1
|
Rush JS, Zamakhaeva S, Murner NR, Deng P, Morris AJ, Kenner CW, Black I, Heiss C, Azadi P, Korotkov KV, Widmalm G, Korotkova N. Structure and mechanism of biosynthesis of Streptococcus mutans cell wall polysaccharide. Nat Commun 2025; 16:954. [PMID: 39843487 PMCID: PMC11754754 DOI: 10.1038/s41467-025-56205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c-specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a polyrhamnose backbone of →3)α-Rha(1 → 2)α-Rha(1→ repeats with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one predominant and two more minor Glc modifications. The predominant Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are β-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor β-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Nicholas R Murner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Pan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Science and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR, USA
| | - Cameron W Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Jekhmane S, Derks MGN, Maity S, Slingerland CJ, Tehrani KHME, Medeiros-Silva J, Charitou V, Ammerlaan D, Fetz C, Consoli NA, Cochrane RVK, Matheson EJ, van der Weijde M, Elenbaas BOW, Lavore F, Cox R, Lorent JH, Baldus M, Künzler M, Lelli M, Cochrane SA, Martin NI, Roos WH, Breukink E, Weingarth M. Host defence peptide plectasin targets bacterial cell wall precursor lipid II by a calcium-sensitive supramolecular mechanism. Nat Microbiol 2024; 9:1778-1791. [PMID: 38783023 PMCID: PMC11222147 DOI: 10.1038/s41564-024-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism. Efficient and selective binding of the target lipid II, a cell wall precursor with an irreplaceable pyrophosphate, is achieved by the oligomerization of plectasin into dense supra-structures that only form on bacterial membranes that comprise lipid II. Oligomerization and target binding of plectasin are interdependent and are enhanced by the coordination of calcium ions to plectasin's prominent anionic patch, causing allosteric changes that markedly improve the activity of the antibiotic. Structural knowledge of how host defence peptides impair cell wall synthesis will likely enable the development of superior drug candidates.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Maik G N Derks
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Vicky Charitou
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Danique Ammerlaan
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Céline Fetz
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Naomi A Consoli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Rachel V K Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Eilidh J Matheson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Mick van der Weijde
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Barend O W Elenbaas
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Francesca Lavore
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Rush JS, Zamakhaeva S, Murner NR, Deng P, Morris AJ, Kenner CW, Black I, Heiss C, Azadi P, Korotkov KV, Widmalm G, Korotkova N. Structure and mechanism of biosynthesis of Streptococcus mutans cell wall polysaccharide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593426. [PMID: 38766245 PMCID: PMC11100793 DOI: 10.1101/2024.05.09.593426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c- specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a repeating →3)α-Rha(1→2)α-Rha(1→ polyrhamnose backbone, with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one major and two minor Glc modifications. The major Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are β-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor β-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation.
Collapse
|
4
|
Braun C, Wingen LM, Menche D. Strategies and tactics for the synthesis of lipid I and II and shortened analogues: functional building blocks of bacterial cell wall biosynthesis. Nat Prod Rep 2023; 40:1718-1734. [PMID: 37492928 DOI: 10.1039/d3np00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Covering: the literature up to 2022This study discusses various synthetic strategies for the synthesis of lipid II, the pivotal bacterial cell wall precursor. In detail, it examines different solution phase approaches, reviews various solid phase sequences, and evaluates enzymatic ventures. The underlying rationale, scope, limitations, and perspectives of these strategies are discussed. The focus is on the tactics and strategies towards the authentic peptidoglycan compound, as well as analogues thereof with shortened side chains, which are increasingly recognized as more beneficial surrogates with more favorable physicochemical properties.
Collapse
Affiliation(s)
- Christina Braun
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| | - Lukas Martin Wingen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| |
Collapse
|
5
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MGN, De Benedetti S, Krueger AM, Vermeulen BJA, Harbig T, Lavore F, Kumar R, Honorato RV, Grein F, Nieselt K, Liu Y, Bonvin AMJJ, Baldus M, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 2023; 186:4059-4073.e27. [PMID: 37611581 DOI: 10.1016/j.cell.2023.07.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Maik G N Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bram J A Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Theresa Harbig
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rodrigo V Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Alexandre M J J Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ulrich Kubitscheck
- Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | | | | | | | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
6
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MG, de Benedetti S, Krueger AM, Vermeulen BJ, Lavore F, Honorato RV, Grein F, Bonvin A, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. A new antibiotic from an uncultured bacterium binds to an immutable target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540765. [PMID: 37292624 PMCID: PMC10245560 DOI: 10.1101/2023.05.15.540765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Kevin C. Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maik G.N. Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefania de Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Bram J.A. Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexandre Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ulrich Kubitscheck
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | | | - Amy L. Spoering
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Losee Lucy Ling
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 2022; 608:390-396. [PMID: 35922513 PMCID: PMC9365693 DOI: 10.1038/s41586-022-05019-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2022] [Indexed: 01/08/2023]
Abstract
Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates. Using a combination of methods, the mechanism of the antibiotic teixobactin is revealed.
Collapse
|
8
|
Xu Y, Hernández-Rocamora VM, Lorent JH, Cox R, Wang X, Bao X, Stel M, Vos G, van den Bos RM, Pieters RJ, Gray J, Vollmer W, Breukink E. Metabolic labeling of the bacterial peptidoglycan by functionalized glucosamine. iScience 2022; 25:104753. [PMID: 35942089 PMCID: PMC9356107 DOI: 10.1016/j.isci.2022.104753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
N-Acetylglucosamine (GlcNAc) is an essential monosaccharide required in almost all organisms. Fluorescent labeling of the peptidoglycan (PG) on N-acetylglucosamine has been poorly explored. Here, we report on the labeling of the PG with a bioorthogonal handle on the GlcNAc. We developed a facile one-step synthesis of uridine diphosphate N-azidoacetylglucosamine (UDP-GlcNAz) using the glycosyltransferase OleD, followed by in vitro incorporation of GlcNAz into the peptidoglycan precursor Lipid II and fluorescent labeling of the azido group via click chemistry. In a PG synthesis assay, fluorescent GlcNAz-labeled Lipid II was incorporated into peptidoglycan by the DD-transpeptidase activity of bifunctional class A penicillin-binding proteins. We further demonstrate the incorporation of GlcNAz into the PG layer of OleD-expressed bacteria by feeding with 2-chloro-4-nitrophenyl GlcNAz (GlcNAz-CNP). Hence, our labeling method using the heterologous expression of OleD is useful to study PG synthesis and possibly other biological processes involving GlcNAc metabolism in vivo. Peptidoglycan consists of N-acetylglucosamine, N-acetylmuramic acid, and amino acids We developed a one-step synthesis of azide-labeled UDP-N-acetylglucosamine In vivo generated azide-labeled UDP-N-acetylglucosamine gets incorporated into peptidoglycan Bacteria were fluorescently labeled on N-acetylglucosamine of peptidoglycan
Collapse
Affiliation(s)
- Yang Xu
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | | | - Joseph H. Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Marjon Stel
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Gaël Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Ramon M. van den Bos
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Joe Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
- Corresponding author
| |
Collapse
|
9
|
Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM, McConville TH, Petrou VI, Giacometti SI, Dufrisne MB, Nosol K, Zinkle AP, Graham CLB, Loukeris M, Kloss B, Skorupinska-Tudek K, Swiezewska E, Roper DI, Clarke OB, Uhlemann AC, Kossiakoff AA, Trent MS, Stansfeld PJ, Mancia F. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature 2022; 604:371-376. [PMID: 35388216 PMCID: PMC9884178 DOI: 10.1038/s41586-022-04555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.
