1
|
Jiang B, Wang J, Liu W, Cheng J, Xu J, Cao M, Li Y. Comparative transcriptome analysis of MDBK cells reveals that BoIFN-γ augmented host immune responses to bovine herpesvirus 1 infection. Front Microbiol 2022; 13:973278. [PMID: 36016774 PMCID: PMC9396027 DOI: 10.3389/fmicb.2022.973278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes infectious bovine rhinotracheitis and infectious pustular vulvovaginitis in cattle. Ιnterferon-gamma (IFN-γ) is a pleiotropic cytokine with antiviral activity that modulates the innate and adaptive immune responses. In this study, we prepared high-purity bovine interferon gamma (BoIFN-γ) dimer protein using prokaryotic expression system and affinity chromatography. We subsequently investigated the effect of BoIFN-γ on BoHV-1 infection in Madin-Darby bovine kidney (MDBK) cells. The results showed that BoIFN-γ pre-treament not only decreased the production of BoHV-1 but also reduced the cytopathic effect of the virus. Differential gene expression profiles of BoHV-1 infected MDBK cells were then analysed through high-throughput RNA sequencing. The data showed that BoIFN-γ pre-treatment reduced lipid metabolism disorder and DNA damage caused by BoHV-1 infection. Furthermore, BoIFN-γ treatment upregulated the transcription of interferon regulatory transcription factors (IRF1 and GBP5) and interferon-stimulated genes (ISGs) of MDBK cells. Additionally, BoIFN-γ promotes expression of cellular protein involved in complement activation and coagulation cascades response as well as antigen processing and presentation process, while BoHV-1 infection dramatically downregulates transcription of these immune components including C3, C1r, C1s, PLAT, ITGB2, PROCR, BoLA, CD74, B2M, PA28, BoLA-DRA, and TAPBP. Collectively, our findings revealed that BoIFN-γ pre-treatment can improve host resistance to BoHV-1 infection and regulate transcription or expression of host protein associated with cellular metabolism and innate immune response. This provides insights into the development of prophylactic agents for prevention and control of BoHV-1 infection.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jian Xu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- *Correspondence: Yongqing Li,
| |
Collapse
|
2
|
Kornuta CA, Langellotti CA, Bidart JE, Soria I, Quattrocchi V, Gammella M, Cheuquepán Valenzuela F, Mignaqui AC, Ferraris S, Charleston B, Hecker YP, Moore DP, Zamorano PI. A plasmid encoding the extracellular domain of CD40 ligand and Montanide™ GEL01 as adjuvants enhance the immunogenicity and the protection induced by a DNA vaccine against BoHV-1. Vaccine 2021; 39:1007-1017. [PMID: 33446386 DOI: 10.1016/j.vaccine.2020.11.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 02/09/2023]
Abstract
DNA vaccines are capable of inducing humoral and cellular immunity, and are important to control bovine herpesvirus 1 (BoHV-1), an agent of the bovine respiratory disease complex. In previous work, a DNA plasmid that encodes a secreted form of BoHV-1 glycoprotein D (pCIgD) together with commercial adjuvants provided partial protection against viral challenge of bovines. In this work, we evaluate new molecules that could potentiate the DNA vaccine. We show that a plasmid encoding a soluble CD40 ligand (CD40L) and the adjuvant Montanide™ GEL01 (GEL01) activate in vitro bovine afferent lymph dendritic cells (ALDCs). CD40L is a co-stimulating molecule, expressed transiently on activated CD4+ T cells and, to a lesser extent, on activated B cells and platelets. The interaction with its receptor, CD40, exerts effects on the presenting cells, triggering responses in the immune system. GEL01 was designed to improve transfection of DNA vaccines. We vaccinated cattle with: pCIgD; pCIgD-GEL01; pCIgD with GEL01 and CD40L plasmid (named pCIgD-CD40L-GEL01) or with pCIneo vaccines. The results show that CD40L plasmid with GEL01 improved the pCIgD DNA vaccine, increasing anti-BoHV-1 total IgGs, IgG1, IgG2 subclasses, and neutralizing antibodies in serum. After viral challenge, bovines vaccinated with pCIgD-GEL01-CD40L showed a significant decrease in viral excretion and clinical score. On the other hand, 80% of animals in group pCIgD-GEL01-CD40L presented specific anti-BoHV-1 IgG1 antibodies in nasal swabs. In addition, PBMCs from pCIgD-CD40L-GEL01 had the highest percentage of animals with a positive lymphoproliferative response against the virus and significant differences in the secretion of IFNγ and IL-4 by mononuclear cells, indicating the stimulation of the cellular immune response. Overall, the results demonstrate that a plasmid expressing CD40L associated with the adjuvant GEL01 improves the efficacy of a DNA vaccine against BoHV-1.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Felipe Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Ana Clara Mignaqui
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - Yanina Paola Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Dadin Prando Moore
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad del Salvador, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Van Anne TR, Rinehart CL, Buterbaugh RE, Bauer MJ, Young AJ, Blaha ML, Klein AL, Chase CCL. Cell-mediated and humoral immune responses to bovine herpesvirus type 1 and bovine viral diarrhea virus in calves following administration of a killed-virus vaccine and bovine herpesvirus type 1 challenge. Am J Vet Res 2019; 79:1166-1178. [PMID: 30372148 DOI: 10.2460/ajvr.79.11.1166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate cell-mediated and humoral immune responses of calves receiving 2 doses of a dual-adjuvanted vaccine containing inactivated bovine herpesvirus type 1 (BHV1) and bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2) before and after exposure to BHV1. ANIMALS 24 Holstein steers negative for anti-BHV1 antibodies and proliferative cell-mediated immune responses against BHV1 and BVDV. PROCEDURES Calves were randomly assigned to 3 groups. The vaccinated group (n = 10) received 2 doses of vaccine on days 0 and 21. Control (n = 10) and seeder (4) groups remained unvaccinated. Calves were commingled during the study except for the 3-day period (days 53 to 55) when seeders were inoculated with BHV1 (1.04 × 107 TCID50, IV) to serve as a source of virus for challenge (days 56 through 84). Rectal temperature and clinical illness scores were monitored, and blood and nasal specimens were obtained for determination of clinicopathologic and immunologic variables. RESULTS After BHV1 challenge, mean rectal temperature and clinical illness scores were lower for vaccinates than controls. In vaccinates, antibody titers against BHV1 and BVDV2, but not BVDV1, increased after challenge as did extracellular and intracellular interferon-γ expression, indicating a T helper 1 memory response. Additional results of cell marker expression were variable, with no significant increase or decrease associated with treatment. CONCLUSIONS AND CLINICAL RELEVANCE Calves administered 2 doses of a killed-virus vaccine developed cell-mediated and humoral immune responses to BHV1 and BVDV, which were protective against disease when those calves were subsequently exposed to BHV1.
