1
|
Tu M, Ge B, Li J, Pan Y, Zhao B, Han J, Wu J, Zhang K, Liu G, Hou M, Yue M, Han X, Sun T, An Y. Emerging biological functions of Twist1 in cell differentiation. Dev Dyn 2025; 254:8-25. [PMID: 39254141 DOI: 10.1002/dvdy.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Twist1 is required for embryonic development and expresses after birth in mesenchymal stem cells derived from mesoderm, where it governs mesenchymal cell development. As a well-known regulator of epithelial-mesenchymal transition or embryonic organogenesis, Twist1 is important in a variety of developmental systems, including mesoderm formation, neurogenesis, myogenesis, cranial neural crest cell migration, and differentiation. In this review, we first highlight the physiological significance of Twist1 in cell differentiation, including osteogenic, chondrogenic, and myogenic differentiation, and then detail its probable molecular processes and signaling pathways. On this premise, we summarize the significance of Twist1 in distinct developmental disorders and diseases to provide a reference for studies on cell differentiation/development-related diseases.
Collapse
Affiliation(s)
- Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Bingqian Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Johnson AN. Myotube Guidance: Shaping up the Musculoskeletal System. J Dev Biol 2024; 12:25. [PMID: 39311120 PMCID: PMC11417883 DOI: 10.3390/jdb12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell-cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Chen B, Cai H, Niu Y, Zhang Y, Wang Y, Liu Y, Han R, Liu X, Kang X, Li Z. Whole transcriptome profiling reveals a lncMDP1 that regulates myogenesis by adsorbing miR-301a-5p targeting CHAC1. Commun Biol 2024; 7:518. [PMID: 38698103 PMCID: PMC11066001 DOI: 10.1038/s42003-024-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Myoblast proliferation and differentiation are essential for skeletal muscle development. In this study, we generated the expression profiles of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in different developmental stages of chicken primary myoblasts (CPMs) using RNA sequencing (RNA-seq) technology. The dual luciferase reporter system was performed using chicken embryonic fibroblast cells (DF-1), and functional studies quantitative real-time polymerase chain reaction (qPCR), cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry cycle, RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence, and western blotting assay. Our research demonstrated that miR-301a-5p had a targeted binding ability to lncMDP1 and ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). The results revealed that lncMDP1 regulated the proliferation and differentiation of myoblasts via regulating the miR-301a-5p/CHAC1 axis, and CHAC1 promotes muscle regeneration. This study fulfilled the molecular regulatory network of skeletal muscle development and providing an important theoretical reference for the future improvement of chicken meat performance and meat quality.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Cao J, Wang X, Advani V, Lu YW, Malizia AP, Singh GB, Huang Z, Liu J, Wang C, Oliveira EM, Mably JD, Chen K, Wang D. mt-Ty 5'tiRNA regulates skeletal muscle cell proliferation and differentiation. Cell Prolif 2023; 56:e13416. [PMID: 36756712 PMCID: PMC10392060 DOI: 10.1111/cpr.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
In this study, we sought to determine the role of tRNA-derived fragments in the regulation of gene expression during skeletal muscle cell proliferation and differentiation. We employed cell culture to examine the function of mt-Ty 5' tiRNAs. Northern blotting, RT-PCR as well as RNA-Seq, were performed to determine the effects of mt-Ty 5' tiRNA loss and gain on gene expression. Standard and transmission electron microscopy (TEM) were used to characterize cell and sub-cellular structures. mt-Ty 5'tiRNAs were found to be enriched in mouse skeletal muscle, showing increased levels in later developmental stages. Gapmer-mediated inhibition of tiRNAs in skeletal muscle C2C12 myoblasts resulted in decreased cell proliferation and myogenic differentiation; consistent with this observation, RNA-Seq, transcriptome analyses, and RT-PCR revealed that skeletal muscle cell differentiation and cell proliferation pathways were also downregulated. Conversely, overexpression of mt-Ty 5'tiRNAs in C2C12 cells led to a reversal of these transcriptional trends. These data reveal that mt-Ty 5'tiRNAs are enriched in skeletal muscle and play an important role in myoblast proliferation and differentiation. Our study also highlights the potential for the development of tiRNAs as novel therapeutic targets for muscle-related diseases.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Faculty of Environment and LifeBeijing University of TechnologyBeijingP. R. China
| | - Xin Wang
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vivek Advani
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Vascular Biology Program, Department of Surgery, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrea P. Malizia
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Gurinder Bir Singh
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Zhan‐Peng Huang
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jianming Liu
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Present address:
Vertex pharmaceuticalsBostonMassachusettsUSA
| | - Chunbo Wang
- UNC McAllister Heart InstituteUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Edilamar M. Oliveira
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- School of Physical Education and SportUniversity of Sao PauloSao PauloBrazil
| | - John D. Mably
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Da‐Zhi Wang
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
5
|
Pagliara V, Amodio G, Vestuto V, Franceschelli S, Russo NA, Cirillo V, Mottola G, Remondelli P, Moltedo O. Myogenesis in C2C12 Cells Requires Phosphorylation of ATF6α by p38 MAPK. Biomedicines 2023; 11:biomedicines11051457. [PMID: 37239128 DOI: 10.3390/biomedicines11051457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Activating transcription factor 6α (ATF6α) is an endoplasmic reticulum protein known to participate in unfolded protein response (UPR) during ER stress in mammals. Herein, we show that in mouse C2C12 myoblasts induced to differentiate, ATF6α is the only pathway of the UPR activated. ATF6α stimulation is p38 MAPK-dependent, as revealed by the use of the inhibitor SB203580, which halts myotube formation and, at the same time, impairs trafficking of ATF6α, which accumulates at the cis-Golgi without being processed in the p50 transcriptional active form. To further evaluate the role of ATF6α, we knocked out the ATF6α gene, thus inhibiting the C2C12 myoblast from undergoing myogenesis, and this occurred independently from p38 MAPK activity. The expression of exogenous ATF6α in knocked-out ATF6α cells recover myogenesis, whereas the expression of an ATF6α mutant in the p38 MAPK phosphorylation site (T166) was not able to regain myogenesis. Genetic ablation of ATF6α also prevents the exit from the cell cycle, which is essential for muscle differentiation. Furthermore, when we inhibited differentiation by the use of dexamethasone in C2C12 cells, we found inactivation of p38 MAPK and, consequently, loss of ATF6α activity. All these findings suggest that the p-p38 MAPK/ATF6α axis, in pathophysiological conditions, regulates myogenesis by promoting the exit from the cell cycle, an essential step to start myoblasts differentiation.