Collapse
Affiliation(s)
- Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas H McConville
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Vasileios I Petrou
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Kamil Nosol
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael Loukeris
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - David I Roper
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Simple synthesis of disodium phosphates of racemic 2,3-dihydroprenols from plant polyprenols. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Liu C, Skorupinska-Tudek K, Eriksson SG, Parmryd I. Potentiating Vγ9Vδ2 T cell proliferation and assessing their cytotoxicity towards adherent cancer cells at the single cell level. Biol Open 2022; 11:274281. [PMID: 34994391 PMCID: PMC8822357 DOI: 10.1242/bio.059049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.
Collapse
Affiliation(s)
- Chenxiao Liu
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sven-Göran Eriksson
- Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Mode of action of teixobactins in cellular membranes. Nat Commun 2020; 11:2848. [PMID: 32503964 PMCID: PMC7275090 DOI: 10.1038/s41467-020-16600-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The natural antibiotic teixobactin kills pathogenic bacteria without detectable resistance. The difficult synthesis and unfavourable solubility of teixobactin require modifications, yet insufficient knowledge on its binding mode impedes the hunt for superior analogues. Thus far, teixobactins are assumed to kill bacteria by binding to cognate cell wall precursors (Lipid II and III). Here we present the binding mode of teixobactins in cellular membranes using solid-state NMR, microscopy, and affinity assays. We solve the structure of the complex formed by an improved teixobactin-analogue and Lipid II and reveal how teixobactins recognize a broad spectrum of targets. Unexpectedly, we find that teixobactins only weakly bind to Lipid II in cellular membranes, implying the direct interaction with cell wall precursors is not the sole killing mechanism. Our data suggest an additional mechanism affords the excellent activity of teixobactins, which can block the cell wall biosynthesis by capturing precursors in massive clusters on membranes. The natural antibiotic teixobactin kills bacteria by direct binding to their cognate cell wall precursors (Lipid II and III). Here authors use solid-state NMR to reveal the native binding mode of teixobactins and show that teixobactins only weakly bind to Lipid II in anionic cellular membranes.
Collapse
|
13
|
Synthesis of Phenoxyundecyl Diphosphate Disaccharides for Studies of the Biosynthesis of O Antigenic Polysaccharides in Enteric Bacteria. Methods Mol Biol 2019; 1954:161-174. [PMID: 30864131 DOI: 10.1007/978-1-4939-9154-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The biosynthesis of O antigenic polysaccharides in enteric bacteria from nucleoside diphosphate sugars (donor substrates) is catalyzed by the corresponding glycosyltransferases and proceeds through the intermediate formation of undecaprenyl diphosphate sugars (acceptor substrates). To study this process, a chemical synthesis of the compounds having the natural structure or their modified analogs is necessary. The phosphoroimidazolidate method is a universal method for synthesis of lipid diphosphate disaccharides containing 2-acetamido-2-deoxyglycosyl residue at the reducing end of the disaccharide moiety and 11-phenoxyundecyl residue as lipid fragment of the molecule. We report here protocols to synthesize the disaccharides P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate [D-Rha(α1-3)-D-GlcNAcα-PP-PhU, Compound 1] and P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate [D-Gal(β1-3)-D-GalNAcα-PP-PhU, Compound 6]. We describe the procedures for identification and structure estimation of compounds by TLC, NMR, and MS. We also include the biochemical testing of Compound 6 with α2,3-sialyltransferase WbwA from Escherichia coli O104.
Collapse
|
14
|
Rush JS, Edgar RJ, Deng P, Chen J, Zhu H, van Sorge NM, Morris AJ, Korotkov KV, Korotkova N. The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes. J Biol Chem 2017; 292:19441-19457. [PMID: 29021255 DOI: 10.1074/jbc.m117.815910] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall.
Collapse
Affiliation(s)
- Jeffrey S Rush
- From the Department of Molecular and Cellular Biochemistry and
| | - Rebecca J Edgar
- From the Department of Molecular and Cellular Biochemistry and
| | - Pan Deng
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry and
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry and
| | - Nina M van Sorge
- the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | | | | |
Collapse
|
15
|
Mitachi K, Siricilla S, Yang D, Kong Y, Skorupinska-Tudek K, Swiezewska E, Franzblau SG, Kurosu M. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors. Anal Biochem 2016; 512:78-90. [PMID: 27530653 DOI: 10.1016/j.ab.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet-visible (UV-vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Dong Yang
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United Sates
| | - Ying Kong
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United Sates
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States.
| |
Collapse
|
16
|
Liu Y, Rodrigues JPGLM, Bonvin AMJJ, Zaal EA, Berkers CR, Heger M, Gawarecka K, Swiezewska E, Breukink E, Egmond MR. New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies. J Biol Chem 2016; 291:15057-68. [PMID: 27226570 DOI: 10.1074/jbc.m116.717884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/01/2023] Open
Abstract
Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide.
Collapse
Affiliation(s)
- Yao Liu
- From Institute of Biomembranes, Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | | | | | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Michal Heger
- the Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands, and
| | - Katarzyna Gawarecka
- the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Swiezewska
- the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Eefjan Breukink
- From Institute of Biomembranes, Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH, Utrecht, the Netherlands,
| | - Maarten R Egmond
- From Institute of Biomembranes, Department of Membrane Biochemistry and Biophysics, Utrecht University, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
17
|
't Hart P, Oppedijk SF, Breukink E, Martin NI. New Insights into Nisin's Antibacterial Mechanism Revealed by Binding Studies with Synthetic Lipid II Analogues. Biochemistry 2015; 55:232-7. [PMID: 26653142 DOI: 10.1021/acs.biochem.5b01173] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nisin is the preeminent lantibiotic, and to date its antibacterial mechanism has been investigated using a variety of techniques. While nisin's lipid II-mediated mode of action is well-established, a detailed analysis of the thermodynamic parameters governing this interaction has not been previously reported. We here describe an approach employing isothermal titration calorimetry to directly measure the affinity of nisin for lipid II and a number of synthetic lipid II precursors and analogues. Our measurements confirm the pyrophosphate unit of lipid II as the primary site of nisin binding and also indicate that the complete MurNAc moiety is required for a high-affinity interaction. Additionally, we find that while the pentapeptide unit of the lipid II molecule is not required for strong binding by nisin, it does play an important role in stabilizing the subsequently formed nisin-lipid II pore complex, albeit at an entropic cost. The anchoring of lipid II in a membrane environment was also found to play a significant role in enhancing nisin binding and is required in order to achieve a high-affinity interaction.
