1
|
Reprint of: Biological Effects of the Superoxide Radical. Arch Biochem Biophys 2022; 726:109228. [PMID: 35688773 DOI: 10.1016/j.abb.2022.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Can the superoxide radical exert deleterious effects independent of participating with H2O2 in the production of the hydroxyl radical? Examination of the superoxide-related literature reveals data suggesting an affirmative answer to this question. © 1986 Academic Press, Inc.
Collapse
|
2
|
Bamforth CW, Parsons R. New Procedures to Improve the Flavor Stability of Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-43-0197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Charles W. Bamforth
- Research Department, Bass PLC, 137 High Street, Burton-on-Trent, England DE14 1JZ
| | - Roy Parsons
- Research Department, Bass PLC, 137 High Street, Burton-on-Trent, England DE14 1JZ
| |
Collapse
|
3
|
Poyton MF, Sendecki AM, Cong X, Cremer PS. Cu2+ Binds to Phosphatidylethanolamine and Increases Oxidation in Lipid Membranes. J Am Chem Soc 2016; 138:1584-90. [DOI: 10.1021/jacs.5b11561] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Matthew F. Poyton
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16801, United States
| | - Anne M. Sendecki
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16801, United States
| | - Xiao Cong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Paul S. Cremer
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16801, United States
- Department
of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
4
|
Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials 2015; 72:20-8. [DOI: 10.1016/j.biomaterials.2015.08.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
|
5
|
Hu K, Zhang JX, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Zhou XQ. Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:635-649. [PMID: 25675866 DOI: 10.1007/s10695-015-0034-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
This study was designed to investigate the effects of dietary glutamine on the growth performance, cytokines, target of rapamycin (TOR), and antioxidant-related parameters in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed the basal (control) and glutamine-supplemented (12.0 g glutamine kg(-1) diet) diets for 6 weeks. Results indicated that the dietary glutamine supplementation improved the growth performance, spleen protein content, serum complement 3 content, and lysozyme activity in fish. In the spleen, glutamine down-regulated the expression of the interleukin 1 and interleukin 10 genes, and increased the level of phosphorylation of TOR protein. In the head kidney, glutamine down-regulated the tumor necrosis factor α and interleukin 10 gene expressions, phosphorylated and total TOR protein levels, while up-regulated the transforming growth factor β2 gene expression. Furthermore, the protein carbonyl content was decreased in the spleen of fish fed glutamine-supplemented diet; conversely, the anti-hydroxyl radical capacity and glutathione content in the spleen were increased by glutamine. However, diet supplemented with glutamine did not affect the lipid peroxidation, anti-superoxide anion capacity, and antioxidant enzyme activities in the spleen. Moreover, all of these antioxidant parameters in the head kidney were not affected by glutamine. Results from the present experiment showed the importance of dietary supplementation of glutamine in benefaction of the growth performance and several components of the innate immune system, and the deferential role in cytokine gene expression, TOR kinase activity, and antioxidant status between the spleen and head kidney of juvenile Jian carp.
Collapse
Affiliation(s)
- Kai Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wu CY, Martel J, Cheng WY, He CC, Ojcius DM, Young JD. Membrane vesicles nucleate mineralo-organic nanoparticles and induce carbonate apatite precipitation in human body fluids. J Biol Chem 2013; 288:30571-30584. [PMID: 23990473 DOI: 10.1074/jbc.m113.492157] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies indicate that membrane vesicles (MVs) secreted by various cells are associated with human diseases, including arthritis, atherosclerosis, cancer, and chronic kidney disease. The possibility that MVs may induce the formation of mineralo-organic nanoparticles (NPs) and ectopic calcification has not been investigated so far. Here, we isolated MVs ranging in size between 20 and 400 nm from human serum and FBS using ultracentrifugation and sucrose gradient centrifugation. The MV preparations consisted of phospholipid-bound vesicles containing the serum proteins albumin, fetuin-A, and apolipoprotein A1; the mineralization-associated enzyme alkaline phosphatase; and the exosome proteins TNFR1 and CD63. Notably, we observed that MVs induced mineral precipitation following inoculation and incubation in cell culture medium. The mineral precipitates consisted of round, mineralo-organic NPs containing carbonate hydroxyapatite, similar to previous descriptions of the so-called nanobacteria. Annexin V-immunogold staining revealed that the calcium-binding lipid phosphatidylserine (PS) was exposed on the external surface of serum MVs. Treatment of MVs with an anti-PS antibody significantly decreased their mineral seeding activity, suggesting that PS may provide nucleating sites for calcium phosphate deposition on the vesicles. These results indicate that MVs may represent nucleating agents that induce the formation of mineral NPs in body fluids. Given that mineralo-organic NPs represent precursors of calcification in vivo, our results suggest that MVs may initiate ectopic calcification in the human body.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- From the Laboratory of Nanomaterials,; the Center for Molecular and Clinical Immunology, and; the Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - Jan Martel
- From the Laboratory of Nanomaterials,; the Center for Molecular and Clinical Immunology, and
| | - Wei-Yun Cheng
- From the Laboratory of Nanomaterials,; the Center for Molecular and Clinical Immunology, and
| | - Chao-Chih He
- From the Laboratory of Nanomaterials,; the Center for Molecular and Clinical Immunology, and
| | - David M Ojcius
- the Center for Molecular and Clinical Immunology, and; the Molecular Cell Biology, Health Sciences Research Institute, University of California, Merced, California 95343
| | - John D Young
- From the Laboratory of Nanomaterials,; the Center for Molecular and Clinical Immunology, and; the Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021, and; the Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan.
| |
Collapse
|
7
|
Musatov A. Dual effect of heparin on Fe²⁺-induced cardiolipin peroxidation: implications for peroxidation of cytochrome c oxidase bound cardiolipin. J Biol Inorg Chem 2013; 18:729-37. [PMID: 23842788 DOI: 10.1007/s00775-013-1019-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/22/2013] [Indexed: 01/12/2023]
Abstract
The effect of heparin on peroxidation of cardiolipin (CL) initiated by ferrous iron was studied in vitro using detergent-solubilized CL, liposomal CL, or CL bound to isolated cytochrome c oxidase (CcO). Heparin increased both the rate and the extent of CL peroxidation for detergent-solubilized CL and for CcO-bound CL. The effect of heparin was time- and concentration-dependent as monitored by the formation of conjugated dienes or thiobarbituric acid reactive substances. The results showed great similarity between the effect of heparin and the effect of certain iron chelators, such as ADP, on phospholipid peroxidation. Heparin increased the peroxidation of CcO-bound CL only when tertiary butyl hydroperoxide was also present. The enzyme activity of the resulting CcO complex decreased 25 %, in part due to peroxidation of functionally important CL. In contrast to peroxidation of detergent-solubilized CL, peroxidation of liposomal CL was inhibited by heparin, suggesting that the effect of heparin and ferrous iron depends on their proximity to the acyl chains of CL.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA,
| |
Collapse
|
8
|
In vitro effect of n-nitrosodiethylamine on lipid peroxidation and antioxidant system in human erythrocytes. Toxicol In Vitro 2012; 10:649-53. [PMID: 20650248 DOI: 10.1016/s0887-2333(96)00052-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/1996] [Indexed: 11/21/2022]
Abstract
Human erythrocytes were used in vitro to investigate the effect of the hepatocarcinogen N-nitrosodiethylamine (NDEA) on lipid peroxidation (LPO) and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR). LPO and erythrocyte haemolysis increased with increasing concentrations of NDEA and with increased exposure time. CAT activity decreased while GR activity increased with both the increasing concentrations of NDEA treatment and exposure time. However, no alteration was observed in SOD enzyme activity. The inhibitory effects of antioxidants and free radical scavengers such as EDTA, succinic acid, sodium benzoate and ascorbic acid were observed. These agents lowered NDEA-induced LPO and haemolysis in erythrocytes. This might indicate that the generation of free radicals and subsequent LPO may play a role, at least in part, in inducing NDEA toxicity.
