment direction, leading to an exceptional selectivity of 3.77. The real-world applications of the hierarchically aligned sensors in multiaxial movement detector and posture-correction device are further demonstrated. The above findings propose new ideas for manufacturing nanocomposites with engineered anisotropic structure and properties, verifying promising applications in emerging wearable electronics and soft robotics.
Collapse
Affiliation(s)
- Yanjun Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xinyu Song
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yi Wei
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenxi Hua
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Pengpeng Shao
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Daopeng Qu
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Jiang
- Department of Electrical and Computer Engineering, Western University, London, N6A 5B9, Canada
| | - Yu Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Ding D, Wang X, Huang R, Wang Z, Jiang G, Yu L, Nie H, Zeng X, Tang B, Qin G, Zhang XA, Zhang Q, Xu J, Chen Y. Simulation-Directed Construction of Bamboo-Forest-Like Heat Conduction Networks to Enhance Silicon Rubber Composites' Heat Conduction Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406229. [PMID: 39263781 DOI: 10.1002/smll.202406229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Highly vertically thermally conductive silicon rubber (SiR) composites are widely used as thermal interface materials (TIMs) for chip cooling. Herein, inspired by water transport and transpiration of Moso bamboo-forests extensively existing in south China, and guided by filler self-assembly simulation, bamboo-forest-like heat conduction networks, with bamboo-stems-like vertically aligned polydopamine-coated carbon fibers (VA-PCFs), and bamboo-leaves-like horizontally layered Al2O3(HL-Al2O3), are rationally designed and constructed. VA-PCF/HL-Al2O3/SiR composites demonstrated enhanced heat conduction properties, and their through-plane thermal conductivity and thermal diffusivity reached 6.47 W (mK)-1 and 3.98 mm2 s-1 at 12 vol% PCF and 4 vol% Al2O3 loadings, which are 32% and 38% higher than those of VA-PCF (12 vol%) /SiR composites, respectively. The heat conduction enhancement mechanisms of VA-PCF/HL-Al2O3 networks on their SiR composites are revealed by multiscale simulation: HL-Al2O3 bridges the separate VA-PCF heat flow channels, and transfers more heat to the matrix, thereby increasing the vertical heat flux in composites. Along with high volume resistivity, low compression modulus, and coefficient of thermal expansion, VA-PCF/HL-Al2O3/SiR composites demonstrate great application potential as TIMs, which is proven using multiphysics simulation. This work not only makes a meaningful attempt at simulation-driven biomimetic material structure design but also provides inspiration for the preparation of TIMs.
Collapse
Affiliation(s)
- Dongliang Ding
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Department of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xu Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruoyu Huang
- College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
| | - Zhenyu Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100083, China
| | - Gaoxiao Jiang
- College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
| | - Linfeng Yu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Haitao Nie
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Biao Tang
- Shanghai Institute of Space Power Sources, Shanghai, 201100, China
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xue-Ao Zhang
- College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
| | - Qiuyu Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianbin Xu
- Department of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yanhui Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
14
|
Xiao J, He M, Zhan B, Guo H, Yang JL, Zhang Y, Qi X, Gu J. Multifunctional microwave absorption materials: construction strategies and functional applications. MATERIALS HORIZONS 2024; 11:5874-5894. [PMID: 39229798 DOI: 10.1039/d4mh00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The widespread adoption of wireless communication technology, especially with the introduction of artificial intelligence and the Internet of Things, has greatly improved our quality of life. However, this progress has led to increased electromagnetic (EM) interference and pollution issues. The development of advanced microwave absorbing materials (MAMs) is one of the most feasible solutions to solve these problems, and has therefore received widespread attention. However, MAMs still face many limitations in practical applications and are not yet widely used. This paper presents a comprehensive review of the current status and future prospects of MAMs, and identifies the various challenges from practical application scenarios. Furthermore, strategies and principles for the construction of multifunctional MAMs are discussed in order to address the possible problems that are faced. This article also presents the potential applications of MAMs in other fields including environmental science, energy conversion, and medicine. Finally, an analysis of the potential outcomes and future challenges of multifunctional MAMs are presented.
Collapse
Affiliation(s)
- Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Bhaduri A, Ha T. Biowaste-Derived Triboelectric Nanogenerators for Emerging Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405666. [PMID: 39248387 PMCID: PMC11558148 DOI: 10.1002/advs.202405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) combine contact electrification and electrostatic induction effects to convert waste mechanical energy into electrical energy. As conventional devices contribute to electronic waste, TENGs based on ecofriendly and biocompatible materials have been developed for various energy applications. Owing to the abundance, accessibility, low cost, and biodegradability of biowaste (BW), recycling these materials has gained considerable attention as a green approach for fabricating TENGs. This review provides a detailed overview of BW materials, processing techniques for BW-based TENGs (BW-TENGs), and potential applications of BW-TENGs in emerging bioelectronics. In particular, recent progress in material design, fabrication methods, and biomechanical and environmental energy-harvesting performance is discussed. This review is aimed at promoting the continued development of BW-TENGs and their adoption for sustainable energy-harvesting applications in the field of bioelectronics.
Collapse
Affiliation(s)
- Abhisikta Bhaduri
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Tae‐Jun Ha
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| |
Collapse
|
16
|
Li X, Luo J, Wang Q, Liu X, Huang Z, Xia P, Wu Y, Dai Z, Li X. Synchronously Formed Hetero- and Hollow Core-Branch Nanostructure Toward Wideband Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404609. [PMID: 39194586 DOI: 10.1002/smll.202404609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The intrinsic limitation of low electrical conductivity of MoSe2 resulted in inferior dielectric properties, which restricts its electromagnetic wave absorption (EMWA) performances. Herein, a bimetallic selenide of MoSe2/CoSe2@N-doped carbon (NC) composites with hollow core-branch nanostructures are synthesized via the selenization treatment of MoO3 nanorods coated with ZIF-67. By adjusting the mass ratio of ZIF-67 to MoO3, the electromagnetic parameters and morphologies of composites are finely tuned, further ameliorating the impedance matching and EMWA performances. The involvement of NC improves the electronic conductivity of the composites. The synchronously formed heterostructure not only facilitates charge transfer but also leads to the accumulation and uneven distribution of charges, thus enhancing the conductive loss and polarization loss. The hollow core-branch nanostructure provides abundant conductive networks, heterointerfaces, and voids, significantly enhancing the EMWA property. Density functional theory implies that the heterostructures effectively boost charge transport and change charge distribution, which heightens the conductive loss and polarization loss. As a result, the composites demonstrate a minimum reflection loss value of -53.53 dB at 9.04 GHz, alongside a maximum effective absorption bandwidth of 6.32 GHz. This work offers invaluable insights into novel structural designs for future research and applications.