Collapse
Affiliation(s)
- Peter 't Hart
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sabine F Oppedijk
- Membrane Biochemistry and Biophysics Group, Department of Chemistry, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics Group, Department of Chemistry, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nathaniel I Martin
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
18
|
Egan AJF, Biboy J, van't Veer I, Breukink E, Vollmer W. Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150031. [PMID: 26370943 PMCID: PMC4632607 DOI: 10.1098/rstb.2015.0031] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Inge van't Veer
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
19
|
Zhang Q, Huang L, Zhang C, Xie P, Zhang Y, Ding S, Xu F. Synthesis and biological activity of polyprenols. Fitoterapia 2015; 106:184-93. [PMID: 26358482 DOI: 10.1016/j.fitote.2015.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
The polyprenols and their derivatives are highlighted in this study. These lipid linear polymers of isoprenoid residues are widespread in nature from bacteria to human cells. This review primarily presents the synthesis and biological activities of polyprenyl derivatives. Attention is focused on the synthesis and biological activity of dolichols, polyprenyl ester derivatives and polyprenyl amines. Other polyprenyl derivatives, such as oxides of polyprenols, aromatic polyprenols, polyprenyl bromide and polyprenyl sulphates, are mentioned. It is noted that polyprenyl phosphates and polyprenyl-linked glycosylation have better antibacterial, gene therapy and immunomodulating performance, whereas polyprenyl amines have better for antibacterial and antithrombotic activity. Dolichols, polyprenyl acetic esters, polyprenyl phosphates and polyprenyl-linked glycosylation have pharmacological anti-tumour effects. Finally, the postulated prospect of polyprenols and their derivatives are discussed. Further in vivo studies on the above derivatives are needed. The compatibility of polyprenols and their derivatives with other drugs should be studied, and new preparations of polyprenyl derivatives, such as hydrogel glue and release-controlled drugs, are suggested for future research and development.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Beijing Forestry University, Beijing 100083, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Yaolei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Shasha Ding
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Feng Xu
- Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Vinnikova AN, Demirova KA, Druzhinina TN, Veselovsky VV. New fluorescent analogs of bacterial undecaprenyldiphosphate galactose. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Nakatani Y, Ribeiro N, Streiff S, Gotoh M, Pozzi G, Désaubry L, Milon A. Search for the most 'primitive' membranes and their reinforcers: a review of the polyprenyl phosphates theory. ORIGINS LIFE EVOL B 2014; 44:197-208. [PMID: 25351682 PMCID: PMC4669544 DOI: 10.1007/s11084-014-9365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
Terpenoids have an essential function in present-day cellular membranes, either as membrane reinforcers in Eucarya and Bacteria or as principal membrane constituents in Archaea. We have shown that some terpenoids, such as cholesterol and α, ω-dipolar carotenoids reinforce lipid membranes by measuring the water permeability of unilamellar vesicles. It was possible to arrange the known membrane terpenoids in a ‘phylogenetic’ sequence, and a retrograde analysis led us to conceive that single-chain polyprenyl phosphates might have been ‘primitive’ membrane constituents. By using an optical microscopy, we have observed that polyprenyl phosphates containing 15 to 30 C-atoms form giant vesicles in water in a wide pH range. The addition of 10 % molar of some polyprenols to polyprenyl phosphate vesicles have been shown to reduce the water permeability of membranes even more efficiently than the equimolecular addition of cholesterol. A ‘prebiotic’ synthesis of C10 and C15 prenols from C5 monoprenols was achieved in the presence of a montmorillonite clay. Hypothetical pathway from C1 or C2 units to ‘primitive’ membranes and that from ‘primitive’ membranes to archaeal lipids are presented.
Collapse
Affiliation(s)
- Yoichi Nakatani
- Institute of Chemistry, University of Strasbourg - CNRS, 67000, Strasbourg, France,
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang LY, Huang SH, Chang YC, Cheng WC, Cheng TJR, Wong CH. Enzymatic synthesis of lipid II and analogues. Angew Chem Int Ed Engl 2014; 53:8060-5. [PMID: 24990652 DOI: 10.1002/anie.201402313] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/28/2014] [Indexed: 02/02/2023]
Abstract
The emergence of antibiotic resistance has prompted active research in the development of antibiotics with new modes of action. Among all essential bacterial proteins, transglycosylase polymerizes lipid II into peptidoglycan and is one of the most favorable targets because of its vital role in peptidoglycan synthesis. Described in this study is a practical enzymatic method for the synthesis of lipid II, coupled with cofactor regeneration, to give the product in a 50-70% yield. This development depends on two key steps: the overexpression of MraY for the synthesis of lipid I and the use of undecaprenol kinase for the preparation of polyprenol phosphates. This method was further applied to the synthesis of lipid II analogues. It was found that MraY and undecaprenol kinase can accept a wide range of lipids containing various lengths and configurations. The activity of lipid II analogues for bacterial transglycolase was also evaluated.
Collapse
Affiliation(s)
- Lin-Ya Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115 (Taiwan); Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115 (Taiwan); Graduate Institute of Biotechnology, National Chung-Hsing, University, 250 Kuo Kuang Rd., Taichung 402 (Taiwan); Biotechnology Center, National Chung-Hsing University, 250 Kuo Kuang Rd., Taichung 402 (Taiwan)
| | | | | | | | | | | |
Collapse
|
23
|
Huang LY, Huang SH, Chang YC, Cheng WC, Cheng TJR, Wong CH. Enzymatic Synthesis of Lipid II and Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Gale RT, Sewell EW, Garrett TA, Brown ED. Reconstituting poly(glycerol phosphate) wall teichoic acid biosynthesis in vitro using authentic substrates. Chem Sci 2014. [DOI: 10.1039/c4sc00802b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Liu F, Vijayakrishnan B, Faridmoayer A, Taylor TA, Parsons TB, Bernardes GJL, Kowarik M, Davis BG. Rationally designed short polyisoprenol-linked PglB substrates for engineered polypeptide and protein N-glycosylation. J Am Chem Soc 2013; 136:566-9. [PMID: 24377322 DOI: 10.1021/ja409409h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The lipid carrier specificity of the protein N-glycosylation enzyme C. jejuni PglB was tested using a logical, synthetic array of natural and unnatural C10, C20, C30, and C40 polyisoprenol sugar pyrophosphates, including those bearing repeating cis-prenyl units. Unusual, short, synthetically accessible C20 prenols (nerylnerol 1d and geranylnerol 1e) were shown to be effective lipid carriers for PglB sugar substrates. Kinetic analyses for PglB revealed clear K(M)-only modulation with lipid chain length, thereby implicating successful in vitro application at appropriate concentrations. This was confirmed by optimized, efficient in vitro synthesis allowing >90% of Asn-linked β-N-GlcNAc-ylated peptide and proteins. This reveals a simple, flexible biocatalytic method for glycoconjugate synthesis using PglB N-glycosylation machinery and varied chemically synthesized glycosylation donor precursors.