Collapse
Affiliation(s)
- Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Nicola Antonino Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Vittorio Cirillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Giovanna Mottola
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN) (AMU-INSERM 1263-INRAE 1260), Aix Marseille Université, Campus Timone, 27 Bd. Jean Moulin, 13005 Marseille, France
- Biogénopôle (BGP), Laboratoires de Biologie Médicale, Secteur Biochimie, Hôpital de La Timone, 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Yuan P, Fan S, Zhai B, Li Y, Li S, Li H, Zhang H, Zhang Y, Han R, Tian Y, Li G, Kang X. miR-181a-5p can inhibit the proliferation and promote the differentiation of chicken primary myoblasts. Br Poult Sci 2022; 63:813-820. [PMID: 35848781 DOI: 10.1080/00071668.2022.2102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Myoblast proliferation and differentiation is one of the most important biological processes in the development of skeletal muscle. MicroRNAs (miRNAs) play a crucial role in this process.2. In this study, the expression level of miR-181a-5p was detected, which found that miR-181a-5p was expressed differently in different tissues, different embryonic ages, and different differentiation stages of primary myoblasts in Gushi chickens.3. The effect of miR-181a-5p was further investigated on chicken primary myoblasts (CPMs). The results of cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and cell cycle showed that miR-181a-5p could inhibit the proliferation of CPM. The miR-181a-5p promoted the expression of MYOD, MYOG, and MYHC. MYHC protein immunofluorescence experiments showed that miR-181a-5p increased the area of myotubes.4. In total, 63 potential target genes of mir-181a-5p in mRNA transcriptome data analysis were identified. Functional enrichment analysis was performed on these target genes, and ASNS, SMYD1, and FOS were found to play regulatory roles in biological processes such as muscle development. It was speculated that miR-181a-5p played a role in myoblast development through these genes.5. In conclusion, miR-181a-5p can inhibit the proliferation of chicken myoblasts and promote the differentiation of chicken myoblasts. This study laid the foundation for further research on the regulatory mechanism of miR-181a-5p in the development of skeletal muscle and the formation of excellent meat quality traits in Gushi chicken.
Collapse
Affiliation(s)
- Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
8
|
Kny M, Fielitz J. Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Front Immunol 2022; 13:878755. [PMID: 35615361 PMCID: PMC9124858 DOI: 10.3389/fimmu.2022.878755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Critically ill patients at the intensive care unit (ICU) often develop a generalized weakness, called ICU-acquired weakness (ICUAW). A major contributor to ICUAW is muscle atrophy, a loss of skeletal muscle mass and function. Skeletal muscle assures almost all of the vital functions of our body. It adapts rapidly in response to physiological as well as pathological stress, such as inactivity, immobilization, and inflammation. In response to a reduced workload or inflammation muscle atrophy develops. Recent work suggests that adaptive or maladaptive processes in the endoplasmic reticulum (ER), also known as sarcoplasmic reticulum, contributes to this process. In muscle cells, the ER is a highly specialized cellular organelle that assures calcium homeostasis and therefore muscle contraction. The ER also assures correct folding of proteins that are secreted or localized to the cell membrane. Protein folding is a highly error prone process and accumulation of misfolded or unfolded proteins can cause ER stress, which is counteracted by the activation of a signaling network known as the unfolded protein response (UPR). Three ER membrane residing molecules, protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1a (IRE1a), and activating transcription factor 6 (ATF6) initiate the UPR. The UPR aims to restore ER homeostasis by reducing overall protein synthesis and increasing gene expression of various ER chaperone proteins. If ER stress persists or cannot be resolved cell death pathways are activated. Although, ER stress-induced UPR pathways are known to be important for regulation of skeletal muscle mass and function as well as for inflammation and immune response its function in ICUAW is still elusive. Given recent advances in the development of ER stress modifying molecules for neurodegenerative diseases and cancer, it is important to know whether or not therapeutic interventions in ER stress pathways have favorable effects and these compounds can be used to prevent or treat ICUAW. In this review, we focus on the role of ER stress-induced UPR in skeletal muscle during critical illness and in response to predisposing risk factors such as immobilization, starvation and inflammation as well as ICUAW treatment to foster research for this devastating clinical problem.
Collapse
Affiliation(s)
- Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Li Y, Yuan P, Fan S, Zhai B, Li S, Li H, Zhang Y, Li W, Sun G, Han R, Tian Y, Liu X, Jiang R, Li G, Kang X. miR-30a-3p can inhibit the proliferation and promote the differentiation of chicken primary myoblasts. Br Poult Sci 2022; 63:475-483. [PMID: 35275038 DOI: 10.1080/00071668.2022.2050674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Chicken muscle is an important factor in meat quality and its development is controlled by a complex regulatory network.2. The following study examined the expression of miR-30a-3p in Gushi chicken breast muscle tissue and found that it was differentially expressed at different embryonic stages, reaching a peak in the 14-day-old embryo (E14).3. The effect of miR-30a-3p on chicken primary myoblasts (CPMs) was explored. Results from both cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) showed that this can inhibit the proliferation of myoblasts, and through cell cycle experiments, the inhibition of myoblast proliferation was found, which may be due to G0/G1 arrest in the cell cycle.4. The effect of miR-30a-3p on the differentiation of myoblasts was studied. The results showed that miR-30a-3p can promote the expression of MYOD, myogenin (MYOG), and myosin heavy chain (MYHC) genes to promote the differentiation of myoblasts. Through MYHC protein immunofluorescence experiments, it was found that miR-30a-3p can effectively increase the area of myotubes.5. Finally, mRNA transcriptome data was analysed, which showed that miR-30a-3p has 51 potential target genes. Among them, forkhead box O3 (FOXO3), ankyrin repeat domain 1 (ANKRD1), and insulin-induced 1 (INSIG1) genes were differentially expressed at different developmental stages and were enriched in Gene Ontology (GO) terms, such as cell differentiation and cellular developmental process. The data showed that tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG), BUB1 mitotic checkpoint serine/threonine kinase (BUB1), and growth arrest and DNA damage-inducible 45 (GADD45) genes were enriched in the cell cycle pathway.6. It can be speculated that miR-30a-3p plays roles through these genes in myoblast development. This research provides information for further improving knowledge of the chicken muscle development regulation network.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuaihao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtai Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
10
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
A novel mitochondrial micropeptide MPM enhances mitochondrial respiratory activity and promotes myogenic differentiation. Cell Death Dis 2019; 10:528. [PMID: 31296841 PMCID: PMC6624212 DOI: 10.1038/s41419-019-1767-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Micropeptides belong to a class of newly identified small molecules with <100 amino acids in length, and their functions remain largely unknown. Here, we identified a novel muscle-enriched micropeptide that was localized to mitochondria (named MPM, micropeptide in mitochondria) and upregulated during in vitro differentiation of C2C12 myoblasts and in vivo early postnatal skeletal muscle development, and muscle regeneration after cardiotoxin (CTX) damage. Downregulation of MPM was observed in the muscular tissues of tibial muscular dystrophy and Duchenne muscular dystrophy patients. Furthermore, MPM silencing inhibited the differentiation of C2C12 myoblasts into myotubes, whereas MPM overexpression stimulated it. MPM−/− mice exhibited smaller skeletal muscle fibers and worse muscle performance, such as decrease in the maximum grip force of limbs, the latency to fall off rotarod, and the exhausting swimming time. Muscle regeneration was also impaired in MPM−/− mice, as evidenced by lower expression of Pax7, MyoD, and MyoG after CTX injection and smaller regenerated myofibers, compared with wild-type mice. Mechanistical investigations based on both gain- and loss-of function studies revealed that MPM increased oxygen consumption and ATP production of mitochondria. Moreover, ectopic expression of PGC-1α, which can enhance mitochondrial respiration, attenuated the inhibitory effect of siMPM on myogenic differentiation. These results imply that MPM may promote myogenic differentiation and muscle fiber growth by enhancing mitochondrial respiratory activity, which highlights the importance of micropeptides in the elaborate regulatory network of both myogenesis and mitochondrial activity and implicates MPM as a potential target for muscular dystrophy therapy.