Collapse
Affiliation(s)
- Xiaopeng Li
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Juhua Luo
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qibiao Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xing Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhoutao Huang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Panyi Xia
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yuhan Wu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ziyang Dai
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiangcheng Li
- State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
17
|
You X, Ouyang H, Deng R, Zhang Q, Xing Z, Chen X, Shan Q, Yang J, Dong S. Graphene Aerogel Composites with Self-Organized Nanowires-Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2024; 17:47. [PMID: 39428438 PMCID: PMC11491424 DOI: 10.1007/s40820-024-01541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
With vigorous developments in nanotechnology, the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers. Herein, a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity. The macro-micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires (SiCnws) grown in situ, while boron nitride (BN) interfacial structure is introduced on graphene nanoplates. The unique composite structure forces multiple scattering of incident EMWs, ensuring the combined effects of interfacial polarization, conduction networks, and magnetic-dielectric synergy. Therefore, the as-prepared composites present a minimum reflection loss value of - 37.8 dB and a wide effective absorption bandwidth (EAB) of 9.2 GHz (from 8.8 to 18.0 GHz) at 2.5 mm. Besides, relying on the intrinsic high-temperature resistance of SiCnws and BN, the EAB also remains above 5.0 GHz after annealing in air environment at 600 °C for 10 h.
Collapse
Affiliation(s)
- Xiao You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Huiying Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Ruixiang Deng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Qiuqi Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Zhenzhong Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Xiaowu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Qingliang Shan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jinshan Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Shaoming Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
18
|
Shi Y, Wu M, Ge S, Li J, Alshammari AS, Luo J, Amin MA, Qiu H, Jiang J, Asiri YM, Huang R, Hou H, El-Bahy ZM, Guo Z, Jia C, Xu K, Chen X. Advanced Functional Electromagnetic Shielding Materials: A Review Based on Micro-Nano Structure Interface Control of Biomass Cell Walls. NANO-MICRO LETTERS 2024; 17:3. [PMID: 39302510 DOI: 10.1007/s40820-024-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Research efforts on electromagnetic interference (EMI) shielding materials have begun to converge on green and sustainable biomass materials. These materials offer numerous advantages such as being lightweight, porous, and hierarchical. Due to their porous nature, interfacial compatibility, and electrical conductivity, biomass materials hold significant potential as EMI shielding materials. Despite concerted efforts on the EMI shielding of biomass materials have been reported, this research area is still relatively new compared to traditional EMI shielding materials. In particular, a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment, preparation process, and micro-control would be valuable. The preparation methods and characteristics of wood, bamboo, cellulose and lignin in EMI shielding field are critically discussed in this paper, and similar biomass EMI materials are summarized and analyzed. The composite methods and fillers of various biomass materials were reviewed. this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
Collapse
Affiliation(s)
- Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Mingjun Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resourced, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China.
| | - Anoud Saud Alshammari
- Department of Physics, Faculty of Sciences-Arar, Northern Border University, Arar, 91431, Saudi Arabia
| | - Jing Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yazeed M Asiri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Hou
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, People's Republic of China.
| | - Xiangmeng Chen
- School of Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
19
|
Liu L, Han L, Chen T, Li J, Qian Z, Gan G. Thermally Conductive Polydimethylsiloxane-Based Composite with a Three-Dimensional Vertically Aligned Thermal Network Incorporating Hexagonal Boron Nitride Nanosheets and Nanodiamonds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39264622 DOI: 10.1021/acs.langmuir.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Thermal interface materials play a pivotal role in efficiently transferring heat from heating devices to thermal management components, thereby reducing the risk of component degradation due to overheating. In this study, we propose a strategy for enhancing the out-of-plane thermal conductivity (TC) of composite materials by fabricating a three-dimensional (3D) thermal network within a polydimethylsiloxane (PDMS) matrix. Specifically, the composite material was designed to incorporate a dense thermal network comprising hexagonal boron nitride nanosheets (BNNSs) and nanodiamonds (NDs). The fabrication process commenced with the preparation of BNNSs through liquid-phase exfoliation, followed by the creation of a 3D BNNSs-NDs/polyimide aerogel thermal framework using a unidirectional solidification ice templating method and subsequent heat treatment. Vacuum impregnation and curing were then employed to finalize the production of the 3D BNNSs-NDs/PDMS composite material. Characterization analyses indicated that the addition of NDs filled the voids between BNNSs, leading to the densification of the thermal framework pore walls and the establishment of additional thermal pathways. Impressively, with concentrations of BNNSs and NDs of 17.99 and 7.71 wt %, respectively, the out-of-plane TC of the 3D BNNSs-NDs/PDMS composite material reached 1.623 W m-1 K-1, marking notable enhancements of 754.21% and 256.70% compared to those of pure PDMS and composites prepared via direct blending with randomly distributed BNNSs and NDs, respectively. Furthermore, the 3D BNNSs-NDs thermal framework improved the compressive strength and the dimensional stability of the composite material. Finite element simulations additionally confirmed the synergistic improvement of the TC achieved through the combination of BNNSs and NDs, demonstrating that the 3D BNNSs-NDs/PDMS composite material displayed superior heat conduction and a greater density of thermal pathways compared to those of its counterparts, including 3D BNNSs/PDMS and 3D NDs/PDMS composite materials. In summary, this work presents a strategy for enhancing the out-of-plane TC of polymer-based composite materials by incorporating vertically aligned thermal networks.
Collapse
Affiliation(s)
- Li Liu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Liping Han
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Tao Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Junpeng Li
- Kunming Institute of Precious Metals, State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106, People's Republic of China
- Sino-Platinum Metals Company, Ltd., Kunming 650106, People's Republic of China
| | - Zhuo Qian
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Guoyou Gan
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| |
Collapse
|
20
|
Dai W, Wang Y, Li M, Chen L, Yan Q, Yu J, Jiang N, Lin CT. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311335. [PMID: 38847403 DOI: 10.1002/adma.202311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/23/2024] [Indexed: 06/27/2024]
Abstract
The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.
Collapse
Affiliation(s)
- Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maohua Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingwei Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Yang R, Wang Y, Zhang Z, Xu K, Li L, Cao Y, Li M, Zhang J, Qin Y, Zhu B, Guo Y, Zhou Y, Cai T, Lin CT, Nishimura K, Xue C, Jiang N, Yu J. Highly oriented BN-based TIMs with high through-plane thermal conductivity and low compression modulus. MATERIALS HORIZONS 2024; 11:4064-4074. [PMID: 39042375 DOI: 10.1039/d4mh00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In the pursuit of effective thermal management for electronic devices, it is crucial to develop insulation thermal interface materials (TIMs) that exhibit exceptional through-plane thermal conductivity, low thermal resistance, and minimal compression modulus. Boron nitride (BN), given its outstanding thermal conduction and insulation properties, has garnered significant attention as a potential material for this purpose. However, previously reported BN-based composites have consistently demonstrated through-plane thermal conductivity below 10 W m-1 K-1 and high compression modulus, whilst also presenting challenges in terms of mass production. In this study, low molecular weight polydimethylsiloxane (PDMS) and large-size BN were utilized as the foundational materials. Utilizing a rolling-curing integrated apparatus, we successfully accomplished the continuous preparation of large-sized, high-adhesion BN films. Subsequent implementation of stacking, cold pressing, and vertical cutting techniques enabled the attainment of a remarkable BN-based TIM, characterized by an unprecedented through-plane thermal conductivity of up to 12.11 W m-1 K-1, remarkably low compression modulus (55 kPa), and total effective thermal resistance (0.16 °C in2 W-1, 50 Psi). During the TIMs performance evaluation, our TIMs demonstrated superior heat dissipation capabilities compared with commercial TIMs. At a heating power density of 40 W cm-2, the steady-state temperature of the ceramic heating element was found to be 7 °C lower than that of the commercial TIMs. This pioneering feat not only contributes valuable technical insights for the development of high-performance insulating TIMs but also establishes a solid foundation for widespread implementation in thermal management applications across a range of electronic devices.