Collapse
Affiliation(s)
- Feng Liu
- Department of Chemistry, Chemistry Research Laboratory, Oxford University , Oxford OX1 3TA United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Utkina NS, Danilov LL, Veselovskiĭ VV, Torgov VI, Druzhinina TN. [Synthesis of p(1)-(11-phenoxyundecyl)-P(2)-(alpha-D-galactopyranosyl) diphosphate and p(1)-(11-phenoxyundecyl)-P(2)-(alpha-D-glucopyranosyl) diphosphate; assay of their acceptor properties for mannosyl residue in the enzmic reaction catalyzed by mannosyltransferase from Salmonella newport]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [PMID: 23189561 DOI: 10.1134/s1068162012040140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P(1)-(Phenoxyundecyl)-P(2)-(alpha-D-galactopyranosyl) diphosphate as well as P(1)-(11-phenoxyundecyl)-P(2)-(alpha-D-glucopyranosyl) diphosphate are newly synthesized and their ability to serve as substrate-acceptor of mannosyl residue in enzymic reaction catalyzed by mannosyltransferase from Salmonella newport membrane preparation is investigated. The possibility ofgalactosyl-containing derivative to serve as mannosyl acceptor from GDP-Man is established whereas glucosyl-containing compound is inactive in this process.
Collapse
|
28
|
Platensimycin and platencin biosynthesis in Streptomyces platensis, showcasing discovery and characterization of novel bacterial diterpene synthases. Methods Enzymol 2012; 515:163-86. [PMID: 22999174 DOI: 10.1016/b978-0-12-394290-6.00008-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diterpenoid natural products cover a vast chemical diversity and include many medicinally and industrially relevant compounds. All diterpenoids derive from a common substrate, (E,E,E)-geranylgeranyl diphosphate, which is cyclized into one of many scaffolds by a diterpene synthase (DTS). While diterpene biosynthesis has been extensively studied in plants and fungi, bacteria are now recognized for their production of unique diterpenoids and are likely to harbor an underexplored reservoir of new DTSs. Bacterial diterpenoid biosynthesis can be exploited for the discovery of new natural products, a better mechanistic understanding of DTSs, and the rational engineering of whole metabolic pathways. This chapter describes methods and protocols for identification and characterization of bacterial DTSs, based on our recent work with the DTSs involved in platensimycin and platencin biosynthesis.
Collapse
|
29
|
Gampe CM, Tsukamoto H, Wang TSA, Walker S, Kahne D. Modular synthesis of diphospholipid oligosaccharide fragments of the bacterial cell wall and their use to study the mechanism of moenomycin and other antibiotics. Tetrahedron 2011; 67:9771-9778. [PMID: 22505780 PMCID: PMC3322638 DOI: 10.1016/j.tet.2011.09.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a flexible, modular route to GlcNAc-MurNAc-oligosaccharides that can be readily converted into peptidoglycan (PG) fragments to serve as reagents for the study of bacterial enzymes that are targets for antibiotics. Demonstrating the utility of these synthetic PG substrates, we show that the tetrasaccharide substrate lipid IV (3), but not the disaccharide substrate lipid II (2), significantly increases the concentration of moenomycin A required to inhibit a prototypical PG-glycosyltransferase (PGT). These results imply that lipid IV and moenomycin A bind to the same site on the enzyme. We also show the moenomycin A inhibits the formation of elongated polysaccharide product but does not affect length distribution. We conclude that moenomycin A blocks PG-strand initiation rather than elongation or chain termination. Synthetic access to diphospholipid oligosaccharides will enable further studies of bacterial cell wall synthesis with the long-term goal of identifying novel antibiotics.
Collapse
Affiliation(s)
- Christian M. Gampe
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Hirokazu Tsukamoto
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Tsung-Shing Andrew Wang
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Suzanne Walker
- Harvard Medical School, Department of Microbiology and Molecular Genetics, Boston, Massachusetts 02115, USA
| | - Daniel Kahne
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
30
|
Derouaux A, Turk S, Olrichs NK, Gobec S, Breukink E, Amoroso A, Offant J, Bostock J, Mariner K, Chopra I, Vernet T, Zervosen A, Joris B, Frère JM, Nguyen-Distèche M, Terrak M. Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochem Pharmacol 2011; 81:1098-105. [PMID: 21356201 DOI: 10.1016/j.bcp.2011.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
Abstract
Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and represents a validated target for the development of new antibacterials. Application of structure-based virtual screening to the National Cancer Institute library using eHits program and the structure of the glycosyltransferase domain of the Staphylococcus aureus penicillin-binding protein 2 resulted in the identification of two small molecules analogues 5, a 2-[1-[(2-chlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine and 5b, a 2-[1-[(3,4-dichlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine that exhibit antibacterial activity against several Gram-positive bacteria but were less active on Gram-negative bacteria. The two compounds inhibit the activity of five GTs in the micromolar range. Investigation of the mechanism of action shows that the compounds specifically target peptidoglycan synthesis. Unexpectedly, despite the fact that the compounds were predicted to bind to the GT active site, compound 5b was found to interact with the lipid II substrate via the pyrophosphate motif. In addition, this compound showed a negatively charged phospholipid-dependent membrane depolarization and disruption activity. These small molecules are promising leads for the development of more active and specific compounds to target the essential GT step in cell wall synthesis.