Collapse
|
4
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
5
|
Biswas S, Bandyopadhyay S, Dimri U, H. Patra P. Bovine herpesvirus-1 (BHV-1) – a re-emerging concern in livestock: a revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet Q 2013; 33:68-81. [DOI: 10.1080/01652176.2013.799301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Suman Biswas
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Umesh Dimri
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Pabitra H. Patra
- Department of Pharmacology & Toxicology, C.V.Sc. & AH, Tripura, India
| |
Collapse
|
6
|
Abstract
AbstractBovine herpesvirus 1 (BHV-1) causes a variety of diseases and is globally distributed. It infects via mucosal epithelium, leading to rapid lytic replication and latent infection, primarily in sensory ganglia. Large amounts of virus can be excreted by the host on primary infection or upon recrudescence of latent infection, resulting in disease spread. The bovine immune response to BHV-1 is rapid, robust, balanced, and long-lasting. The innate immune system is the first to respond to the infection, with type I interferons (IFNs), inflammatory cytokines, killing of infected host cells, and priming of a balanced adaptive immune response. The virus possesses a variety of immune evasion strategies, including inhibition of type I IFN production, chemokine and complement binding, infection of macrophages and neutrophils, and latency. BHV-1 immune suppression contributes to the severity of its disease manifestations and to the bovine respiratory disease complex, the leading cause of cattle death loss in the USA.
Collapse
|
7
|
Jones C, Chowdhury S. Bovine herpesvirus type 1 (BHV-1) is an important cofactor in the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 2010; 26:303-21. [PMID: 20619186 DOI: 10.1016/j.cvfa.2010.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BHV-1 is an important pathogen of cattle. Because of its ability to induce immune suppression, BHV-1 is an important agent in the multifactorial disorder, bovine respiratory disease complex (BRDC). BHV-1 encodes several proteins that inhibit various arms of the immune system suggesting that these proteins are important in the development of BRDC.
Collapse
Affiliation(s)
- Clinton Jones
- School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Lincoln, NE 68583-0905, USA.
| | | |
Collapse
|
8
|
Abstract
AbstractBovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.
Collapse
|
9
|
Binjawadag B, Hari Babu Y, Sreekumar E. Immunomodulatory Effect of Recombinant Chicken Interferon-gamma (rchIFN-γ) on Specific and Non-specific Immune Responses in Chicken Vaccinated Against Newcastle Disease Virus (NDV). ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ijps.2009.122.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2008; 8:187-205. [PMID: 18218160 DOI: 10.1017/s146625230700134x] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of cattle by bovine herpesvirus type 1 (BHV-1) can lead to upper respiratory tract disorders, conjunctivitis, genital disorders and immune suppression. BHV-1-induced immune suppression initiates bovine respiratory disease complex (BRDC), which costs the US cattle industry approximately 3 billion dollars annually. BHV-1 encodes at least three proteins that can inhibit specific arms of the immune system: (i) bICP0 inhibits interferon-dependent transcription, (ii) the UL41.5 protein inhibits CD8+ T-cell recognition of infected cells by preventing trafficking of viral peptides to the surface of the cells and (iii) glycoprotein G is a chemokine-binding protein that prevents homing of lymphocytes to sights of infection. Following acute infection of calves, BHV-1 can also infect and induce high levels of apoptosis of CD4+ T-cells. Consequently, the ability of BHV-1 to impair the immune response can lead to BRDC. Following acute infection, BHV-1 establishes latency in sensory neurons of trigeminal ganglia (TG) and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two viral genes, the latency related gene and ORF-E are abundantly expressed during latency, suggesting that they regulate the latency-reactivation cycle. The ability of BHV-1 to enter permissive cells, infect sensory neurons and promote virus spread from sensory neurons to mucosal surfaces following reactivation from latency is also regulated by several viral glycoproteins. The focus of this review is to summarize the biology of BHV-1 and how this relates to BRDC.
Collapse
|
11
|
Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 2007; 38:181-209. [PMID: 17257569 DOI: 10.1051/vetres:2006059] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/15/2006] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), classified as an alphaherpesvirus, is a major pathogen of cattle. Primary infection is accompanied by various clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis, and systemic infection in neonates. When animals survive, a life-long latent infection is established in nervous sensory ganglia. Several reactivation stimuli can lead to viral re-excretion, which is responsible for the maintenance of BoHV-1 within a cattle herd. This paper focuses on an updated pathogenesis based on a molecular characterization of BoHV-1 and the description of the virus cycle. Special emphasis is accorded to the impact of the latency and reactivation cycle on the epidemiology and the control of BoHV-1. Several European countries have initiated BoHV-1 eradication schemes because of the significant losses incurred by disease and trading restrictions. The vaccines used against BoHV-1 are described in this context where the differentiation of infected from vaccinated animals is of critical importance to achieve BoHV-1 eradication.
