1
|
Song HJ, Seol A, Park J, Kim JE, Kim TR, Park KH, Park ES, Lim SJ, Wang SH, Sung JE, Choi Y, Lee H, Hwang DY. Antioxidant and Laxative Effects of Methanol Extracts of Green Pine Cones ( Pinus densiflora) in Sprague-Dawley Rats with Loperamide-Induced Constipation. Antioxidants (Basel) 2024; 14:37. [PMID: 39857371 PMCID: PMC11762744 DOI: 10.3390/antiox14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is the key cause of the etiopathogenesis of several diseases associated with constipation. This study examined whether the green pine cone can improve the symptoms of constipation based on the antioxidant activities. The changes in the key parameters for the antioxidant activity and laxative effects were examined in the loperamide (Lop)-induced constipation of Sprague-Dawley (SD) rats after being treated with the methanol extracts of green pine cone (MPC, unripe fruits of Pinus densiflora). MPC contained several bioactive compounds, including diterpenoid compounds such as dehydroabietic acid, taxodone, and ferruginol. In addition, it exhibited high scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. These effects of MPC successfully reflected the improvement in nicotinamide adenine dinucleotide phosphate oxidase (NADP) H oxidase transcription, superoxide dismutase (SOD) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation levels in the mid colon of Lop+MPC-treated SD rats. Furthermore, significant improvements in the stool parameters, gastrointestinal (GI) transit, intestine length, and histopathological structure of the mid colon were detected in the Lop-induced constipation rats after MPC treatment. The other parameters, including the regulators for the adherens junction (AJ) and tight junction (TJ), and GI hormone secretion for laxative effects, were improved significantly in Lop+MPC-treated SD rats. These effects were also verified in Lop+MPC-treated primary rat intestine smooth muscle cells (pRISMCs) through analyses for antioxidant defense mechanisms. Overall, the finding of this study offers novel scientific evidence that MPC could be considered as a significant laxative for chronic constipation based on its antioxidant activity.
Collapse
Affiliation(s)
- Hee-Jin Song
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ayun Seol
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea; (J.P.); (H.L.)
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ki-Ho Park
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Eun-Seo Park
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Su-Jeong Lim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Su-Ha Wang
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ji-Eun Sung
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Youngwoo Choi
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Heeseob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea; (J.P.); (H.L.)
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| |
Collapse
|
2
|
Homolak J, Joja M, Grabaric G, Schiatti E, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. The Absence of Gastrointestinal Redox Dyshomeostasis in the Brain-First Rat Model of Parkinson's Disease Induced by Bilateral Intrastriatal 6-Hydroxydopamine. Mol Neurobiol 2024; 61:5481-5493. [PMID: 38200352 PMCID: PMC11249596 DOI: 10.1007/s12035-023-03906-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The gut-brain axis plays an important role in Parkinson's disease (PD) by acting as a route for vagal propagation of aggregated α-synuclein in the gut-first endophenotype and as a mediator of gastrointestinal dyshomeostasis via the nigro-vagal pathway in the brain-first endophenotype of the disease. One important mechanism by which the gut-brain axis may promote PD is by regulating gastrointestinal redox homeostasis as overwhelming evidence suggests that oxidative stress plays a key role in the etiopathogenesis and progression of PD and the gastrointestinal tract maintains redox homeostasis of the organism by acting as a critical barrier to environmental and microbiological electrophilic challenges. The present aim was to utilize the bilateral intrastriatal 6-hydroxydopamine (6-OHDA) brain-first PD model to study the effects of isolated central pathology on redox homeostasis of the gastrointestinal tract. Three-month-old male Wistar rats were either not treated (intact controls; CTR) or treated bilaterally intrastriatally with vehicle (CIS) or 6-OHDA (6-OHDA). Motor deficits were assessed with the rotarod performance test, and the duodenum, ileum, and colon were dissected for biochemical analyses 12 weeks after the treatment. Lipid peroxidation, total antioxidant capacity, low-molecular-weight thiols, and protein sulfhydryls, the activity of total and Mn/Fe superoxide dismutases, and total and azide-insensitive catalase/peroxidase were measured. Both univariate and multivariate models analyzing redox biomarkers indicate that significant disturbances in gastrointestinal redox balance are not present. The findings demonstrate that motor impairment observed in the brain-first 6-OHDA model of PD can occur without concurrent redox imbalances in the gastrointestinal system.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Interfaculty Institute of Microbiology and Infection Medicine & Cluster of Excellence "Controlling Microbes to Fight Infections,", University of Tübingen, Tübingen, Germany.
| | - Mihovil Joja
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gracia Grabaric
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Emiliano Schiatti
- Faculty of Medicine and Surgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davor Virag
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| |
Collapse
|
3
|
Hu J, Zou H, Qiao X, Wang Y, Lv M, Zhang K, Wang F. The relationship between oxidative balance scores and chronic diarrhea and constipation: a population-based study. BMC Public Health 2024; 24:1366. [PMID: 38773415 PMCID: PMC11106991 DOI: 10.1186/s12889-024-18683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Oxidative stress is closely related to gut health. Exposures to oxidative stress in one's diet and lifestyle can be evaluated by the oxidative balance score (OBS). However, the relationship between OBS and intestinal habits is unknown. This study aimed to investigate the relationships between OBS and intestinal habits (chronic diarrhea and chronic constipation) and the underlying mechanisms involved. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2010, we included a total of 8065 participants. Twenty dietary and lifestyle factors were selected for the OBS calculates. Chronic constipation and chronic diarrhea were defined using the Bristol stool form scale (BSFS) types 1 and 2 and the BSFS 6 and 7, respectively. Multivariate logistic regression, subgroup analysis, and restricted cubic splines (RCS) analysis were used to evaluate the relationship between OBS and defecation habits. Finally, we used mediation analysis to explore the indirect effects of oxidative stress and inflammatory markers on these associations. RESULTS After adjusting for all the covariates, multivariate logistic regression analysis revealed that OBS was negatively correlated with diarrhea (OR = 0.57; 95%CI = 0.39-0.83; P = 0.008)and positively correlated with constipation (OR = 1.75; 95%CI = 1.19-2.25; P = 0.008). The RCS showed a nonlinear relationship between OBS and diarrhea (P for nonlinearity = 0.02) and a linear relationship between OBS and constipation (P for nonlinearity = 0.19). Mediation analysis showed that the C-reactive protein (CRP) concentration and white blood cell (WBC) count mediated the correlation between OBS and diarrhea by 6.28% and 6.53%, respectively (P < 0.05). CONCLUSIONS OBS is closely related to changes in patients' defecation habits. Oxidative stress and inflammation may play a role in the relationship between the two. This result emphasizes the importance of the public adjusting their lifestyle and dietary habits according to their own situation. However, further prospective studies are needed to analyze the relationship between oxidative stress and changes in defecation habits.