Collapse
|
12
|
Al-Zghoul MB, El-Bahr SM. Thermal manipulation of the broilers embryos: expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Vet Res 2019; 15:166. [PMID: 31122240 PMCID: PMC6533759 DOI: 10.1186/s12917-019-1917-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/16/2019] [Indexed: 11/30/2022] Open
Abstract
Background In broilers chickens, the molecular bases for promoting muscle development and growth requires further investigation. Therefore, the current study aimed to investigate the effects of daily thermal manipulation (TM) during embryonic days (ED) 12 to 18 on body, carcass and internal organ weights as well as on the expression of muscle growth markers genes during late embryogenesis and post-hatch days. 1500 fertile Cobb eggs were divided into five groups. The first group was a control group and incubated at 37.8°C. The other four groups were thermally manipulated (TM) and exposed to 38.5°C (TM1), 39°C (TM2), 39.5°C (TM3) and 40°C (TM4) daily for 18 h, respectively, with a relative humidity of 56%. Body weights (BW) from ED 12 to 18 and on post-hatch days 1, 2, 3, 4, 5, 6, 7, 14, 21, 28 and 35 were recorded. mRNA expression levels of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (Myogenic Differentiation Antigen; MyoD), Myogenin, Pax7, and PCNA) during ED 12 to 18 and on post-hatch days 1, 3, 5, 7, 14 were analyzed. On post-hatch day 35, the carcass and internal organ weights have been also evaluated. Results TM during certain days of embryogenesis (ED 12 to 18) did not affect the BW of broilers during their embryonic lives. However, TM, particularly TM1 and TM2, significantly increased BW, carcass and internal weights of hatched chicks near to the marketing age (post-hatch days 28 and 35). Most of TM protocols induced up-regulation of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (MyoD, Myogenin, Pax7, and PCNA) during embryonic life (ED 12 to 18) and on post-hatch days. Conclusion Among the various TM conditions, it seems that,TM1 and TM2 induced a significant increase in BW, carcass and internal weights of hatched chicks near to the marketing age. This increase in BW induced presumably via up-regulation of muscle growth factor genes and muscle growth markers genes during embryonic life (ED 12 to 18) and on post-hatch days. Both protocols (TM1 and TM2) can be used in real-world applications of poultry industry for maximum benefit.
Collapse
Affiliation(s)
- Mohamed Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Sabry Mohamed El-Bahr
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hufof, 31982, Saudi Arabia. .,Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
13
|
Akirin1 promotes myoblast differentiation by modulating multiple myoblast differentiation factors. Biosci Rep 2019; 39:BSR20182152. [PMID: 30777932 PMCID: PMC6395299 DOI: 10.1042/bsr20182152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022] Open
Abstract
Akirin1 is found to be involved in myoblast differentiation. However, the mechanism by which the Akirin1 gene regulates myoblast differentiation still remains unclear. In the present study, we found that ectopic expression of Akirin1 promoted myoblast differentiation by increasing the expression of myogenic regulatory factor (MRF) 4 (MRF4) and myocyte enhancer factor 2B (MEF2B) mRNA. Additionally, we showed that ectopic Akirin1 induced cell cycle arrest by up-regulating p21 mRNA. To further uncover the mechanism by which Akirin1 promotes myoblast differentiation, we showed that the enhanced Akirin1 increased the mRNA expression of P38α. Importantly, the enhanced MRF4 expression by Akirin1 can be abrogated by treatment of SB203580, a p38 inhibitor. Similarly, we found that enhanced MEF2B expression by Akirin1 can be abrogated by treatment with LY294002, a PI3K inhibitor. Together, our results indicate that Akirin1 promotes myoblast differentiation by acting on the p38 and PI3K pathways and subsequently inducing the expression of myoblast differentiation factors.