Collapse
Affiliation(s)
- Rongjie Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Zhenbang Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Kang Xu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Linhong Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cao
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maohua Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Jianxiang Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Yue Qin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Boda Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Yiwei Zhou
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Tao Cai
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazuhito Nishimura
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Chen Xue
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Nan Jiang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhong Yu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Liu W, Liu Y, Zhong S, Chen J, Li Z, Zhang C, Jiang P, Huang X. Soft and Damping Thermal Interface Materials with Honeycomb-Board-Mimetic Filler Network for Electronic Heat Dissipation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400115. [PMID: 38678491 DOI: 10.1002/smll.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Indexed: 05/01/2024]
Abstract
High-power-density electronic devices under vibrations call for soft and damping thermal interface materials (TIMs) for efficient heat dissipation. However, integrating low hardness, high damping, and superior heat transfer capability into one TIM is highly challenging. Herein, soft, damping, and thermally conductive TIMs are designed and prepared by constructing a honeycomb-board-mimetic boron nitride nanosheet (BNNS) network in a dynamic polyimine via one-step horizontal centrifugal casting. The unique filler network makes the TIMs perform a high through-plane thermal conductivity (> 7.69 W m-1 K-1) and a uniform heat transfer process. Meanwhile, the hierarchical dynamic bonding of the polyimine endows the TIMs with low compressive strength (2.16 MPa at 20% strain) and excellent damping performance (tan δ > ≈0.3 at 10-2-102 Hz). The resulting TIMs also exhibit electrical insulation and remarkable recycling ability. Compared with the commercial ones, the TIMs provide better heat dissipation (4.1 °C) for a high-power 5G base station and less temperature fluctuation (1.8 °C) for an automotive insulated gate bipolar transistor (IGBT) under vibrations. This rational design offers a viable approach to prepare soft and damping TIMs for effective heat dissipation of high-power-density electronic devices under vibrations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujing Zhong
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Li
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongyin Zhang
- Shanghai Engineering Research center of Specialized Polymer materials for Aerospace, Shanghai Aerospace Equipments Manufacturer Co. Ltd., Huaning Road #100, Shanghai, 200245, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Luo F, Cui W, Zou Y, Li H, Qian Q, Chen Q. Recyclable and elastic highly thermally conductive epoxy-based composites with covalent-noncovalent interpenetrating networks. MATERIALS HORIZONS 2024; 11:3386-3395. [PMID: 38689529 DOI: 10.1039/d4mh00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
High-power electronic architectures and devices require elastic thermally conductive materials. The use of epoxy resin in thermal management is limited due to its rigidity. Here, based on epoxy vitrimer, flexible polyethylene glycol (PEG) chains are introduced into covalent adaptable networks to construct covalent-noncovalent interpenetrating networks, enabling the elasticity of epoxy resins. Compared to traditional silicone-based thermal interface materials, the newly developed elastic epoxy resin shows the advantages of reprocessability, self-healing, and no small molecule release. Results show that, even after being filled with boron nitride and liquid metal, the material maintains its resilience, reprocessability and self-healing properties. Leveraging these characteristics, the composite can be further processed into thin films through a repeated pressing-rolling technique that facilitates the forced orientation of the fillers. Subsequently, the bulk composites are reconstructed using a film-stacking method. The results indicate that the thermal conductivity of the reconstructed bulk composite reaches 3.66 W m-1 K-1, achieving a 68% increase compared to the composite prepared through blending. Due to the existence of covalent adaptable networks, the inorganic and inorganic components of the composite prepared in this work can be completely separated under mild conditions, realizing closed-loop recycling.
Collapse
Affiliation(s)
- Fubin Luo
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| | - Wenqi Cui
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Yingbing Zou
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Hongzhou Li
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, People's Republic of China
| | - Qinghua Chen
- Engineering Research Center of polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
24
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Yang SH, Xin Y, Cai B, Hu PF, Dai HY, Liang CM, Meng YT, Su JH, Zhang XJ, Lu M, Wang GS. Designing Symmetric Gradient Honeycomb Structures with Carbon-Coated Iron-Based Composites for High-Efficiency Microwave Absorption. NANO-MICRO LETTERS 2024; 16:234. [PMID: 38954048 PMCID: PMC11219676 DOI: 10.1007/s40820-024-01435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 07/04/2024]
Abstract
The impedance matching of absorbers is a vital factor affecting their microwave absorption (MA) properties. In this work, we controllably synthesized Material of Institute Lavoisier 88C (MIL-88C) with varying aspect ratios (AR) as a precursor by regulating oil bath conditions, followed by one-step thermal decomposition to obtain carbon-coated iron-based composites. Modifying the precursor MIL-88C (Fe) preparation conditions, such as the molar ratio between metal ions and organic ligands (M/O), oil bath temperature, and oil bath time, influenced the phases, graphitization degree, and AR of the derivatives, enabling low filler loading, achieving well-matched impedance, and ensuring outstanding MA properties. The MOF-derivatives 2 (MD2)/polyvinylidene Difluoride (PVDF), MD3/PVDF, and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt% and as low as 5 wt%. The MD2/PVDF (5 wt%) achieved a maximum effective absorption bandwidth (EAB) of 5.52 GHz (1.90 mm). The MD3/PVDF (10 wt%) possessed a minimum reflection loss (RLmin) value of - 67.4 at 12.56 GHz (2.13 mm). A symmetric gradient honeycomb structure (SGHS) was constructed utilizing the high-frequency structure simulator (HFSS) to further extend the EAB, achieving an EAB of 14.6 GHz and a RLmin of - 59.0 dB. This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Shu-Hao Yang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Yue Xin
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Bo Cai
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Peng-Fei Hu
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Hai-Yang Dai
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Chen-Ming Liang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Yun-Tong Meng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Ji-Hao Su
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Xiao-Juan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Min Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China.
