1
|
Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016; 10:36. [PMID: 27092060 PMCID: PMC4823275 DOI: 10.3389/fnana.2016.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.
Collapse
Affiliation(s)
- Fabio N Santos
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | - Celia W Pereira
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | | | - Marcos Otero-García
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat Valencia Valencia, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Unitat Predepartamental de Medicina, Universitat Jaume ICastellón, Spain
| |
Collapse
|
2
|
Cottrell GS, Padilla BE, Amadesi S, Poole DP, Murphy JE, Hardt M, Roosterman D, Steinhoff M, Bunnett NW. Endosomal endothelin-converting enzyme-1: a regulator of beta-arrestin-dependent ERK signaling. J Biol Chem 2009; 284:22411-22425. [PMID: 19531493 DOI: 10.1074/jbc.m109.026674] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuropeptide signaling at the cell surface is regulated by metalloendopeptidases, which degrade peptides in the extracellular fluid, and beta-arrestins, which interact with G protein-coupled receptors (GPCRs) to mediate desensitization. beta-Arrestins also recruit GPCRs and mitogen-activated protein kinases to endosomes to allow internalized receptors to continue signaling, but the mechanisms regulating endosomal signaling are unknown. We report that endothelin-converting enzyme-1 (ECE-1) degrades substance P (SP) in early endosomes of epithelial cells and neurons to destabilize the endosomal mitogen-activated protein kinase signalosome and terminate signaling. ECE-1 inhibition caused endosomal retention of the SP neurokinin 1 receptor, beta-arrestins, and Src, resulting in markedly sustained ERK2 activation in the cytosol and nucleus, whereas ECE-1 overexpression attenuated ERK2 activation. ECE-1 inhibition also enhanced SP-induced expression and phosphorylation of the nuclear death receptor Nur77, resulting in cell death. Thus, endosomal ECE-1 attenuates ERK2-mediated SP signaling in the nucleus to prevent cell death. We propose that agonist availability in endosomes, here regulated by ECE-1, controls beta-arrestin-dependent signaling of endocytosed GPCRs.
Collapse
Affiliation(s)
- Graeme S Cottrell
- Departments of Surgery and Physiology, San Francisco, California 94143
| | | | - Silvia Amadesi
- Departments of Surgery and Physiology, San Francisco, California 94143
| | - Daniel P Poole
- Departments of Surgery and Physiology, San Francisco, California 94143
| | - Jane E Murphy
- Departments of Surgery and Physiology, San Francisco, California 94143
| | - Markus Hardt
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Dirk Roosterman
- University Hospital Mun̈ster, Department of Internal Medicine D, Albert-Schweitzer-Strasse 33, D-48149 Mun̈ster, Germany
| | - Martin Steinhoff
- Department of Dermatology, Interdisciplinary Centre for Clinical Research, and the Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Mun̈ster, Von-Esmarch-Strasse 58, 48149 Mun̈ster, Germany
| | - Nigel W Bunnett
- Departments of Surgery and Physiology, San Francisco, California 94143
| |
Collapse
|
3
|
Pérez de la Mora M, Jacobsen KX, Crespo-Ramírez M, Flores-Gracia C, Fuxe K. Wiring and volume transmission in rat amygdala. Implications for fear and anxiety. Neurochem Res 2008; 33:1618-33. [PMID: 18473172 DOI: 10.1007/s11064-008-9722-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
The amygdala plays a key role in anxiety. Information from the environment reaches the amygdaloid basolateral nucleus and after its processing is relayed to the amygdaloid central nucleus where a proper anxiogenic response is implemented. Experimental evidence indicates that in this information transfer a GABAergic interface controls the trafficking of impulses between the two nuclei. Recent work indicates that interneuronal communication can take place by classical synaptic transmission (wiring transmission) and by volume transmission in which the neurotransmitter diffuses and flows through the extracellular space from its site of release and binds to extrasynaptic receptors at various distances from the source. Based on evidence from our laboratory the concept is introduced that neurotransmitters in the amygdala can modulate anxiety involving changes in fear learning and memories by effects on receptor mosaics in the fear circuits through wiring and volume transmission modes of communication.
Collapse
Affiliation(s)
- Miguel Pérez de la Mora
- Department of Biophysics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Mexico, DF, 04510, Mexico.
| | | | | | | | | |
Collapse
|
4
|
Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF. From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. ACTA ACUST UNITED AC 2007; 55:17-54. [PMID: 17433836 DOI: 10.1016/j.brainresrev.2007.02.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/21/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the integration of signals. This will lead to the unified execution of information handling and trophism for optimal brain function and survival.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Landry M, Bouali-Benazzouz R, André C, Shi TJS, Léger C, Nagy F, Hökfelt T. Galanin receptor 1 is expressed in a subpopulation of glutamatergic interneurons in the dorsal horn of the rat spinal cord. J Comp Neurol 2006; 499:391-403. [PMID: 16998907 DOI: 10.1002/cne.21109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. Moreover, Gal(1) and VGLUT2 transcripts were often found in the same cell bodies in laminae I-IV. Gal(1)-protein and galanin-peptide showed an overlapping distribution but were not colocalized. Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.
Collapse
Affiliation(s)
- Marc Landry
- Inserm E 0358, Institut Francois Magendie, University of Bordeaux 2, F-33077 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Marvizon JCG, Wang X, Lao LJ, Song B. Effect of peptidases on the ability of exogenous and endogenous neurokinins to produce neurokinin 1 receptor internalization in the rat spinal cord. Br J Pharmacol 2003; 140:1389-98. [PMID: 14623771 PMCID: PMC1574162 DOI: 10.1038/sj.bjp.0705578] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration-response curves for substance P and neurokinin A were obtained in the presence and absence of 10 microm thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 microm captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nm, and the EC50 of neurokinin A from 170 to 60 nm. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nm). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nm substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency.