Collapse
|
9
|
The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 2010; 501:65-72. [PMID: 20558130 DOI: 10.1016/j.abb.2010.06.013] [Citation(s) in RCA: 557] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 06/01/2010] [Accepted: 06/09/2010] [Indexed: 02/06/2023]
Abstract
Green tea (Camellia sinensis) is rich in catechins, of which (-)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review, we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result.
Collapse
|
10
|
Heimli H, Finstad HS, Drevon CA. Necrosis and apoptosis in lymphoma cell lines exposed to eicosapentaenoic acid and antioxidants. Lipids 2001; 36:613-21. [PMID: 11485166 DOI: 10.1007/s11745-001-0765-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study is focused on the role of oxidative stress in the induction of either necrosis or apoptosis by eicosapentaenoic acid (EPA) in the lymphoma cell lines Raji and Ramos, respectively. To investigate the different death modes induced by EPA, we assessed the importance of some antioxidants and reactive oxygen species in the two cell lines. We observed that different antioxidants counteracted the necrotic effect of EPA on Raji cells to a different extent, and that vitamin E counteracted EPA-induced accumulation of superoxide anion in this cell line. On the contrary, no effects of antioxidants were observed on development of apoptosis induced by EPA in Ramos cells, and vitamin E did not counteract EPA-induced accumulation of superoxide anions in Ramos cells. Moreover, apoptosis was partly inhibited by transcription inhibitors (actinomycin D) and protein synthesis inhibitors (cycloheximide), suggesting dependency upon new protein synthesis prior to apoptosis. Kinase inhibitors (staurosporin and calphostin C) did not alter the EPA-induced apoptosis. The observed cellular accumulation of superoxide anion following EPA incubation may be important for induction of necrosis in Raji cells. In contrast, none of the other investigated parameters indicated a role of oxidative stress promoted by EPA in the induction of apoptosis in Ramos cells.
Collapse
Affiliation(s)
- H Heimli
- Institute for Nutrition Research, University of Oslo, Norway
| | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Hemolysis caused by cardiopulmonary bypass causes renal dysfunction and other organ failure presumably by superoxide production catalyzed by iron derived from free hemoglobin (f-Hb). It might also impair cardiac function by the same mechanism, especially in the ischemia-reperfusion period and in neonates where serum antioxidant activity is lower than adults. METHODS We evaluated effects of f-Hb on cardiac function with or without ischemia and reperfusion using a newborn (7 days old) rabbit crystalloid-perfused Langendorff model. After baseline measurements, the hearts were divided into the following four groups (8 hearts per group): (1) those perfused with regular Krebs-Henseleit bicarbonate buffer, (2) those perfused 30 minutes with KH buffer containing 1 mg/mL of f-Hb obtained from osmotic hemolysis, (3) those subjected to 180 minutes of cold global ischemia with infusion of crystalloid cardioplegia and reperfused with Krebs-Henseleit buffer, and (4) those subjected to the same ischemia and reperfused with Krebs-Henseleit buffer containing 1 mg/mL of f-Hb. The left ventricular function (using conductance catheter and isovolumic balloon) and coronary flow were measured. RESULTS Free hemoglobin significantly impaired not only left ventricular function but also coronary flow even without ischemia (p < 0.05). When ischemia and reperfusion were involved, the group reperfused with f-Hb showed the worst left ventricular function and coronary flow among the groups. CONCLUSIONS This study shows that f-Hb directly impaired cardiac function and coronary flow in neonatal hearts especially in ischemia and reperfusion.
Collapse
Affiliation(s)
- S Nemeto
- Department of Pediatric Cardiovascular Surgery, The Heart Institute of Japan, Tokyo Women's Medical College, Japan.
| | | | | | | |
Collapse
|
12
|
Tang LX, Yang JL, Shen X. Effects of additional iron-chelators on Fe(2+)-initiated lipid peroxidation: evidence to support the Fe2+ ... Fe3+ complex as the initiator. J Inorg Biochem 1997; 68:265-72. [PMID: 9397574 DOI: 10.1016/s0162-0134(97)00107-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The addition of chelated Fe2+ ions in a liposomal system often results in a short lag period before peroxidation starts. The addition of a second chelator at the end of the lag period results in an inhibition of the lipid peroxidation. The degree of inhibition depends on the stability constants of the chelator in ligating Fe2+ and/or Fe3+. A more striking inhibitory effect was observed for the chelators with higher stability constant for either or both Fe(2+)- and Fe(3+)-complex, but much less inhibition was found for those with lower stability constants for both complexes. Assuming that the "initiator" for iron-dependent lipid peroxidation is formed through the redox process of iron ion and finally emerged at the end of the latent period, the inhibitory effect of the second chelator may be explained as the abstraction of either Fe2+ or Fe3+ from the initiator by an additional free chelator, which results in the decomposition of the initiator. This study supports the hypothesis that a Fe2+ ... Fe3+ complex is responsible for iron-initiated lipid peroxidation.
Collapse
Affiliation(s)
- L X Tang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
13
|
Development and validation of fluorescence spectroscopic assays to evaluate antioxidant efficacy. Application to metal chelators. J AM OIL CHEM SOC 1997. [DOI: 10.1007/s11746-997-0021-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhang GJ, Yao J. The direct cause of photodamage-induced lysosomal destabilization. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1326:75-82. [PMID: 9188802 DOI: 10.1016/s0005-2736(97)00009-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Whether membrane lipid photoperoxidation is the immediate cause for lysosomal lysis is still unclear. In this study, we investigated the direct causal factor of photoinduced lysosomal destabilization in a K+-containing solution. Methylene blue (MB)-mediated photodamage caused lysosomal membrane lipid peroxidation and loss of membrane fluidity. Compared with unirradiated lysosomes, the photodamaged lysosomes significantly lost enzyme latency in an isotonic K+-containing solution during a 20-min period of incubation. It indicates an increase in lysosomal K+ permeability. The inward K+ permeation of photodamaged lysosomes was further proved by a K+-induced elevation of internal membrane potential. In addition, the photodamaged lysosomes displayed an increased osmotic sensitivity, showing that MB-mediated photodamage promotes lysosomal osmotic fragility. Although these photoinduced alterations occurred, the lysosomes were relatively stable in an isotonic sucrose medium. In contrast, the organelle destabilized in a photodamage-dependent fashion in an isotonic K+-containing solution. The results indicate that membrane lipid peroxidation does not definitely destabilize lysosomes. The direct cause for the lysosomal destabilization is photoinduced osmotic imbalance across its membrane via an increased K+ uptake, while the increase in osmotic sensitivity favors the destabilization of photodamaged lysosomes.