| | - Guang-Sheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
26
|
Chen D, Zhang H, Zhao G, Zhu Z, Yang J, He J, Li J, Yu Z, Zhu Z. Investigating the Corrosion Resistance of Different SiC Crystal Types: From Energy Sectors to Advanced Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12322-12342. [PMID: 38830755 DOI: 10.1021/acs.langmuir.4c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Silicon carbide, as a third-generation semiconductor material, plays a pivotal role in various advanced technological applications. Its exceptional stability under extreme conditions has garnered a significant amount of attention. These superior characteristics make silicon carbide an ideal candidate material for high-frequency, high-power electronic devices and applications in harsh environments. In particular, corrosion resistance in natural or artificially acidic and alkaline environments limits the practical application of many other materials. In fields such as chemical engineering, energy conversion, and environmental engineering, materials often face severe chemical erosion, necessitating materials with excellent chemical stability as foundational materials, carriers, or reaction media. Silicon carbide exhibits outstanding performance under these conditions, demonstrating significant resistance to corrosive substances such as hydrochloric acid, sulfuric acid, nitric acid, and alkaline substances such as potassium hydroxide and sodium hydroxide. Despite the well-known chemical stability of silicon carbide, the stability conditions of its different types (such as 3C-, 4H-, and 6H-SiC polycrystals) in acidic and alkaline environments, as well as the specific corrosion mechanisms and differences, warrant further investigation. This Review not only delves deeply into the detailed studies related to this topic but also highlights the current applications of different silicon carbide polycrystals in chemical reaction systems, energy conversion equipment, and recycling processes. Through a comprehensive analysis, this Review aims to bridge research gaps, offering a comparative analysis of the advantages and disadvantages between different polymorphs. It provides material scientists, engineers, and developers with a thorough understanding of silicon carbide's behavior in various chemical environments. This work will propel the research and development of silicon carbide materials under extreme conditions, especially in areas where chemical stability is crucial for device performance and durability. It lays a solid foundation for ultra-high-power, high-integration, high-reliability module architectures, supercomputing chips, and highly safe long-life batteries.
Collapse
Affiliation(s)
- Dongyang Chen
- School of Automation, Central South University, Changsha 410083, China
| | - HanDong Zhang
- Light Alloy Research Institute, Central South University, Changsha 410083, China
| | - Guoqi Zhao
- School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhiqin Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - JingRan Yang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Jie He
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - JunCheng Li
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Zijia Yu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
27
|
Gao X, Chen J, Chen X, Wang W, Li Z, He R. How to Improve the Curing Ability during the Vat Photopolymerization 3D Printing of Non-Oxide Ceramics: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2626. [PMID: 38893890 PMCID: PMC11173736 DOI: 10.3390/ma17112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Vat photopolymerization (VP), as an additive manufacturing process, has experienced significant growth due to its high manufacturing precision and excellent surface quality. This method enables the fabrication of intricate shapes and structures while mitigating the machining challenges associated with non-oxide ceramics, which are known for their high hardness and brittleness. Consequently, the VP process of non-oxide ceramics has emerged as a focal point in additive manufacturing research areas. However, the absorption, refraction, and reflection of ultraviolet light by non-oxide ceramic particles can impede light penetration, leading to reduced curing thickness and posing challenges to the VP process. To enhance the efficiency and success rate of this process, researchers have explored various aspects, including the parameters of VP equipment, the composition of non-oxide VP slurries, and the surface modification of non-oxide particles. Silicon carbide and silicon nitride are examples of non-oxide ceramic particles that have been successfully employed in VP process. Nonetheless, there remains a lack of systematic induction regarding the curing mechanisms and key influencing factors of the VP process in non-oxide ceramics. This review firstly describes the curing mechanism of the non-oxide ceramic VP process, which contains the chain initiation, chain polymerization, and chain termination processes of the photosensitive resin. After that, the impact of key factors on the curing process, such as the wavelength and power of incident light, particle size, volume fraction of ceramic particles, refractive indices of photosensitive resin and ceramic particles, incident light intensity, critical light intensity, and the reactivity of photosensitive resins, are systematically discussed. Finally, this review discusses future prospects and challenges in the non-oxide ceramic VP process. Its objective is to offer valuable insights and references for further research into non-oxide ceramic VP processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Rujie He
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (X.G.); (J.C.); (X.C.); (W.W.); (Z.L.)
| |
Collapse
|
28
|
Mumtaz N, Li Y, Artiaga R, Farooq Z, Mumtaz A, Guo Q, Nisa FU. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review. Heliyon 2024; 10:e25381. [PMID: 38352797 PMCID: PMC10862693 DOI: 10.1016/j.heliyon.2024.e25381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The internet of things and growing demand for smaller and more advanced devices has created the problem of high heat production in electronic equipment, which greatly reduces the work performance and life of the electronic instruments. Thermal interface material (TIM) is placed in between heat generating micro-chip and the heat dissipater to conduct all the produced heat to the heat sink. The development of suitable TIM with excellent thermal conductivity (TC) in both in-plane and through-plane directions is a very important need at present. For efficient thermal management, polymer composites are potential candidates. But in general, their thermal conductivity is low compared to that of metals. The filler integration into the polymer matrix is one of the two approaches used to increase the thermal conductivity of polymer composites and is also easy to scale up for industrial production. Another way to achieve this is to change the structure of polymer chains, which fall out of the scope of this work. In this review, considering the first approach, the authors have summarized recent developments in many types of fillers with different scenarios by providing multiple cases with successful strategies to improve through-plane thermal conductivity (TPTC) (k⊥). For a better understanding of TC, a comprehensive background is presented. Several methods to improve the effective (out-plane) thermal conductivity of polymer composites and different theoretical models for the calculation of TC are also discussed. In the end, it is given a detailed conclusion that provides drawbacks of some fillers, multiple significant routes recommended by other researchers to build thermally conductive polymer composites, future aspects along with direction so that the researchers can get a guideline to design an effective polymer-based thermal interface material.