Collapse
Affiliation(s)
- Jiayan Hu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiyun Qiao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxi Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Mi Lv
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunli Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Lin H, Liang X, Han F, Luo X, Li E. Growth, Biochemical Characteristics, Flesh Quality, and Gut Microbiota of the Pacific White Shrimp ( Penaeus vannamei) Fed a Defatted Superworm ( Zophobas atratus) Larvae Meal. AQUACULTURE NUTRITION 2023; 2023:8627246. [PMID: 37457792 PMCID: PMC10349680 DOI: 10.1155/2023/8627246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
This study evaluated the effects of defatted superworm (Zophobas atratus) larvae meal (DBWLM) as an alternative protein ingredient for juvenile Pacific white shrimp (Penaeus vannamei). Six isonitrogenous and isolipidic experimental diets were characterized by replacing 0%, 15%, 30%, 45%, 60%, and 75% fish meal (DBWLM0, DBWLM15, DBWLM30, DBWLM45, DBWLM60, and DBWLM75, respectively) with DBWLM on a w/w basis and feeding them to juvenile shrimp (0.34 ± 0.04 g) for 56 days. The results showed that the replacement of up to 75% fish meal by DBWLM had no negative effect on the growth performance of P. vannamei. The survival of shrimp in the DBWLM30 group was the highest, and the weight gain, specific growth rate, feed conversion ratio, condition factor, and apparent digestibility coefficients of dry matter in the DBWLM15 group were the highest. The substitution of DBWLM for fish meal significantly increased the elasticity of flesh, improved the total content of umami amino acids in flesh (aspartic acid, glutamic acid, glycine, and alanine), promoted lipid metabolism in shrimp, and reduced serum lipid levels. With the increase in DBWLM level, serum acid phosphatase, alkaline phosphatase activity, and intestinal inflammatory gene expression (IGF-1 and IL-6) were inhibited, malondialdehyde content decreased, and total antioxidant capacity level and superoxide dismutase activity increased significantly. Histological sections of the hepatopancreas showed that when 60% or more fish meal was replaced, the hepatopancreas atrophied and had irregular lumen distortion, but the cell membrane was not damaged. Microbiome analysis showed that the abundance of Bacteroidetes and Firmicutes increased and the abundance of Proteobacteria decreased in the DBWLM replacement group, and it was rich in "metabolism"-related functional pathways. It is worth mentioning that the expression of amino-acid-related enzymes was upregulated in the DBWLM15 and DBWLM30 groups, and the DBWLM75 group inhibited the biosynthesis of steroids and hormones. To conclude, the replacement of 15%-45% fish meal with DBWLM can result in better growth and immune status, improved meat elasticity, and reduced inflammation in P. vannamei. However, it is recommended that the replacement level should not exceed 60%, otherwise it will cause atrophy of hepatopancreas cells.
Collapse
Affiliation(s)
- Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Sorrenti S, Baldini E, Pironi D, Lauro A, D’Orazi V, Tartaglia F, Tripodi D, Lori E, Gagliardi F, Praticò M, Illuminati G, D’Andrea V, Palumbo P, Ulisse S. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021; 13:4469. [PMID: 34960019 PMCID: PMC8709459 DOI: 10.3390/nu13124469] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The present review deals with the functional roles of iodine and its metabolism. The main biological function of iodine concerns its role in the biosynthesis of thyroid hormones (THs) by the thyroid gland. In addition, however, further biological roles of iodine have emerged. Precisely, due to its significant action as scavenger of reactive oxygen species (ROS), iodine is thought to represent one of the oldest antioxidants in living organisms. Moreover, iodine oxidation to hypoiodite (IO-) has been shown to possess strong bactericidal as well as antiviral and antifungal activity. Finally, and importantly, iodine has been demonstrated to exert antineoplastic effects in human cancer cell lines. Thus, iodine, through the action of different tissue-specific peroxidases, may serve different evolutionarily conserved physiological functions that, beyond TH biosynthesis, encompass antioxidant activity and defense against pathogens and cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (S.S.); (E.B.); (D.P.); (A.L.); (V.D.); (F.T.); (D.T.); (E.L.); (F.G.); (M.P.); (G.I.); (V.D.); (P.P.)
| |
Collapse
|
6
|
Medeńska W, Dratwa-Chałupnik A, Ożgo M. Cow’s whey proteins involvement in the development of the immunological system and gastrointestinal tract in calves. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/134176/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel) 2021; 10:201. [PMID: 33573222 PMCID: PMC7910878 DOI: 10.3390/antiox10020201] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of many diseases. The imbalance between the production of reactive oxygen species (ROS) and the antioxidant systems has been extensively studied in pulmonary, neurodegenerative cardiovascular disorders; however, its contribution is still debated in gastrointestinal disorders. Evidence suggests that oxidative stress affects gastrointestinal motility in obesity, and post-infectious disorders by favoring the smooth muscle phenotypic switch toward a synthetic phenotype. The aim of this review is to gain insight into the role played by oxidative stress in gastrointestinal pathologies (GIT), and the involvement of ROS in the signaling underlying the muscular alterations of the gastrointestinal tract (GIT). In addition, potential therapeutic strategies based on the use of antioxidants for the treatment of inflammatory gastrointestinal diseases are reviewed and discussed. Although substantial progress has been made in identifying new techniques capable of assessing the presence of oxidative stress in humans, the biochemical-molecular mechanisms underlying GIT mucosal disorders are not yet well defined. Therefore, further studies are needed to clarify the mechanisms through which oxidative stress-related signaling can contribute to the alteration of the GIT mucosa in order to devise effective preventive and curative therapeutic strategies.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
8
|
Ybañez-Julca RO, Asunción-Alvarez D, Quispe-Díaz IM, Palacios J, Bórquez J, Simirgiotis MJ, Perveen S, Nwokocha CR, Cifuentes F, Paredes A. Metabolomic Profiling of Mango ( Mangifera indica Linn) Leaf Extract and Its Intestinal Protective Effect and Antioxidant Activity in Different Biological Models. Molecules 2020; 25:molecules25215149. [PMID: 33167456 PMCID: PMC7663946 DOI: 10.3390/molecules25215149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mangifera indica Linn popularly known as mango is used in folk medicine to treat gastrointestinal disorders. The aim of this study was to identify the metabolomic composition of lyophilized extract of mango leaf (MIE), to evaluate the antioxidant activity on several oxidative stress systems (DPPH, FRAP, TBARS, and ABTS), the spasmolytic and antispasmodic activity, and intestinal protective effect on oxidative stress induced by H2O2 in rat ileum. Twenty-nine metabolites were identified and characterized based on their ultra-high-performance liquid chromatography (UHPLC) high-resolution orbitrap mass spectrometry, these include: benzophenone derivatives, xanthones, phenolic acids, fatty acids, flavonoids and procyanidins. Extract demonstrated a high antioxidant activity in in-vitro assays. MIE relaxed (p < 0.001) intestinal segments of rat pre-contracted with acetylcholine (ACh) (10−5 M). Pre-incubation of intestinal segments with 100 µg/mL MIE significantly reduced (p < 0.001) the contraction to H2O2. Similar effects were observed with mangiferin and quercetin (10−5 M; p < 0.05) but not for gallic acid. Chronic treatment of rats with MIE (50 mg/kg) for 28 days significantly reduced (p < 0.001) the H2O2-induced contractions. MIE exhibited a strong antioxidant activity, spasmolytic and antispasmodic activity, which could contribute to its use as an alternative for the management of several intestinal diseases related to oxidative stress.