Collapse
Affiliation(s)
- G J Zhang
- Department of Cellular Biophysics, Institute of Biophysics, Academia Sinica, Chaoyang District, Beijing, People's Republic of China
| | | |
Collapse
|
15
|
Karashima K, Uchida Y, Tohara K, Kashima K, Yokoyama S, Nakayama I. The kinetics of copper-zinc superoxide dismutase in experimentally induced ischemia-reperfusion injury of the canine jejunum. Surg Today 1995; 25:343-50. [PMID: 7633126 DOI: 10.1007/bf00311258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, the kinetics of copper-zinc superoxide dismutase (CuZn-SOD) in experimentally induced ischemia-reperfusion injury of the canine jejunum were examined using immunohistochemical procedures, and evaluated as an index for the viability of transplants. A pedicled jejunal graft was subjected to arterial reperfusion after clamping the supplying blood vessels for 30 min. Under nonischemic conditions, some of the goblets in the goblet cells and the mucin covering the surface of the villi were stained positively with luxol fast blue, von Kossa, and immunohistochemistry for CuZn-SOD. Between 5 and 30 min after reperfusion, the appearance of goblets with positive immunoreaction for CuZn-SOD in the intestinal glands and the disappearance of these goblets in the villi were observed in the grafts of animals that received arterial reperfusion after 30 min of clamping of the arteries and veins at room temperature. Thereafter, the former disappeared gradually and the latter returned toward the nonischemic condition. The administration of allopurinol led to a decrease in tissue damage and a significantly higher number of goblets with positive immunoreaction for CuZn-SOD than in untreated animals. Furthermore, the goblets in the intestinal glands showed a negative reaction for CuZn-SOD 5 to 30 min after reperfusion. Preservation at 4 degrees C during ischemia revealed similar results to those observed in the animals given allopurinol. Thus, the distribution and intensity of CuZn-SOD positive goblets seems to be a useful indicator for the evaluation of tissue damage induced by free radicals mediating ischemia-reperfusion injury.
Collapse
Affiliation(s)
- K Karashima
- Second Department of Surgery, Oita Medical University, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Thomas M, Frederiks WM, Van Noorden CJF, Bosch KS, Pompella A. NADPH-dependent lipid peroxidation capacity in unfixed tissue sections: characterization of the pro-oxidizing conditions and optimization of the histochemical detection. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf00166099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Radical generation and detection in myocardial injury. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Abstract
Lipid peroxidation, which plays a part in a wide variety of biological processes, is an integral process in the oxidation of unsaturated fatty acids via a radical chain reaction. Among the various species which may induce this reaction in vivo, reactive forms of oxygen such as peroxide anion, the hydroxyl radical and singlet oxygen are of cardinal importance. These species may be generated enzymatically, chemically or by various radiochemical and photochemical reactions. We present here the advantages of photochemical induction of peroxidation, and we describe the principles of the reactions, the photosensitizers that can be employed to generate the various reactive species of oxygen, and the techniques, direct (ESR) or indirect (specific traps), used to detect the reactive species. Photosensitization can induce the formation of a whole gamut of products of lipid peroxidation: conjugated dienes, aldehydes, hydroperoxides, etc. The relative proportions of the various hydroperoxides of fatty acids or cholesterol depend on the nature of the reactive species involved. Utilization of photochemical reactions is an effective and clean way of inducing peroxidation, allowing fine control of both initiation and orientation.
Collapse
Affiliation(s)
- N Paillous
- Laboratoire des IMRCP, URA 470 au CNRS, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
19
|
Bacterial cell killing by antibody targeted photolysis: enhanced effect by OH radical generation. J Control Release 1994. [DOI: 10.1016/0168-3659(94)90164-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Lang JK, Vigo-Pelfrey C. Quality control of liposomal lipids with special emphasis on peroxidation of phospholipids and cholesterol. Chem Phys Lipids 1993; 64:19-29. [PMID: 8242833 DOI: 10.1016/0009-3084(93)90054-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The usefulness of various assays for the determination of phospholipid and cholesterol peroxidation in liposome formulations was studied on model liposomes prepared as small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) from either native egg phosphatidylcholine (EPC), partially hydrogenated egg phosphatidylcholine (PHEPC) or fully hydrogenated egg phosphatidylcholine (HEPC) and cholesterol in 65/35 molar ratio at a total lipid concentration of 10 mumol/ml in phosphate buffered saline pH 7.2. Liposomes were incubated at 50 degrees C for a total of 3 months. Fatty acid and cholesterol peroxidation were monitored after 1, 2 and 3 months by quantitative measurement of fatty acids and cholesterol and as well as peroxidation products. Fatty acid peroxidation products malondialdehyde, lipidhydroperoxides, conjugated dienes, conjugated trienes were poor predictors of actual fatty acid loss. Among the cholesterol peroxidation products 7-hydroxy-cholesterols, 7-keto-cholesterol and 4-cholesten-3-one were measured quantitatively. Only the formation of 7-keto-cholesterol correlated well with cholesterol disappearance.
Collapse
Affiliation(s)
- J K Lang
- Liposome Technology, Inc., Menlo Park, CA 94025
| | | |
Collapse
|
21
|
Puntarulo S, Cederbaum AI. Stimulation of microsomal chemiluminescence by ferritin. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1157:1-8. [PMID: 8499475 DOI: 10.1016/0304-4165(93)90071-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of ferritin to catalyze rat liver microsomal chemiluminescence was determined in the absence and presence of the redox cycling agent paraquat, and with either NADPH or NADH as reductant. Microsomal chemiluminescence was used as a index of lipid peroxidation. In the absence of added ferritin, NADPH-dependent microsomal light emission was 4-fold greater than the NADH-dependent reaction, and was not sensitive to superoxide dismutase, catalase or DMSO. Ferritin stimulated NADPH-, but not NADH-dependent chemiluminescence in a time- and concentration-dependent manner. The stimulation by ferritin was completely sensitive to superoxide dismutase, but not to catalase or DMSO, suggesting the requirement for superoxide to mobilize iron from ferritin. An iron ligand was not required for the stimulation by ferritin; the addition of certain ligands such as EDTA, DETAPAC or desferrioxamine resulted in inhibition of the stimulation by ferritin. Paraquat potentiated the effect of ferritin on microsomal chemiluminescence with NADPH as cofactor and was weakly stimulatory with NADH. The potentiation by paraquat plus ferritin was prevented by superoxide dismutase and was further elevated by ligands such as ATP. Chemiluminescence proved to be a more sensitive parameter than production of thiobarbituric acid-reactive components to evaluate the stimulation of oxygen radical production by iron released from ferritin, in the absence or in the presence of paraquat.