Collapse
|
14
|
Gasiūnienė M, Zentelytė A, Treigytė G, Baronaitė S, Savickienė J, Utkus A, Navakauskienė R. Epigenetic alterations in amniotic fluid mesenchymal stem cells derived from normal and fetus-affected gestations: A focus on myogenic and neural differentiations. Cell Biol Int 2019; 43:299-312. [PMID: 30635962 DOI: 10.1002/cbin.11099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022]
Abstract
Amniotic fluid-derived mesenchymal stem cells (AF-MSCs) are autologous to the fetus and represent a potential alternative source for the regenerative medicine and treatment of perinatal disorders. To date, AF-MSCs differentiation capacity to non-mesodermal lineages and epigenetic regulation are still poorly characterized. The present study investigated the differentiation potential of AF-MSCs toward neural-like cells in comparison to the mesodermal myogenic lineage and assessed epigenetic factors involved in tissue-specific differentiation. Myogenic and neural differentiation assays were performed by the incubation with specific induction media. Typical MSCs markers were determined by flow cytometry, the expression of lineage-specific genes, microRNAs and chromatin modifying proteins were examined by RT-qPCR and Western blot, respectively. AF-MSCs of normal and fetus-affected gestations had similar stem cells characteristics and two-lineage potential, as characterized by cell morphology and the expression of myogenic and neural markers. Two-lineage differentiation process was associated with the down-regulation of miR-17 and miR-21, the up-regulation of miR-34a, miR-146a and DNMT3a/DNMT3b along with the gradual decrease in the levels of DNMT1, HDAC1, active marks of chromatin (H4hyperAc, H3K9ac, H3K4me3) and the repressive H3K9me3 mark. Differentiation was accompanied by the down-regulation of PRC1/2 proteins (BMI1/SUZ12, EZH2) and the retention of the repressive H3K27me3 mark. We report that both AF-MSCs of normal and fetus-affected gestations possess differentiation capacity toward myogenic and neural lineages through rather similar epigenetic mechanisms that may provide potential applications for further investigation of the molecular basis of prenatal diseases and for the future autologous therapy.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Gražina Treigytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Sandra Baronaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Jūratė Savickienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, M. K. Ciurlionio st. 21, Vilnius, LT-03101, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
15
|
Dalab AS, Ali AM. Morphological Investigations of the Effect of Thermal Manipulation During Embryogenesis on Body Performance and Structure of Pectoral and Thigh Muscle of Ross Broiler Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- AS Dalab
- King Faisal University, Saudi Arabia
| | - AM Ali
- King Faisal University, Saudi Arabia
| |
Collapse
|
16
|
Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J 2019; 286:379-398. [PMID: 29239106 PMCID: PMC6002870 DOI: 10.1111/febs.14358] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly plastic tissue in the human body that undergoes extensive adaptation in response to environmental cues, such as physical activity, metabolic perturbation, and disease conditions. The endoplasmic reticulum (ER) plays a pivotal role in protein folding and calcium homeostasis in many mammalian cell types, including skeletal muscle. However, overload of misfolded or unfolded proteins in the ER lumen cause stress, which results in the activation of a signaling network called the unfolded protein response (UPR). The UPR is initiated by three ER transmembrane sensors: protein kinase R-like endoplasmic reticulum kinase, inositol-requiring protein 1α, and activating transcription factor 6. The UPR restores ER homeostasis through modulating the rate of protein synthesis and augmenting the gene expression of many ER chaperones and regulatory proteins. However, chronic heightened ER stress can also lead to many pathological consequences including cell death. Accumulating evidence suggests that ER stress-induced UPR pathways play pivotal roles in the regulation of skeletal muscle mass and metabolic function in multiple conditions. They have also been found to be activated in skeletal muscle under catabolic states, degenerative muscle disorders, and various types of myopathies. In this article, we have discussed the recent advancements toward understanding the role and mechanisms through which ER stress and individual arms of the UPR regulate skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Dil Afroze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, INDIA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Geranylgeraniol Prevents Statin-Dependent Myotoxicity in C2C12 Muscle Cells through RAP1 GTPase Prenylation and Cytoprotective Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6463807. [PMID: 29951166 PMCID: PMC5987243 DOI: 10.1155/2018/6463807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
The present study investigated the cytotoxic effects of statins (atorvastatin (ATR) and simvastatin (SIM), resp.) and methyl-beta-cyclodextrin (MβCD), at their respective IC50 concentrations, on muscle regeneration in the in vitro model of murine C2C12 myoblasts. Cotreatment with mevalonate (MEV), farnesol (FOH), geranylgeraniol (GGOH), or water-soluble cholesterol (Chol-PEG) was employed to determine whether the statin-dependent myotoxicity resulted from the lower cholesterol levels or the attenuated synthesis of intermediates of mevalonate pathway. Our findings demonstrated that while GGOH fully reverted the statin-mediated cell viability in proliferating myoblasts, Chol-PEG exclusively rescued MβCD-induced toxicity in myocytes. Statins caused loss of prenylated RAP1, whereas the GGOH-dependent positive effect was accompanied by loss of nonprenylated RAP1. Geranylgeranyltransferases are essential for muscle cell survival as inhibition with GGTI-286 could not be reversed by GGOH cotreatment. The increase in cell viability correlated with elevated AKT 1(S463) and GSK-3β(S9) phosphorylations. Slight increase in the levels of autophagy markers (Beclin 1, MAP LC-3IIb) was found in response to GGOH cotreatment. Autophagy rose time-dependently during myogenesis and was inhibited by statins and MβCD. Statins and MβCD also suppressed myogenesis and neither nonsterol isoprenoids nor Chol-PEG could reverse this effect. These results point to GGOH as the principal target of statin-dependent myotoxicity, whereas plasma membrane cholesterol deposit is ultimately essential to restore viability of MβCD-treated myocytes. Overall, this study unveils for the first time a link found between the GGOH- and Chol-PEG-dependent reversal of statin- or MβCD-mediated myotoxicity and cytoprotective autophagy, respectively.
Collapse
|
18
|
Zhou D, Xu H, Chen W, Wang Y, Zhang M, Yang T. Study on the transcriptional regulatory mechanism of the MyoD1 gene in Guanling bovine. RSC Adv 2018; 8:12409-12419. [PMID: 35548782 PMCID: PMC9087982 DOI: 10.1039/c7ra11795g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/13/2018] [Accepted: 03/09/2018] [Indexed: 01/09/2023] Open
Abstract
The MyoD1 gene plays a key role in regulating the myoblast differentiation process in the early stage of skeletal muscle development. To understand the functional elements of the promoter region and transcriptional regulation of the bovine MyoD1 gene, we cloned eight fragments from the sequence region of the MyoD1 gene promoter and inserted them into eukaryotic expression vectors for cotransfection with the mouse myoblast cell line C2C12 and Madin-Darby bovine kidney (MDBK) line. A variety of transcription factor binding sites in the longest 5'-flanking fragment from Guanling cattle MyoD1-P1 were predicted by using the online software TFSEARCH and ALGGEN PROMO as well as validated by the promoter-binding TF profiling assay II and yeast one-hybrid (Y1H) assay, including MyoD, VDR, MEF1, MEF2, SF1, and Myf6. Myf6 strongly activated the MyoD1 promoter, while MyoD1 was also capable of efficiently activating the expression of its own promoter. The transcription factors MEF2A, SF1, and VDR were further confirmed to be capable of binding to MyoD1 by Y1H system experiments. The effects of the Guanling cattle MyoD1 gene on the mRNA expression of the MEF2A, SF1, and VDR genes were determined by using a lentivirus-mediated overexpression technique, confirming that overexpression of the MyoD1 gene upregulated the mRNA expression of MEF2A as well as downregulated the expression of SF1 and VDR in the process of muscle myogenesis. Our study revealed the effects of transcription factors including MEF2A, SF1 and VDR on regulatory aspects of MyoD1, providing abundant information for transcriptional regulation of MyoD1 in muscle differentiation.