Collapse
Affiliation(s)
- Nighat Mumtaz
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanchun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ramón Artiaga
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Centro de Investigación en Tecnologías Navales e Industriales. Campus Industrial de Ferrol, University of A Coruña, Avda. Mendizábal s/n, 15403 Ferrol, Spain
| | - Zunaira Farooq
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210094, China
| | - Amina Mumtaz
- Department of Physics, The Women University Multan, Multan 66000, Pakistan
| | - Qian Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fakhr-Un Nisa
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan
| |
Collapse
|
29
|
Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militky J, Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:27. [PMID: 38203881 PMCID: PMC10779952 DOI: 10.3390/ma17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | | | | | | | | |
Collapse
|
30
|
Liu C, Huang C, Li Y, Liu Y, Bian H, Xiang Z, Wang H, Wang H, Xiao H. Freeze-casting production of thermal insulating and fire-retardant lightweight aerogels based on nanocellulose and boron nitride. Int J Biol Macromol 2023; 252:126370. [PMID: 37595711 DOI: 10.1016/j.ijbiomac.2023.126370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Cellulose aerogels exhibit biocompatibility and biodegradability, rendering them promising candidate for application in building energy conservation and insulation materials. However, the intrinsic inflammability of pristine cellulose aerogel causes unneglectable safety concerns, hindering their application in energy-efficient buildings. Herein, a thermal insulating, fire-retardant, strong, and lightweight aerogel was produced via freeze-casting suspensions of cellulose nanofibril (CNF) and l-glutamine functionalized boron nitride nanosheets (BNNS-g). The aerogel with a BNNS-g:CNF concentration ratio of 15:5 exhibited outstanding mechanical strength owing to the strong interaction between BNNS-g and CNF as well as satisfactory thermal insulating performance (0.052 W/m·K). Particularly, this aerogel showed excellent fire-retardant and self-extinguishing capabilities in the vertical burning test, which remained unscathed after over 60 s of burning in a butane flame. Further, the limit oxygen index (LOI) of this aerogel was 36.0 %, which was better than the LOIs of traditional petrochemical-based insulating materials. This study provides a promising strategy for producing aerogels with excellent properties using cellulose and other inorganic nano-fillers.
Collapse
Affiliation(s)
- Chao Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chunqin Huang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huijie Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|
31
|
Wang B, Wan S, Niu M, Li M, Yu C, Zhao Z, Xuan W, Yue M, Cao W, Wang Q. Oriented Three-Dimensional Skeletons Assembled by Si 3N 4 Nanowires/AlN Particles as Fillers for Improving Thermal Conductivity of Epoxy Composites. Polymers (Basel) 2023; 15:4429. [PMID: 38006153 PMCID: PMC10675432 DOI: 10.3390/polym15224429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have become of increasing interest. Traditionally, higher filler fractions are required to obtain a high thermal conductivity, but this leads to a decrease in the mechanical properties of the composites and increases the cost. In this study, silicon nitride nanowires (Si3N4NWs) with high aspect ratios were successfully prepared by a modified carbothermal reduction method, which was further combined with AlN particles to prepare the epoxy-based composites. The results showed that the Si3N4NWs were beneficial for constructing a continuous thermal conductive pathway as a connecting bridge. On this basis, an aligned three-dimensional skeleton was constructed by the ice template method, which further favored improving the thermal conductivity of the composites. When the mass fraction of Si3N4NWs added was 1.5 wt% and the mass fraction of AlN was 65 wt%, the composites prepared by ice templates reached a thermal conductivity of 1.64 W·m-1·K-1, which was ~ 720% of the thermal conductivity of the pure EP (0.2 W·m-1·K-1). The enhancement effect of Si3N4NWs and directional filler skeletons on the composite thermal conductivity were further demonstrated through the actual heat transfer process and finite element simulations. Furthermore, the thermal stability and mechanical properties of the composites were also improved by the introduction of Si3N4NWs, suggesting that prepared composites exhibit broad prospects in the field of thermal management.
Collapse
Affiliation(s)
- Baokai Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqin Wan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyang Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyi Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chang Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weiwei Xuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Yue
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
32
|
Huo J, Zhang G, Zhang X, Yuan X, Guo S. Flexible Fluorinated Graphene/Poly(vinyl Alcohol) Films toward High Thermal Management Capability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922105 DOI: 10.1021/acsami.3c12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Graphene is widely used in heat dissipation, owing to its inherently high in-plane thermal conductivity and excellent mechanical properties. However, its poor cross-plane thermal conductivity limits its use in some electronic applications. The electron distribution of graphene and the interaction with the base material can be greatly altered by introducing F, the most electronegative element, giving fluorinated graphene oxide (FG) with a high thermal conductivity. Herein, FG is prepared by grafting F atoms onto the surface of graphene oxide in a low-temperature solid-phase reaction with poly(vinylidene fluoride) as a fluorine source. This method can effectively avoid the use of dangerous substances such as HF and F2. The FG dispersion and aqueous poly(vinyl alcohol) (PVA) solution are sequentially vacuum-filtered to obtain the FG/PVA composite film. After natural drying and hot-pressing, the thermal conductivity of the N-FG/PVA film is enhanced by the hydrogen bond between F of FG and the hydroxyl group of PVA. The in-plane and cross-plane thermal conductivity of an N-FG/PVA film containing 10.4 wt % FG are 7.13 and 1.42 W m-1 k-1, respectively. The film has a tensile strength of 60 MPa and an elongation at a break of 28%, which is promising for the thermal management of flexible electronic devices.
Collapse
Affiliation(s)
- Jinghao Huo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoqiang Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyi Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Ding D, Huang R, Peng B, Xie Y, Nie H, Yang C, Zhang Q, Zhang XA, Qin G, Chen Y. Effect of Nanoscale in Situ Interface Welding on the Macroscale Thermal Conductivity of Insulating Epoxy Composites: A Multiscale Simulation Investigation. ACS NANO 2023; 17:19323-19337. [PMID: 37769163 DOI: 10.1021/acsnano.3c06524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Insulating thermally conductive polymer composites are in great demand in integrated-circuit packages, for efficient heat dissipation and to alleviative short-circuit risk. Herein, the continuous oriented hexagonal boron nitride (h-BN) frameworks (o-BN@SiC) were prepared via self-assembly and in situ chemical vapor infiltration (CVI) interface welding. The insulating o-BN@SiC/epoxy (o-BN@SiC/EP) composites exhibited enhanced thermal conductivity benefited from the CVI-SiC-welded BN-BN interface. Further, multiscale simulation, combining first-principles calculation, Monte Carlo simulation, and finite-element simulation, was performed to quantitatively reveal the effect of the welded BN-BN interface on the heat transfer of o-BN@SiC/EP composites. Phonon transmission in solders and phonon-phonon coupling of filler-solder interfaces enhanced the interfacial heat transfer between adjacent h-BN microplatelets, and the interfacial thermal resistance of the dominant BN-BN interface was decreased to only 3.83 nK·m2/W from 400 nK·m2/W, plunging by over 99%. This highly weakened interfacial thermal resistance greatly improved the heat transfer along thermal pathways and resulted in a 26% thermal conductivity enhancement of o-BN@SiC/EP composites, compared with physically contacted oriented h-BN/EP composites, at 15 vol % h-BN. This systematic multiscale simulation broke through the barrier of revealing the heat transfer mechanism of polymer composites from the nanoscale to the macroscale, which provided rational cognition about the effect of the interfacial thermal resistance between fillers on the thermal conductivity of polymer composites.