Collapse
Affiliation(s)
- Roberto O. Ybañez-Julca
- Laboratorio de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (D.A.-A.); (I.M.Q.-D.)
- Correspondence: (R.O.Y.-J.); (J.P.); Tel.: +51-0449-7634-5993 (R.O.Y.-J.); +56-57-252-6910 (J.P.)
| | - Daniel Asunción-Alvarez
- Laboratorio de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (D.A.-A.); (I.M.Q.-D.)
| | - Ivan M. Quispe-Díaz
- Laboratorio de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (D.A.-A.); (I.M.Q.-D.)
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1110939, Chile
- Correspondence: (R.O.Y.-J.); (J.P.); Tel.: +51-0449-7634-5993 (R.O.Y.-J.); +56-57-252-6910 (J.P.)
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Chukwuemeka R. Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, KGN, Jamaica;
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Adrián Paredes
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1271155, Chile;
| |
Collapse
|
9
|
Hydrogen peroxide promotes gastric motility in the newborn rat. Pediatr Res 2018; 84:751-756. [PMID: 30166643 DOI: 10.1038/s41390-018-0154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND When compared with infant formula, human milk enhances gastric emptying in preterm infants. Hydrogen peroxide (H2O2) is present in large quantities in human milk that has an antimicrobial role for the mother and infant. In vitro adult rat studies suggest that H2O2 facilitates gastric motor contraction. Hypothesizing that H2O2 enhances gastric motility, we investigated its effects on the newborn rat stomach tissue. METHODS Rat newborn and adult gastric fundic segments, or their smooth muscle cells, were used to evaluate the muscle response to H2O2 exposure. Tissue expression of Rho kinase 2 (ROCK-2; Western blot), its catalase activity, and H2O2 content (Amplex Red) were measured. H2O2 gastric mucosal diffusion was evaluated with Ussing chambers. RESULTS In both newborn and adult rats, H2O2 induced gastric muscle contraction and this response was attenuated by pre-incubation with the antioxidant melatonin. H2O2 passively diffused across the gastric mucosa. Its effect on the muscle was modulated via ROCK-2 activation and inhibited by melatonin. CONCLUSION H2O2, at a concentration similar to that of human milk, promotes gastric motility in the rat. To the extent that the present findings can be clinically extrapolated, the human milk H2O2 content may enhance gastric emptying in neonates.
Collapse
|
10
|
Yuan X, Zhao J, Qu W, Zhang Y, Jia B, Fan Z, He Q, Li J. Accumulation and effects of dietary advanced glycation end products on the gastrointestinal tract in rats. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Jinsong Zhao
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Wanting Qu
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Yingxiao Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Benpan Jia
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Zhiyi Fan
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Qihan He
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Juxiu Li
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| |
Collapse
|
11
|
De la Vieja A, Santisteban P. Role of iodide metabolism in physiology and cancer. Endocr Relat Cancer 2018; 25:R225-R245. [PMID: 29437784 DOI: 10.1530/erc-17-0515] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
Abstract
Iodide (I-) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I- is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I- recycling. New research supports the exciting idea that I- participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I- in biological systems, before the appearance of TH in evolution. I- per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I- transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I-, has made NIS a preferred target-specific theranostic agent.
Collapse
Affiliation(s)
- Antonio De la Vieja
- Tumor Endocrine Unit, Chronic Disease Program (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- CiberOnc, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Santisteban
- CiberOnc, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiopathology of Endocrine a Nervous System, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
12
|
Diabetes-Related Induction of the Heme Oxygenase System and Enhanced Colocalization of Heme Oxygenase 1 and 2 with Neuronal Nitric Oxide Synthase in Myenteric Neurons of Different Intestinal Segments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1890512. [PMID: 29081883 PMCID: PMC5610792 DOI: 10.1155/2017/1890512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022]
Abstract
Increase in hyperglycaemia-induced oxidative stress and decreased effectiveness of endogenous defense mechanisms plays an essential role in the initiation of diabetes-related neuropathy. We demonstrated that nitrergic myenteric neurons display different susceptibilities to diabetic damage in different gut segments. Therefore, we aim to reveal the gut segment-specific differences in the expression of heme oxygenase (HO) isoforms and the colocalization of these antioxidants with neuronal nitric oxide synthase (nNOS) in myenteric neurons. After ten weeks, samples from the duodenum, ileum, and colon of control and streptozotocin-induced diabetic rats were processed for double-labelling fluorescent immunohistochemistry and ELISA. The number of both HO-immunoreactive and nNOS/HO-immunoreactive myenteric neurons was the lowest in the ileal and the highest in the colonic ganglia of controls; it increased the most extensively in the ileum and was also elevated in the colon of diabetics. Although the total number of nitrergic neurons decreased in all segments, the proportion of nNOS-immunoreactive neurons colocalizing with HOs was enhanced robustly in the ileum and colon of diabetics. We presume that those nitrergic neurons which do not colocalize with HOs are the most seriously affected by diabetic damage. Therefore, the regional induction of the HO system is strongly correlated with diabetes-related region-specific nitrergic neuropathy.
Collapse
|
13
|
Singh J, Kumar S, Krishna CV, Rattan S. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation. Am J Physiol Gastrointest Liver Physiol 2014; 306:G983-91. [PMID: 24742984 PMCID: PMC4042111 DOI: 10.1152/ajpgi.00087.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4-6 mo old) and aging (24-30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2 (·-)), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2 (·-) scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619, that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients.