Collapse
Affiliation(s)
- S Puntarulo
- Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | |
Collapse
|
22
|
Shepherd RE, Isaacson Y, Chensny L, Zhang S, Kortes R, John K. Lactobionic and gluconic acid complexes of FeII and FeIII; control of oxidation pathways by an organ transplantation preservant. J Inorg Biochem 1993; 49:23-48. [PMID: 8433086 DOI: 10.1016/0162-0134(93)80046-c] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lactobionic acid, [4-beta-(galactosido)-D-gluconic acid] = LBA, is the major component of the Wisconsin organ transplantation preservant fluid and may suppress oxygen radical-induced tissue damage upon reperfusion by the control of FeII autoxidation. FeII and FeIII complexes of LBA and the related gluconic acid (GLC) have been studied herein by titrimetric, infrared, and electrochemical methods (CV; DPP). FeII(GLC) forms quickly at pH 7, but FeII(LBA) reacts in two steps, the second requiring 4 hr. The initial complex lacks coordination of the LBA carboxylate (C-1) and is bound by the "2,3,5" hydroxyl groups. The slow rearrangement forms a "1,2,3,6" chelate which FeII(LBA) shares in common with the donor set of the FeIII(LBA) complex. Titration data shows the removal of three protons from LBA through pH 5 and an additional proton from pH 6 to 9 which is indicative of the [FeIII(LBA)(OH)(H2O)]- formulation with LBA donating at the "1,2,3,6" positions. The more stable, second form of FeII(LBA) has been investigated in its oxidation mechanisms with H2O2 and O2 using selected trapping agents for HO. and ferryl intermediates. Eighty-six percent of the oxidation events of FeII(LBA)/H2O2 occurs in steps involving formation and reduction of freely diffusible HO.. These pathways are altered by the known HO. traps t-butanol, dmso, ethanol, and methanol in the manner predictable for beta-oxidizing radicals (from t-butanol or dmso) and alpha-reducing radicals (from ethanol and methanol). Fourteen percent of the FeII(LBA)/H2O2 reaction occurs via FeIVO intermediates not trapped by t-butanol or dmso, but intercepted by primary and secondary alcohols. The HO. generating pathways are responsible for a competitive LBA ligand oxidation at the C-2 position via HO., formed from FeII(LBA) and H2O2 within the original reaction cage. Competitive ligand oxidation at C-2 is absent for the FeII(LBA)/O2 autoxidation, indicative of a different redox mechanism. The FeII(LBA)/O2 reaction rate is first-order in each component and is insensitive to the presence of t-butanol as an HO. trap. These observations support a ferryl intermediate in the autoxidation pathway and the absence of HO. or free H2O2 during autoxidation. Although chelation of FeII by hard ligand donors such as edta4-, Cl-, or HPO4(2-) accelerate the rate of autoxidation of FeII, chelation of carboxylate, alkoxy, and hydroxyl donors of LBA does not accelerate autoxidation. The implications of these findings, and the absence of an inner-sphere coordination role of the 4-beta-(galactosido) functionality toward the action of LBA in organ preservant fluids, are discussed.
Collapse
Affiliation(s)
- R E Shepherd
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | | | | | | | | | | |
Collapse
|
23
|
Sato R, Kashima K, Yokoyama S, Nakayama I. Immunoreactive copper-zinc superoxide dismutase in damaged human myocardium. Pathol Int 1992; 42:83-90. [PMID: 1373264 DOI: 10.1111/j.1440-1827.1992.tb03080.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The myocardium in 50 autopsy cases was studied using immunostaining for copper-zinc superoxide dismutase (CuZn-SOD) and standard histochemical procedures. Mucinous degeneration observed in 42 cases showed moderately enhanced expression of immunoreactive CuZn-SOD in lesions which were stained strongly by periodic acid-Schiff but negative with Heidenhain iron-hematoxylin (HIH), von Kossa and luxol fast blue (LFB) stains, whereas coagulation necrosis in 4 cases revealed almost identical immunostaining for CuZn-SOD and HIH to that of contraction band necrosis, i.e. strongly positive HIH staining but negative immunostaining. Basophilic alteration of the myocardial cells in sections fixed with 4% formalin in 2% calcium acetate was seen in 29 cases, being identified frequently in isolated cells as well as in several foci varying considerably in size. This type of alteration demonstrated significantly enhanced expression of immunoreactive CuZn-SOD and was strongly positive with von Kossa and LFB stains. The present study indicates that the myocardium can be affected by free radicals produced in any organ of the body, and that subsequently, insoluble phospholipids react with calcium ions in the fixative and accumulate in the basophilic sarcoplasm.
Collapse
Affiliation(s)
- R Sato
- First Department of Pathology, Medical College of Oita, Japan
| | | | | | | |
Collapse
|
24
|
Girotti AW. Photosensitized oxidation of cholesterol in biological systems: reaction pathways, cytotoxic effects and defense mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1992; 13:105-18. [PMID: 1506985 DOI: 10.1016/1011-1344(92)85050-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cholesterol resembles other unsaturated lipids in being susceptible to peroxidative degradation when exposed to a sensitizing agent, exciting light of suitable wavelength and molecular oxygen. Selected hydroperoxides of cholesterol can be used as relatively convenient and reliable indicators of primary photochemical mechanisms, allowing a distinction to be made between free radical-mediated and singlet oxygen-mediated reactions. When generated in cell membranes, hydroperoxides of cholesterol and other lipids can have deleterious effects on membrane structure and function. Such damage may be exacerbated if these photoproducts undergo one-electron reduction to oxyl radicals which in turn initiate chain peroxidation reactions. Cells can resist these effects by using a membrane-based glutathione peroxidase to catalyze the two-electron reduction and detoxification of lipid hydroperoxides. Recent advances in our understanding of cholesterol photo-oxidation from the standpoints of (a) mechanistic information, (b) cytotoxicity and (c) cytoprotection are discussed in this article.
Collapse
Affiliation(s)
- A W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| |
Collapse
|
25
|
Abstract
Mechanisms of iron-catalyzed lipid peroxidation depend on the presence or absence of preformed lipid hydroperoxides (LOOH). Preformed LOOH are decomposed by Fe(II) to highly reactive lipid alkoxyl radicals, which in turn promote the formation of new LOOH. However, in the absence of LOOH, both Fe2+ and Fe3+ must be available to initiate lipid peroxidation, with optimum activity occurring as the Fe2+/Fe3+ ratio approaches unity. The simultaneous availability of Fe2+ and Fe3+ can be achieved by oxidizing some Fe2+ with hydrogen peroxide or with chelators that favor autoxidation of Fe2+ by molecular oxygen. Alternatively, one can use Fe3+ and reductants like superoxide, ascorbate or thiols. In either case excess Fe2+ oxidation or Fe3+ reduction will inhibit lipid peroxidation by converting all the iron to the Fe3+ or Fe2+ form, respectively. Superoxide dismutase and catalase can affect lipid peroxidation by affecting iron reduction/oxidation and the formation of a (1:1) Fe2+/Fe3+ ratio. Hydroxyl radical scavengers can also increase or decrease lipid peroxidation by affecting the redox cycling of iron.