Collapse
Affiliation(s)
- Di Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Cell and Molecular Biology (PhD), Animal Department, Guizhou University Guiyang 550025 China
- College of Life Science, Guizhou University Guiyang 550025 China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Cell and Molecular Biology (PhD), Animal Department, Guizhou University Guiyang 550025 China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Cell and Molecular Biology (PhD), Animal Department, Guizhou University Guiyang 550025 China
| | - Yuanyuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Cell and Molecular Biology (PhD), Animal Department, Guizhou University Guiyang 550025 China
| | - Ming Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Cell and Molecular Biology (PhD), Animal Department, Guizhou University Guiyang 550025 China
| | - Tao Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Cell and Molecular Biology (PhD), Animal Department, Guizhou University Guiyang 550025 China
| |
Collapse
|
19
|
Shin YC, Kim C, Song SJ, Jun S, Kim CS, Hong SW, Hyon SH, Han DW, Oh JW. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis. Nanotheranostics 2018; 2:144-156. [PMID: 29577018 PMCID: PMC5865268 DOI: 10.7150/ntno.22433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Chuntae Kim
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Seungwon Jun
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suong-Hyu Hyon
- Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
20
|
Bohnert KR, McMillan JD, Kumar A. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 2017; 233:67-78. [PMID: 28177127 DOI: 10.1002/jcp.25852] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kyle R Bohnert
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Joseph D McMillan
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Ashok Kumar
- Department of Anatomical Sciences Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
21
|
Jaffer S, Valasek P, Luke G, Batarfi M, Whalley BJ, Patel K. Characterisation of Development and Electrophysiological Mechanisms Underlying Rhythmicity of the Avian Lymph Heart. PLoS One 2016; 11:e0166428. [PMID: 27930653 PMCID: PMC5145147 DOI: 10.1371/journal.pone.0166428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/29/2016] [Indexed: 11/18/2022] Open
Abstract
Despite significant advances in tissue engineering such as the use of scaffolds, bioreactors and pluripotent stem cells, effective cardiac tissue engineering for therapeutic purposes has remained a largely intractable challenge. For this area to capitalise on such advances, a novel approach may be to unravel the physiological mechanisms underlying the development of tissues that exhibit rhythmic contraction yet do not originate from the cardiac lineage. Considerable attention has been focused on the physiology of the avian lymph heart, a discrete organ with skeletal muscle origins yet which displays pacemaker properties normally only found in the heart. A functional lymph heart is essential for avian survival and growth in ovo. The histological nature of the lymph heart is similar to skeletal muscle although molecular and bioelectrical characterisation during development to assess mechanisms that contribute towards lymph heart contractile rhythmicity have not been undertaken. A better understanding of these processes may provide exploitable insights for therapeutic rhythmically contractile tissue engineering approaches in this area of significant unmet clinical need. Here, using molecular and electrophysiological approaches, we describe the molecular development of the lymph heart to understand how this skeletal muscle becomes fully functional during discrete in ovo stages of development. Our results show that the lymph heart does not follow the normal transitional programme of myogenesis as documented in most skeletal muscle, but instead develops through a concurrent programme of precursor expansion, commitment to myogenesis and functional differentiation which offers a mechanistic explanation for its rapid development. Extracellular electrophysiological field potential recordings revealed that the peak-to-peak amplitude of electrically evoked local field potentials elicited from isolated lymph heart were significantly reduced by treatment with carbachol; an effect that could be fully reversed by atropine. Moreover, nifedipine and cyclopiazonic acid both significantly reduced peak-to-peak local field potential amplitude. Optical recordings of lymph heart showed that the organ’s rhythmicity can be blocked by the HCN channel blocker, ZD7288; an effect also associated with a significant reduction in peak-to-peak local field potential amplitude. Additionally, we also show that isoforms of HCN channels are expressed in avian lymph heart. These results demonstrate that cholinergic signalling and L-type Ca2+ channels are important in excitation and contraction coupling, while HCN channels contribute to maintenance of lymph heart rhythmicity.
Collapse
Affiliation(s)
- Sajjida Jaffer
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Petr Valasek
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Graham Luke
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Munirah Batarfi
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Benjamin Jason Whalley
- School of Chemistry, Food and Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Yeo M, Lee H, Kim GH. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Biofabrication 2016; 8:035021. [PMID: 27634918 DOI: 10.1088/1758-5090/8/3/035021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomedical scaffolds must be used in tissue engineering to provide physical stability and topological/biochemical properties that directly affect tissue regeneration. In this study, a new cell-laden scaffold was developed that supplies micro/nano-topological cues and promotes efficient release of cells. The hierarchical structure consisted of poly(ε-caprolactone) macrosized struts for sustaining a three-dimensional structural shape, aligned nanofibers obtained with optimized electrospinning, and cell-printed myoblasts. Importantly, the printed myoblasts were fully safe and were efficiently released from the cell-laden struts to neighboring nanofiber networks. The incorporation of micro/nanofibers in the hierarchical scaffold significantly affected myoblast proliferation, alignment, and even facilitated the formation of myotubes. We observed that myosin heavy chain expression and the expression levels of various myogenic genes (MyoD, myogenin, and troponin T) were significantly affected by the fiber alignment achieved in our hierarchical cell-laden structure. We believe that the combination of cell-printing and a hierarchical scaffold that encourages fiber alignment is a highly promising technique for skeletal muscle tissue engineering.
Collapse
|
23
|
The MicroRNA 29 Family Promotes Type II Cell Differentiation in Developing Lung. Mol Cell Biol 2016; 36:2141. [PMID: 27215389 DOI: 10.1128/mcb.00096-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
Lung alveolar type II cells uniquely synthesize surfactant, a developmentally regulated lipoprotein that is essential for breathing. Expression of the gene (SFTPA) encoding the major surfactant protein, SP-A, in midgestation human fetal lung (HFL) is dramatically induced by cyclic AMP (cAMP). cAMP induction of SP-A expression is repressed by transforming growth factor β (TGF-β) and by hypoxia. In this study, we found that expression of the microRNA 29 (miR-29) family was significantly upregulated in epithelial cells isolated from mouse fetal lung during late gestation and in epithelial cells isolated from HFL explants during type II cell differentiation in culture. miR-29 expression in cultured HFL epithelial cells was increased by cAMP and inhibited by hypoxia, whereas the miR-29 target, TGF-β2, was coordinately decreased. Knockdown of the miR-29 family in cultured HFL type II cells blocked cAMP-induced SP-A expression and accumulation of surfactant-containing lamellar bodies, suggesting their physiological relevance. This occurred through derepression of TGF-β signaling. Notably, cAMP increased binding of endogenous thyroid transcription factor 1 (TTF-1/Nkx2.1) to the miR-29ab1 promoter in HFL type II cells, and TTF-1 increased miR-29ab1 promoter-driven luciferase activity in cotransfection assays. Together, these findings identify miR-29 family members as TTF-1-driven mediators of SP-A expression and type II cell differentiation through repression of TGF-β signaling.