Collapse
Affiliation(s)
| | | | | | - Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1521] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
15
|
Choi HK, Lee YJ, Lee YH, Park JP, Min K, Park H. Inflammatory responses in the muscle coat of stomach and small bowel in the postoperative ileus model of guinea pig. Yonsei Med J 2013; 54:1336-41. [PMID: 24142636 PMCID: PMC3809856 DOI: 10.3349/ymj.2013.54.6.1336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Small intestinal function returns first after surgery, and then the function of the stomach returns to normal after postoperative ileus (POI). The aim of this study was to investigate inflammatory responses in the muscle coat of stomach and small intestine in guinea pig POI model. MATERIALS AND METHODS The distance of charcoal migration from pylorus to the distal intestine was measured. Hematoxylin and eosin (H&E) and immunohistochemical stain for calprotectin were done from the histologic sections of stomach, jejunum and ileum obtained at 3 and 6 hour after operation. Data were compared between sham operation and POI groups. RESULTS The distance of charcoal migration was significantly reduced in the 3 and 6 hour POI groups compared with sham operated groups (p<0.05). On H&E staining, the degree of inflammation was significantly higher in the stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). Calprotectin positive cells were significantly increased in the muscle coat of stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). There was strong association between the degree of inflammation and calprotectin positive cells in stomach. CONCLUSION Postoperative ileus induced by cecal manipulation significantly increased the degree of inflammation and calprotectin positive cells in the muscle coat of stomach as a remote organ. The relevance of degree of inflammation and the recovery time of ileus should be pursued in the future research.
Collapse
Affiliation(s)
- Hong Kyu Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Korea.
| | | | | | | | | | | |
Collapse
|
16
|
Bagyánszki M, Bódi N. Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes 2012; 3:80-93. [PMID: 22645637 PMCID: PMC3360223 DOI: 10.4239/wjd.v3.i5.80] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/06/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023] Open
Abstract
Gastric intestinal symptoms common among diabetic patients are often caused by intestinal motility abnormalities related to enteric neuropathy. It has recently been demonstrated that the nitrergic subpopulation of myenteric neurons are especially susceptible to the development of diabetic neuropathy. Additionally, different susceptibility of nitrergic neurons located in different intestinal segments to diabetic damage and their different levels of responsiveness to insulin treatment have been revealed. These findings indicate the importance of the neuronal microenvironment in the pathogenesis of diabetic nitrergic neuropathy. The main focus of this review therefore was to summarize recent advances related to the diabetes-related selective nitrergic neuropathy and associated motility disturbances. Special attention was given to the findings on capillary endothelium and enteric glial cells. Growing evidence indicates that capillary endothelium adjacent to the myenteric ganglia and enteric glial cells surrounding them are determinative in establishing the ganglionic microenvironment. Additionally, recent advances in the development of new strategies to improve glycemic control in type 1 and type 2 diabetes mellitus are also considered in this review. Finally, looking to the future, the recent and promising results of metagenomics for the characterization of the gut microbiome in health and disease such as diabetes are highlighted.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Mária Bagyánszki, Nikolett Bódi, Department of Physiology, Anatomy and Neuroscience, Faculty of Science, University of Szeged, H-6726 Szeged, Hungary
| | | |
Collapse
|
17
|
Pascua P, Camello-Almaraz C, Camello PJ, Martin-Cano FE, Vara E, Fernandez-Tresguerres JA, Pozo MJ. Melatonin, and to a lesser extent growth hormone, restores colonic smooth muscle physiology in old rats. J Pineal Res 2011; 51:405-15. [PMID: 21649718 DOI: 10.1111/j.1600-079x.2011.00904.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is increasing evidence that aging is associated with oxidative damage, inflammation, and apoptosis in different cell types. However, there is limited information regarding aging mechanisms in colon smooth muscle. Old male Wistar rats (22 months) were treated for 10 wks with melatonin or growth hormone (GH). Animals were sacrificed at 24 months of age by decapitation. The colon was dissected and the smooth muscle homogenized. H(2)O(2) and malonyl dialdehyde (MDA) content and catalase and glutathione peroxidase (GPX) activities were determined using colorimetric kits. Expression of nuclear factor kappa B (NF-κB), cyclooxygenase 2 (COX-2), caspase-3, and caspase-9 were determined by Western blot. Aging of colon smooth muscle correlated with an increase in H(2)O(2) and MDA levels when compared with young animals in both proximal and distal segments; these changes were associated with a decrease in the catalase activity in the distal colon. Oxidative stress correlated with an increase in COX-2 and NF-κB expression, which were accompanied by an enhanced expression of the pro-apoptotic enzyme caspase-3 and its upstream enzyme, caspase-9. Melatonin treatment normalized the oxidative, inflammatory, and apoptotic patterns, whereas GH replacement, although effective in reducing oxidative stress in distal colon, did not reverse the age-related inflammation or apoptosis. These results suggest that melatonin should be the treatment of choice to most effectively recover physiological functions in aged colonic smooth muscle.
Collapse
Affiliation(s)
- Patricia Pascua
- Department of Physiology, Nursing School, University of Extremadura, Caceres, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Gastrointestinal dysmotility presenting as nausea, vomiting, bloating, diarrhea, constipation or abdominal pain is seen in diabetic patients. Oxidative stress has recently been recognized as a significant player in the pathogenesis of gastrointestinal complications of diabetes. In this issue of Neurogastroenterology and Motility, a team of investigators from Emory University led by Dr. Srinivasan present new evidence on the effect of oxidative stress in the diabetic colon. They show in diabetic patients, increased oxidative stress is associated with loss of the inhibitory neuronal subpopulation of enteric neurons, and that the neuronal loss can be reversed in-vitro by anti-oxidant lipoic acid. This new information adds to the accumulating evidence on the deleterious effect of oxidative stress in the gastrointestinal tract and highlights the opportunity to develop newer therapies focused on augmenting anti-oxidant defenses in the gastrointestinal tract in diabetic patients.
Collapse
Affiliation(s)
- P Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br J Pharmacol 2008; 154:1001-8. [PMID: 18469842 DOI: 10.1038/bjp.2008.177] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation. EXPERIMENTAL APPROACH Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; contractility in vitro was evaluated by stimulating the isolated ileum, in an organ bath, with ACh. KEY RESULTS In vivo, cannabidiol did not affect motility in control mice, but normalized croton oil-induced hypermotility. The inhibitory effect of cannabidiol was counteracted by the cannabinoid CB1 receptor antagonist rimonabant, but not by the cannabinoid CB2 receptor antagonist SR144528 (N-[-1S-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide), by the opioid receptor antagonist naloxone or by the alpha2-adrenergic antagonist yohimbine. Cannabidiol did not reduce motility in animals treated with the fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine, whereas loperamide was still effective. In vitro, cannabidiol inhibited ACh-induced contractions in the isolated ileum from both control and croton oil-treated mice. CONCLUSIONS AND IMPLICATIONS Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.