Collapse
Affiliation(s)
- Adeline Derouaux
- Centre d'Ingénierie des Protéines, Université de Liège, Allée de la chimie, B6a, B-4000, Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
An undecaprenyl phosphate analog containing the phenoxy group at the ω-end of the oligoisoprene chain. Russ Chem Bull 2010. [DOI: 10.1007/s11172-010-0231-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Rush JS, Matveev S, Guan Z, Raetz CRH, Waechter CJ. Expression of functional bacterial undecaprenyl pyrophosphate synthase in the yeast rer2{Delta} mutant and CHO cells. Glycobiology 2010; 20:1585-93. [PMID: 20685834 PMCID: PMC3003547 DOI: 10.1093/glycob/cwq107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 11/12/2022] Open
Abstract
During evolution the average chain length of polyisoprenoid glycosyl carrier lipids increased from C55 (prokaryotes) to C75 (yeast) to C95 (mammalian cells). In this study, the ability of the E. coli enzyme, undecaprenyl pyrophosphate synthase (UPPS), to complement the loss of the yeast cis-isoprenyltransferase in the rer2Δ mutant was tested to determine if (55)dolichyl phosphate (Dol-P) could functionally substitute in the protein N-glycosylation pathway for (75)Dol-P, the normal isoprenologue synthesized in S. cerevisiae. First, expression of UPPS in the yeast mutant was found to complement the growth and the hypoglycosylation of carboxypeptidase Y defects suggesting that the (55)polyprenyl-P-P intermediate was converted to (55)Dol-P and that (55)Dol-P could effectively substitute for (75)Dol-P in the biosynthesis and function of Man-P-Dol, Glc-P-Dol and Glc(3)Man(9)GlcNAc(2)-P-P-Dol (mature DLO) in the protein N-glycosylation pathway and glycosylphosphatidylinositol anchor assembly. In support of this conclusion, mutant cells expressing UPPS (1) synthesized (55)Dol-P based on MS analysis, (2) utilized (55)Dol-P to form Man-P-(55)Dol in vitro and in vivo, and (3) synthesized N-linked glycoproteins at virtually normal rates as assessed by metabolic labeling with [(3)H]mannose. In addition, an N-terminal GFP-tagged construct of UPPS was shown to localize to the endoplasmic reticulum of Chinese hamster ovary cells. Consistent with the synthesis of (55)Dol-P by the transfected cells, microsomes from the transfected cells synthesized the [(14)C](55)polyprenyl-P-P intermediate when incubated with [(14)C]isopentenyl pyrophosphate and [(3)H]Man-P-(55)Dol when incubated with GDP-[(3)H]Man. These results indicate that (C55)polyisoprenoid chains, significantly shorter than the natural glycosyl carrier lipid, can function in the transbilayer movement of DLOs in the endoplasmic reticulum of yeast and mammalian cells, and that conserved sequences in the cis-isoprenyltransferases are recognized by, yet to be identified, binding partners in the endoplasmic reticulum of mammalian cells.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S. Limestone St., Lexington, KY 40536, USA
| | - Sergey Matveev
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S. Limestone St., Lexington, KY 40536, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - C J Waechter
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S. Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
33
|
Druzhinina TN, Danilov LL, Torgov VI, Utkina NS, Balagurova NM, Veselovsky VV, Chizhov AO. 11-Phenoxyundecyl phosphate as a 2-acetamido-2-deoxy-α-d-glucopyranosyl phosphate acceptor in O-antigen repeating unit assembly of Salmonella arizonae O:59. Carbohydr Res 2010; 345:2636-40. [PMID: 20974465 DOI: 10.1016/j.carres.2010.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
A synthesis of 11-phenoxyundecyl phosphate and its biochemical transformation (using GlcNAc-P transferase from Salmonella arizonae O:59 membranes catalysing transfer of GlcNc-phosphate from UDP-GlcNAc on lipid-phosphate) into P(1)-11-phenoxyundecyl, P(2)-2-acetamido-2-deoxy-α-D-glucopyranosyl diphosphate are described.
Collapse
Affiliation(s)
- Tatyana N Druzhinina
- N. D. Zelinsky Institute of Organic Сhemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Zheng Y, Struck DK, Young R. Purification and functional characterization of phiX174 lysis protein E. Biochemistry 2009; 48:4999-5006. [PMID: 19379010 DOI: 10.1021/bi900469g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two classes of bacteriophages, the single-stranded DNA Microviridae and the single-stranded RNA Alloleviviridae, accomplish lysis by expressing "protein antibiotics", or polypeptides that inhibit cell wall biosynthesis. Previously, we have provided genetic and physiological evidence that E, a 91-amino acid membrane protein encoded by the prototype microvirus, varphiX174, is a specific inhibitor of the translocase MraY, an essential membrane-embedded enzyme that catalyzes the formation of the murein precursor, Lipid I, from UDP-N-acetylmuramic acid-pentapeptide and the lipid carrier, undecaprenol phosphate. Here we report the first purification of E, which has been refractory to overexpression because of its lethality to Escherichia coli. Moreover, using a fluorescently labeled analogue of the sugar-nucleotide substrate, we demonstrate that E acts as a noncompetitive inhibitor of detergent-solubilized MraY, with respect to both soluble and lipid substrates. In addition, we show that the E sensitivity of five MraY mutant proteins, produced from alleles selected for resistance to E, can be correlated to the apparent affinities determined by in vivo multicopy suppression experiments. These results are inconsistent with previous reports that E inhibited membrane-embedded MraY but not the detergent-solubilized enzyme, which led to a model in which E functions by binding MraY and blocking the formation of an essential heteromultimeric complex involving MraY and other murein biosynthesis enzymes. We discuss a new model in which E binds to MraY at a site composed of the two transmembrane domains within which the E resistance mutations map and the fact that the result of this binding is a conformational change that inactivates the enzyme.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | | | | |
Collapse
|
36
|
Walker JR, Rothman SC, Poulter CD. Synthesis and evaluation of substrate analogues as mechanism-based inhibitors of type II isopentenyl diphosphate isomerase. J Org Chem 2007; 73:726-9. [PMID: 18088143 DOI: 10.1021/jo702061d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 2 isopentenyl diphosphate isomerase (IDI-2), which catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate, contains a tightly bound molecule of FMN. To probe the mechanism of the reaction, cyclopropyl and epoxy substrate analogues, designed to be mechanism-based irreversible inhibitors, were synthesized and evaluated with IDI-2 from Thermus thermophilus. The cyclopropyl analogues were alternative substrates. The epoxy analogue was an irreversible inhibitor, with kI = 0.37 +/- 0.07 min(-1) and KI = 1.4 +/- 0.3 microM. LC-MS studies revealed formation of an epoxide-FMN adduct.
Collapse
Affiliation(s)
- Joel R Walker
- Department of Chemistry, University of Utah, 315 South 1400 East RM 2020, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
37
|
Chen MM, Weerapana E, Ciepichal E, Stupak J, Reid CW, Swiezewska E, Imperiali B. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 2007; 46:14342-8. [PMID: 18034500 DOI: 10.1021/bi701956x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni contains a general N-linked glycosylation pathway in which a heptasaccharide is sequentially assembled onto a polyisoprenyl diphosphate carrier and subsequently transferred to the asparagine side chain of an acceptor protein. The enzymes in the pathway function at a membrane interface and have in common amphiphilic membrane-bound polyisoprenyl-linked substrates. Herein, we examine the potential role of the polyisoprene component of the substrates by investigating the relative substrate efficiencies of polyisoprene-modified analogues in individual steps of the pathway. Chemically defined substrates for PglC, PglJ, and PglB are prepared via semisynthetic approaches. The substrates included polyisoprenols of varying length, double bond geometry, and degree of saturation for probing the role of the hydrophobic polyisoprene in substrate specificity. Kinetic analysis reveals that all three enzymes exhibit distinct preferences for the polyisoprenyl carrier whereby cis-double bond geometry and alpha-unsaturation of the native substrate are important features, while the precise polyisoprene length may be less critical. These findings suggest that the polyisoprenyl carrier plays a specific role in the function of these enzymes beyond a purely physical role as a membrane anchor. These studies underscore the potential of the C. jejuni N-linked glycosylation pathway as a system for investigating the biochemical and biophysical roles of polyisoprenyl carriers common to prokaryotic and eukaryotic glycosylation.