Collapse
Affiliation(s)
- Juan Carlos G Marvizon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
7
|
Nusbaum MP. Regulating peptidergic modulation of rhythmically active neural circuits. BRAIN, BEHAVIOR AND EVOLUTION 2003; 60:378-87. [PMID: 12563170 DOI: 10.1159/000067791] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of neuropeptides to modulate neural circuit activity is well established, but little is known regarding how the actions of neurally-released peptides are regulated. This issue is being studied in the isolated stomatogastric nervous system (STNS) of decapod crustaceans. The STNS is a small neural system that contains the rhythmically active gastric mill (chewing) and pyloric (filtering of chewed food) motor circuits within the stomatogastric ganglion (STG). These circuits are influenced by a set of modulatory projection neurons in the neighboring commissural and oesophageal ganglia. This system includes three different projection neurons that contain the peptide transmitter proctolin among an overlapping complement of cotransmitters. Despite their shared proctolinergic phenotype, when these projection neurons are activated individually each of them has distinct actions on the gastric mill and pyloric circuits. These distinct actions result only partly from the presence of different cotransmitters in these projection neurons. Also contributing to these distinct actions are differences in the pattern of transmitter release as well as a differential, peptidase-mediated sculpting of the actions of the proctolin released from each projection neuron. There is also a convergence of peptide cotransmitter actions, at the level of the target ion channel, which might limit the effectiveness of each individual cotransmitter. One lesson already learned from this small neural system is that there is a diverse collection of regulatory mechanisms for controlling the actions of neurally-released peptides on rhythmically active neural circuits.
Collapse
Affiliation(s)
- Michael P Nusbaum
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, Pa 19104-6074, USA.
| |
Collapse
|
8
|
Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids. J Neurosci 2003. [PMID: 12629189 DOI: 10.1523/jneurosci.23-05-01847.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To evaluate the effect of peptidases on mu-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and alpha-neoendorphin, but not endomorphins or beta-endorphin. The omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 microm) or 50 mm KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and were Ca(2+) dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are primarily cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, because the potencies of endomorphin-1 and endomorphin-2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons.
Collapse
|
9
|
Schaible HG, Hope PJ, Lang CW, Duggan AW. Calcitonin Gene-related Peptide Causes Intraspinal Spreading of Substance P Released by Peripheral Stimulation. Eur J Neurosci 2002; 4:750-7. [PMID: 12106319 DOI: 10.1111/j.1460-9568.1992.tb00184.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments were performed in barbiturate-anaesthetized, spinalized cats to investigate the effect of calcitonin gene-related peptide (CGRP) on the spatial distribution of immunoreactive substance P (ir-SP) in the spinal cord released by electrical nerve stimulation and noxious mechanical stimuli. The presence of ir-SP was assessed with microprobes bearing C-terminus-directed antibodies to SP. CGRP was microinjected into the grey matter of the spinal cord near microprobe insertion sites at depths of 2500, 2000, 1500 and 1000 microm using minute amounts (in total 0.2 - 0.5 microl) of Ringer solution containing CGRP at a concentration of 10-5 or 10-3 M. In the untreated cord electrical stimulation of the tibial nerve (suprathreshold for all C fibres) elicited release of ir-SP which was centred in and around the lamina II. After microinjection of CGRP, stimulation-associated ir-SP was detected in a region extending from the cord surface down to the ventral horn. This pattern was similar to that observed after the microinjection of synthetic peptidase inhibitors (Duggan et al., Brain Res., 579, 261 - 269, 1992). The large expansion of sites accessed by ir-SP was time-dependent, reaching a maximal effect within 10 - 40 min after microinjection of CGRP, and reversal was observed in subsequent probes. A similar expansion of the regions accessed by ir-SP after microinjection of CGRP was also observed when release of ir-SP was evoked by noxious mechanical stimulation of the toes. These results indicate that one important function of CGRP in the spinal cord may be the control of the intraspinal sites and neuronal circuits accessed by released substance P, possibly by inhibition of endopeptidases responsible for peptide degradation.
Collapse
Affiliation(s)
- H G Schaible
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | |
Collapse
|
10
|
Abstract
We are examining how extracellular peptidase activity sculpts the peptidergic actions of modulatory projection neurons on rhythmically active neuronal circuits, using the pyloric circuit in the stomatogastric ganglion (STG) of the crab Cancer borealis. Neurally released peptides can diffuse long distances to bind to their receptors. Hence, different neurons releasing the same neuropeptide into the same neuropil may reach the same receptor complement. However, extracellular peptidases can limit neuropeptide diffusion and terminate its actions. Distinct versions of the pyloric rhythm are elicited by selective activation of different projection neurons, including those with overlapping sets of cotransmitters. Two of these projection neurons, modulatory commissural neuron 1 (MCN1) and the modulatory proctolin neuron (MPN), contain the neuropeptide proctolin plus GABA. MCN1 also contains Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). CabTRP Ia is not fully responsible for the distinct actions of MCN1 and MPN. Because there is aminopeptidase activity in the STG that terminates proctolin actions, we tested the hypothesis that the differences in the actions of MCN1 and MPN that are not mediated by CabTRP Ia result from the differential actions of aminopeptidase activity on proctolin released from these two projection neurons. We found that the pyloric circuit response to these two projection neurons becomes more similar when this aminopeptidase activity is blocked. This result supports the hypothesis that extracellular peptidase activity enables different projection neurons to use the same neuropeptide transmitter for eliciting distinct outputs from the same neuronal circuit.
Collapse
|
11
|
Schaible HG, Nebe J, Neugebauer V, Ebersberger A, Vanegas H. The role of high-threshold calcium channels in spinal neuron hyperexcitability induced by knee inflammation. PROGRESS IN BRAIN RESEARCH 2001; 129:173-90. [PMID: 11098689 DOI: 10.1016/s0079-6123(00)29013-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- H G Schaible
- Institut für Physiologie, Friedrich-Schiller-Universität Jena, Germany
| | | | | | | | | |
Collapse
|
12
|
Chapter VI Neurokinin receptors in the CNS. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
McLeod AL, Julien JP, Cuello AC, Krause JE, Ribeiro-da-Silva A. Ectopic substance P-immunoreactive boutons are preferentially presynaptic to neurokinin-1 receptor immunoreactive dendrites in the spinal white matter of transgenic mice. Brain Res 1999; 836:1-8. [PMID: 10415399 DOI: 10.1016/s0006-8993(99)01524-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A recent immunocytochemical study has shown that substance P (SP) preferentially innervates targets expressing the neurokinin-1 receptor (NK-1r) in the superficial spinal dorsal horn of the rat. Based on these findings, we decided to further investigate the relationship between SP and the NK-1r in a transgenic mouse model in which SP fibres are ectopically located. Double-labelling immunocytochemistry at both the light and electron microscopic levels was performed to study the association between SP and the NK-1r in the spinal white matter of both control and transgenic mice. Light microscopy revealed NK-1r-immunoreactive (IR) dendrites in the white matter of the dorsolateral funiculus in both control and transgenic mice. In transgenic mice, but not in controls, SP-IR fibres were observed in close proximity to the NK-1r-IR dendrites in the white matter. At the ultrastructural level, SP-IR boutons were apposed to NK-1r-IR dendrites in the dorsolateral funiculus of transgenic mice, and a synapse was frequently observed as well. These results indicate that, even in conditions in which SP fibres are ectopically located, they still preferentially innervate targets expressing the NK-1r.