Collapse
|
20
|
de Jongh R, Haenen GRMM, van Koeveringe GA, Dambros M, De Mey JGR, van Kerrebroeck PEV. Oxidative stress reduces the muscarinic receptor function in the urinary bladder. Neurourol Urodyn 2007; 26:302-8. [PMID: 16998857 DOI: 10.1002/nau.20298] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS Several pathophysiological conditions in the urinary bladder, for example, ischemia/reperfusion and inflammation are characterized by the formation of reactive oxygen species (ROS). The ROS are highly toxic because they can destroy proteins, DNA, and lipids. The aim of this study was to investigate the effect of oxidative stress on excitation-contraction coupling of detrusor smooth muscle. MATERIALS AND METHODS Smooth muscle strips were dissected from pig urinary bladder and mounted in organ baths. Oxidative stress was mimicked by the addition of Cumene hydroperoxide (CHP), a lipophilic hydroperoxide, to the organ baths. Contractile responses to electrical field stimulation (EFS: 4-32 Hz), carbachol (10(-8)-3 x 10(-5) M), potassium (65.3 mM), and ATP (1 mM) were monitored before and after the addition of CHP. RESULTS Responses of detrusor strips to EFS were for the greater part based on neurogenic stimulation and the release of acetylcholine. CHP diminished contractile responses to EFS and carbachol to the same extent. The pD(2) value of the carbachol concentration-response curve decreased significantly after exposure to 0.1 mM, 0.4 mM, 0.8 mM CHP. Furthermore the maximal effect obtained with carbachol was significantly reduced after 0.1 mM, 0.4 mM, and 0.8 mM CHP treatment. Contractions induced by potassium and ATP were significantly less affected by oxidative stress compared to EFS- and carbachol-induced responses of comparable amplitude. CONCLUSIONS The results of our study demonstrate that oxidative stress induced by CHP affects pig bladder contractility. The muscarinic receptor signaling system is severely damaged. L-type calcium channels and the contractile system are less affected and cholinergic nerves remain largely unaffected.
Collapse
Affiliation(s)
- Rik de Jongh
- Department of Urology, University Hospital Maastricht, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Germann I, Hagelauer D, Kelber O, Vinson B, Laufer S, Weiser D, Heinle H. Antioxidative properties of the gastrointestinal phytopharmaceutical remedy STW 5 (Iberogast). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13 Suppl 5:45-50. [PMID: 16713223 DOI: 10.1016/j.phymed.2006.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Since inflammation is a common mechanism of many gastrointestinal diseases, reactive oxygen metabolites may play an important role in their pathophysiology. Therefore it is interesting to know, whether phytopharmaceuticals known to modulate gastrointestinal motor function reveal also antioxidative properties. We tested STW 5 (Iberogast), its constituent nine different plant extracts, and some isolated compounds which are present in STW 5 for characterizing their antioxidative and radical quenching activities. The test assays consisted in pure chemical and complex cellular systems in which different types of reactive species were produced. Quantification of the effects was based on chemiluminescence reactions. The results show that all extracts contribute to the effect of the complete remedy STW 5, in the chemical systems in a strongly additive manner, in the cellular systems in a supraadditive manner. The largest contributions resulted from the extracts from peppermint and melissa leaves. Comparison of effects from isolated phytochemical compounds from the extracts with that of the extracts itself shows that usually the extract is more effective than the monosubstance which indicates also the synergism within the whole plant extracts. This means that the plant extracts present in STW 5 provide strong radical quenching activities that could also be involved in the therapeutic gastrointestinal actions.
Collapse
Affiliation(s)
- I Germann
- Institut für Physiologie der Universität Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Kreiss C, Toegel S, Bauer AJ. Alpha2-adrenergic regulation of NO production alters postoperative intestinal smooth muscle dysfunction in rodents. Am J Physiol Gastrointest Liver Physiol 2004; 287:G658-66. [PMID: 15331355 DOI: 10.1152/ajpgi.00526.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alpha2-adrenergic receptor activation plays an important role in the development of postoperative ileus. Alpha2-adrenergic receptors also regulate nitric oxide (NO) production by the mononuclear phagocyte system. We have previously shown that intestinal manipulation leads to a significant increase in NO production by infiltrating monocytes within the intestinal muscularis. The purpose of this study was to investigate whether alpha2-adrenergic blockade with yohimbine would alter postsurgical intestinal smooth muscle dysfunction and NO production by infiltrating monocytes and macrophages within the intestinal muscularis. Rats underwent small bowel intestinal manipulation with or without yohimbine. In vivo gastrointestinal transit and in vitro jejunal circular muscle contractility was measured 24 h postoperatively. RT-PCR was used to detect inducible NO synthase (iNOS) expression. NO levels in tissue culture supernatants were measured. Immunohistochemistry was used to localize alpha2-adrenergic receptor expression in the intestinal muscularis. Yohimbine significantly decreased manipulation-induced delay in gastrointestinal transit and reversed the postoperative decrease in intestinal muscle contractility. Intestinal manipulation resulted in significant iNOS mRNA induction in the intestinal muscularis, which was markedly attenuated after yohimbine treatment. Yohimbine also significantly decreased the postoperative increase in NO released into intestinal muscularis tissue culture supernatant. Immunohistochemistry identified alpha2-adrenergic receptors on monocytes recruited postoperatively into the intestinal muscularis. This study demonstrates that alpha2-adrenergic receptor stimulation of the inflamed postoperative intestinal muscularis plays a significant role in aggravating postoperative ileus through an enhanced induction of iNOS mRNA and increased release of NO from manipulated intestinal muscularis.
Collapse
Affiliation(s)
- Christianna Kreiss
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
23
|
Peluso I, Campolongo P, Valeri P, Romanelli L, Palmery M. Intestinal motility disorder induced by free radicals: a new model mimicking oxidative stress in gut. Pharmacol Res 2002; 46:533-8. [PMID: 12457627 DOI: 10.1016/s1043661802002372] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Literature data suggest that the inflamed intestine may be subjected to a considerable oxidative stress. Therefore, the aim of the present study was to simulate the oxidative stress in the gastrointestinal tract and to explore its effect on intestinal motility. This was attained by treating isolated segments from the rabbit jejunum and from the guinea pig ileum with 2,2'-Azobis (2-amidinopropane) dihydrochloride (ABAP), which generates peroxyl radicals by thermal decomposition. Treatment of intestinal segments with ABAP reduced the muscarinic cholinergic response to acetylcholine in both preparations and induced a dose-dependent inhibition of the spontaneous contractions in the jejunum, also in the presence of tetrodotoxin. ABAP was found to inhibit the contractile response induced by BaCl(2) in guinea pig ileum preparations. This effect was not dose-dependent and it was reversed by Bay-K 8644, which activates voltage operated L-type calcium channels. The rapid and reversible effects of ABAP suggest that it might directly affect L-type calcium channels before lipoperoxidation induction. In conclusion, the results of the present study show that ABAP could be a useful tool to simulate early contractility dysfunctions mediated by oxidative stress.