Collapse
Affiliation(s)
- Benoît Muylkens
- Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, B43b, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
12
|
Abstract
The common disease caused by bovine herpes virus 1 infection is febrile rhinotracheitis (FRT) and under certain conditions the virus is strongly implicated in pre-disposing cattle to pneumonic pasteurellosis. These illnesses account for a significant economic loss in the cattle industry worldwide and vaccination is widely applied. In naive cattle, and for a short period of time, old and new vaccines significantly reduce clinical signs of FRT and also virus shedding. A single intranasal vaccination affords significant protection in face of maternally derived antibodies, and the protection can be significantly prolonged by a booster intramuscular vaccination. Current data recommend vaccination in face of an outbreak and vaccines appear safe for pregnant cattle.
Collapse
Affiliation(s)
- J R Patel
- Intervet UK Ltd., Huntingdon, Cambridgeshire PE28 2BQ, UK.
| |
Collapse
|
13
|
Leite F, Kuckleburg C, Atapattu D, Schultz R, Czuprynski CJ. BHV-1 infection and inflammatory cytokines amplify the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol 2004; 99:193-202. [PMID: 15135985 DOI: 10.1016/j.vetimm.2004.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 12/22/2003] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Bovine herpesvirus-1 (BHV-1) has been reported to increase the susceptibility of cattle to respiratory disease caused by Mannheimia (Pasteurella) haemolytica A1. The principal virulence factor of M. haemolytica is a leukotoxin (LKT) that can specifically kill ruminant leukocytes following its binding to the beta2-integrin CD11a/CD18 (lymphocyte function-associated antigen 1 (LFA-1)). In this study, we investigated the effects of experimental infection of bovine peripheral blood mononuclear cells (MNCs) with BHV-1 in vitro, on the subsequent interaction of these cells with the M. haemolytica LKT. We found that BHV-1 infection increased LFA-1 expression (as assessed by flow cytometry), and subsequently enhanced LKT binding and cytotoxicity to bovine MNCs. We also found that BHV-1 infection increased CD18, IL-1beta, and IFN-gamma mRNA expression by MNCs. As previously reported for bovine polymorphonuclear neutrophils (PMNs), MNCs increased their expression of LFA-1, and their LKT binding and cytotoxicity, following exposure to IL-1beta, TNF-alpha, and IFN-gamma. These findings suggest that BHV-1 infection, and the resulting release of inflammatory cytokines, can stimulate expression of LFA-1 in bovine MNCs, thus enhancing the binding and biological effects of LKT. If such a mechanism occurs in vivo it might explain, in part, the increased susceptibility of BHV-1 infected cattle to bovine pasteurellosis.
Collapse
Affiliation(s)
- F Leite
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
14
|
Woolums AR, Siger L, Johnson S, Gallo G, Conlon J. Rapid onset of protection following vaccination of calves with multivalent vaccines containing modified-live or modified-live and killed BHV-1 is associated with virus-specific interferon gamma production. Vaccine 2003; 21:1158-64. [PMID: 12559793 DOI: 10.1016/s0264-410x(02)00560-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the effect of vaccination with commercially-available multivalent vaccines containing either modified-live (MLV) bovine herpesvirus-1 (BHV-1) (Bovishield) or MLV plus killed (MLV + K) BHV-1 (Reliant Plus) on protection against challenge at 5 days after a single vaccination. An additional objective was to determine whether cell-mediated immunity as measured by virus-specific interferon gamma (IFN-gamma) production by peripheral blood mononuclear cells (PBMC) was associated with any early protection induced by vaccination. Clinical signs, serum neutralizing (SN) titers, and nasal virus isolation (VI) titers were also measured. The 12-16-week-old dairy cross-calves seronegative for antibodies to BHV-1 were vaccinated with a multivalent vaccine containing MLV BHV-1 (n = 19), a multivalent vaccine containing MLV + K BHV-1 (n = 19), or a control multivalent vaccine not containing BHV-1 (n = 10) on day 0 and challenged intranasally on day 5. PBMC were isolated on days 0, 3, 5, 8, 10, 14 and 19. PBMC were incubated in vitro with spent media, live BHV-1, or heat-inactivated BHV-1 for 72 h. Supernatants were assayed for bovine IFN-gamma by ELISA. Bovine herpesvirus-1-specific IFN-gamma production was expressed as percent of the kit positive control, with value for spent media subtracted. Clinical signs were monitored daily. Serum VN titers were measured on days 0-5 and 19. Nasal VI titer was measured every other day from days 5 to 19. Interferon gamma production was higher on day 5, and was significantly increased post-challenge, in both vaccine groups compared to controls. There was no difference between vaccine groups on any day. There was no significant difference in SN titer among groups on any day. Virus isolation titer was significantly higher in controls on days 6 and 8 compared to both vaccine groups. Temperatures were significantly higher and nasal discharge was present more often post-challenge in controls compared to vaccine groups. Vaccination 5 days prior to challenge with commercially-available vaccine containing MLV or MLV + K BHV-1 was associated with increased BHV-1-specific IFN-gamma production, decreased viral shedding, lower temperatures and less nasal discharge post-challenge. Cell mediated immune responses as measured by IFN-gamma production are stimulated rapidly following BHV-1 vaccination of calves.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Large Animal Medicine, College of Veterinary Medicine, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
15
|
Wellenberg GJ, Bruschke CJM, Wisselink HJ, Barkema HW, Van Oirschot JT. Simultaneous intramammary and intranasal inoculation of lactating cows with bovine herpesvirus 4 induce subclinical mastitis. Vet Microbiol 2002; 86:115-29. [PMID: 11888695 DOI: 10.1016/s0378-1135(01)00496-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we examined whether an experimental bovine herpesvirus 4 (BHV4) infection can induce bovine mastitis, or can enhance bovine mastitis induced by Streptococcus uberis (S. uberis). Four lactating cows were inoculated intramammarily and intranasally with BHV4, and four lactating control cows were mock-inoculated. After 14 days, two of four cows from each group were inoculated intramammarily with S. uberis. No clinical signs were recorded in cows inoculated only with BHV4, and their milk samples showed no abnormal morphology, despite the fact that BHV4 replicated in inoculated quarters. Somatic cell count increased significantly in milk from three of six BHV4-inoculated quarters, compared to the non-inoculated quarters of the same cows (within-cow) and the quarters of mock-inoculated cows (control group) on days 8, 9 and 11 post-inoculation (pi). BHV4 was isolated from nasal swabs between days 2 and 9 pi. Clinical mastitis was observed in all four cows intramammarily inoculated with S. uberis. A preceding BHV4 infection did not exacerbate the clinical mastitis induced by S. uberis. S. uberis infections appeared to trigger BHV4 replication. From one quarter of each of two cows inoculated with BHV4 and S. uberis, BHV4 was isolated, and not from quarters inoculated with BHV4 only. In conclusion, BHV4 did not induce bovine clinical mastitis after simultaneous intranasal and intramammary inoculation. However, the BHV4 infection did induce subclinical mastitis in 50% of the cows and the quarters.