Collapse
Affiliation(s)
- Dongliang Ding
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Ruoyu Huang
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Bo Peng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Yangyang Xie
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haitao Nie
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenhui Yang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiuyu Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ao Zhang
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Yanhui Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
34
|
Huang W, Zhang X, Chen J, Qiu Q, Kang Y, Pei K, Zuo S, Zhang J, Che R. High-Density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra-Light Graphited Carbon for Adsorbing Electromagnetic Wave. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303217. [PMID: 37526339 PMCID: PMC10558675 DOI: 10.1002/advs.202303217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Indexed: 08/02/2023]
Abstract
Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Collapse
Affiliation(s)
- Wenhuan Huang
- Key Laboratory of Chemical Additives for China National Light IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021China
| | - Xingxing Zhang
- Key Laboratory of Chemical Additives for China National Light IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021China
| | - Jiamin Chen
- Key Laboratory of Chemical Additives for China National Light IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021China
| | - Qiang Qiu
- Key Laboratory of Chemical Additives for China National Light IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021China
| | - Yifan Kang
- Key Laboratory of Chemical Additives for China National Light IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021China
| | - Ke Pei
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsAcademy for Engineering & TechnologyFudan UniversityShanghai200438P. R. China
| | - Shouwei Zuo
- Key Laboratory of Chemical Additives for China National Light IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021China
| | | | - Renchao Che
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsAcademy for Engineering & TechnologyFudan UniversityShanghai200438P. R. China
- Zhejiang LaboratoryHangzhou311100P. R. China
| |
Collapse
|
35
|
Jin L, Liu X, Zheng Y, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Wu S. Interfacial and Defect Polarization Enhanced Microwave Noninvasive Therapy for Staphylococcus aureus-Infected Chronic Osteomyelitis. ACS NANO 2023; 17:18200-18216. [PMID: 37707356 DOI: 10.1021/acsnano.3c05130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Chronic osteomyelitis (COM), is a long-term, constant, and intractable disease mostly induced by infection from the invasion of Staphylococcus aureus (S. aureus) into bone cells. Here, we describe a highly effective microwave (MW) therapeutic strategy for S. aureus-induced COM based on the in situ growth of interfacial oxygen vacancy-rich molybdenum disulfide (MoS2)/titanium carbide (Ti3C2Tx) MXene with oxygen-deficient titanium dioxide (TiO2-x) on Ti3C2Tx (labeled as HU-MoS2/Ti3C2Tx) by producing reactive oxygen species (ROS) and heat. HU-MoS2/Ti3C2Tx produced heat and ROS, which could effectively treat S. aureus-induced COM under MW irradiation. The underlying mechanism determined by density functional theory (DFT) and MW vector network analysis was that HU-MoS2/Ti3C2Tx formed a high-energy local electric field under MW irradiation, consequently generating more high-energy free electrons to pass and move across the interface at a high speed and accelerate by the heterointerface, which enhanced the charge accumulation on both sides of the interface. Moreover, these charges were captured by the oxygen species adsorbed at the HU-MoS2/Ti3C2Tx interface to produce ROS. MoS2 facilitated multiple reflections and scattering of electromagnetic waves as well as enhanced impedance matching. Ti3C2Tx enhanced the conduction loss of electromagnetic waves, while functional groups induced dipole polarization to enhance attenuation of MW.
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Zhou J, Yu Z, Mohideen MM, Ge J, Lv X, Yao M, Xie Z, Wang C, Hu P, Liu Y. Constructing Hierarchical Polymer Nanocomposites with Strongly Enhanced Thermal Conductivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42900-42911. [PMID: 37647417 DOI: 10.1021/acsami.3c09847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The rapid advancement of communication technology has substantially increased the demand for advanced electronic packaging materials with high thermal conductivity and outstanding electrical insulation properties. In this study, we design polyvinyl alcohol/polydopamine-modified boron nitride nanosheet (PVA/BNNS@PDA) nanocomposites with hierarchical structures by combining electrospinning, vacuum filtration deposition, and hot pressing. The modified BNNS@PDA improves the interaction between the filler and the polymer matrix while reducing the interfacial thermal resistance, resulting in superior thermal conductivity, excellent insulation, and perfect flexibility. The PVA/BNNS@PDA nanocomposites possess an ultrahigh in-plane thermal conductivity of 16.6 W/(m·K) at 35.54 wt % BNNS@PDA content. Even after 2000 folds, the nanocomposites do not undergo any crack, showing their ultrahigh thermal conductivity behavior. Furthermore, the nanocomposites exhibit a volume resistivity above 1014 Ω·cm, which is well above the standard for insulating materials. Based on these results, this work provides a novel method to produce nanocomposites with high thermal conductivity, offering a new perspective to design advanced thermal management materials.
Collapse
Affiliation(s)
- Jianwei Zhou
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongxun Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohamedazeem M Mohideen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Ge
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xujin Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Yao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, Jilin 130012, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
37
|
Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional Materials and Innovative Strategies for Wearable Thermal Management Applications. NANO-MICRO LETTERS 2023; 15:160. [PMID: 37386321 PMCID: PMC10310690 DOI: 10.1007/s40820-023-01126-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Highlights This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature. Thermal management wearables are subdivided into the active and passive thermal managing methods. The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life. Abstract Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taegyeom Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
38
|
Miao Z, Xie C, Wu Z, Zhao Y, Zhou Z, Wu S, Su H, Li L, Tuo X, Huang R. Self-Stacked 3D Anisotropic BNNS Network Guided by Para-Aramid Nanofibers for Highly Thermal Conductive Dielectric Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24880-24891. [PMID: 37184365 DOI: 10.1021/acsami.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The enhancement of the heat-dissipation property of polymer-based composites is of great practical interest in modern electronics. Recently, the construction of a three-dimensional (3D) thermal pathway network structure for composites has become an attractive way. However, for most reported high thermal conductive composites, excellent properties are achieved at a high filler loading and the building of a 3D network structure usually requires complex steps, which greatly restrict the large-scale preparation and application of high thermal conductive polymer-based materials. Herein, utilizing the framework-forming characteristic of polymerization-induced para-aramid nanofibers (PANF) and the high thermal conductivity of hexagonal boron nitride nanosheets (BNNS), a 3D-laminated PANF-supported BNNS aerogel was successfully prepared via a simple vacuum-assisted self-stacking method, which could be used as a thermal conductive skeleton for epoxy resin (EP). The obtained PANF-BNNS/EP nanocomposite exhibits a high thermal conductivity of 3.66 W m-1 K-1 at only 13.2 vol % BNNS loading. The effectiveness of the heat conduction path was proved by finite element analysis. The PANF-BNNS/EP nanocomposite shows outstanding practical thermal management capability, excellent thermal stability, low dielectric constant, and dielectric loss, making it a reliable material for electronic packaging applications. This work also offers a potential and promotable strategy for the easy manufacture of 3D anisotropic high-efficiency thermal conductive network structures.