Collapse
Affiliation(s)
- Ilaria Peluso
- Department of Pharmacology of Natural Substances and General Physiology, La Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
24
|
Chiva M, Soriano G, Rochat I, Peralta C, Rochat F, Llovet T, Mirelis B, Schiffrin EJ, Guarner C, Balanzó J. Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora and bacterial translocation in rats with experimental cirrhosis. J Hepatol 2002; 37:456-462. [PMID: 12217598 DOI: 10.1016/s0168-8278(02)00142-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS Probiotics and antioxidants could be alternatives to antibiotics in the prevention of bacterial infections in cirrhosis. The aim of the present study was to determine the effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora, endotoxemia, and bacterial translocation in cirrhotic rats. METHODS Twenty-nine Sprague-Dawley rats with cirrhosis induced by CCl(4) and ascites received Lactobacillus johnsonii La1 10(9)cfu/day in vehicle (antioxidants: vitamin C+glutamate) (n=10), vehicle alone (n=11), or water (n=8) by gavage. Another eight non-cirrhotic rats formed the control group. After 10 days of treatment, a laparotomy was performed to determine microbiological study of ileal and cecal feces, bacterial translocation, endotoxemia, and intestinal malondialdehyde (MDA) levels as index of intestinal oxidative damage. RESULTS Intestinal enterobacteria and enterococci, bacterial translocation (0/11 and 0/10 vs. 5/8, P<0.01), and ileal MDA levels (P<0.01) were lower in cirrhotic rats treated with antioxidants alone or in combination with Lactobacillus johnsonii La1 compared to cirrhotic rats receiving water. Only rats treated with antioxidants and Lactobacillus johnsonii La1 showed a decrease in endotoxemia with respect to cirrhotic rats receiving water (P<0.05). CONCLUSIONS Antioxidants alone or in combination with Lactobacillus johnsonii La1 can be useful in preventing bacterial translocation in cirrhosis.
Collapse
Affiliation(s)
- Maite Chiva
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret, 167 Barcelona 08025, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morita Y, Sawada M, Seno H, Takaishi S, Fukuzawa H, Miyake N, Hiai H, Chiba T. Identification of xanthine dehydrogenase/xanthine oxidase as a rat Paneth cell zinc-binding protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1540:43-9. [PMID: 11476893 DOI: 10.1016/s0167-4889(01)00118-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Paneth cells are zinc-containing cells localized in small intestinal crypts, but their function has not been fully elucidated. Previously, we showed that an intravenous injection of diphenylthiocarbazone (dithizone), a zinc chelator, induced selective killing of Paneth cells, and purified a zinc-binding protein in Paneth cells. In the present study, we further characterized one of these proteins, named zinc-binding protein of Paneth cells (ZBPP)-1. Partial amino acid sequences of ZBPP-1 showed identity with rat xanthine dehydrogenase (XD)/xanthine oxidase (XO). Anti-rat XD antibody (Ab) recognized ZBPP-1, and conversely anti ZBPP-1 Ab recognized 85 kDa fragment of rat XD in Western blotting. Messenger RNA and protein levels of XD were consistent with our previous data on the fluctuation of Paneth cell population after dithizone injection. Thus, ZBPP-1 is an 85 kDa fragment of XD/XO in Paneth cells. XD/XO in Paneth cells may play important roles in intestinal function.
Collapse
Affiliation(s)
- Y Morita
- Department of Internal Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gonzalez A, Sarna SK. Different types of contractions in rat colon and their modulation by oxidative stress. Am J Physiol Gastrointest Liver Physiol 2001; 280:G546-54. [PMID: 11254480 DOI: 10.1152/ajpgi.2001.280.4.g546] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate the modulation of in vitro rat colonic circular muscle contractions by dextran sodium sulfate (DSS)-induced inflammation and in spontaneous inflammation in HLA-B27 rats. We also examined the potential role of hydrogen peroxide (H(2)O(2)) in modulating excitation-contraction coupling. The muscle strips from the middle colon generated spontaneous phasic contractions and giant contractions (GCs), the proximal colon strips generated primarily phasic contractions, and the distal colon strips were mostly quiescent. The spontaneous phasic contractions and GCs were not affected by inflammation, but the response to ACh was suppressed in DSS-treated rats and in HLA-B27 rats. H(2)O(2) production was increased in the muscularis of the inflamed colon. Incubation of colonic muscle strips with H(2)O(2) suppressed the spontaneous phasic contractions and concentration and time dependently reduced the response to ACh; in the middle colon, it also increased the frequency of GCs. We conclude that H(2)O(2) mimics the suppression of the contractile response to ACh in inflammation. H(2)O(2) also selectively suppresses phasic contractions and increases the frequency of GCs, as found previously in inflamed dog and human colons.
Collapse
Affiliation(s)
- A Gonzalez
- Department of Surgery, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
27
|
Bauer V, Sotníková R, Machová J, Mátyás S, Pucovský V, Stefek M. Reactive oxygen species induced smooth muscle responses in the intestine, vessels and airways and the effect of antioxidants. Life Sci 1999; 65:1909-17. [PMID: 10576436 DOI: 10.1016/s0024-3205(99)00446-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Numerous experimental data confirm the importance of reactive oxygen species (ROS) in physiological activities of smooth muscles and in the pathogenesis of various diseases with altered function of smooth muscles. The present study shows that smooth muscles of the intestine, airways and vessels, as well as their epithelium, endothelium and innervations, might be important targets of the ROS action. We demonstrated differences among the actions of various ROS (endogenous, exogenous, produced enzymatically, non-enzymatically) as well as among their actions in different smooth muscle tissues. Our results indicate that ROS are involved in changes in muscle tone, membrane conductance, calcium homeostasis, calcium-dependent processes, as well as in eicosanoid and nitric oxide metabolism. The effects of antioxidative enzymes (superoxide dismutase, catalase), of several drugs of natural origin (e.g. Kampo Medicines) and synthetic agents (e.g. stobadine, nitrosopine, ACE inhibitors) suggest that smooth muscle tissues are useful models to study ROS action and drug intervention in ROS induced injuries.
Collapse
Affiliation(s)
- V Bauer
- Institute of Experimental Pharmacology Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
28
|
Tham DM, Whitin JC, Kim KK, Zhu SX, Cohen HJ. Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1463-71. [PMID: 9843785 DOI: 10.1152/ajpgi.1998.275.6.g1463] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Extracellular glutathione peroxidase (EGPx) is a glycosylated selenoprotein capable of reducing hydrogen peroxide, organic hydroperoxides, free fatty acid hydroperoxides, and phosphatidylcholine hydroperoxides. We found that human large intestinal explant cultures synthesize EGPx and cellular glutathione peroxidase (CGPx) and secrete EGPx. The level of EGPx mRNA expression relative to alpha-tubulin was similar throughout the mouse gastrointestinal tract. EGPx mRNA transcripts have been localized to mature absorptive epithelial cells in human and mouse large intestine. Western blot analysis of mouse intestinal protein has demonstrated the presence of EGPx protein in the small intestine, cecum, and large intestine, with the highest protein levels found in the cecum. Immunohistochemistry studies of human large intestine and mouse small and large intestine sections demonstrated the presence of EGPx protein within mature absorptive epithelial cells. In human large intestine and mouse small intestine, EGPx protein is also present in the extracellular milieu. These results suggest a role for EGPx in protection of the intestinal tract from peroxidative damage and/or in intercellular metabolism of peroxides.