Collapse
Affiliation(s)
- A L McLeod
- Department of Pharmacology and Therapeutics, McGill University, 3655 Drummond St., Room 1325, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
14
|
Ding YQ, Zheng HX, Wang DS, Xu JQ, Gong LW, Lü Y, Qin BZ, Shi J, Li HL, Li JS, Shigemoto R, Kaneko T, Mizuno N. The distribution of substance P receptor (NK1)-like immunoreactive neurons in the newborn and adult human spinal cord. Neurosci Lett 1999; 266:133-6. [PMID: 10353345 DOI: 10.1016/s0304-3940(99)00283-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Substance P receptor (i.e. NK1)-like immunoreactive (SPR-LI) neurons were observed in the newborn and adult human spinal cord. Substance P receptor-like immunoreactive neuronal cell bodies were seen most frequently in lamina I, and were scattered throughout the remaining laminae of the dorsal horn and the area around the central canal. Some neurons in the intermediolateral nucleus also showed weak immunoreactivity. The pattern of distribution of SPR-LI neurons in the adult spinal cord was essentially the same as that in the newborn spinal cord. However, SPR-LI neurons cell bodies were seen much more frequently in the newborn than in the adult dorsal horn, especially in lamina II.
Collapse
Affiliation(s)
- Y Q Ding
- Department of Anatomy, Fourth Military Medical University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cellular and subcellular distribution of substance P receptor immunoreactivity in the dorsal vagal complex of the rat and cat: A light and electron microscope study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<181::aid-cne4>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Barbaresi P. Immunocytochemical localization of substance P receptor in rat periaqueductal gray matter: a light and electron microscopic study. J Comp Neurol 1998; 398:473-90. [PMID: 9717704 DOI: 10.1002/(sici)1096-9861(19980907)398:4<473::aid-cne2>3.0.co;2-#] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The distribution of substance P receptor (SPR) protein in the rat periaqueductal gray matter (PAG) was investigated with a polyclonal antibody in the four subdivisions obtained by cytochrome-oxidase histochemistry (Co-hi). At light microscopic analysis, immunoreactivity appeared particularly dense in the dorsal subdivision of the PAG, was less intense in the other subdivisions, and formed several longitudinally organized columns. SPR-like immunoreactivity (SP(R-i)) was localized mostly to cell bodies and dendrites of small and medium-sized neurons, which constituted about 6% of the total neuronal population of the PAG. At the electron microscopic level, SP(R-i) could be observed on postsynaptic as well as on nonsynaptic regions of both cell bodies and dendrites. A small proportion of axons (4.2%) and axon terminals (5.3%) showed SP(R-i), the majority of labeled axon terminals, amounting to about 70% of synapsing elements, formed asymmetric synapses with dendrites. Rare astroglial processes displaying SP(R-i) were also observed scattered throughout the neuropil of all PAG subdivisions. Our observations suggest that 1) also in the PAG, SP may act in a diffuse, nonsynaptic manner, probably on targets that are distant from its sites of release; and 2) SP may modulate excitatory neurotransmission acting presynaptically on those labeled axons that form asymmetric synapses.
Collapse
Affiliation(s)
- P Barbaresi
- Institute of Human Physiology, University of Ancona, Italy.
| |
Collapse
|
17
|
Schaible HG, Neugebauer V, Geisslinger G, Beck U. The effects of S- and R-flurbiprofen on the inflammation-evoked intraspinal release of immunoreactive substance P--a study with antibody microprobes. Brain Res 1998; 798:287-93. [PMID: 9666149 DOI: 10.1016/s0006-8993(98)00429-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using antibody coated microprobes in anesthetized rats, we studied the intraspinal release of immunoreactive substance P during development of kaolin/carrageenan-induced inflammation in the knee joint, and the effects of S- and R-flurbiprofen on inflammation-evoked intraspinal release of immunoreactive substance P once inflammation was established. During the first 6 h after induction of acute inflammation, the basal release and the release of immunoreactive substance P evoked by innocuous pressure applied to the knee showed increases (n=4 rats). An intravenous dose of 9 mg/kg S-flurbiprofen (a potent inhibitor of cyclooxygenases that is anti-inflammatory and antinociceptive) did not significantly alter the pattern of inflammation-evoked release of immunoreactive substance P within 2 h although this dose reduced the responses of spinal cord neurons to pressure applied to the inflamed knee joint within 15 min to about 15% of the predrug value (Neugebauer et al., J. Pharmacol. Exp. Ther. 275 (1995) 618-628). The subsequent i.v. injection of 27 mg/kg S-flurbiprofen significantly changed the pattern of release of immunoreactive substance P showing a reduction of the level of immunoreactive substance P in the dorsal horn within 1 h (n=4 rats). The release of immunoreactive substance P was also reduced after the i.v. injection of 27 mg/kg R-flurbiprofen that is also antinociceptive but less anti-inflammatory (n=5 rats). These data show that both S- and R-flurbiprofen reduce the inflammation-evoked intraspinal release of immunoreactive substance P within hours. However, the reduction of release of immunoreactive substance P does not seem to be a prerequisite for the initial antinociceptive action of non-steroidal anti-inflammatory drugs. It may be rather important in the long term range.