Collapse
Affiliation(s)
- G J Wellenberg
- Division of Infectious Diseases and Food Chain Quality, Institute for Animal Science and Health (ID-Lelystad), Food Chain Quality, Edelhertweg 15, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Raggo C, Habermehl M, Babiuk LA, Griebel P. The in vivo effects of recombinant bovine herpesvirus-1 expressing bovine interferon-gamma. J Gen Virol 2000; 81:2665-2673. [PMID: 11038378 DOI: 10.1099/0022-1317-81-11-2665] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the biological relevance of using bovine herpesvirus-1 (BHV-1) as a vector for expressing cytokines, a BHV-1 virus that expressed bovine interferon-gamma (IFN-gamma) was constructed. This recombinant virus (BHV-1/IFNgamma) was then used to infect the natural host in a respiratory disease model. In vitro characterization of the recombinant interferon-gamma confirmed that the cytokine expressed in BHV-1-infected cells was biologically active. The in vivo effects of the recombinant IFN-gamma were then analysed during a primary infection and after reactivation of a latent infection. During the primary infection, similar body temperature, clinical responses and virus shedding were observed for calves infected with either recombinant BHV-1/IFNgamma or parental gC(-)/LacZ(+) virus. An analysis of cellular and humoral responses did not reveal any significant immunomodulation by BHV-1/IFNgamma during the primary infection. The stability and activity of recombinant IFN-gamma was also analysed following the establishment of a latent infection. The presence of recombinant IFN-gamma did not significantly alter virus shedding following reactivation. The isolation of reactivated BHV-1/IFNgamma virus confirmed that a functional IFN-gamma gene was retained during latency. Thus, herpesviruses may provide virus vectors that retain functional genes during latency and recrudescence.
Collapse
Affiliation(s)
- Camilo Raggo
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| | - Monique Habermehl
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| | - Lorne A Babiuk
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| | - Philip Griebel
- Department of Veterinary Microbiology1 and Veterinary Infectious Disease Organization2, 120 Veterinary Road, University of Saskatchewan, Canada S7N 5E3
| |
Collapse
|
17
|
Renjifo X, Letellier C, Keil GM, Ismaili J, Vanderplasschen A, Michel P, Godfroid J, Walravens K, Charlier G, Pastoret PP, Urbain J, Denis M, Moser M, Kerkhofs P. Susceptibility of bovine antigen-presenting cells to infection by bovine herpesvirus 1 and in vitro presentation to T cells: two independent events. J Virol 1999; 73:4840-6. [PMID: 10233945 PMCID: PMC112527 DOI: 10.1128/jvi.73.6.4840-4846.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to develop an in vitro system for presentation of bovine herpesvirus 1 (BHV-1) antigens to bovine T lymphocytes and to characterize the antigen-presenting cells (APC) which efficiently activate CD4(+) T cells. Two approaches were used to monitor the infection of APC by BHV-1 as follows: (i) detection of viral glycoproteins at the cell surface by immunofluorescence staining and (ii) detection of UL26 transcripts by reverse transcription-PCR. The monocytes were infected, while dendritic cells (DC) did not demonstrate any detectable viral expression. These data suggest that monocytes are one site of replication, while DC are not. The capacities of monocytes and DC to present BHV-1 viral antigens in vitro were compared. T lymphocytes (CD2(+) or CD4(+)) from BHV-1 immune cattle were stimulated in the presence of APC previously incubated with live or inactivated wild-type BHV-1. DC stimulated strong proliferation of Ag-specific T cells, while monocytes were poor stimulators of T-cell proliferation. When viral attachment to the surface of the APC was inhibited by virus pretreatment with soluble heparin, T-cell proliferation was dramatically decreased. Unexpectedly, incubation of DC and monocytes with the deletion mutant BHV-1 gD-/-, which displays impaired fusion capacity, resulted in strong activation of T lymphocytes by both APC types. Collectively, these results indicate that presentation of BHV-1 antigens to immune T cells is effective in the absence of productive infection and suggest that BHV-1 gD-/- mutant virus could be used to induce virus-specific immune responses in cattle.