Collapse
Affiliation(s)
- G Minotti
- Institute of General Pathology, Catholic University School of Medicine, Rome, Italy
| | | |
Collapse
|
26
|
Dicker E, Cederbaum AI. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Biochem Pharmacol 1991; 42:529-35. [PMID: 1650215 DOI: 10.1016/0006-2952(91)90315-v] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NADH was found previously to catalyze the reduction of various ferric complexes and to promote the generation of reactive oxygen species by rat liver microsomes. Experiments were conducted to evaluate the ability of NADH to interact with ferric complexes and redox cycling agents to catalyze microsomal generation of potent oxidizing species. In the presence of iron, the addition of menadione increased NADPH- and NADH-dependent oxidation of hydroxyl radical (.OH) scavenging agents; effective iron complexes included ferric-EDTA, -diethylenetriamine pentaacetic acid, -ATP, -citrate, and ferric ammonium sulfate. The stimulation produced by menadione was sensitive to catalase and to competitive .OH scavengers but not to superoxide dismutase. Paraquat, irrespective of the iron catalyst, did not increase significantly the NADH-dependent oxidation of .OH scavengers under conditions in which the NADPH-dependent reaction was increased. Menadione promoted H2O2 production with either NADH or NADPH; paraquat was stimulatory only with NADPH. Stimulation of H2O2 generation appears to play a major role in the increased production of .OH-like species. Menadione inhibited NADH-dependent microsomal lipid peroxidation, whereas paraquat produced a 2-fold increase. Neither the control nor the paraquat-enhanced rates of lipid peroxidation were sensitive to catalase, superoxide dismutase, or dimethyl sulfoxide. Although the NADPH-dependent microsomal system shows greater reactivity and affinity for interacting with redox cycling agents, the capability of NADH to promote menadione-catalyzed generation of .OH-like species and H2O2 or paraquat-mediated lipid peroxidation may also contribute to the overall toxicity of these agents in biological systems. This may be especially significant under conditions in which the production of NADH is increased, e.g. during ethanol oxidation by the liver.
Collapse
Affiliation(s)
- E Dicker
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
27
|
Fujii T, Hiramoto Y, Terao J, Fukuzawa K. Site-specific mechanisms of initiation by chelated iron and inhibition by alpha-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles. Arch Biochem Biophys 1991; 284:120-6. [PMID: 1846510 DOI: 10.1016/0003-9861(91)90273-l] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To obtain information on the role of iron-catalyzed lipid peroxidation in the presence of the small amount of lipid peroxide in deterioration of biological membranes, we examined factors affecting peroxidation of fatty acids in charged micelles. Peroxidation of linoleic acid (LA) was catalyzed by Fe2+ via reductive cleavage of linoleic acid hydroperoxide (LOOH) in negatively charged sodium dodecyl sulfate micelles, but not in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles. However, this Fe2(+)-induced, LOOH-dependent lipid peroxidation could be induced in TTAB micelles in the presence of a negatively charged iron chelator, nitrilotriacetic acid (NTA). The linoleic acid alkoxy radical (LO.) generated by the LOOH-dependent Fenton reaction was also trapped by N-t-butyl-alpha-phenylnitrone at the surface of TTAB micelles in the presence of NTA, but not in its absence. The degradation rates of two spin probes, N-oxyl-4,4'-dimethyloxazolidine derivatives of stearic acid (5-NS and 16-NS), were investigated to determine the site of production of radicals formed during LOOH-dependent lipid peroxidation. The rate of consumption of 16-NS during the LOOH-dependent Fenton-like reaction was higher in TTAB micelles containing LA than in those containing lauric acid (LauA), although the rates of formation of LO. in the two types of fatty acid micelles were similar. The rates of 5-NS consumption in LA and LauA micelles were almost the same and were as low as that of 16-NS consumption in LauA micelles. 16-NS was more inhibitory than 5-NS of LOOH-dependent lipid peroxidation, and this inhibition was associated with its higher consumption of 16-NS than of 5-NS. alpha-Tocopherol inhibited NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation in TTAB micelles, and was oxidized during this inhibition process. The rate and amount of alpha-tocopherol oxidized by the LOOH-dependent Fenton reaction were higher in LA micelles than in LauA micelles. alpha-Tocopherol inhibited the consumption of 16-NS during NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation more effectively than that of 5-NS. The distribution of the chromanol moiety of alpha-tocopherol was studied by the fluorescence quenching method. There was no difference between Stern-Volmer plots of the quenchings of alpha-tocopherol fluorescence by 5-NS and 16-NS. From these results, we discuss the mechanism of induction of LOOH-dependent peroxidation of LA and the mechanism of the antioxidant effects of alpha-tocopherol on it from the viewpoint of site-specific reaction.
Collapse
Affiliation(s)
- T Fujii
- Faculty of Pharmaceutical Sciences, Tokushima University, Japan
| | | | | | | |
Collapse
|
28
|
Kalyanaraman B, Antholine WE, Parthasarathy S. Oxidation of low-density lipoprotein by Cu2+ and lipoxygenase: an electron spin resonance study. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1035:286-92. [PMID: 2169886 DOI: 10.1016/0304-4165(90)90090-j] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this work was to obtain spectroscopic evidence for free radicals formed during copper ion- and lipoxygenase-catalyzed oxidation of the low-density lipoprotein. During the initial oxidation phase, a free-radical metabolite derived from the endogenous alpha-tocopherol present in the low-density lipoprotein was detected by the electron spin resonance technique. The divalent copper ions were bound to the residual EDTA present in the low-density lipoprotein and to the protein. Production of the alpha-tocopherol radical was suppressed in the presence of spin traps. Evidence for the low-density lipoprotein-lipid derived radicals was obtained by ESR-spin trapping methods. Implications of these findings in the oxidative modification of the low-density lipoprotein are discussed.
Collapse
Affiliation(s)
- B Kalyanaraman
- Department of Radiology, Medical College of Wisconsin, Milwaukee 53226
| | | | | |
Collapse
|
29
|
Moore RB, Bamberg AD, Wilson LC, Jenkins LD, Mankad VN. Ascorbate protects against tert-butyl hydroperoxide inhibition of erythrocyte membrane Ca2+ + Mg2(+)-ATPase. Arch Biochem Biophys 1990; 278:416-24. [PMID: 2139318 DOI: 10.1016/0003-9861(90)90279-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incubation of erythrocyte suspensions or isolated membranes containing a residual amount of hemoglobin (0.04% of original cellular hemoglobin) with tert-butyl hydroperoxide (tBHP, 0.5 mM) caused significant inhibition of basal and calmodulin-stimulated Ca2+ + Mg2(+)-ATPase activities and the formation of thiobarbituric acid reactive products measured as malondialdehyde. In contrast, the treatment of white ghosts (membranes not containing hemoglobin) with tBHP (0.5 mM) did not lead to appreciable enzyme inhibition within the first 20 min and did not result in malondialdehyde (MDA) formation. However, the addition of either 10 microM hemin or 100 microM ferrous chloride + 1 mM ADP to white ghosts produced hydroperoxide effects similar to those in pink ghosts (membranes with 0.04% hemoglobin). The concentrations of hemin and ferrous chloride which caused half-maximal inhibition of Ca2+ + Mg2(+)-ATPase activity at 10 min were 0.5 and 30 microM, respectively. The effects of several antioxidants (mannitol, thiourea, hydroxyurea, butylated hydroxytoluene, and ascorbate) were investigated for their protective effects against oxidative changes resulting from tBHP treatment. Over a 30-min incubation period only ascorbate significantly reduced the enzyme inhibition, MDA formation, and protein polymerization. Thiourea and hydroxyurea decreased MDA formation and protein polymerization but failed to protect against the enzyme inhibition. Butylated hydroxytoluene was similar to thiourea and hydroxyurea but with better protection at 10 min. Mannitol, under these conditions, was an ineffective antioxidant for all parameters tested.