Collapse
Affiliation(s)
- H G Schaible
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | | | | | | |
Collapse
|
18
|
Pollock R, Kerr R, Maxwell DJ. An immunocytochemical investigation of the relationship between substance P and the neurokinin-1 receptor in the lateral horn of the rat thoracic spinal cord. Brain Res 1997; 777:22-30. [PMID: 9449409 DOI: 10.1016/s0006-8993(97)00965-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relationship between substance P-containing axons and sympathetic preganglionic neurons possessing the neurokinin-1 receptor was investigated in the lateral horn of the rat thoracic spinal cord. Sympathetic preganglionic neurons were labelled retrogradely with Fluorogold. Sections containing labelled cells were reacted with antibodies against choline acetyltransferase, substance P and the neurokinin-1 receptor and examined with three-colour confocal laser scanning microscopy. In all, 95 sympathetic preganglionic neurons were examined and 79% of these were immunoreactive for the neurokinin-1 receptor. Substance P-immunoreactive axons not only made contacts with preganglionic neurons which were immunoreactive for the receptor but also made contacts with cells which did not express the receptor. Dendrites, labelled with immunoreactivity for choline actyltransferase, also received contacts from substance P-immunoreactive varicosities but this was not related to the presence or the absence of receptor. An electron microscopic analysis was performed to investigate the relationship between substance P-containing boutons and dendrites possessing the neurokinin-1 receptor. Immunoreactivity for substance P was detected with peroxidase immunocytochemistry and immunoreactivity for the receptor was detected with the silver-intensified gold method. Substance P-containing boutons made synapses with dendrites which were positively and negatively labelled for the receptor. Receptor immunoreactivity was not usually present at synapses formed by substance P boutons with neurokinin-1-immunoreactive dendrites. It is concluded that substance P may modulate much of the activity of sympathetic preganglionic neurons through an indirect non-synaptic mechanism.
Collapse
Affiliation(s)
- R Pollock
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | |
Collapse
|
19
|
Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J Neurosci 1997. [PMID: 9334388 DOI: 10.1523/jneurosci.17-21-08129.1997] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The excitability of spinal neurons that transmit pain is modulated by glutamate and substance P (SP). Glutamate is an excitatory neurotransmitter in the dorsal horn, and its effects are enhanced by SP acting on neurokinin 1 receptors (NK1Rs). We assessed activation of NK1Rs by studying their internalization in spinal cord slices. NK1Rs were localized in sections from the slices by using immunohistochemistry combined with fluorescence and confocal microscopy. Incubating the slices with SP induced internalization in most NK1R-positive neurons in laminae I, IIo, and X and in half of NK1R-positive neurons in laminae III-V. SP-induced internalization was abolished by the specific NK1R antagonist L-703,606 (1 microM). Stimulating the dorsal root with long-duration (0.4 msec) pulses evoked EPSPs in dorsal horn neurons with latencies consistent with the conduction speed of A partial differential- and C-fibers. High-frequency (100 Hz) stimulation of the dorsal root with these pulses induced NK1R internalization in neurons in laminae I-IIo of the stimulated side of the slice but not in the contralateral side or in other laminae. Stimulation at lower frequencies (1 and 10 Hz) failed to elicit significant internalization, suggesting that the release of SP is frequency-dependent. Internalization produced by the 100 Hz tetanus was mimicked by NMDA and blocked by an NMDA antagonist, 2-amino-5-phosphonopentanoic acid, but not by the AMPA and kainate antagonist CNQX. The NK1R antagonist L-703,606 abolished the internalization produced by 100 Hz stimulation or NMDA. Therefore, the release of SP in the dorsal horn appears to be controlled by NMDA receptors.
Collapse
|
20
|
King AE, Ackley MA, Slack JR. Profile of neuronal excitation following selective activation of the neurokinin-1 receptor in rat deep dorsal horn in vitro. Brain Res 1997; 767:55-63. [PMID: 9365015 DOI: 10.1016/s0006-8993(97)00564-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The excitatory actions of the selective neurokinin-1 receptor (NK1R) agonist [Sar9,Met(O2)11]substance P (SP) were tested on a sample (n = 50) of deep dorsal horn neurones in the isolated and hemisected young rat spinal cord. Superfusion of the NK1R agonist (2 microM) elicited a prolonged membrane depolarisation (6.6 +/- 0.5 mV) and an increase in action potential firing in 41/50 (82%) neurones. These [Sar9,Met(O2)11]SP-induced depolarisations were attenuated by the selective NK1R antagonist GR82334 (1 microM). An increased neuronal excitability after [Sar9,Met(O2)11]SP application was indicated by an augmented spike frequency generated in response to long duration, step depolarisations. In order to assess whether a direct excitatory action existed, [Sar9,Met(O2)11]SP was re-tested on a sample of TTX-treated neurones (n = 14). The majority (9/14) retained agonist sensitivity although the amplitude of the depolarisation was reduced to 48% of the control value. A sample of neurones (n = 7) that responded to the NK1R agonist were morphologically characterised after filling with the intracellular dye, biocytin. Dorsal dendrites that clearly penetrated lamina II and that could receive a direct C-afferent input, were identified in only 2/7 neurones. These electrophysiological and neuroanatomical data demonstrate that deep dorsal horn neurones possess functional NK1Rs. The implications of the existence of these NK1Rs in the context of spinal somatosensory systems and SP is considered.
Collapse
Affiliation(s)
- A E King
- Department of Physiology, University of Leeds, UK.
| | | | | |
Collapse
|
21
|
Böhm SK, Grady EF, Bunnett NW. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem J 1997; 322 ( Pt 1):1-18. [PMID: 9078236 PMCID: PMC1218151 DOI: 10.1042/bj3220001] [Citation(s) in RCA: 377] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The large and functionally diverse group of G-protein-coupled receptors includes receptors for many different signalling molecules, including peptide and non-peptide hormones and neuro-transmitters, chemokines, prostanoids and proteinases. Their principal function is to transmit information about the extracellular environment to the interior of the cell by interacting with the heterotrimeric G-proteins, and they thereby participate in many aspects of regulation. Cellular responses to agonists of these receptors are usually rapidly attenuated. Mechanisms of signal attenuation include removal of agonists from the extracellular fluid, receptor desensitization, endocytosis and down-regulation. Agonists are removed by dilution, uptake by transporters and enzymic degradation. Receptor desensitization is mediated by receptor phosphorylation by G-protein receptor kinases and second-messenger kinases, interaction of phosphorylated receptors with arrestins and receptor uncoupling from G-proteins. Agonist-induced receptor endocytosis also contributes to desensitization by depleting the cell surface of high-affinity receptors, and recycling of internalized receptors contributes to resensitization of cellular responses. Receptor down-regulation is a form of desensitization that occurs during continuous, long-term exposure of cells to receptor agonists. Down-regulation, which may occur during the development of drug tolerance, is characterized by depletion of the cellular receptor content, and is probably mediated by alterations in the rates of receptor degradation and synthesis. These regulatory mechanisms are important, as they govern the ability of cells to respond to agonists. A greater understanding of the mechanisms that modulate signalling may lead to the development of new therapies and may help to explain the mechanism of drug tolerance.