Collapse
Affiliation(s)
- Mark M Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Clive L. Branch
- a Department of Medicinal Chemistry , SmithKline Beecham Pharmaceuticals , New Frontiers Science Park (North), Third Avenue, Harlow, Essex, England , CM19 5AW
| | - George Burton
- a Department of Medicinal Chemistry , SmithKline Beecham Pharmaceuticals , New Frontiers Science Park (North), Third Avenue, Harlow, Essex, England , CM19 5AW
- b Dept. Medicinal Chemistry , SB Pharmaceuticals , R&D, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA, 19426, USA
| | - Stephen F. Moss
- a Department of Medicinal Chemistry , SmithKline Beecham Pharmaceuticals , New Frontiers Science Park (North), Third Avenue, Harlow, Essex, England , CM19 5AW
| |
Collapse
|
39
|
Liliom K, Tsukahara T, Tsukahara R, Zelman-Femiak M, Swiezewska E, Tigyi G. Farnesyl phosphates are endogenous ligands of lysophosphatidic acid receptors: inhibition of LPA GPCR and activation of PPARs. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1506-14. [PMID: 17092771 PMCID: PMC1766556 DOI: 10.1016/j.bbalip.2006.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
Oligoprenyl phosphates are key metabolic intermediates for the biosynthesis of steroids, the side chain of ubiquinones, and dolichols and the posttranslational isoprenylation of proteins. Farnesyl phosphates are isoprenoid phosphates that resemble polyunsaturated fatty alcohol phosphates, which we have recently shown to be the minimal pharmacophores of lysophosphatidic acid (LPA) receptors. Here we examine whether farnesyl phosphates can interact with the cell surface and nuclear receptors for LPA. Both farnesyl phosphate and farnesyl diphosphate potently and specifically antagonized LPA-elicited intracellular Ca(2+)-mobilization mediated through the LPA(3) receptor, while causing only modest inhibition at the LPA(2) receptor and no measurable effect at the LPA(1) receptor. Farnesol also inhibited LPA(3) but was much less effective. The estimated dissociation constant of LPA(3) for farnesyl phosphate is 48+/-12 nM and 155+/-30 nM for farnesyl diphosphate. The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) binds to and is activated by LPA and its analogs including fatty alcohol phosphates. We found that both farnesyl phosphate and diphosphate, but not farnesol, compete with the binding of the synthetic PPARgamma agonist [(3)H]rosiglitazone and activate the PPARgamma-mediated gene transcription. Farnesyl monophosphate at 1 microM, but not diphosphate, activated PPARalpha and PPARbeta/delta reporter gene expression. These results indicate new potential roles for the oligoprenyl phosphates as potential endogenous modulators of LPA targets and show that the polyisoprenoid chain is recognized by some LPA receptors.
Collapse
Affiliation(s)
- Karoly Liliom
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest P.O.Box 7, Hungary
- Department of Physiology, University of Tennessee Health Science Center Memphis, TN 38163, USA
| | - Tamotsu Tsukahara
- Department of Physiology, University of Tennessee Health Science Center Memphis, TN 38163, USA
| | - Ryoko Tsukahara
- Department of Physiology, University of Tennessee Health Science Center Memphis, TN 38163, USA
| | - Monika Zelman-Femiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, TN 38163, USA
| |
Collapse
|
40
|
Rush JS, Waechter CJ. Assay for the transbilayer movement of polyisoprenoid-linked saccharides based on the transport of water-soluble analogues. Methods 2005; 35:316-22. [PMID: 15804602 DOI: 10.1016/j.ymeth.2004.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 10/25/2022] Open
Abstract
Flippases are a class of membrane proteins that are proposed to facilitate the transbilayer movement of amphipathic polar lipids that are required for membrane biogenesis and the assembly of many diverse complex glycoconjugates in eukaryotic and prokaryotic cells. Despite their crucial roles in membrane biology, very little is known about their structures and the precise mechanism(s) by which they overcome the biophysical barriers of the hydrophobic core, and allow polar head groups to traverse membrane bilayers. This chapter presents methods based on the transport of water-soluble analogues that can be applied to investigate membrane proteins mediating the transverse diffusion of polyisoprenoid-linked glycolipid intermediates involved in the biosynthesis of N-linked glycoproteins, glycosylphosphatidylinositol anchors and bacterial polysaccharides.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
41
|
Ariga K, Yuki H, Kikuchi JI, Dannemuller O, Albrecht-Gary AM, Nakatani Y, Ourisson G. Monolayer studies of single-chain polyprenyl phosphates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4578-83. [PMID: 16032875 DOI: 10.1021/la0467887] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The monolayer properties of some single-chain polyprenyl phosphates (phytanyl, phytyl, and geranylgeranyl phosphates), which we regard as hypothetical primitive membrane lipids, were investigated at the air-water interface by surface pressure-area (pi-A) isotherm measurements. The molecular area/ pressure at various pH conditions dependence revealed the acid dissociation constants (pKa values) of the phosphate. The pKa values thus obtained at the air-water interface (pKa1 = 7.1 and pKa2 = 9.4 for phytanyl phosphate) were significantly shifted to higher pH than those observed in the bilayer state in water (pKa1 = 2.9 and pKa2 = 7.8). The difference in pKa values leads to a stability of the phosphate as both monolayer and bilayer states in a pH range of 2-6. In addition, the presence of ions such as sodium, magnesium, calcium, and lanthanum in the subphase significantly altered the stability of the polyprenyl phosphate monolayers, as shown by the determination of monolayer collapse and compression/expansion hysteresis. Although sodium ions in the subphase showed only a weak effect on the stabilization of the monolayer, addition of magnesium ions or of a small amount of calcium ions significantly suppressed the dissolution of the monolayer into the subphase and increased its mechanical stability against collapse. In contrast, the presence of larger amounts of calcium or of lanthanum ions induced collapse of the monolayers. Based on these experimental facts, a plausible scenario for the formation of primitive cell membrane by transformation of a monolayer to vesicle structures is proposed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Supermolecules Group, Advanced Materials Laboratory, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Forsgren M, Attersand A, Lake S, GRüNLER J, Swiezewska E, Dallner G, Climent I. Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J 2005; 382:519-26. [PMID: 15153069 PMCID: PMC1133808 DOI: 10.1042/bj20040261] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/14/2004] [Accepted: 05/21/2004] [Indexed: 11/17/2022]
Abstract
The COQ2 gene in Saccharomyces cerevisiae encodes a Coq2 (p-hydroxybenzoate:polyprenyl transferase), which is required in the biosynthetic pathway of CoQ (ubiquinone). This enzyme catalyses the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group. We have isolated cDNA which we believe encodes the human homologue of COQ2 from a human muscle and liver cDNA library. The clone contained an open reading frame of length 1263 bp, which encodes a polypeptide that has sequence homology with the Coq2 homologues in yeast, bacteria and mammals. The human COQ2 gene, when expressed in yeast Coq2 null mutant cells, rescued the growth of this yeast strain in the absence of a non-fermentable carbon source and restored CoQ biosynthesis. However, the rate of CoQ biosynthesis in the rescued cells was lower when compared with that in cells rescued with the yeast COQ2 gene. CoQ formed when cells were incubated with labelled decaprenyl pyrophosphate and nonaprenyl pyrophosphate, showing that the human enzyme is active and that it participates in the biosynthesis of CoQ.