Collapse
Affiliation(s)
- R B Moore
- Department of Pediatrics, University of South Alabama College of Medicine, Mobile 36617
| | | | | | | | | |
Collapse
|
30
|
Abstract
Oxidative degradation of cell membrane lipids in the presence of molecular oxygen, a sensitizing agent and exciting light is termed photodynamic lipid peroxidation (photoperoxidation). Like other types of lipid peroxidation, photoperoxidation is detrimental to membrane structure and function, and could play a role in many of the toxic as well as therapeutic effects of photodynamic action. Recent advances in our understanding of photoperoxidation and its biomedical implications are reviewed in this article. Specific areas of interest include (a) reaction mechanisms; (b) methods of detection and quantitation; and (c) cellular defenses (enzymatic and non-enzymatic).
Collapse
Affiliation(s)
- A W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| |
Collapse
|
31
|
Minotti G. NADPH- and adriamycin-dependent microsomal release of iron and lipid peroxidation. Arch Biochem Biophys 1990; 277:268-76. [PMID: 2310194 DOI: 10.1016/0003-9861(90)90578-m] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a previous study (Minotti, G., 1989, Arch. Biochem. Biophys. 268, 398-403) NADPH-supplemented microsomes were found to reduce adriamycin (ADR) to semiquinone free radical (ADR-.), which in turn autoxidized at the expense of oxygen to regenerate ADR and form O2-. Redox cycling of ADR was paralleled by reductive release of membrane-bound nonheme iron, as evidenced by mobilization of bathophenanthroline-chelatable Fe2+. In the present study, iron release was found to increase with concentration of ADR in a superoxide dismutase- and catalase-insensitive manner. This suggested that membrane-bound iron was reduced by ADR-. with negligible contribution by O2-. or interference by its dismutation product H2O2. Following release from microsomes, Fe2+ was reconverted to Fe3+ via two distinct mechanisms: (i) catalase-inhibitable oxidation by H2O2 and (ii) catalase-insensitive autoxidation at the expense of oxygen, which occurred upon chelation by ADR and increased with the ADR:Fe2+ molar ratio. Malondialdehyde formation, indicative of membrane lipid peroxidation, was observed when approximately 50% of Fe2+ was converted to Fe3+. This occurred in presence of catalase and low concentrations of ADR, which prevented Fe2+ oxidation and favored only partial Fe2+ autoxidation, respectively. Lipid peroxidation was inhibited by superoxide dismutase via increased formation of H2O2 from O2-. and excessive Fe2+ oxidation. Lipid peroxidation was also inhibited by high concentrations of ADR, which favored maximum Fe2+ release but also caused excessive Fe2+ autoxidation via formation of very high ADR:Fe2+ molar ratios. These results highlighted multiple and diverging effects of ADR, O2-., and H2O2 on iron release, iron (auto-)oxidation and lipid peroxidation. Stimulation of malondialdehyde formation by catalase suggested that lipid peroxidation was not promoted by reaction of Fe2+ with H2O2 and formation of hydroxyl radical. The requirement for both Fe2+ and Fe3+ was indicative of initiation by some type of Fe2+/Fe3+ complex.
Collapse
Affiliation(s)
- G Minotti
- Institute of General Pathology, Catholic University School of Medicine, Largo F. Vito 1, Rome, Italy
| |
Collapse
|
32
|
Kukiełka E, Puntarulo S, Cederbaum AI. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Arch Biochem Biophys 1989; 273:319-30. [PMID: 2774554 DOI: 10.1016/0003-9861(89)90490-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The production of potent oxygen radicals by microsomal reaction systems has been well characterized. Relatively little attention has been paid to generation of oxygen radicals by liver nuclei, or to the interaction of nuclei with different ferric complexes to catalyze NADH- or NADPH-dependent production of reactive oxygen intermediates. Intact rat liver nuclei were capable of catalyzing an iron-dependent production of .OH as reflected by the oxidation of .OH scavenging agents such as 2-keto-4-thiomethylbutyrate, dimethyl sulfoxide, and t-butyl alcohol. Inhibition of .OH production by catalase implicates H2O2 as the precursor of .OH generated by the nuclei, whereas superoxide dismutase had only a partially inhibitory effect. The production of .OH with either cofactor was striking increased by addition of ferric-EDTA or ferric-diethylenetriamine-pentaacetic acid (DTPA) whereas ferric-ATP and ferric-citrate were not effective catalysts. All these ferric complexes were reduced by the nuclei in the presence of either NADPH or NADH. The pattern of iron chelate effectiveness in catalyzing lipid peroxidation by nuclei was opposite to that of .OH production; with either NADH or NADPH, nuclear lipid peroxidation was increased by the addition of ferric ammonium sulfate, ferric-ATP, or ferric-citrate, but not by ferric-EDTA or ferric-DTPA. NADPH-dependent nuclear lipid peroxidation was insensitive to catalase, superoxide dismutase, or .OH scavengers; the NADH-dependent reaction showed a partial sensitivity (30 to 40%) to these additions. The overall patterns of .OH production and lipid peroxidation by the nuclei are similar to those shown by microsomes, e.g., effect of ferric complexes, sensitivity to antioxidants; however, rates with the nuclei are less than 20% those of microsomes, which reflect the lower activities of NADPH- and NADH-cytochrome c reductase in the nuclei. The potential for nuclei to reduce ferric complexes and catalyze production of .OH-like species may play a role in the susceptibility of the genetic material to oxidative damage under certain conditions since such radicals would be produced site-directed and not exposed to cellular antioxidants.
Collapse
Affiliation(s)
- E Kukiełka
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | | | |
Collapse
|
33
|
Feix JB, Kalyanaraman B. Spin trapping of lipid-derived radicals in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:230-5. [PMID: 2547451 DOI: 10.1016/0304-4165(89)90015-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron-spin resonance-spin trapping has been used to detect lipid-derived radicals in liposomes. Using the lipid-soluble spin trap 2-methyl-nitrosopropane (MNP), we have detected both the lipid and hydrogen-atom spin adducts in liposomes composed of a fully saturated phospholipid (dimyristoylphosphatidylcholine, DMPC) with various mol fractions of unsaturated phospholipid (1-palmitoyl-2-arachidonoylphosphatidylcholine, PAPC) or fatty acid (arachidonic acid, AA). The lipid-derived spin adduct formed during autoxidation of liposomes was separated by thin-layer chromatography and found to co-migrate with the product(s) formed by direct addition of MNP to the corresponding unsaturated lipid or fatty acid. Both the MNP-PAPC and MNP-AA spin adducts showed some restriction of rotational motion when in the liposome bilayer (rotational correlation times 0.72 and 0.69.10(-9) s, respectively), and nitrogen hyperfine coupling constants (14.94-14.96 G) consistent with a hydrophobic localization. Radical versus non-radical mechanisms of spin adduct formation during liposome autoxidation were separated using alpha-tocopherol as a radical scavenger. The utility of nitroso spin traps in trapping of radicals in liposomes is discussed.