Collapse
Affiliation(s)
- S K Böhm
- Department of Surgery, University of California, San Francisco 94143-0660, USA
| | | | | |
Collapse
|
22
|
Schaible HG, Ebersberger A, Peppel P, Beck U, Messlinger K. Release of immunoreactive substance P in the trigeminal brain stem nuclear complex evoked by chemical stimulation of the nasal mucosa and the dura mater encephali--a study with antibody microprobes. Neuroscience 1997; 76:273-84. [PMID: 8971777 DOI: 10.1016/s0306-4522(96)00353-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to study a possible involvement of substance P in the processing of chemonociceptive input from the nasal mucosa and the dura mater encephali in the spinal trigeminal, the release of immunoreactive substance P was measured in the trigeminal brain stem nuclear complex in anaesthetized rats. Microprobes coated with antibody to substance P were inserted into the lateral area of the brain stem up to 1 mm posterior to the obex corresponding to the trigeminal subnucleus caudalis. When the nasal mucosa was stimulated by topical administration of mustard oil (1% and 5%) into the nostrils, immunoreactive substance P was mainly detected in the dorsal region of the trigeminal brain stem nuclear complex with a maximum in the superficial gray matter. When the dura mater encephali was stimulated by topical administration of Tyrode's solution (pH 6.2), immunoreactive substance P was mainly released in the ventral region of the trigeminal brain stem nuclear complex; with pH 5.5 the release was more diffuse extending from the ventral to the dorsal part of the spinal trigeminal nucleus. Release was maximal rather after than during the administration of the stimuli, and it considerably outlasted the stimulation periods. These data suggest that substance P plays an important role in the processing of chemonociceptive inputs from the nasal mucosa and the dura mater encephali in the trigeminal brain stem nuclear complex. Substance P may be important, therefore, in the generation of those headaches that are caused by affections of the nasal mucosa and the dura mater encephali. Since enhanced levels of immunoreactive substance P were present for considerable time periods beyond the administration of the stimuli, substance P and neurokinin-1 receptors may be involved in long-lasting neuronal events following noxious stimulation.
Collapse
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
23
|
McGonigle DJ, Maxwell DJ, Shehab SA, Kerr R. Evidence for the presence of neurokinin-1 receptors on dorsal horn spinocerebellar tract cells in the rat. Brain Res 1996; 742:1-9. [PMID: 9117382 DOI: 10.1016/s0006-8993(96)00942-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dorsal horn spinocerebellar tract cells of adult rats were labelled by retrograde axonal transport with the B subunit of cholera toxin. Sections were prepared from lumbar and thoracic spinal segments and incubated with antisera which specifically recognise neurokinin-1 receptor protein and substance P. Labelled cells and immunoreactivity for the receptor and substance P were identified by using three different fluorophores and the relationships between them were assessed in single optical sections with three-colour confocal laser scanning microscopy. Forty-eight cells were examined and 23 of them displayed immunoreactivity for the receptor. Many substance P-immunoreactive profiles were present in lamina V and some formed contacts with spinocerebellar tract cells possessing neurokinin-1 receptor immunoreactivity. The evidence suggests that substance P may influence the activity of a subpopulation of dorsal horn spinocerebellar tract cells by acting through neurokinin-1 receptors.
Collapse
Affiliation(s)
- D J McGonigle
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | |
Collapse
|
24
|
Zoli M, Agnati LF. Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol 1996; 49:363-80. [PMID: 8888115 DOI: 10.1016/0301-0082(96)00020-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During the past two decades, several revisions of the concepts underlying interneuronal communication in the central nervous system (CNS) have been advanced. Our group has proposed to classify intercellular communication in the CNS under two general frames: 'wiring' (WT) and 'volume' transmission (VT). WT is characterized by a single 'transmission channel' made by cellular (neuronal or glial) structures and with a region of discontinuity not larger than a synaptic cleft. VT is characterized by the diffusion from a cell source (neuronal or glial) of chemical and electrical signals in the extracellular fluid (ECF) for a distance larger than the synaptic cleft Based on morphological and functional characteristics, and in light of the distinction proposed, six main modes of intercellular communication can be recognized in the CNS: gap-junction, membrane juxtaposition, and closed synapse (which represent WT-type modes of communication); open synapse, paracrine transmission and endocrine-like transmission (which represent VT-type modes of communication). Closed and open synapses are distinguished on the basis of the sealing of the signal within or the leakage of the signal outside the synapse Intra-synaptic restriction or extra-synaptic diffusion of transmitters are insured by a number of anatomical arrangements (e.g. glial ensheathment of synapse, size of the synaptic cleft) and functional mechanisms (e.g. density and location of transmitter re-uptake sites and metabolic enzymes). Some central synapses can switch from closed to open state and vice versa, e.g. by changing the amount of transmitter released. Finally, a synapse containing several transmitters can work as an open synapse for one transmitter and as a closed synapse for another.
Collapse
Affiliation(s)
- M Zoli
- Department of Biomedical Sciences, University of Modena, Italy
| | | |
Collapse
|
25
|
Chen JJ, Barber LA, Dymshitz J, Vasko MR. Peptidase inhibitors improve recovery of substance P and calcitonin gene-related peptide release from rat spinal cord slices. Peptides 1996; 17:31-7. [PMID: 8822507 DOI: 10.1016/0196-9781(95)02091-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of present study was to determine whether peptidase activity affects the release of substance P (SP) and calcitonin gene-related peptide (CGRP) from spinal cord slices. When slices were exposed to various inhibitors of endopeptidase 24.11, the resting and capsaicin-stimulated release of SP were less than 0.04% and 0.20% total content per minute, respectively. Resting CGRP release was approximately 0.10% and stimulated release was 0.40%. The combination of 20 microM bacitracin, 100 microM phenylalanylalanine (Phe-Ala), and 50 microM p-chloromercuriphenylsulfonic acid (PCMS) significantly increased both resting and stimulated release of SP and CGRP at least two- or threefold. Doubling the concentration of PCMS and Phe-Ala did not further improve peptide release. These results demonstrate that recovery of peptides released from spinal cord slices is dependent in part on activity of multiple peptidases in the tissues.