Collapse
|
24
|
MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death Differ 2016; 23:1658-69. [PMID: 27315298 PMCID: PMC5041193 DOI: 10.1038/cdd.2016.56] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/19/2015] [Accepted: 05/20/2016] [Indexed: 12/21/2022] Open
Abstract
Myogenesis is an important biological process that occurs during both skeletal muscle regeneration and postnatal growth. Growing evidence points to the critical role of microRNAs (miRNAs) in myogenesis. Our analysis of miRNA expression patterns reveal that miRNAs of miR-17-92 cluster are dramatically downregulated in C2C12 cells after myogenesis stimulation, are strongly induced in mouse skeletal muscle after injury and decrease steadily thereafter and are downregulated with age in skeletal muscle during mouse and porcine postnatal growth. However, their roles in muscle developmental processes remain elusive. We show that the miR-17-92 cluster promotes mouse myoblast proliferation but inhibits myotube formation. miR-17, -20a and -92a target the actin-associated protein enigma homolog 1 (ENH1). The silencing of ENH1 increased the nuclear accumulation of the inhibitor of differentiation 1 (Id1) and represses myogenic differentiation. Furthermore, the injection of adenovirus expressing miR-20a into the tibialia anterior muscle downregulates ENH1 and delays regeneration. In addition, the downregulation of miR-17-92 during myogenesis is transcriptionally regulated by E2F1. Overall, our results reveal a E2F1/miR-17-92/ENH1/Id1 regulatory axis during myogenesis.
Collapse
|
25
|
Patel A, Xue Y, Mukundan S, Rohan LC, Sant V, Stolz DB, Sant S. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation. Ann Biomed Eng 2016; 44:2036-48. [DOI: 10.1007/s10439-016-1586-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/02/2016] [Indexed: 01/19/2023]
|
26
|
Shin YC, Lee JH, Kim MJ, Hong SW, Kim B, Hyun JK, Choi YS, Park JC, Han DW. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. J Biol Eng 2015; 9:22. [PMID: 26609319 PMCID: PMC4659147 DOI: 10.1186/s13036-015-0020-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. RESULTS In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. CONCLUSION In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Yong Cheol Shin
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Jong Ho Lee
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Min Jeong Kim
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Suck Won Hong
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Bongju Kim
- />Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, 03080 Korea
| | - Jung Keun Hyun
- />Department of Rehabilitation Medicine, College of Medicine, Cheonan, 330-714 Korea
- />Department of Nanobiomedical Science & BK21+ NBM Global Research Center, Cheonan, 330-714 Korea
- />Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714 Korea
| | - Yu Suk Choi
- />School of Anatomy, Physiology, and Human Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Jong-Chul Park
- />Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Korea
| | - Dong-Wook Han
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| |
Collapse
|
27
|
Ozawa M. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts. Biol Open 2015; 4:1427-35. [PMID: 26453620 PMCID: PMC4728358 DOI: 10.1242/bio.013938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca(2+)-dependent cell-cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell-cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell-cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell-cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
28
|
Park GH, Jeong H, Jeong MG, Jang EJ, Bae MA, Lee YL, Kim NJ, Hong JH, Hwang ES. Novel TAZ modulators enhance myogenic differentiation and muscle regeneration. Br J Pharmacol 2015; 171:4051-61. [PMID: 24821191 DOI: 10.1111/bph.12755] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/02/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The transcriptional co-activator with PDZ-binding motif (TAZ) is a key controller of mesenchymal stem cell differentiation through its nuclear localization and subsequent interaction with master transcription factors. In particular, TAZ directly associates with myoblast determining protein D (MyoD) and activates MyoD-induced myogenic gene expression, thereby enhancing myogenic differentiation. Here, we have synthesized and characterized low MW compounds modulating myogenic differentiation via induction of TAZ nuclear localization. EXPERIMENTAL APPROACH COS7 cells stably transfected with GFP-TAZ were used in a high content imaging screen for compounds specifically enhancing nuclear localization of TAZ. We then studied the effects of such TAZ modulators on myocyte differentiation of C2C12 cells and myogenic transdifferentiation of mouse embryonic fibroblast cells in vitro and muscle regeneration in vivo. KEY RESULTS We identified two TAZ modulators, TM-53, and its structural isomer, TM-54. Each compound strongly enhanced nuclear localization of TAZ by reducing S89-phosphorylation and dose-dependently augmented myogenic differentiation and MyoD-mediated myogenic transdifferentiation through an activation of MyoD-TAZ interaction. The myogenic stimulatory effects of TM-53 and TM-54 were impaired in the absence of TAZ, but retrieved by the restoration of TAZ. In addition, administration of TM-53 and TM-54 enhanced injury-induced muscle regeneration in vivo and attenuated myofiber injury in vitro. CONCLUSIONS AND IMPLICATIONS The novel TAZ modulators TM-53 and TM-54 accelerated myogenic differentiation and improved muscle regeneration and function after injury, demonstrating that low MW compounds targeting the nuclear localization of TAZ have beneficial effects in skeletal muscle regeneration and in recovery from muscle degenerative diseases.