Collapse
Affiliation(s)
| | | | | | - Jacob GRüNLER
- †Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Gustav Dallner
- §Department of Biochemistry, Stockholm University, SE-16 901 Stockholm, Sweden
| | - Isabel Climent
- *Biovitrum AB, SE-11 276 Stockholm, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Affiliation(s)
- Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsawa, Poland
| |
Collapse
|
44
|
Breukink E, van Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, Heck AJR, de Kruijff B. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 2003; 278:19898-903. [PMID: 12663672 DOI: 10.1074/jbc.m301463200] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidoglycan layers surrounding bacterial membranes are essential for bacterial cell survival and provide an important target for antibiotics. Many antibiotics have mechanisms of action that involve binding to Lipid II, the prenyl chain-linked donor of the peptidoglycan building blocks. One of these antibiotics, the pore-forming peptide nisin uses Lipid II as a receptor molecule to increase its antimicrobial efficacy dramatically. Nisin is the first example of a targeted membrane-permeabilizing peptide antibiotic. However, it was not known whether Lipid II functions only as a receptor to recruit nisin to bacterial membranes, thus increasing its specificity for bacterial cells, or whether it also plays a role in pore formation. We have developed a new method to produce large amounts of Lipid II and variants thereof so that we can address the role of the lipid-linked disaccharide in the activity of nisin. We show here that Lipid II is not only the receptor for nisin but an intrinsic component of the pore formed by nisin, and we present a new model for the pore complex that includes Lipid II.
Collapse
Affiliation(s)
- Eefjan Breukink
- Center of Biomembranes and Lipid Enzymology, Department of Biochemistry of Membranes, Institute for Biomembranes, University of Utrecht, Padualaan 8 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rick PD, Barr K, Sankaran K, Kajimura J, Rush JS, Waechter CJ. Evidence that the wzxE gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. J Biol Chem 2003; 278:16534-42. [PMID: 12621029 DOI: 10.1074/jbc.m301750200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of many bacterial cell surface polysaccharides requires the transbilayer movement of polyisoprenoid-linked saccharide intermediates across the cytoplasmic membrane. It is generally believed that transverse diffusion of glycolipid intermediates is mediated by integral membrane proteins called translocases or "flippases." The bacterial genes proposed to encode these translocases have been collectively designated wzx genes. The wzxE gene of Escherichia coli K-12 has been implicated in the transbilayer movement of Fuc4NAc-ManNAcA-GlcNAc-P-P-undecaprenol (lipid III), the donor of the trisaccharide repeat unit in the biosynthesis of enterobacterial common antigen (ECA). Previous studies (Feldman, M. F., Marolda, C. L., Monteiro, M. A., Perry, M. B., Parodi, A. J., and Valvano, M. (1999) J. Biol. Chem. 274, 35129-35138) provided indirect evidence that the wzx(016) gene product of E. coli K-12 encoded a translocase capable of mediating the transbilayer movement of N-acetylglucosaminylpyrophosphorylundecaprenol (GlcNAc-P-P-Und), an early intermediate in the synthesis of ECA and many lipopolysaccharide O antigens. Therefore, genetic and biochemical studies were conducted to determine if the putative Wzx(O16) translocase was capable of mediating the transport of N-acetylglucosaminylpyrophosphorylnerol (GlcNAc-P-P-Ner), a water-soluble analogue of GlcNAc-P-P-Und. [(3)H]GlcNAc-P-P-Ner was transported into sealed, everted cytoplasmic membrane vesicles of E. coli K-12 as well as a deletion mutant lacking both the wzx(016) and wzxC genes. In contrast, [(3)H]GlcNAc-P-P-Ner was not transported into membrane vesicles prepared from a wzxE-null mutant, and metabolic radiolabeling experiments revealed the accumulation of lipid III in this mutant. The WzxE transport system exhibited substrate specificity by recognizing both a pyrophosphoryl-linked saccharide and an unsaturated alpha-isoprene unit in the carrier lipid. These results support the conclusion that the wzxE gene encodes a membrane protein involved in the transbilayer movement of lipid III in E. coli.
Collapse
Affiliation(s)
- Paul D Rick
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Rush JS, Cho SK, Jiang S, Hofmann SL, Waechter CJ. Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem 2002; 277:45226-34. [PMID: 12198133 DOI: 10.1074/jbc.m207076200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CWH8 gene in Saccharomyces cerevisiae has been shown recently (Fernandez, F., Rush, J. S., Toke, D. A., Han, G., Quinn, J. E., Carman, G. M., Choi, J.-Y., Voelker, D. R., Aebi, M., and Waechter, C. J. (2001) J. Biol. Chem. 276, 41455-41464) to encode a dolichyl pyrophosphate (Dol-P-P) phosphatase associated with crude microsomal fractions. Mutations in CWH8 result in the accumulation of Dol-P-P, deficiency in lipid intermediate synthesis, defective protein N-glycosylation, and a reduced growth rate. A cDNA (DOLPP1, GenBank accession number AB030189) from mouse brain encoding a homologue of the yeast CWH8 gene is now shown to complement the defects in growth and protein N-glycosylation, and to correct the accumulation of Dol-P-P in the cwh8Delta yeast mutant. Northern blot analyses demonstrate a wide distribution of the DOLPP1 mRNA in mouse tissues. Overexpression of Dolpp1p in yeast, COS, and Sf9 cells produces substantial increases in Dol-P-P phosphatase activity but not in dolichyl monophosphate or phosphatidic acid phosphatase activities in microsomal fractions. Subcellular fractionation and immunofluorescence studies localize the enzyme encoded by DOLPP1 to the endoplasmic reticulum of COS cells. The results of protease sensitivity studies with microsomal vesicles from the lpp1Delta/dpp1Delta yeast mutant expressing DOLPP1 are consistent with Dolpp1p having a luminally oriented active site. The sequence of the DOLPP1 cDNA predicts a polypeptide with 238 amino acids, and a new polypeptide corresponding to 27 kDa is observed when DOLPP1 is expressed in yeast, COS, and Sf9 cells. This study is the first identification and characterization of a cDNA clone encoding an essential component of a mammalian lipid pyrophosphate phosphatase that is highly specific for Dol-P-P. The specificity, subcellular location, and topological orientation of the active site described in the current study strongly support a role for Dolpp1p in the recycling of Dol-P-P discharged during protein N-glycosylation reactions on the luminal leaflet of the endoplasmic reticulum in mammalian cells.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
47
|
Jarstfer MB, Zhang DL, Poulter CD. Recombinant squalene synthase. Synthesis of non-head-to-tail isoprenoids in the absence of NADPH. J Am Chem Soc 2002; 124:8834-45. [PMID: 12137536 DOI: 10.1021/ja020410i] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Squalene synthase (SQase) catalyzes two consecutive reactions in sterol biosynthesis. The first is the condensation of two molecules of farnesyl diphosphate (FPP) to form a cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). The subsequent conversion of PSPP to squalene (SQ) involves an extensive rearrangement of the carbon skeleton and a NADPH-dependent reduction. Incubation of a truncated soluble form of recombinant yeast SQase with FPP in buffer lacking NADPH gave (1R,2R,3R)-PSPP. As the incubation continued, SQase catalyzed the subsequent conversion of PSPP to a mixture of triterpenes. Two of the major products, (Z)-dehydrosqualene (DSQ) and (R)-12-hydroxysqualene (HSQ), have the same 1'-1 linkage between the farnesyl units from FPP that is found in squalene. The other major product, (10S,13S)-10-hydroxybotryococcene (HBO), has a 1'-3 linkage between the farnesyl units. Small quantities of (S)-HSQ and (10R,13S)-HBO were also formed. Three additional triterpenes, the allylic isomers of HSQ and HBO, and an unidentified alcohol were produced in minor amounts. A methyl ether corresponding to HSQ was detected when methanol was present in the incubation buffer. These compounds are the expected "solvolysis" products from PSPP. They provide strong support for mechanisms that propose cyclopropylcarbinyl cations as intermediates in the SQase-catalyzed rearrangement of PSPP to SQ and unambiguously demonstrate that the catalytic machinery of SQase is capable of synthesizing a variety of irregular isoprenoids.