Collapse
Affiliation(s)
- J J Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
26
|
Schaible HG. On the role of tachykinins and calcitonin gene-related peptide in the spinal mechanisms of nociception and in the induction and maintenance of inflammation-evoked hyperexcitability in spinal cord neurons (with special reference to nociception in joints). PROGRESS IN BRAIN RESEARCH 1996; 113:423-41. [PMID: 9009749 DOI: 10.1016/s0079-6123(08)61102-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| |
Collapse
|
27
|
Agnati LF, Zoli M, Strömberg I, Fuxe K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 1995; 69:711-26. [PMID: 8596642 DOI: 10.1016/0306-4522(95)00308-6] [Citation(s) in RCA: 383] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the past two decades several revisions of the concepts underlying interneuronal communication in the central nervous system have been advanced. We propose here to classify communicational phenomena between cells of the central neural tissue under two general frames: "wiring" and "volume" transmission. "Wiring" transmission is defined as intercellular communication occurring through a well-defined connecting structure. Thus, wiring transmission is characterized by the presence of physically identifiable communication channels within the neuronal and/or glial cell network. It includes synaptic transmission but also other types of intercellular communication through a connecting structure (e.g., gap junctions). "Volume" transmission is characterized by signal diffusion in a three-dimensional fashion within the brain extracellular fluid. Thus, multiple, structurally often not well characterized extracellular pathways connect intercommunicating cells. Volume transmission includes short- (but larger than synaptic cleft, i.e. about 20 nm) and long-distance diffusion of signals through the extracellular and cerebrospinal fluid. It must be underlined that the definitions of wiring and volume transmission focus on the modality of transmission and are neutral with respect to the source and target of the transmission, as well as type of informational substance transmitted. Therefore, any cell present in the neural tissue (neurons, astroglia, microglia, ependyma, tanycytes, etc.) can be a source or a target of wiring and volume transmission. In this paper we discuss the basic definitions and some distinctive characteristics of the two types of transmission. In addition, we review the evidence for different types of intercellular communication besides synaptic transmission in the central nervous system during phylogeny, and in vertebrates in physiological and pathological conditions.
Collapse
Affiliation(s)
- L F Agnati
- Department of Biomedical Sciences, University of Modena, Italy
| | | | | | | |
Collapse
|
28
|
Cumberbatch MJ, Chizh BA, Headley PM. Modulation of excitatory amino acid responses by tachykinins and selective tachykinin receptor agonists in the rat spinal cord. Br J Pharmacol 1995; 115:1005-12. [PMID: 7582496 PMCID: PMC1909014 DOI: 10.1111/j.1476-5381.1995.tb15911.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The effects of tachykinins and agonists selective for the three subtypes of neurokinin (NK) receptor have been tested on spinal neuronal responses both to the excitatory amino acids (EAAs) NMDA, AMPA and kainate, and to noxious heat stimuli. The agonists were applied by microiontophoresis in in vivo experiments in alpha-chloralose-anaesthetized, spinalized rats. 2. The NK1-selective agonist, GR 73632, enhanced responses to all three EAAs similarly, whilst the NK2-selective agonist, GR64349, reduced responses to AMPA and kainate without affecting those to NMDA, and the NK3 selective agonist, senktide, enhanced responses to AMPA and kainate. 3. The endogenous ligands substance P (SP) and neurokinin A (NKA) both enhanced responses to NMDA with little effect on responses to kainate, whereas neurokinin B (NKB) selectively enhanced responses to kainate without affecting those to NMDA. 4. The effects of GR73632 on EAA responses showed some differences between the dorsal and ventral horn, with more selectivity towards enhancement of NMDA responses in the ventral horn, but a smaller maximum effect. 5. Background activity was significantly enhanced by GR73632, GR64349, SP and NKA but not by senktide or NKB. GR73632 had the greatest effect on background firing, but this action was variable between cells and was related both to the location within the spinal cord and to the degree of spontaneous activity prior to GR73632 administration. 6. Responses to noxious heat were enhanced consistently only by NKA. 7. These data show that selective agonists for the tachykinin receptors are capable of modulating EAA responses differentially. SP, NKA and NKB appear to act via more than one receptor type when modulating EAA responses in vivo. This indicates that NK-EAA interactions can be more specific than suggested hitherto, with the combined actions at NKI and NK2 receptors biasing EAA responsiveness towards NMDA receptor mediated functions, whereas NK3 receptor activation would have the opposite effect. The physiological role of such interactions is likely to be complex.
Collapse
Affiliation(s)
- M J Cumberbatch
- Department of Physiology, University of Bristol, School of Medical Sciences
| | | | | |
Collapse
|
29
|
Brown JL, Liu H, Maggio JE, Vigna SR, Mantyh PW, Basbaum AI. Morphological characterization of substance P receptor-immunoreactive neurons in the rat spinal cord and trigeminal nucleus caudalis. J Comp Neurol 1995; 356:327-44. [PMID: 7642798 DOI: 10.1002/cne.903560302] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although there is considerable evidence that primary afferent-derived substance P contributes to the transmission of nociceptive messages at the spinal cord level, the population of neurons that expresses the substance P receptor, and thus are likely to respond to substance P, has not been completely characterized. To address this question, we used an antibody directed against the C-terminal portion of the rat substance P receptor to examine the cellular distribution of the receptor in spinal cord neurons. In a previous study, we reported that the substance P receptor decorates almost the entire dendritic and somatic surface of a subpopulation of spinal cord neurons. In the present study we have taken advantage of this labeling pattern to identify morphologically distinct subpopulations of substance P receptor-immunoreactive neurons throughout the rostral-caudal extent of the spinal cord. We observed a dense population of fusiform substance P receptor-immunoreactive neurons in lamina I at all segmental levels. Despite having the highest concentration of substance P terminals, the substantia gelatinosa (lamina II) contained almost no substance P receptor-immunoreactive neurons. Several distinct populations of substance P receptor-immunoreactive neurons were located in laminae III-V; many of these had a large, dorsally directed dendritic arbor that traversed the substantia gelatinosa to reach the marginal layer. Extensive labeling was also found in neurons of the intermediolateral cell column. In the ventral horn, we found that labeling was associated with clusters of motoneurons, notably those in Onuf's nucleus in the sacral spinal cord. Finally, we found no evidence that primary afferent fibers express the substance P receptor. These results indicate that relatively few, but morphologically distinct, subclasses of spinal cord neurons express the substance P receptor. The majority, but not all, of these neurons are located in regions that contain neurons that respond to noxious stimulation.