Collapse
Affiliation(s)
- Zhicong Miao
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunjie Xie
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhixiong Wu
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
| | - Yalin Zhao
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengrong Zhou
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shanshan Wu
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haojian Su
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Laifeng Li
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Rongjin Huang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
39
|
Guo Y, Ruan K, Wang G, Gu J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull (Beijing) 2023:S2095-9273(23)00290-6. [PMID: 37179235 DOI: 10.1016/j.scib.2023.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Polymer composites have essential applications in electronics due to their versatility, stable performance, and processability. However, with the increasing miniaturization and high power of electronics in the 5G era, there are significant challenges related to heat accumulation and electromagnetic wave (EMW) radiation in narrow spaces. Traditional solutions involve using either thermally conductive or EMW absorbing polymer composites, but these fail to meet the demand for multi-functional integrated materials in electronics. Therefore, designing thermal conduction and EMW absorption integrated polymer composites has become essential to solve the problems of heat accumulation and electromagnetic pollution in electronics and adapt to its development trend. Researchers have developed different approaches to fabricate thermal conduction and EMW absorption integrated polymer composites, including integrating functional fillers with both thermal conduction and EMW absorption functions and innovating processing methods. This review summarizes the latest research progress, factors that affect performance, and the mechanisms of thermal conduction and EMW absorption integrated polymer composites. The review also discusses problems that limit the development of these composites and potential solutions and development directions. The aim of this review is to provide references for the development of thermal conduction and EMW absorption integrated polymer composites.
Collapse
Affiliation(s)
- Yongqiang Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
40
|
Lu Z, Wang Y, Cheng R, Yang L, Wang N. Highly dispersed Co/Co 9S 8 nanoparticles encapsulated in S, N co-doped longan shell-derived hierarchical porous carbon for corrosion-resistant, waterproof high-performance microwave absorption. J Colloid Interface Sci 2023; 637:147-158. [PMID: 36689799 DOI: 10.1016/j.jcis.2023.01.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
It is highly desirable, but challenging to develop multifunctional electromagnetic wave (EMW) absorbing material for practical applications in some harsh environments. Herein, we successfully embedded highly dispersed Co/Co9S8 nanoparticles into a three-dimensional (3D) honeycomb porous carbon skeleton (the carbon skeleton is derived from longan shell-derived S, N co-doped porous carbon) as a multifunctional material with outstanding EMW absorption properties, hydrophobicity and corrosion resistance. Its superior versatility is attributed to synergistic effects of the S and N dopants, large specific surface area, abundant carbon defects, and 3D porous characteristics. Minimal reflection loss (RLmin) and efficient absorption bandwidth (EAB) of the optimized material as EMW absorbers can achieve -59.9 dB and 6.8 GHz at a thickness of 2.7 mm, respectively, which are superior to most of the reported carbon-based absorbents. Meanwhile, theoretical simulations of the radar scattering cross section (RCS) further confirm that this multifunctional material has outstanding EMW attenuation performance and actual application potential. In addition, the material possesses strong hydrophobicity (124°) and anti-corrosion properties, expanding the scope of potential applications of microwave absorbers. Therefore, this work provides an effective development strategy for the design of anti-corrosion, super-hydrophobic, and high-performance EMW absorbing materials.
Collapse
Affiliation(s)
- Zhao Lu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Runrun Cheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Longqi Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Nian Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| |
Collapse
|
41
|
Li S, Shen Y, Jia X, Xu M, Zong R, Liu G, Liu B, Huai X. Dopamine-Mediated Graphene Bridging Hexagonal Boron Nitride for Large-Scale Composite Films with Enhanced Thermal Conductivity and Electrical Insulation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1210. [PMID: 37049304 PMCID: PMC10097086 DOI: 10.3390/nano13071210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Heat accumulation generated from confined space poses a threat to the service reliability and lifetime of electronic devices. To quickly remove the excess heat from the hot spot, it is highly desirable to enhance the heat dissipation in a specific direction. Herein, we report a facile route to fabricate the large-scale composite film with enhanced thermal conductivity and electrical insulation. The well-stacked composite films were constructed by the assembly of polydopamine (PDA)-modified graphene nanosheets (GNSPDA) and hexagonal boron nitride (BNPDA), as well as bacterial cellulose (BC). The introduction of the PDA layer greatly improves the interface compatibility between hybrid fillers and BC matrix, and the presence of GNSPDA-bridging significantly increases the probability of effective contact with BNPDA fillers, which is beneficial to form a denser and complete "BN-GNS-BN" heat conduction pathway and tight filler-matrix network, as supported by the Foygel model fitting and numerical simulation. The resulting BC/BNPDA/GNSPDA film shows the thermal conductivity and tensile strength of 34.9 W·m-1·K-1 and 30.9 MPa, which separately increases to 161% and 155% relative to the BC/BNPDA film. It was found that the low electrically conductive and high thermal conductive properties can be well balanced by tuning the mass ratio of GNSPDA at 5 wt%, and the electrical conductivity caused by GNSPDA can be effectively blocked by the BNPDA filler network, giving the low electrical conductivity of 1.8 × 10-10 S·cm-1. Meanwhile, the BC/BNPDA/GNSPDA composite films effectively transfer the heat and diminish the hot-spot temperature in cooling LED chip module application. Thus, the present study may pave the way to promoting the industrialization of scalable thermal management devices.
Collapse
Affiliation(s)
- Shikun Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Yutan Shen
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Xiao Jia
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Min Xu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Ruoyu Zong
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Bin Liu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Xiulan Huai
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| |
Collapse
|
42
|
Zeng J, Chen X, Hu M, Zheng K, Zhang X, Tian X. Thermal conductivity and electromagnetic shielding performance of three-dimensional anisotropic BN/MWCNT epoxy composites under low filling capacity. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
43
|
Li S, Liu B, Jia X, Xu M, Zong R, Li X, Liu G, Huai X. Numerical Simulation on the Optimization of the Anisotropic Thermal Conductivity of Hexagonal Boron Nitride/Nanofiber Composite Films. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Shikun Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Bin Liu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Xiao Jia
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Min Xu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Ruoyu Zong
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Xunfeng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiulan Huai
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| |
Collapse
|
44
|
Zhang Z, Wang J, Shang J, Xu Y, Wan YJ, Lin Z, Sun R, Hu Y. A Through-Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205716. [PMID: 36437045 DOI: 10.1002/smll.202205716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional thermal management materials with highly efficient electromagnetic wave (EMW) absorption performance are urgently required to tackle the heat dissipation and electromagnetic interference issues of high integrated electronics. However, the high thermal conductivity (λ) and outstanding EMW absorption performance are often incompatible with each other in a single material. Herein, a through-thickness arrayed NiCo2 O4 /graphene oxide/carbon fibers (NiCO@CFs) elastomer with integrated functionalities of high thermal conductivity, highly efficient EMW absorption, and excellent compressibility is reported. The NiCO@CFs elastomer realizes a high out-of-plane thermal conductivity of 15.55 W m-1 K-1 , due to the through-thickness vertically aligned CFs framework. Moreover, the unique horizontal segregated magnetic network effectively reduces the electrical contact between the CFs, which significantly enhances impedance matching of NiCO@CFs elastomer. As a result, the vertically arrayed NiCO@CFs elastomer synchronously exhibits ultrabroad effective absorption bandwidth of 8.25 GHz (9.75-18 GHz) at a thickness of 2.4 mm, good impedance matching, and a minimum reflection loss (RLmin ) of -55.15 dB. Given these outstanding findings, the multifunctional arrayed NiCO@CFs elastomer opens an avenue for applications in EMW absorption and thermal management. This strategy of constructing thermal/electrical/mechanical pathways provides a promising way for the high-performance multifunctional materials in electronic devices.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianda Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jian Shang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yadong Xu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan-Jun Wan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiqiang Lin
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yougen Hu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
45
|
Wu Y, Xu L, Xia C, Gan L. High performance flexible and antibacterial strain sensor based on silver‑carbon nanotubes coated cellulose/polyurethane nanofibrous membrane: Cellulose as reinforcing polymer blend and polydopamine as compatibilizer. Int J Biol Macromol 2022; 223:184-192. [PMID: 36343837 DOI: 10.1016/j.ijbiomac.2022.10.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
In this study, ethyl cellulose was used as the second-phase polymer blended with polyurethane to make nanofibrous membrane as antibacterial strain sensor. The results indicated that ethyl cellulose could regulate the morphology of polyurethane through strong hydrogen bonding, which observably enhanced the nanofiber uniformity of polyurethane. Furthermore, rigid cellulose also remarkably improved the mechanical strength and thermal stability of the nanofibrous membrane. After being coated with silver nanoparticles and carbon nanotubes assisted by polydopamine (PDA), the membrane with outstanding bacteria inhibition performance exhibited outstanding sensitivity toward external mechanical stretching, as well as real-time motion of human body parts. The conductive composite membrane possessed sensitive and regular resistance feedback to 100 cycles of varied human motions. The cellulose in the nanofiber structure ensured the shape recovery and longtime use stability of the membrane. This study proposed a novel thinking for the construction of high performance strain sensor by rational introduction of rigid polysaccharide into the polymer matrix.