Collapse
Affiliation(s)
- X Renjifo
- Département de Biologie Moléculaire, Université Libre de Bruxelles, 1640 Rhode-Saint-Genèse, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Babiuk LA, Lewis PJ, van Drunen Little-van den Hurk S, Tikoo S, Liang X. Nucleic acid vaccines: veterinary applications. Curr Top Microbiol Immunol 1998; 226:90-106. [PMID: 9479838 DOI: 10.1007/978-3-642-80475-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
20
|
Kapil S, Basaraba RJ. Infectious bovine rhinotracheitis, parainfluenza-3, and respiratory coronavirus. Vet Clin North Am Food Anim Pract 1997; 13:455-69. [PMID: 9368989 PMCID: PMC7135389 DOI: 10.1016/s0749-0720(15)30308-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of viruses have been proven to be primary respiratory pathogens of cattle. Viruses may play an important role in making cattle susceptible to secondary respiratory bacterial pathogens. Epidemiology, pathogenesis, laboratory diagnosis, and important properties in infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI-3), and bovine respiratory coronavirus (BRCV) are described in this article.
Collapse
Affiliation(s)
- S Kapil
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | | |
Collapse
|
21
|
Ellis JA, Steeves E, Wright AK, Bogdan JR, Davis WC, Kanara EW, Haines DM. Cell-mediated cytolysis of equine herpesvirus-infected cells by leukocytes from young vaccinated horses. Vet Immunol Immunopathol 1997; 57:201-14. [PMID: 9261959 DOI: 10.1016/s0165-2427(96)05749-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study was to determine whether the administration of modified-live equine herpesvirus (EHV-1) to young horses with residual maternal antibodies stimulated EHV-specific cytolytic responses, and whether these responses were crossreactive between EHV-1 and EHV-4. Eighteen clinically normal Belgian cross-foals were used in the study and were commingled in two adjacent pens. Skin biopsies were harvested from 16 foals within 24 h of birth and fibroblast cultures were established, expanded and cryopreserved. Beginning at approximately 10 weeks of age, 10 randomly chosen foals were inoculated on days 0, 21, and 43 of the study with a vaccine containing modified-live EHV-1. Blood mononuclear leukocytes were obtained on days 0, 32, and 50 for the assessment of EHV-specific cytolytic activity using 5 h and 18 h chromium release assays. EHV-1-specific antibodies were assessed by enzyme-linked immunosorbent assay using serum collected on days -21, 0, 32, and 50 of the study. Lymphocyte blastogenic tests and bioassays for interferon activity were conducted on day 50. After two vaccinations, mononuclear leukocytes from seven of ten vaccinated foals had cytolytic activity against autologous EHV-1 cells and leukocytes from six of ten lysed EHV-4-infected cells when tested in an 18 h assay. This activity was enhanced by exogenous interleukin 2 and was markedly reduced using target cells from unrelated horses. Cytotoxicity was not detected in a 5 h assay following in vitro stimulation of leukocytes. After three vaccinations, blood leukocytes from 6/6 vaccinated foals and 0/6 unvaccinated foals had proliferative responses EHV-1. There were no significant differences in interferon production by leukocytes from these foals. Twelve foals tested had low concentrations of (maternal) EHV-1-specific antibody prior to vaccination. Five of eight foals tested had increases in EHV-specific antibodies, while 4/4 commingled unvaccinated foals had a decrease or no change in EHV-specific antibodies. These results demonstrate cytotoxic cellular immune responses can be induced in young horses with maternal antibodies following administration of modified-live vaccine.
Collapse
Affiliation(s)
- J A Ellis
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Denis M, Hanon E, Rijsewijk FA, Kaashoek MJ, van Oirschot JT, Thiry E, Pastoret PP. The role of glycoproteins gC, gE, gI, and gG in the induction of cell-mediated immune responses to bovine herpesvirus 1. Vet Microbiol 1996; 53:121-32. [PMID: 9011004 DOI: 10.1016/s0378-1135(96)01240-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutant viruses with deletions in genes encoding non-essential glycoproteins are considered as promising bovine herpesvirus 1 (BHV1) vaccine candidates. The present study compared the influence of various gene deletions (gC, gE, gI, gG) on the induction of cell-mediated immune responses against the virus. The highest BHV1 specific lymphoproliferative response was observed in the group of calves inoculated with the gC- mutant. However, in all groups of inoculated calves, limiting dilution analysis showed marked individual variability in the number of BHV1 specific T lymphocytes that were stimulated. The same animals were then challenged with wild-type BHV1. In these animals, limiting dilution analysis did not reveal gE, gI nor gG as a major T lymphocyte antigen. However, further analysis suggested the T cell antigenicity of gE in a low number of BHV1 hyperimmunized calves. Stimulation of MHC unrestricted cytotoxicity was also evaluated after inoculation with the various deletion mutants. Cytotoxicity in gC- inoculated calves was as high as in BHV1 inoculated calves. In conclusion, among the BHV1 deletion mutants that were tested, the gC- mutant stimulated the best cell-mediated immune responses.