Collapse
Affiliation(s)
- D M Tham
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | | | | | | | | |
Collapse
|
29
|
Kalff JC, Schraut WH, Simmons RL, Bauer AJ. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 1998; 228:652-63. [PMID: 9833803 PMCID: PMC1191570 DOI: 10.1097/00000658-199811000-00004] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the pathophysiologic mechanisms that lead to ileus after abdominal surgery. SUMMARY BACKGROUND DATA The common supposition is that more invasive operations are associated with a more extensive ileus. The cellular mechanisms of postsurgical ileus remain elusive, and few studies have addressed the mechanisms. METHODS Rats were subjected to incremental degrees of surgical manipulation: laparotomy, eventration, "running," and compression of the bowel. On postsurgical days 1 and 7, muscularis infiltrates were characterized immunohistochemically. Circular muscle activity was assessed using mechanical and intracellular recording techniques in vitro. RESULTS Surgical manipulation caused an increase in resident phagocytes that stained for the activation marker lymphocyte function-associated antigen (LFA-1). Incremental degrees of manipulation also caused a progressive increase in neutrophil infiltration and a decrease in bethanechol-stimulated contractions. Compression also caused an increase in other leukocytes: macrophages, monocytes, dendritic cells, T cells, natural killer cells, and mast cells. CONCLUSION The data support the hypothesis that the degree of gut paralysis to cholinergic stimulation is directly proportional to the degree of trauma, the activation of resident gut muscularis phagocytes, and the extent of cellular infiltration. Therefore, postsurgical ileus may be a result of an inflammatory response to minimal trauma in which the resident macrophages, activated by physical forces, set an inflammatory response into motion, leading to muscle dysfunction.
Collapse
Affiliation(s)
- J C Kalff
- Department of Surgery, University of Pittsburgh Medical Center, Pennsylvania, USA
| | | | | | | |
Collapse
|
30
|
Forsyth SF, Guilford WG. Ischaemia-reperfusion injury--a small animal perspective. THE BRITISH VETERINARY JOURNAL 1995; 151:281-98. [PMID: 7640957 DOI: 10.1016/s0007-1935(95)80179-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Disease processes that produce ischaemia are a common cause of morbidity and mortality in companion animals. The majority of damage to transiently ischaemia tissues occurs following reperfusion and not during ischaemia per se. This discovery raises the encouraging prospect that therapeutic intervention prior to reperfusion may reduce the severity of ischaemic damage. Recently, the central role of oxygen-derived free radicals (oxyradicals) in reperfusion injury has been demonstrated. It appears that the adverse consequences of ischaemic diseases can be reduced by optimizing the anti-oxidant capability of tissues with anti-oxidant nutrients or drugs. The importance of oxyradicals in individual ischaemic diseases of the dog and cat, however, remains largely uninvestigated. Similarly, the best pharmaceutical and nutritional approaches to the therapy of oxyradical-mediated damage have yet to be devised.
Collapse
Affiliation(s)
- S F Forsyth
- Department of Veterinary Clinical Sciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
31
|
Preedy VR, Marway JS, Siddiq T, Ansari FA, Hashim IA, Peters TJ. Gastrointestinal protein turnover and alcohol misuse. Drug Alcohol Depend 1993; 34:1-10. [PMID: 8174497 DOI: 10.1016/0376-8716(93)90040-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute and chronic ethanol ingestion causes a variety of pathological changes in the gastrointestinal tract, including gross morphological lesions and functional changes. We review whether these alterations also include changes in protein turnover, to explain the frequently observed villus atrophy and smooth muscle myopathy. The possibility that different regions of the gastrointestinal tract express diverse sensitivities is explored. Acute ethanol dosage profoundly reduced the synthesis of proteins in proximal regions of the rat gastrointestinal tract, but distal regions were less affected. In response to chronic ethanol exposure, similar regional sensitivities of the intestine were observed. In chronic studies the small intestine effects were characterised by selective losses of RNA, principally from the stomach and jejunum. We speculate whether the effects on protein synthesis were primarily due to ethanol or the consequence of acetaldehyde formation. We also determined whether changes in protein synthesis occurred secondary to alterations in nucleotide composition. The possible mediation by free-radical formation or impaired antioxidant status are also discussed. The overall results indicate that both acetaldehyde and ethanol are potent protein synthetic inhibitors and may contribute to the genesis of intestinal myopathy, possibly contributing towards motility disturbances and secondary malnutrition via malabsorption.
Collapse
Affiliation(s)
- V R Preedy
- Department of Clinical Biochemistry, King's College School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Reactive oxygen metabolites affect binding of ligands to membrane receptors and also coupling of receptors to G-proteins and effector enzymes. Peroxidation of membrane lipids may lead to a lowered receptor density and also will alter the viscosity of the plasma membrane, which affects receptor coupling. Reactive oxygen species may also interact with thiol/disulfide moieties on receptor proteins or on other factors in the receptor system, which is responsible for alterations in receptor binding or coupling. Moreover, lipid peroxidation is associated with the phospholipase A2 pathway, which might indirectly affect receptor function. Moreover, oxidative stress may lead to a disturbance in cellular Ca(2+)-homeostasis. This might be related to an effect on Ca(2+)-mobilizing receptors, but there is also evidence for a decreased Ca(2+)-sequestration by ATPases. In addition, peroxidation of membrane lipids increases membrane permeability to Ca2+. Finally, reactive oxygen species interfere with actions of nitric oxide, thus affecting another pharmacological messenger system.
Collapse
Affiliation(s)
- A Van der Vliet
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
33
|
Van der Vliet A, Tuinstra TJ, Rademaker B, Bast A. Role of the epithelium in the control of intestinal motility: implications for intestinal damage after anoxia and reoxygenation. AGENTS AND ACTIONS 1992; 36:159-67. [PMID: 1414684 DOI: 10.1007/bf01991244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A vibration technique was used to dislocate the epithelium from the rat small intestine, in order to study the possible regulatory role of the epithelium on intestinal motility. Complete removal of the epithelium led to a slightly potentiated contraction of the longitudinal smooth muscle by the muscarinic agonist methacholine (pD2. 6.5 +/- 0.1 vs. 6.2 +/- 0.2). The maximal beta-adrenergic response expressed relative to the relaxation by 0.5 mM dibutyryl cyclic AMP increased from 55.9 +/- 9.0% to 72.6 +/- 9.1% by this treatment. Efforts were made to relate these observations to the endothelium-dependent relaxation in blood vessels, but no indication was found for a similar mechanism in the small intestine. Not only mechanical dislocation can be employed to affect the mucosal layer, but also intestinal ischemia has been reported to lead to mucosal damage. In this study we mimicked ischemia by applying in vitro anoxia and subsequent reoxygenation to isolated intestinal segments. When intestinal segments are isolated and kept in physiological buffer, xanthine dehydrogenase is converted slowly to xanthine oxidase, irrespective of whether the buffer is oxygenated or not. No evidence was found for oxygen radical damage after anoxia and reoxygenation. However, the intestinal mucosa was damaged both after normoxia, and after anoxia and reoxygenation. Anoxia and subsequent reoxygenation did not affect muscarinic contraction, but slightly increased the beta-adrenergic relaxation, which partly correlates with the effects of mechanical dislocation of the epithelium. The increased sensitivity of the smooth muscle after epithelial damage might be involved in motility changes during intestinal inflammatory diseases.