Collapse
Affiliation(s)
- Michael B Jarstfer
- Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
48
|
Fernandez F, Rush JS, Toke DA, Han GS, Quinn JE, Carman GM, Choi JY, Voelker DR, Aebi M, Waechter CJ. The CWH8 gene encodes a dolichyl pyrophosphate phosphatase with a luminally oriented active site in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 2001; 276:41455-64. [PMID: 11504728 DOI: 10.1074/jbc.m105544200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the CWH8 gene, which encodes an ER transmembrane protein with a phosphate binding pocket in Saccharomyces cerevisiae, result in a deficiency in dolichyl pyrophosphate (Dol-P-P)-linked oligosaccharide intermediate synthesis and protein N-glycosylation (van Berkel, M. A., Rieger, M., te Heesen, S., Ram, A. F., van den Ende, H., Aebi, M., and Klis, F. M. (1999) Glycobiology 9, 243-253). Genetic, enzymological, and topological approaches were taken to investigate the potential role of Cwh8p in Dol-P-P/Dol-P metabolism. Overexpression of Cwh8p in the yeast double mutant strain, lacking LPP1/DPP1, resulted in an impressive increase in Dol-P-P phosphatase activity, a relatively small increase in Dol-P phosphatase activity, but no change in phosphatidate (PA) phosphatase activity in microsomal fractions. The Dol-P-P phosphatase encoded by CWH8 is optimally active in the presence of 0.5% octyl glucoside and relatively unstable in Triton X-100, distinguishing this activity from the lipid phosphatases encoded by LPP1 and DPP1. Stoichiometric amounts of P(i) and Dol-P are formed during the enzymatic reaction indicating that Cwh8p cleaves the anhydride linkage in Dol-P-P. Membrane fractions from Sf-9 cells expressing Cwh8p contained a 30-fold higher level of Dol-P-P phosphatase activity, a slight increase in Dol-P phosphatase activity, but no increase in PA phosphatase relative to controls. This is the first report of a lipid phosphatase that hydrolyzes Dol-P-P/Dol-P but not PA. In accord with this enzymatic function, Dol-P-P accumulated in cells lacking the Dol-P-P phosphatase. Topological studies using different approaches indicate that Cwh8p is a transmembrane protein with a luminally oriented active site. The specificity, subcellular location, and topological orientation of this novel enzyme are consistent with a role in the re-utilization of the glycosyl carrier lipid for additional rounds of lipid intermediate biosynthesis after its release during protein N-glycosylation reactions.
Collapse
Affiliation(s)
- F Fernandez
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule Zentrum, Zürich CH-8092, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rivera SB, Swedlund BD, King GJ, Bell RN, Hussey CE, Shattuck-Eidens DM, Wrobel WM, Peiser GD, Poulter CD. Chrysanthemyl diphosphate synthase: isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Proc Natl Acad Sci U S A 2001; 98:4373-8. [PMID: 11287653 PMCID: PMC31842 DOI: 10.1073/pnas.071543598] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chrysanthemyl diphosphate synthase (CPPase) catalyzes the condensation of two molecules of dimethylallyl diphosphate to produce chrysanthemyl diphosphate (CPP), a monoterpene with a non-head-to-tail or irregular c1'-2-3 linkage between isoprenoid units. Irregular monoterpenes are common in Chrysanthemum cinerariaefolium and related members of the Asteraceae family. In C. cinerariaefolium, CPP is an intermediate in the biosynthesis of the pyrethrin ester insecticides. CPPase was purified from immature chrysanthemum flowers, and the N terminus of the protein was sequenced. A C. cinerariaefolium lambda cDNA library was screened by using degenerate oligonucleotide probes based on the amino acid sequence to identify a CPPase clone that encoded a 45-kDa preprotein. The first 50 aa of the ORF constitute a putative plastidial targeting sequence. Recombinant CPPase bearing an N-terminal polyhistidine affinity tag in place of the targeting sequence was purified to homogeneity from an overproducing Escherichia coli strain by Ni(2+) chromatography. Incubation of recombinant CPPase with dimethylallyl diphosphate produced CPP. The diphosphate ester was hydrolyzed by alkaline phosphatase, and the resulting monoterpene alcohol was analyzed by GC/MS to confirm its structure. The amino acid sequence of CPPase aligns closely with that of the chain elongation prenyltransferase farnesyl diphosphate synthase rather than squalene synthase or phytoene synthase, which catalyze c1'-2-3 cyclopropanation reactions similar to the CPPase reaction.
Collapse
Affiliation(s)
- S B Rivera
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Janas T, Walińska K. The effect of hexadecaprenyl diphosphate on phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:273-83. [PMID: 10727614 DOI: 10.1016/s0005-2736(00)00154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we investigated phospholipid bilayer membranes and phospholipid vesicles made from dioleoylphosphatidylcholine (DOPC) or its mixture with the phosphate ester derivative of long-chain polyprenol (hexadecaprenyl diphosphate, C(80)-PP) by electrophysiological and transmission electron microscopy (TEM) techniques. The membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C(80)-PP/DOPC. The current-voltage characteristics, the membrane conductance, the activation energy of ion migration across the membrane and the membrane breakdown voltage were determined. Hexadecaprenyl diphosphate decreases the membrane conductance, increases the activation energy and the membrane breakdown voltage for the various values of C(80)-PP/DOPC mole ratio. The analysis of TEM micrographs shows several characteristic structures, which have been described. The data indicate that hexadecaprenyl diphosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. The properties of modified membranes can result from the presence of the negative charges in the hydrophilic part of C(80)-PP molecules and can be modulated by the concentration of this compound in membranes. We suggest that the dynamics and conformation of hexadecaprenyl diphosphate in membranes depend on the transmembrane electrical potential.
Collapse
Affiliation(s)
- T Janas
- Department of Biophysics, Pedagogical University, Monte Cassino 21 B, 65-561, Zielona Góra, Poland.
| | | |
Collapse
|