Collapse
Affiliation(s)
- M Denis
- Dept. of Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Immune responses to bovine herpesvirus 1 (BHV-1) have been studied following exposure of animals to virulent virus, conventional live or killed vaccines, genetically engineered live virus vaccines, subunit vaccines and, more recently, following immunization with plasmids encoding putative protective antigens. In all cases reported to date, exposure to BHV-1 or its glycoproteins induced specific responses to the virus which are capable of neutralizing virus and killing virus infected cells. These studies clearly indicate that the responses to BHV-1 are broad based, including both Th1 and Th2. In addition to inducing neutralizing antibodies, which can prevent virus attachment and penetration, these antibodies can also participate in antibody complement lysis of infected cells or in antibody dependent cell cytotoxicity. The virus also induces a myriad of specific cellular responses including the induction of cytokines, which either directly or indirectly inhibit virus replication by activation of effector cells. These activities have been associated with lymphocytes, NK-like cells, macrophages and polymorphonuclear neutrophils. These effector cells can kill virus infected cells either directly or by interacting with antibody to induce cell death by antibody dependent cell cytotoxicity. Killing of virus infected cells occurs after the expression of viral antigens on the cell surface of infected cells. Since the relationship between the time of cell killing and completion of virus assembly will influence whether the infectious cycle is aborted or results in productive viral replication any enhancement in viral killing will dramatically reduce the virus load. Based on these studies, many people conclude that antibody is critical in preventing infection and spread to susceptible contacts. In contrast, cell mediated immunity is involved in recovery from infection. However, none of these events occur in isolation in a body and a defect in one will dramatically influence the other. Furthermore, the relative importance of each effector mechanism will clearly depend on whether the animal is exposed to the virus for the first time (primary infection) or it is a secondary exposure following vaccination or infection with the field virus. Following a primary infection, where there is no antibody to interfere with the initial virus-cell interaction at the receptor level, the virus initiates an infection. These initial interactions are mediated primarily by the viral glycoproteins. Following the initial infection, viral protein synthesis induces a series of events which stimulate the nonspecific immune responses of the host. Therefore, the nonspecific immune responses (mediated primarily by viral products which induce early cytokines) are amongst the first line of defense in helping clear the infection both directly as well as indirectly by stimulating the specific immune response. The macrophage is instrumental in focusing the specific immune response by producing various cytokines and subsequently responding to cytokines produced by T-cells to kill to virus infected cells. This activity is detectable within 2 days after infection in lung parenchymal cells and 5-7 days in peripheral blood leukocytes. Interactions between various effector functions in limiting virus replication are described.
Collapse
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, Saskatoon, Sask., Canada
| | | | | |
Collapse
|
24
|
Van Kessel AG, Godson DL, Baca-Estrada ME, Morsey MA, Hughes HP, Harland R, Shuster DE, Daley MJ, Babiuk LA. Effect of recombinant bovine interleukin-1 beta in normal calves and in calves infected with bovine herpesvirus type 1. J Interferon Cytokine Res 1996; 16:881-90. [PMID: 8938563 DOI: 10.1089/jir.1996.16.881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bovine herpesvirus-1 (BHV-1) is an important pathogen of respiratory infections in cattle. Its continuing importance lies in its ability to predispose infected hosts to bacterial infections. In this present study, we determined whether the immunoregulatory effects induced by interleukin-1 (IL-1) could stimulate appropriate host defense mechanisms to influence the course of BHV-1 infection in cattle. We first evaluated the effect of different doses (10-1000 ng/kg) of IL-1 in normal cattle. A single administration of IL-1 was able to induce a dose-dependent increase in polymorphonuclear (PMN) cells as well as monocytes in peripheral blood. The number of CD3+ lymphocytes and gamma/delta T cells in peripheral circulation decreased transiently in a dose-dependent manner. In the disease model, the effect of IL-1 administration (300 ng/kg) 24 h before, at the time of, and 24 h after the BHV-1 challenge was assessed. As a single therapeutic modality, IL-1 did not significantly reduce the establishment or progression of BHV-1-induced disease. Nevertheless, our results demonstrated that the significant modulation of diverse immune parameters did not exacerbate disease. Thus, the use of IL-1 as an adjunct therapy or as a vaccine adjuvant in cattle can be safely considered in situations where BHV-1 infection is likely to occur.
Collapse
Affiliation(s)
- A G Van Kessel
- Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Tikoo SK, Campos M, Babiuk LA. Bovine herpesvirus 1 (BHV-1): biology, pathogenesis, and control. Adv Virus Res 1995; 45:191-223. [PMID: 7793325 DOI: 10.1016/s0065-3527(08)60061-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S K Tikoo
- Veterinary Infectious Disease Organization, University of Saskatchewan, Canada
| | | | | |
Collapse
|
27
|
Tikoo SK, Campos M, Popowych YI, van Drunen Littel-van den Hurk S, Babiuk LA. Lymphocyte proliferative responses to recombinant bovine herpes virus type 1 (BHV-1) glycoprotein gD (gIV) in immune cattle: identification of a T cell epitope. Viral Immunol 1995; 8:19-25. [PMID: 8546801 DOI: 10.1089/vim.1995.8.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The lymphocyte proliferative response to BHV-1 in immune cattle was compared to recombinant wild-type gD and truncated gD produced from recombinant vaccinia viruses. The response exhibited by recombinant proteins was comparable to the response induced by BHV-1 suggesting that gD is the major target structure for stimulation of bovine lymphocytes. Analysis of the proliferative response using vaccinia virus vectors expressing various modified forms of gD identified a region between residues 165 and 216 recognized by T-lymphocytes of immune cattle. Further analysis by overlapping peptides in this region localized the T cell epitope to residues 161-172. Antibody-blocking studies demonstrated that lymphocytes responding to this epitope are CD4+. In addition, lymphocytes stimulated with gD or peptide 77 (residues 161-172) also produced IFN-gamma and IL-2.
Collapse
Affiliation(s)
- S K Tikoo
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
28
|
van Drunen Littel-van den Hurk S, Tikoo SK, Liang X, Babiuk LA. Bovine herpesvirus-1 vaccines. Immunol Cell Biol 1993; 71 ( Pt 5):405-20. [PMID: 8270270 DOI: 10.1038/icb.1993.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vaccination has been important in controlling a wide variety of viral and bacterial infections of man and animals. Vaccines to herpesvirus infection of cattle are no exception. The present review describes the different types of conventional vaccines that have been used to date and furthermore describes the novel approaches which are presently being implemented to develop more effective vaccines. These include subunit vaccines as well as genetically engineered modified live deletion mutants. Both these novel vaccine approaches appear to be more efficacious than conventional vaccines. Furthermore, these vaccines provide an additional dimension for control and eradication of infection by providing an opportunity to develop companion diagnostic tests to differentiate infected animals from vaccinated animals. This review summarizes these developments as well as present knowledge regarding the important host defence mechanisms required for preventing infection and aiding recovery from infection.