Collapse
Affiliation(s)
- A Van der Vliet
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
Kirkova M, Kassabova T, Russanov E. In vivo effects of indomethacin--II. Antioxidant enzymes in metal-deficient rats. GENERAL PHARMACOLOGY 1992; 23:151-4. [PMID: 1639227 DOI: 10.1016/0306-3623(92)90001-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The in vivo effects of indomethacin on the activity of antioxidant enzymes in erythrocytes, liver and small intestinal mucosa of rats fed a metal-deficient diet were studied. 2. Metal deficiency led to a significant decrease in the activity of the enzymes studied. 3. Neither with the "ulcerogenic" nor with the "therapeutic" dose of indomethacin significant alterations in the enzyme activity were observed. 4. The oral treatment of metal-deficient rats with a copper complex of indomethacin caused a significant increase in the activity of the enzymes studied. 5. The results suggest the participation of indomethacin in the regulation and redistribution of metals in the organism, which is probably effected through in vivo chelation of endogenous metals.
Collapse
Affiliation(s)
- M Kirkova
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia
| | | | | |
Collapse
|
35
|
van der Vliet A, van der Poel KI, Bast A. Intestinal smooth muscle dysfunction after intraperitoneal injection of zymosan in the rat: are oxygen radicals involved? Gut 1992; 33:336-41. [PMID: 1314762 PMCID: PMC1373823 DOI: 10.1136/gut.33.3.336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zymosan is frequently used as an activator of granulocytes to study inflammatory responses. We used zymosan as a model to understand the mechanisms involved in intestinal inflammatory diseases, and our special interest was focused on the smooth muscle function. Moreover, we investigated the role of oxidative stress in intestinal pathology after inflammatory processes. Intraperitoneal injection of zymosan induces a peritoneal inflammation, characterised by exudate in the peritoneum and peritoneal fibrosis. Three days after injection of zymosan (25-40 mg/100 g) we measured a decreased beta adrenergic smooth muscle response, while the muscarinic receptor-mediated contraction was not significantly affected. Efforts were made to correlate these observations with the development of oxidative stress; however, the intestinal glutathione balance remained undisturbed and no increase in lipid peroxidation products in the intestine was observed. Our conclusion is the peritoneal inflammation will lead to a release of various mediators, which may destroy receptor systems, among which are beta adrenoceptors. There was no evidence of an important role for reactive oxygen metabolites in this effect.
Collapse
Affiliation(s)
- A van der Vliet
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Van der Vliet A, Van der Aar EM, Bast A. The lipid peroxidation product 4-hydroxy-2,3-trans-1 nonenal decreases rat intestinal smooth muscle function in-vitro by alkylation of sulphydryl groups. J Pharm Pharmacol 1991; 43:515-7. [PMID: 1682468 DOI: 10.1111/j.2042-7158.1991.tb03526.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of the lipid peroxidation product 4-hydroxy-2,3-trans-1 nonenal (HNE) on intestinal smooth muscle function have been studied. Exposure of rat isolated small intestinal segments to HNE (0.1-0.5 mM) led to decreased muscarinic and beta-adrenergic responses. The maximal response to the muscarinic agonist methacholine and its pEC50 decreased in a dose dependent manner. The response to the beta-adrenoceptor agonist isoprenaline was affected in a similar manner, but at slightly higher concentrations of HNE. As HNE has been described to be sulphydryl-reactive these effects were compared with the effects of the sulphydryl-reactive agent N-ethylmaleimide (NEM). Incubation of intestinal segments with NEM had similar effects on pharmacological responses to methacholine, indicating that the effects of HNE like that of NEM are likely to be caused by alkylation of sulphydryl groups. Dithiothreitol, a compound which reduces oxidized sulphydryl groups, was unable to restore the effects of HNE or NEM, which suggests that the effects of HNE and NEM are irreversible.
Collapse
Affiliation(s)
- A Van der Vliet
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Van der Vliet A, Bast A. Hydrogen peroxide reduces beta-adrenoceptor function in the rat small intestine. Eur J Pharmacol 1991; 199:153-6. [PMID: 1659536 DOI: 10.1016/0014-2999(91)90452-v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Incubation of isolated rat intestinal segments with hydrogen peroxide (H2O2) led to a decreased beta-adrenoceptor response. The maximal relaxation induced by isoprenaline was lowered while the EC50 remained unaffected. The effect of H2O2 in the small intestine increased slightly from duodenum to ileum. In the ileum, 10(-4) M H2O2 led to a 10% decrease of the maximal relaxation due to isoprenaline and 1 mM decreased the maximal response to about 50%. We further investigated the level at which the isoprenaline response was impaired. The relaxation caused by the stable cAMP analog, dibutyryl-cAMP, or by the adenylate cyclase activator, forskolin, was not affected or affected less than by isoprenaline. When the response to isoprenaline was expressed relative to the maximal response to dibutyryl-cAMP or forskolin, pretreatment with H2O2 led to a decreased isoprenaline response relative to the response to dibutyryl-cAMP or forskolin. This might indicate that exposure to H2O2 leads to a disturbance in receptor-mediated cAMP production. The adenylate cyclase unit is probably not affected since the response to forskolin is relatively resistant to H2O2. Our conclusion is that pretreatment of isolated intestinal segments with H2O2 leads to disturbed beta-adrenoceptor coupling, probably due to altered membrane integrity.
Collapse
MESH Headings
- Animals
- Bucladesine/pharmacology
- Colforsin/pharmacology
- Duodenum/drug effects
- Duodenum/physiology
- Hydrogen Peroxide/pharmacology
- Ileum/drug effects
- Ileum/physiology
- Intestine, Small/drug effects
- Intestine, Small/innervation
- Intestine, Small/physiology
- Isoproterenol/metabolism
- Isoproterenol/pharmacology
- Jejunum/drug effects
- Jejunum/physiology
- Male
- Muscle Contraction/drug effects
- Muscle Relaxation/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Oxidation-Reduction
- Rats
- Rats, Inbred Strains
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
Collapse
Affiliation(s)
- A Van der Vliet
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|