Collapse
Affiliation(s)
- Ying Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China.
| |
Collapse
|
46
|
Bai P, Wang S, Zhao B, Wang X, Ma J, Zhou Y. Electrically conductive and corrosion resistant MAX phases with superior electromagnetic wave shielding performance. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Preparation of degradable bio-based silicone/epoxy hybrid resins towards low dielectric composites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Huang T, Zhang X, Wang T, Zhang H, Li Y, Bao H, Chen M, Wu L. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. NANO-MICRO LETTERS 2022; 15:2. [PMID: 36441263 PMCID: PMC9705632 DOI: 10.1007/s40820-022-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
While boron nitride (BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties, a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interfacial interaction causing severe phonon scattering. Here, we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals (BNNCs) to efficiently link the interface between BN and the polymer matrix. Combining with ice-press assembly method, an only 25 wt% BN-embedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1 K-1 but also, more importantly, achieve a through-plane thermal conductivity as high as 21.3 W m-1 K-1, which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers, the strong interaction between the self-modified fillers and polymer matrix, as well as ladder-structured BN skeleton. The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU. This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.
Collapse
Affiliation(s)
- Taoqing Huang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xinyu Zhang
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tian Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Honggang Zhang
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Bao
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
49
|
Chen T, Liu Z, Zhao G, Qin Z, Zheng P, Aladejana JT, Tang Z, Weng M, Peng X, Chang J. Piezoresistive Sensor Containing Lamellar MXene-Plant Fiber Sponge Obtained with Aqueous MXene Ink. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51361-51372. [PMID: 36336918 DOI: 10.1021/acsami.2c15922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable biomass materials are promising for low-cost wearable piezoresistive pressure sensors, but these devices are still produced with time-consuming manufacturing processes and normally display low sensitivity and poor mechanical stability at low-pressure regimes. Here, an aqueous MXene ink obtained by simply ball-milling is developed as a conductive modifier to fabricate the multiresponsive bidirectional bending actuator and compressible MXene-plant fiber sponge (MX-PFS) for durable and wearable pressure sensors. The MX-PFS is fabricated by physically foaming MXene ink and plant fibers. It possesses a lamellar porous structure composed of one-dimensional (1D) MXene-coated plant fibers and two-dimensional (2D) MXene nanosheets, which significantly improves the compression capacity and elasticity. Consequently, the encapsulated piezoresistive sensor (PRS) exhibits large compressible strain (60%), excellent mechanical durability (10 000 cycles), low detection limit (20 Pa), high sensitivity (435.06 kPa-1), and rapid response time (40 ms) for practical wearable applications.
Collapse
Affiliation(s)
- Tingjie Chen
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
- College of Material Science and Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhiyong Liu
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Gang Zhao
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Zipeng Qin
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Peitao Zheng
- Academy for Advanced Interdisciplinary Studies, Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - John Tosin Aladejana
- College of Material Science and Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhendong Tang
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Mingcen Weng
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Xiangfang Peng
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Jian Chang
- Academy for Advanced Interdisciplinary Studies, Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
50
|
Sushmita K, Ghosh D, Nilawar S, Bose S. Absorption Dominated Directional Electromagnetic Interference Shielding through Asymmetry in a Multilayered Construct with an Exceptionally High Green Index. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49140-49157. [PMID: 36279251 DOI: 10.1021/acsami.2c13704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fabricating green electromagnetic interference (EMI) shields is the need of the hour because strong secondary reflections in the vicinity of the shield adversely affect the environment and the reliability of the neighboring devices. To this end, the present work aims to maximize the absorption-based EMI shielding through a multilayered construct comprising a porous structure (pore size less than λ/5), a highly conducting entity, and a layer to match the impedance. The elements of this construct were positioned so that the incoming electromagnetic (EM) radiation interacts with the other layers of the construct before the conducting entity. This positioning of the layers in the construct offers a high green shielding index (gs) and low reflection coefficient (R ∼ 0.1) with an exceptionally high percent absorption (up to 99%). Polyurethane (PU) foams were fabricated using the salt-leaching technique and strategically positioned with carbon nanotube (CNT) papers and polycarbonate (PC)-based films to obtain symmetric and asymmetric constructs. These structures were then employed to gain mechanistic insight into the directional dependency of shielding performance, gs, and heat dissipation ability. Interestingly, maximum total shielding effectiveness (SET) of -52 dB (88% absorption @8.2 GHz) and specific shielding effectiveness/thickness (SSEt) of -373 dB/cm2g were achieved for a symmetric construct whereas, for the asymmetric construct, the SET and SSEt were -37 dB and -280 dB/cm2g, respectively, with an exceptionally high gs of 8.6, the highest reported so far. The asymmetricity in the construct led to directional dependence of the absorption component (% SEA, shielding effectiveness due to absorption) and heat dissipation, primarily governed by the electrical and thermal conductivity gradient, respectively. This study opens new avenues in this field and reports constructs with an exceptionally high green index.
Collapse
Affiliation(s)
- Kumari Sushmita
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Debabrata Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore560012, India
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|