Collapse
Affiliation(s)
- J B Feix
- Department of Radiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
34
|
Kostka P, Kwan CY. Instability of malondialdehyde in the presence of H2O2: Implications for the thiobarbituric acid test. Lipids 1989. [DOI: 10.1007/bf02535136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Antonenkov VD, Pirozhkov SV, Popova SV, Panchenko LF. Effect of chronic ethanol treatment on lipid peroxidation in rat liver homogenate and subcellular fractions. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:1191-5. [PMID: 2612721 DOI: 10.1016/0020-711x(89)90002-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The effect of chronic ethanol treatment on the level of lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that after chronic ethanol treatment the level of Fe/ADP-ascorbate-induced lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. Dilution of the homogenates prevented depressive effect of ethanol on lipid peroxidation. 3. Chronic ethanol treatment did not affect the intensity of the Fe/ADP-ascorbate-induced process in rat liver mitochondria and microsomes. 4. Peroxidative alteration of the liver lipids in vivo was evaluated by measurement of conjugated dienes (absorbance at 233 nm). It was shown that ethanol did not increase the level of u.v. absorption of lipids from mitochondria and microsomes. Chronic alcohol treatment did not influence the steady-state concentration of malonic dialdehyde in the whole liver homogenate. 5. The data obtained indicate that cytosol from the ethanol treated rat liver contains a factor(s) which prevents Fe/ADP-ascorbate-dependent lipid peroxidation in biological membranes.
Collapse
|
36
|
Affiliation(s)
- G Minotti
- Institute of General Pathology, Catholic University, School of Medicine, Rome, Italy
| |
Collapse
|
37
|
Puntarulo S, Cederbaum AI. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation. Arch Biochem Biophys 1988; 264:482-91. [PMID: 2840858 DOI: 10.1016/0003-9861(88)90313-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.
Collapse
Affiliation(s)
- S Puntarulo
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
38
|
Braughler JM, Chase RL, Pregenzer JF. Stimulation and inhibition of iron-dependent lipid peroxidation by desferrioxamine. Biochem Biophys Res Commun 1988; 153:933-8. [PMID: 3390189 DOI: 10.1016/s0006-291x(88)81317-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peroxidation of rat brain synaptosomes was assessed by the formation of thiobarbituric acid reactive products in either 50 mM potassium phosphate buffer (pH 7.4) or pH adjusted saline. In phosphate, addition of Fe2+ resulted in a dose-related increase in lipid peroxidation. In saline, stimulation of lipid peroxidation by Fe2+ was maximal at 30 uM, and was less at concentrations of 100 uM and above. Whereas desferrioxamine caused a dose-related inhibition of iron-dependent lipid peroxidation in phosphate, it stimulated lipid peroxidation with Fe2+ by as much as 7-fold in saline. The effects of desferrioxamine depended upon the oxidation state of iron, and the concentration of desferrioxamine and lipid. The results suggest that lipid and desferrioxamine compete for available iron. The data are consistent with the hypothesis that either phosphate or desferrioxamine may stimulate iron-dependent lipid peroxidation under certain circumstances by favoring formation of Fe2+/Fe3+ ratios.
Collapse
Affiliation(s)
- J M Braughler
- CNS Diseases Research Unit, Upjohn Company, Kalamazoo, MI 49001
| | | | | |
Collapse
|
39
|
Klebanov GI, Vladimirov YA, Benov LT, Ribarov SR. Initiation of lipid peroxidation in lysosomal membranes by activated blood polymorphonuclear leukocytes. Bull Exp Biol Med 1988. [DOI: 10.1007/bf00842131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Bachowski GJ, Morehouse KM, Girotti AW. Porphyrin-sensitized photoreactions in the presence of ascorbate: oxidation of cell membrane lipids and hydroxyl radical traps. Photochem Photobiol 1988; 47:635-45. [PMID: 2841702 DOI: 10.1111/j.1751-1097.1988.tb02759.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
|
42
|
Goddard JG, Sweeney GD. Delayed, ferrous iron-dependent peroxidation of rat liver microsomes. Arch Biochem Biophys 1987; 259:372-81. [PMID: 3426233 DOI: 10.1016/0003-9861(87)90503-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Measurement of both chemiluminescence (CL) and the formation of 2-thiobarbituric acid-reacting substances (TBAR) has been used to study the delayed, nonenzymatic lipid peroxidation (LP) initiated in rat liver microsomes by ferrous chloride. Following Fe2+ addition, the CL technique revealed a burst of light emission (peak, Phase II) which was preceded by a period of little or no detectable photon production (delay, Phase I) and succeeded by an increased emission (Phase III). Analysis of TBAR indicated a low rate of LP during the delay which increased more than fivefold during a 1-min period and which corresponded to the CL peak. The delay length depended on both the Fe2+ concentration and the microsome concentration; increased Fe2+ yielded longer delays while increased microsome concentration decreased the delay. As reported by others [J. R. Bucher, M. Tien, and S. D. Aust (1983) Biochem. Biophys. Res. Commun. 111, 777-784; J. M. Braughler, L. A. Duncan, and R. L. Chase (1986) J. Biol. Chem. 261, 10282-10289], Fe3+ also decreased the delay. The ferric-nitrilotriacetate (Fe3+-NTA) complex was found to be more efficient than "free" Fe3+ [Fe(NO3)3]; a 100 microM concentration of the 1:1 Fe3+-NTA complex eliminated the delay due to 100 microM Fe2+, whereas 400 microM Fe(NO3)3 reduced the delay from 17.5 to 2.5 min. Incubation under reduced O2 tension demonstrated a requirement for O2 during the delay. The use of antioxidants [butylated hydroxytoluene, (+)-catechin, promethazine, and uric acid] and inhibitors of the Haber-Weiss reaction (mannitol, Tris buffer, dimethyl sulfoxide, catalase, and superoxide dismutase) indicated that the initiating species has characteristics of a weak oxidizing radical capable of either hydrogen or electron abstraction from suitable target molecules. We hypothesize that the delay that is sensitive to the Fe2+:microsome ratio is due to reductive elimination of the initiating species by "free" Fe2+. The nature of the initiating species has yet to be determined; however, the argument is presented that the perferryl ion (Fe3+-O2-.) may possess the characteristics required for the initiator.
Collapse
Affiliation(s)
- J G Goddard
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
43
|
Johnson HG, McNee ML, Braughler JM. Inhibitors of metal catalyzed lipid peroxidation reactions inhibit mucus secretion and 15 HETE levels in canine trachea. PROSTAGLANDINS, LEUKOTRIENES, AND MEDICINE 1987; 30:123-32. [PMID: 3122232 DOI: 10.1016/0262-1746(87)90142-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inhibition of canine mucus secretion in vivo induced by arachidonic acid administration was correlated with a reduction of 15 HETE levels in canine mucus. Antioxidants and inhibitors of lipid peroxidation were effective inhibitors of both mucus secretion and 15 HETE production. This same series of inhibitors also dose dependently inhibited Fe2+ dependent oxidation of arachidonic acid in vitro as assessed by an inhibition of thiobarbituric acid reactive material and conjugated diene formation. These data argue for an involvement of reactive oxygen species and lipid peroxidation in the generation and elaboration of mucus secretion.