Collapse
Affiliation(s)
- J L Brown
- Program in Neuroscience, University of California San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- A W Duggan
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Royal (Dick) School of Veterinary Studies, Summerhall, UK
| |
Collapse
|
31
|
Neugebauer V, Schaible HG, Weiretter F, Freudenberger U. The involvement of substance P and neurokinin-1 receptors in the responses of rat dorsal horn neurons to noxious but not to innocuous mechanical stimuli applied to the knee joint. Brain Res 1994; 666:207-15. [PMID: 7533634 DOI: 10.1016/0006-8993(94)90774-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In 29 anesthetized rats, the involvement of substance P and neurokinin-1 receptors in the spinal processing of mechanosensory innocuous and noxious information from the knee and ankle joint was investigated. In 21 rats, multibarrel electrodes were used to record from 46 spinal cord neurons with afferent input from the knee joint and to administer agonists and antagonists by microinophoresis. In 35 of 46 nociceptive neurons, substance P (ejected at 20-120 nA) caused an excitation and/or an increase in responses to innocuous and noxious pressure applied to the knee and ankle. These effects were reduced by ionophoretic application of the specific neurokinin-1 receptor antagonist CP96,345 (ejected at 25-80 nA) but not by CP96,344, its inactive enantiomer. CP96,345 dose-dependently reduced the responses to noxious pressure applied to the knee joint in 28/28 substance P-sensitive neurons but not those to innocuous pressure in 23/23 substance P-sensitive wide dynamic range neurons. CP96,345 did not affect responses to pressure in substance P-insensitive neurons and the inactive enantiomer CP96,344 had no effect in any of the neurons tested. Using microprobes coated with antibody to substance P, intraspinal release of immunoreactive substance P was found to be evoked by noxious pressure applied to the knee but not by innocuous pressure in 8 rats. Both sets of data suggest a role for substance P and neurokinin-1 receptors in the neuronal mechanisms in the spinal cord related to nociception and pain in the normal joint.
Collapse
Affiliation(s)
- V Neugebauer
- Physiologisches Institut, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
32
|
Schaible HG, Freudenberger U, Neugebauer V, Stiller RU. Intraspinal release of immunoreactive calcitonin gene-related peptide during development of inflammation in the joint in vivo--a study with antibody microprobes in cat and rat. Neuroscience 1994; 62:1293-305. [PMID: 7845599 DOI: 10.1016/0306-4522(94)90361-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study addressed the intraspinal release of immunoreactive calcitonin gene-related peptide in vivo during mechanical stimulation of the normal joint and during the development of an acute experimental inflammation in the knee joint in the anaesthetized cat (spinalized) and rat (not spinalized). Release was assessed using microprobes coated with antibody to calcitonin gene-related peptide; inhibition of binding of [125I]calcitonin gene-related peptide to these probes following insertion into the spinal cord is equated with intraspinal release of the endogenous (unlabelled) peptide. Probes inserted prior to inflammation showed marked basal release of immunoreactive calcitonin gene-related peptide in the dorsal horn with a maximum in the superficial dorsal horn in the absence of intentional stimulation. The pattern of binding of [125I]calcitonin gene-related peptide was not or only minimally changed by innocuous mechanical stimuli (flexion of and innocuous pressure to the knee in the cat and innocuous pressure to the knee of the rat) but was significantly altered by electrical stimulation of the tibial nerve in the cat (sufficient to excite unmyelinated afferent fibres), indicating release of the peptide by the latter stimulus. During the first hours of the development of an experimental inflammation in the knee joint induced by intra-articular injections of kaolin and carrageenan, the pattern of binding of [125I]calcitonin gene-related peptide changed. In the cat, the level of immunoreactive calcitonin gene-related peptide showed a persistent increase in the gray matter and up to the surface of the cord and release was slightly increased by innocuous stimuli. In the rat, increased levels of immunoreactive calcitonin gene-related peptide were mainly seen in the superficial and deep dorsal horn during innocuous pressure (this stimulus did not evoke release of the peptide prior to inflammation) and noxious pressure applied to the injected knee, whereas increased basal levels were only observed at later stages. These data show that the development of an acute experimental inflammation in the joint is associated with an enhancement of the intraspinal release of immunoreactive calcitonin gene-related peptide. Since the changes in the release were noted at an early stage, within the first hours, they could contribute to the generation of inflammation-evoked changes of the responsiveness of spinal cord neurons and hence to the mechanisms inducing inflammatory pain.
Collapse
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
33
|
Suzuki H, Yoshioka K, Yanagisawa M, Urayama O, Kurihara T, Hosoki R, Saito K, Otsuka M. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord. Br J Pharmacol 1994; 113:310-6. [PMID: 7529113 PMCID: PMC1510033 DOI: 10.1111/j.1476-5381.1994.tb16210.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors. 6. Effects of individual peptidase inhibitors on the enzymatic degradation of SP and NKA by synaptic membrane fractions were examined. Thiorphan, actinonin and captopril inhibited SP degradation, while thiorphan and actinonin, but not captopril, inhibited NKA degradation. The potency of the inhibition of each peptidase inhibitor was lower than that of the mixture.7. The present results suggest that enzymatic degradation is involved in the inactivation of tachykinin neurotransmitters in the spinal cord of the neonatal rat.
Collapse
Affiliation(s)
- H Suzuki
- Department of Pharmacology, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lang CW, Hope PJ, Grubb BD, Duggan AW. Lack of effect of microinjection of noradrenaline or medetomidine on stimulus-evoked release of substance P in the spinal cord of the cat: a study with antibody microprobes. Br J Pharmacol 1994; 112:951-7. [PMID: 7522862 PMCID: PMC1910218 DOI: 10.1111/j.1476-5381.1994.tb13173.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Experiments were performed on barbiturate anaesthetized, spinalized cats to investigate the effect of microinjected noradrenaline or medetomidine on the release of immunoreactive substance P in the dorsal spinal cord following peripheral nerve stimulation. The presence of immunoreactive substance P was assessed with microprobes bearing C-terminus-directed antibodies to substance P. 2. Noradrenaline or medetomidine were microinjected into the grey matter of the spinal cord, near microprobe insertion sites, at depths of 2.5, 2.0, 1.5 and 1.0 mm below the spinal cord surface with volumes of approximately 0.125 microliters and a concentration of 10(-3) M. 3. In the untreated spinal cord, electrical stimulation of the ipsilateral tibial nerve (suprathreshold for C-fibres) elicited release of immunoreactive substance P which was centred in and around lamina II. Neither noradrenaline nor medetomidine administration in the manner described produced significant alterations in this pattern of nerve stimulus-evoked release. 4. In agreement with recent ultrastructural studies these results do not support a control of substance P release by catecholamines released from sites near to the central terminals of small diameter primary afferent fibres.