Collapse
|
29
|
van Drunen Littel-van den Hurk S, Parker MD, Fitzpatrick DR, van den Hurk JV, Campos M, Babiuk LA, Zamb T. Structural, functional, and immunological characterization of bovine herpesvirus-1 glycoprotein gl expressed by recombinant baculovirus. Virology 1992; 190:378-92. [PMID: 1326809 PMCID: PMC7130598 DOI: 10.1016/0042-6822(92)91224-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major glycoprotein complex gl of bovine herpesvirus-1 was expressed at high levels (36 micrograms per 1 x 10(6) cells) in insect cells using a recombinant baculovirus. The recombinant gl had an apparent molecular weight of 116 kDa and was partially cleaved to yield 63-kDa (glb) and 52-kDa (glc) subunits. This processing step was significantly less efficient in insect cells than the analogous step in mammalian cells, even though the cleavage sites of authentic and recombinant gl were shown to be identical. The oligosaccharide linkages were mostly endoglycosidase-H-sensitive, in contrast to those of authentic gl, which has mostly endoglycosidase-H-resistant linkages and an apparent molecular weight of 130/74/55 kDa. Despite the reduced cleavage and altered glycosylation, the recombinant glycoprotein was transported and expressed on the surface of infected insect cells. These surface molecules were biologically active as demonstrated by their ability to induce cell-cell fusion. Fusion was inhibited by three monoclonal antibodies specific for antigenic domains I and IV on gl. Domain I maps to the extracellular region of the carboxy terminal fragment glc and domain IV to the very amino terminus of the glb fragment, indicating that domains mapping in two distinct regions of gl function in cell fusion. Monoclonal antibodies specific for eight different epitopes recognized recombinant gl, indicating that the antigenic characteristics of the recombinant and authentic glycoproteins are similar. In addition, the recombinant gl was as immunogenic as the authentic gl, resulting in the induction of gl-specific antibodies in cattle.
Collapse
|
30
|
Fitzpatrick DR, Wie J, Webb D, Bonfiglioli R, Gardner ID, Mathews JD, Bielefeldt-Ohmann H. Preferential binding of Chlamydia trachomatis to subsets of human lymphocytes and induction of interleukin-6 and interferon-gamma. Immunol Cell Biol 1991; 69 ( Pt 5):337-48. [PMID: 1787004 DOI: 10.1038/icb.1991.49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The interactions between Chlamydia trachomatis and human blood mononuclear leukocytes were studied using flow cytometry, immunofluorescence, electron microscopy and cytokine assays. Under serum-free conditions, elementary bodies (EB) of C. trachomatis were found to bind to human T lymphocytes as well as to B cells and monocytes/macrophages (M phi). For all cell types the binding was saturable, rapid, temperature-independent and independent of the chlamydia-specific serological status of the donor. Similar proportions of T and B cells bound EB at similar levels. In the T cell population, proportionally less CD8+ cells bound EB. Whereas M phi phagocytosed and destroyed the bound micro-organisms for lymphocytes, the Chlamydia remained at the surface, adherent to morphologically featureless membrane areas and showed no evidence of uptake even after long periods at 37 degrees C. Host molecules modulated these basic binding patterns: a heat-stable serum factor inhibited EB binding to T cells and a heat-labile serum factor enhanced binding to B cells. Stimulation with C. trachomatis EB rapidly elicited cytokine production by lymphocytes including interleukin-6 from B cells and interferon-gamma (IFN-gamma) from T and/or nonT/nonB cells. The responses were irrespective of the serological status of the donor. The findings suggest that C. trachomatis-leucocyte interactions may differ from the interactions of other bacteria and human leucocytes. The possible relationship between leucocyte-binding, cytokine induction, and the pathognomonic development of lymphoid follicles during mucosal C. trachomatis infections is discussed.
Collapse
|
31
|
Bielefeldt Ohmann H, Babiuk LA, Harland R. Cytokine synergy with viral cytopathic effects and bacterial products during the pathogenesis of respiratory tract infection. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1991; 60:153-70. [PMID: 1649026 DOI: 10.1016/0090-1229(91)90060-n] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
van Drunen Littel-van den Hurk S, Parker MD, Fitzpatrick DR, Zamb TJ, van den Hurk JV, Campos M, Harland R, Babiuk LA. Expression of bovine herpesvirus 1 glycoprotein gIV by recombinant baculovirus and analysis of its immunogenic properties. J Virol 1991; 65:263-71. [PMID: 1845887 PMCID: PMC240513 DOI: 10.1128/jvi.65.1.263-271.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The gene encoding the gIV glycoprotein of bovine herpesvirus 1 has been inserted into the genome of Autographa californica baculovirus in lieu of the coding region of the A. californica baculovirus polyhedrin gene. Recombinant protein was identified by its reactivity with gIV-specific monoclonal antibodies and expressed at high levels (about 85 micrograms per 2.5 x 10(6) cells) in Spodoptera frugiperda (SF9) cells. The recombinant glycoprotein had an apparent molecular mass of 63 kDa, indicating that it was incompletely glycosylated. However, it was transported to and expressed on the cell surface of infected SF9 cells. Furthermore, reactivity with polyclonal and monoclonal antibodies specific for gIV suggested that most epitopes were functionally unaltered on the recombinant gIV. Immunization of cattle with recombinant gIV in crude, partially purified, or pure form resulted in the induction of neutralizing antibodies to BHV-1, which were reactive with authentic gIV. However, the neutralizing antibody titers were lower than those elicited by an equivalent amount of affinity-purified authentic gIV, which appeared to be mainly due to reduced recognition of one of the neutralizing antigenic domains of gIV, designated domain I. The potential use of this recombinant gIV glycoprotein as a vaccine to bovine herpesvirus 1 infection in cattle is discussed.