Collapse
Affiliation(s)
- Gun Hwa Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top5 Research Program, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
30
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Ipulan LA, Suzuki K, Sakamoto Y, Murashima A, Imai Y, Omori A, Nakagata N, Nishinakamura R, Valasek P, Yamada G. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology 2014; 155:2467-79. [PMID: 24742196 PMCID: PMC4060183 DOI: 10.1210/en.2014-1008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bulbocavernosus (BC) is a sexually dimorphic muscle observed only in males. Androgen receptor knockout mouse studies show the loss of BC formation. This suggests that androgen signaling plays a vital role in its development. Androgen has been known to induce muscle hypertrophy through satellite cell activation and myonuclei accretion during muscle regeneration and growth. Whether the same mechanism is present during embryonic development is not yet elucidated. To identify the mechanism of sexual dimorphism during BC development, the timing of morphological differences was first established. It was revealed that the BC was morphologically different between male and female mice at embryonic day (E) 16.5. Differences in the myogenic process were detected at E15.5. The male BC possesses a higher number of proliferating undifferentiated myoblasts. To identify the role of androgen signaling in this process, muscle-specific androgen receptor (AR) mutation was introduced, which resulted in no observable phenotypes. Hence, the expression of AR in the BC was examined and found that the AR did not colocalize with any muscle markers such as Myogenic differentiation 1, Myogenin, and paired box transcription factor 7. It was revealed that the mesenchyme surrounding the BC expressed AR and the BC started to express AR at E15.5. AR mutation on the nonmyocytic cells using spalt-like transcription factor 1 (Sall1) Cre driver mouse was performed, which resulted in defective BC formation. It was revealed that the number of proliferating undifferentiated myoblasts was reduced in the Sall1 Cre:AR(L-/Y) mutant embryos, and the adult mutants were devoid of BC. The transition of myoblasts from proliferation to differentiation is mediated by cyclin-dependent kinase inhibitors. An increased expression of p21 was observed in the BC myoblast of the Sall1 Cre:AR(L-/Y) mutant and wild-type female. Altogether this study suggests that the nonmyocytic AR may paracrinely regulate the proliferation of myoblast possibly through inhibiting p21 expression in myoblasts of the BC.
Collapse
Affiliation(s)
- Lerrie Ann Ipulan
- Department of Developmental Genetics (L.A.I., K.S., Y.S., A.M., A.O., G.Y.), Institute of Advanced Medicine, and Department of Biology, Wakayama Medical University (WMU), Wakayama 641-8509, Japan; Graduate School of Pharmaceutical Sciences (L.A.I., Y.S.), Division of Reproductive Engineering (N.N.), Center for Animal Resources and Development, Department of Kidney Development (R.N.), Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan; Division of Integrative Pathophysiology (Y.I.), Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; School of Biological Sciences and Institute for Cardiovascular and Metabolic Research (P.V.), University of Reading, Reading RG6 6UR, United Kingdom; and Institute of Anatomy (P.V.), First Faculty of Medicine, Charles University, 128 00 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yin H, Li D, Zhang L, Yang M, Zhao X, Wang Y, Liu Y, Zhu Q. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. Poult Sci 2014; 93:1337-43. [DOI: 10.3382/ps.2013-03555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Yamada A, Nishida H. Control of the number of cell division rounds in distinct tissues during ascidian embryogenesis. Dev Growth Differ 2014; 56:376-86. [DOI: 10.1111/dgd.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Atsuko Yamada
- Department of Biological Sciences; Graduate School of Science; Osaka University; Toyonaka Osaka Japan
- International College; Osaka University; Toyonaka Osaka Japan
| | - Hiroki Nishida
- Department of Biological Sciences; Graduate School of Science; Osaka University; Toyonaka Osaka Japan
| |
Collapse
|
34
|
Smith HK, Matthews KG, Oldham JM, Jeanplong F, Falconer SJ, Bass JJ, Senna-Salerno M, Bracegirdle JW, McMahon CD. Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS One 2014; 9:e94356. [PMID: 24718581 PMCID: PMC3981781 DOI: 10.1371/journal.pone.0094356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscles of myostatin null (Mstn(−/−)) mice are more susceptible to atrophy during hind limb suspension (HS) than are muscles of wild-type mice. Here we sought to elucidate the mechanism for this susceptibility and to determine if Mstn(−/−) mice can regain muscle mass after HS. Male Mstn(−/−) and wild-type mice were subjected to 0, 2 or 7 days of HS or 7 days of HS followed by 1, 3 or 7 days of reloading (n = 6 per group). Mstn(−/−) mice lost more mass from muscles expressing the fast type IIb myofibres during HS and muscle mass was recovered in both genotypes after reloading for 7 days. Concentrations of MAFbx and MuRF1 mRNA, crucial ligases regulating the ubiquitin-proteasome system, but not MUSA1, a BMP-regulated ubiquitin ligase, were increased more in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and concentrations decreased in both genotypes during reloading. Similarly, concentrations of LC3b, Gabarapl1 and Atg4b, key effectors of the autophagy-lysosomal system, were increased further in muscles of Mstn(−/−) mice, compared with wild-type mice, during HS and decreased in both genotypes during reloading. There was a greater abundance of 4E-BP1 and more bound to eIF4E in muscles of Mstn(−/−) compared with wild-type mice (P<0.001). The ratio of phosphorylated to total eIF2α increased during HS and decreased during reloading, while the opposite pattern was observed for rpS6. Concentrations of myogenic regulatory factors (MyoD, Myf5 and myogenin) mRNA were increased during HS in muscles of Mstn(−/−) mice compared with controls (P<0.001). We attribute the susceptibility of skeletal muscles of Mstn(−/−) mice to atrophy during HS to an up- and downregulation, respectively, of the mechanisms regulating atrophy of myofibres and translation of mRNA. These processes are reversed during reloading to aid a faster rate of recovery of muscle mass in Mstn(−/−) mice.
Collapse
Affiliation(s)
- Heather K. Smith
- Department of Sport and Exercise Science, University of Auckland, Auckland, New Zealand
| | | | - Jenny M. Oldham
- AgResearch Ltd., Ruakura Agricultural Centre, Hamilton, New Zealand
| | - Ferenc Jeanplong
- AgResearch Ltd., Ruakura Agricultural Centre, Hamilton, New Zealand
| | | | - James J. Bass
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
35
|
Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle--new insights and potential implications. Nat Rev Endocrinol 2014; 10:206-14. [PMID: 24322650 PMCID: PMC4037849 DOI: 10.1038/nrendo.2013.238] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type 2 and 3 iodothyronine deiodinases (DIO2 and DIO3, respectively) have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyses outer-ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone tri-iodothyronine (T3). T3 can remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner-ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how skeletal muscle deiodinase activity might be therapeutically harnessed to improve satellite-cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Building 1, 1st floor, Via Pansini 5, 80131 Naples, Italy
| | - Warner S Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Centre, van der Boechorststraat 7, 1081 BT, Amsterdam, Netherlands
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Building 1, 1st floor, Via Pansini 5, 80131 Naples, Italy
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HIM room 641, Boston, MA 02115, USA
| | - P Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HIM room 641, Boston, MA 02115, USA
| |
Collapse
|
36
|
Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens. Animal 2014; 8:86-93. [DOI: 10.1017/s1751731113001882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Twist reverses muscle cell differentiation through transcriptional down-regulation of myogenin. Biosci Rep 2013; 33:BSR20130068. [PMID: 24188104 PMCID: PMC3848576 DOI: 10.1042/bsr20130068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Some higher vertebrates can display unique muscle regenerative abilities through dedifferentiation. Research evidence suggests that induced dedifferentiation can be achieved in mammalian cells. TWIST is a bHLH (basic helix-loop-helix) transcription factor that is expressed during embryonic development and plays critical roles in diverse developmental systems including myogenesis. Several experiments demonstrated its role in inhibition of muscle cell differentiation. We have previously shown that overexpression of TWIST can reverse muscle cell differentiation in the presence of growth factors. Here we show that TWIST reverses muscle cell differentiation through binding and down-regulation of myogenin. Moreover, it can reverse cellular morphology in the absence of growth factors.