Collapse
Affiliation(s)
- C W Lang
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall
| | | | | | | |
Collapse
|
35
|
Liu H, Brown JL, Jasmin L, Maggio JE, Vigna SR, Mantyh PW, Basbaum AI. Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci U S A 1994; 91:1009-13. [PMID: 7508118 PMCID: PMC521443 DOI: 10.1073/pnas.91.3.1009] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Light microscopic studies have demonstrated significant mismatches in the location of neuropeptides and their respective binding sites in the central nervous system. In the present study we used an antiserum raised against a synthetic peptide corresponding to the carboxyl-terminal tail of the substance P (SP) receptor (SPR) to further explore the relationship between a neuropeptide and its receptor. Light microscopy revealed an excellent correlation between the patterns of SPR immunoreactivity and of 125I-labeled SPR-binding sites in the central nervous system. The SPR appeared to be exclusively expressed by neurons; in fact, the SPR decorates the somatic and dendritic surface of neurons, producing Golgi-like images. Electron microscopic analysis in cortex, striatum, and spinal cord revealed that approximately 70% of the surface membrane of immunoreactive neurons is SPR laden. Simultaneous electron microscopic labeling of SP and SPR demonstrated significant mismatch at the synaptic level. Although some SP terminals contacted SPR-immunoreactive membrane, no more than 15% of the SPR-laden membrane apposed synaptic terminals. These results suggest that in contrast to more "classical" central and peripheral nervous system synapses, wherein the receptor immediately apposes the site of neurotransmitter storage and release, much of the surface of SPR-expressing neurons can be targeted by SP that diffuses a considerable distance from its site of release.
Collapse
Affiliation(s)
- H Liu
- Department of Anatomy, University of California San Francisco 94143
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Thompson SW, Urban L, Dray A. Contribution of NK1 and NK2 receptor activation to high threshold afferent fibre evoked ventral root responses in the rat spinal cord in vitro. Brain Res 1993; 625:100-8. [PMID: 7902193 DOI: 10.1016/0006-8993(93)90142-a] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The contribution of neurokinin and NMDA receptor activation to the generation of the prolonged high threshold evoked ventral root potential (VRP) and its temporal summation has been assessed in the neonatal rat hemisected spinal cord maintained in vitro. High intensity single shock stimulation of the dorsal roots evoked a prolonged VRP (9.81 +/- 0.9 s, n = 11). A low frequency (1-10 Hz) repetitive stimulation (20 s duration) of high threshold afferent fibres evoked a summated VRP. This summated VRP reflected the temporal summation of EPSP's in spinal cord neurones which underlies the phenomenon of 'Windup'. The integrated area and duration of the high threshold evoked VRP were significantly reduced following superfusion of the spinal cord with the NK2 receptor antagonist MEN,10376 (100 nM). In the presence of D-AP5 (20 microM) the area of the C-fibre evoked VRP was also significantly reduced. The VRP duration was unaffected. Superfusion with either CP-96,345 (500 nM) or RP,67580 (100 nM), both non-peptide NK1 antagonist, did not have any significant effect upon the area or duration of the prolonged VRP following high threshold stimulation. The simultaneous application of D-AP5 (20 microM) with either MEN,10376 (100 nM) or CP-96,345 (500 nM) together produced a reduction in the area of the evoked VRP which was comparable to the value obtained by addition of their individual effects. The amplitude of the summated VRP was significantly reduced following application of D-AP5 (20 microM). No significant effect upon the amplitude was observed following separate application of either MEN,10376 (100 nM), CP-96,345 (500 nM) or RP,67580 (100 nM).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S W Thompson
- Department of Neuropharmacology, Sandoz Institute for Medical Research, London, UK
| | | | | |
Collapse
|
38
|
|
39
|
Abstract
Recent advances in pain research illustrate the analytical power of modern neurosciences in a field previously accessible only to methods of systems biology. Novel molecular and cellular biological techniques have changed the face of pain research by detailing the multiplicity of pain transducing and pain suppressive systems which involve neuronal and hormonal systems acting in concert to help the individual to cope with pain. The introduction of concepts of neuronal plasticity in this field has led to important therapeutical consequences. Novel compounds and new regimens for drug treatment to prevent activity-dependent long-term changes or to facilitate extinction in pain-related systems are emerging.
Collapse
Affiliation(s)
- W Zieglgänsberger
- Max-Planck-Institute of Psychiatry, Clinical Institute, München, Germany
| | | |
Collapse
|
40
|
Furmidge LJ, Duggan AW, Arbuthnott GW. Substance P release from rat nucleus accumbens and striatum: an in vivo study using antibody microprobes. Brain Res 1993; 610:234-41. [PMID: 7686434 DOI: 10.1016/0006-8993(93)91406-i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antibody-coated microprobes have provided evidence for the release of neuropeptides in localized regions of the cat spinal cord. We have applied this method to study the release of substance P (SP) from different regions of the rat brain. Anti-SP microprobes were inserted (to a depth of 8 mm) through cortex, striatum, and nucleus accumbens of halothane anaesthetised rats and remained in situ for 10 min. Microprobes (4 control and 10 post-treatment, per rat) were then incubated with 125I-SP and an autoradiographic image produced. In the region of the nucleus accumbens immunoreactive (ir) SP was detected during the first 30 min after intraperitoneal injection of d-amphetamine (4 mg/kg, P < 0.05) but not following saline (P > 0.05). During this time, no release of ir SP was seen over areas of the probes that corresponded to the striatum. At later time intervals (1-4 h) after amphetamine, binding of ir SP was detected along the whole length of the microprobes. Release of SP is thought to be due to the action of dopamine on postsynaptic cells containing this peptide. The later spread of the peptide requires further study.
Collapse
Affiliation(s)
- L J Furmidge
- Department of Preclinical Veterinary Sciences, University of Edinburgh, UK
| | | | | |
Collapse
|