Collapse
|
33
|
Campos M, Ohmann HB, Rapin N, Babiuk LA. Demonstration of the in vitro antiviral properties of bovine lymphokine-activated killer (LAK) cells. Viral Immunol 1991; 4:259-68. [PMID: 1726400 DOI: 10.1089/vim.1991.4.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In cattle, cells with functional characteristics similar to those of natural killer (NK) cells are difficult to detect. However, lymphokine-activated killer (LAK) cells can be detected readily after in vitro activation of peripheral blood mononuclear leukocytes (PBML) with interleukin-2 (IL-2). In the present study, we demonstrated that IL-2-activated PBML preferentially lyse bovine herpesvirus type 1 (BHV-1)-infected cells and that the cell responsible for the lysis copurified with the cell responsible for lysis of K562. The IL-2-activated effector cells were capable of significant reducing virus production. The reduction in virus yield seemed to be by an interferon (IFN)-independent mechanism, as the amount of IFN induced in effector cells by BHV-1 was not altered by the addition of IL-2. Furthermore, enrichment of cytotoxic cells by passage through nylon wool columns removed the capability of PBML to produce IFN in response to the virus. These results suggest that activation of LAK mechanisms in cattle plays a role in controlling virus spread.
Collapse
Affiliation(s)
- M Campos
- Veterinary Infectious Disease Organization (VIDO), Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
34
|
Orten DJ, Reddy PG, Reddy DN, Xue W, Abdelmagid OY, Blecha F, Minocha HC. Induction of immune response to bovine herpesvirus-1 with anti-idiotypic antibodies. Viral Immunol 1991; 4:111-22. [PMID: 1722098 DOI: 10.1089/vim.1991.4.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previously, we prepared rabbit anti-idiotypic (anti-Id) antibodies against murine monoclonal antibodies (MAbs) specific for the major bovine herpesvirus-1 (BHV-1) envelope glycoproteins. Glycoprotein III (gIII) contains neutralization epitopes and may be the virus attachment protein. Anti-Id antibodies to a neutralizing MAb that reacts with gIII were purified by sequential immunoaffinity chromatography. Immune responses to the purified anti-Id reagent and BHV-1 were compared in mice. Both groups of mice produced BHV-1-specific neutralizing antibodies. However, lymphocyte proliferative responses and interferon and interleukin-2 production were specific for the respective immunizing antigens. These results suggest that the anti-Id reagent may bear an internal image of a B-cell-stimulating epitope of glycoprotein gIII; however, this epitope does not stimulate a virus-specific cellular immune response in mice.
Collapse
Affiliation(s)
- D J Orten
- Department of Laboratory Medicine, Kansas State University, Manhattan
| | | | | | | | | | | | | |
Collapse
|
35
|
Hutchings DL, van Drunen Littel-van den Hurk S, Babiuk LA. Lymphocyte proliferative responses to separated bovine herpesvirus 1 proteins in immune cattle. J Virol 1990; 64:5114-22. [PMID: 2168990 PMCID: PMC248003 DOI: 10.1128/jvi.64.10.5114-5122.1990] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The immune response to bovine herpesvirus 1 (BHV-1) infection can protect cattle from subsequent challenge with the virus. This protection involves a variety of defensive strategies, and the activation of most of these defenses requires the recognition of viral proteins by the cellular immune system. To identify some of the BHV-1 proteins recognized by T lymphocytes, we measured in vitro proliferative responses to individual proteins. Viral proteins were separated by gel electrophoresis followed by Western immunoblotting, and immunoblots were evaluated for serological reactions. Unstained blotted fractions were processed into antigen-bearing particles for analysis in blastogenesis assays. Purified BHV-1 proteins obtained by immunoadsorbent chromatography were processed and included for comparison in both enzyme-linked immunosorbent and proliferation assays. The tegument protein VP8 and the glycoprotein gIV appeared to be the antigens which most consistently stimulated the proliferation of lymphocytes from BHV-1-immunized animals. Positive blastogenic responses were also detected to gI, gIII, and to one or more uncharacterized, low-molecular-weight proteins in some of the cattle tested. These results indicate that T-lymphocyte proliferative responses to BHV-1 proteins are detectable in immune cattle and may be important in protection from BHV-1 infection.
Collapse
Affiliation(s)
- D L Hutchings
- Agriculture Canada, Health of Animals Laboratory, Saskatoon, Saskatchewan
| | | | | |
Collapse
|
36
|
Wood PR, Rothel JS, McWaters PG, Jones SL. Production and characterization of monoclonal antibodies specific for bovine gamma-interferon. Vet Immunol Immunopathol 1990; 25:37-46. [PMID: 2112286 DOI: 10.1016/0165-2427(90)90108-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nine stable hybridoma cell lines were established which secreted specific monoclonal antibodies (MAbs) to bovine gamma-interferon (BoIFN-gamma). Specific binding of each of the MAbs to recombinant BoIFN-gamma (rBoIFN-gamma) was demonstrated in an indirect ELISA, whilst none of the MAbs bound to rBoIFN-alpha or rBoIFN-beta. In a Western blot the MAbs reacted with the 16 kDa and 32 kDa polypeptides present in rBoIFN-gamma preparations. Competitive ELISA's showed that four MAbs bound to one epitope on rBoIFN-gamma, and the other five MAbs bound to a separate epitope. Two MAbs, each recognising different epitopes, were shown to neutralise the anti-viral activity of natural BoIFN-gamma.
Collapse
Affiliation(s)
- P R Wood
- CSIRO Division of Animal Health, Animal Health Research Laboratory, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
37
|
Bielefeldt-Ohmann H, Martinod SR. Interferon immunomodulation in domestic food animals. ADVANCES IN VETERINARY SCIENCE AND COMPARATIVE MEDICINE 1990; 35:215-30. [PMID: 1704680 DOI: 10.1016/b978-0-12-039235-3.50014-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Bielefeldt-Ohmann
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|