Collapse
Affiliation(s)
- H G Johnson
- Hypersensitivity Diseases Research, Upjohn Company, Kalamazoo, Michigan 49001
| | | | | |
Collapse
|
44
|
Abstract
Iron is required for the initiation of lipid peroxidation. Evidence is presented that lipid peroxidation requires both Fe3+ and Fe2+, perhaps with oxygen to form a Fe3+-dioxygen-Fe2+ complex. Other mechanisms of initiation, mostly involving the iron-catalyzed formation of hydroxyl radical, are described and discussed from both theoretical and experimental view points.
Collapse
Affiliation(s)
- G Minotti
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319
| | | |
Collapse
|
45
|
Abstract
The effects of ADP, ATP, citrate and EDTA on iron-dependent microsomal and liposomal lipid peroxidation, and on 59FeCl3 binding to the lipid membranes were measured. The aim was to test if initiation of lipid peroxidation is a site-specific mechanism requiring bound iron. In the absence of chelator, iron was bound to both membranes. EDTA and citrate removed the iron and inhibited peroxidation. ATP and ADP stimulated peroxidation, but whereas ADP allowed only half of the iron to remain bound, all was removed by ATP. Chelators, therefore, cannot be simply influencing a site-specific mechanism. Their effects must relate to the reactivities of the different iron chelates as initiators of lipid peroxidation.
Collapse
|
46
|
Abstract
Aerobic organisms by definition require oxygen, and the importance of iron in aerobic respiration has long been recognized, but despite their beneficial roles, these elements can pose a real threat to the organism. During oxygen reduction, reactive species such as O2-. and H2O2 are formed readily. Iron can combine with these species, or with molecular oxygen itself, to generate free radicals which will attack the polyunsaturated fatty acids of membrane lipids. This oxidative deterioration of membrane lipids is known as lipid peroxidation. To protect itself against this form of attack, the organism possesses several types of defense mechanisms. Under normal conditions, these defenses appear to offer adequate protection for cell membranes, but the possibility exists that certain foreign compounds may interfere with or even overwhelm these defenses, and herein could lie a general mechanism of toxicity. This possible cause of toxicity is discussed in relation to other suggested causes.
Collapse
Affiliation(s)
- A A Horton
- Department of Biochemistry, University of Birmingham, England
| | | |
Collapse
|
47
|
Minotti G, Aust SD. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75755-x] [Citation(s) in RCA: 407] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Abstract
Spin trapping has become a valuable tool for the study of free radicals in biology and medicine. The electron spin resonance hyperfine splitting constants of spin adducts of interest in this area are tabulated. The entries also contain a brief comment on the source of the radical trapped.
Collapse
Affiliation(s)
- G R Buettner
- GSF Forschungszentrum, Institut für Strahlenbiologie, Neuherberg, FRG
| |
Collapse
|
49
|
Kanner J, German JB, Kinsella JE. Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr 1987; 25:317-64. [PMID: 3304843 DOI: 10.1080/10408398709527457] [Citation(s) in RCA: 411] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The direct oxidation of PUFA by triplet oxygen is spin forbidden. The data reviewed indicate that lipid peroxidation is initiated by nonenzymatic and enzymatic reactions. One of the first steps in the initiation of lipid peroxidation in animal tissues is by the generation of a superoxide radical (see Figure 16), or its protonated molecule, the perhydroxyl radical. The latter could directly initiate PUFA peroxidation. Hydrogen peroxide which is produced by superoxide dismutation or by direct enzymatic production (amine oxidase, glucose oxidase, etc.) has a very crucial role in the initiation of lipid peroxidation. Hydrogen peroxide reduction by reduced transition metal generates hydroxyl radicals which oxidize every biological molecule. Hydrogen peroxide also activates myoglobin, hemoglobin, and other heme proteins to a compound containing iron at a higher oxidation state, Fe(IV) or Fe(V), which initiates lipid peroxidation even on membranes. Complexed iron could also be activated by O2- or by H2O2 to ferryl iron compound, which is supposed to initiate PUFA peroxidation. The presence of hydrogen peroxide, especially hydroperoxides, activates enzymes such as cyclooxygenase and lipoxygenase. These enzymes produce hydroperoxides and other physiological active compounds known as eicosanoids. Lipid peroxidation could also be initiated by other free radicals. The control of superoxide and perhydroxyl radical is done by SOD (a) (see Figure 16). Hydrogen peroxide is controlled in tissues by glutathione-peroxidase, which also affects the level of hydroperoxides (b). Hydrogen peroxide is decomposed also by catalase (b). Caeruloplasmin in extracellular fluids prevents the formation of free reduced iron ions which could decompose hydrogen peroxide to hydroxyl radical (c). Hydroxyl radical attacks on target lipid molecules could be prevented by hydroxyl radical scavengers, such as mannitol, glucose, and formate (d). Reduced compounds and antioxidants (ascorbic acid, alpha-tocopherol, polyphenols, etc.) (e) prevent initiation of lipid peroxidation by activated heme proteins, ferryl ion, and cyclo- and lipoxygenase. In addition, cyclooxygenase is inhibited by aspirin and nonsteroid drugs, such as indomethacin (f). The classical soybean lipoxygenase inhibitors are antioxidants, such as nordihydroguaiaretic acid (NDGA) and others, and the substrate analog 5,8,11,14 eicosatetraynoic acid (ETYA), which also inhibit cyclooxygenase (g). In food, lipoxygenase is inhibited by blanching. Initiation of lipid peroxidation was derived also by free radicals, such as NO2. or CCl3OO. This process could be controlled by antioxidants (e).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
50
|
Thomas JP, Bachowski GJ, Girotti AW. Inhibition of cell membrane lipid peroxidation by cadmium- and zinc-metallothioneins. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 884:448-61. [PMID: 3778934 DOI: 10.1016/0304-4165(86)90195-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of all-zinc metallothionein (Zn-metallothionein) and predominantly cadmium metallothionein (Cd/Zn-metallothionein) on free radical lipid peroxidation have been investigated, using erythrocyte ghosts as the test system. When treated with xanthine and xanthine oxidase, Zn-metallothionein and Cd/Zn-metallothionein underwent thiolate group oxidation and metal ion release that was catalase-inhibitable, but superoxide dismutase-non-inhibitable. Similar treatment in the presence of ghosts and added Fe(III) resulted in metallothionein oxidation that was significantly inhibited by superoxide dismutase. Ghosts incubated with xanthine/xanthine oxidase/Fe(III) underwent H2O2- and O2--dependent lipid peroxidation, as measured by thiobarbituric acid reactivity. Neither type of metallothionein had any effect on xanthine oxidase activity, but both strongly inhibited lipid peroxidation when added to the membranes concurrently with xanthine/xanthine oxidase/iron. This inhibition was far greater and more sustained than that caused by dithiothreitol at a concentration equivalent to that of metallothionein thiolate. Significant protection was also afforded when ghosts plus Cd/Zn-metallothionein or Zn-metallothionein were preincubated with H2O2 and Fe(III), and then subjected to vigorous peroxidation by the addition of xanthine and xanthine oxidase. These results could be mimicked by using Cd(II) or Zn(II) alone. Previous studies suggested that Zn(II) inhibits xanthine/xanthine oxidase/iron-driven lipid peroxidation in ghosts by interfering with iron binding and redox cycling. Therefore, the primary determinant of metallothionein protection appears to be metal release and subsequent uptake by the membranes. These results have important implications concerning the antioxidant role of metallothionein, a protein known to be induced by various prooxidant conditions.
Collapse
|