Collapse
|
38
|
Zan X, Feng S, Balizan E, Lin Y, Wang Q. Facile method for large scale alignment of one dimensional nanoparticles and control over myoblast orientation and differentiation. ACS NANO 2013; 7:8385-8396. [PMID: 24004197 DOI: 10.1021/nn403908k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A facile and robust method to align one-dimensional (1D) nanoparticles (NPs) in large scale has been developed. Using flow assembly, representative rod-like nanoparticles, including tobacco mosaic virus (TMV), gold nanorods, and bacteriophage M13, have been aligned inside glass tubes by controlling flow rate and substrate surface properties. The properties of 1D NPs, such as stiffness and aspect ratio, play a critical role in the alignment. Furthermore, these hierarchically organized structures can be used to support cell growth and control the cell orientation and morphology. When C2C12 myoblasts were cultured on surfaces coated with aligned TMV, we found that nanoscale topographic features were critical to guide the cell orientation and myogenic differentiation. This method can therefore be used in the fabrication of complex assemblies with 1D NPs and have wide applications in tissue engineering, sensing, electronics, and optical fields.
Collapse
Affiliation(s)
- Xingjie Zan
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | |
Collapse
|
39
|
Pandurangan M, Moorthy H, Sambandam R, Jeyaraman V, Irisappan G, Kothandam R. Effects of stress hormone cortisol on the mRNA expression of myogenenin, MyoD, Myf5, PAX3 and PAX7. Cytotechnology 2013; 66:839-44. [PMID: 24113918 DOI: 10.1007/s10616-013-9635-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022] Open
Abstract
The present investigation was carried out to evaluate the effect of stress hormone cortisol on the myogenic markers in the C2C12 cells co-cultured with 3T3-L1 preadipocytes. Co-culturing was achieved by transwell inserts with a 0.4 μm porous membrane. C2C12 and 3T3-L1 cells were grown independently on the transwell plates. After differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates for co-culturing. 10 μg/μl of cortisol was added to the medium. After 72 h of treatment, C2C12 cells which were in the lower well were harvested for analysis. RT-PCR analysis of myogenic markers such as of myogenin, MyoD, Myf5, PAX3 and PAX7 showed a significant reduction in the mRNA expression of these myogenic markers. In addition, cortisol increased calpain activity, which led to accelerated protein degradation, which in turn reduced the myogenic rate. In conclusion, cortisol treatment reduced mRNA expression of myogenic markers in the co-cultured C2C12 cells, which is quite distinct from one dimensional mono-cultured C2C12 cells.
Collapse
Affiliation(s)
- Muthuraman Pandurangan
- Department of Food Science and Nutrition, Catholic University of Daegu, Daegu, South Korea,
| | | | | | | | | | | |
Collapse
|
40
|
Nanocomposites Based on PLLA and Multi Walled Carbon Nanotubes Support the Myogenic Differentiation of Murine Myoblast Cell Line. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/825912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We explored the effect of poly(L-lactic acid) (PLLA) containing various percentages (0.1, 0.5, 1, and 3 wt.%) of multi walled carbon nanotubes (MWCNTs) on the myogenic differentiation of C2C12 murine myoblast progenitor cells. We showed that all PLLA/MWCNTs nanocomposite materials support the myotubes formation more efficiently than neat PLLA as indicated by the high expression of the most significant myogenic markers: MyoD, Myosin Heavy Chain, dimension of myofibres, and fusion myogenic index. Interestingly, we note that both MyoD and myogenic fusion index levels were in the order 0.1 MWCNTs = 0.5 MWCNTs > 1 MWCNTs > 3 MWCNTs > neat PLLA, suggesting that the amount of MWCNTs influenced the cell differentiation.
Collapse
|
41
|
Rodríguez-Caso C. Can cell mortality determine division of labor in tissue organization? J Theor Biol 2013; 332:161-70. [PMID: 23665209 DOI: 10.1016/j.jtbi.2013.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/25/2013] [Accepted: 05/01/2013] [Indexed: 01/12/2023]
Abstract
Tissue organization comes from the emergence of cell cooperation where cell homeostasis and function are performed as a trade-off of two excluding proliferative and differentiated cellular states. By introducing function in a population dynamics approach, I study the role of division of labor in tissue optimality when cell turn-over and limitation of space and resources are imposed as natural restrictions of a living tissue. The results indicate that although cell turn-over imposes a inevitable reduction in function abilities, the penalty is smaller when division of labor is at work, especially when a rapid cell-turnover and high cell density is a requirement for the tissue, as occurred in epithelia hierarchical tissues. Analytic results are in agreement with the experimental data available in literature. The study provides an explanation about why homogeneous tissues for which proliferative and functional tasks are performed by a same cell type are unlikely to be observed under high cell-renewal requirements.
Collapse
Affiliation(s)
- Carlos Rodríguez-Caso
- Complex Systems Lab. Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
42
|
Watts R, Johnsen VL, Shearer J, Hittel DS. Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis. Am J Physiol Cell Physiol 2013; 304:C995-1001. [PMID: 23485710 DOI: 10.1152/ajpcell.00392.2012] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily of secreted proteins, is a potent negative regulator of myogenesis. Free myostatin induces the phosphorylation of the Smad family of transcription factors, which, in turn, regulates gene expression, via the canonical TGF-β signaling pathway. There is, however, emerging evidence that myostatin can regulate gene expression independent of Smad signaling. As such, we acquired global gene expression data from the gastrocnemius muscle of C57BL/6 mice following a 6-day treatment with recombinant myostatin compared with vehicle-treated animals. Of the many differentially expressed genes, the myostatin-associated decrease (-11.20-fold; P < 0.05) in the noncoding metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was the most significant and the most intriguing because of numerous reports describing its novel role in regulating cell growth. We therefore sought to further characterize the role of Malat1 expression in skeletal muscle myogenesis. RT-PCR-based quantification of C2C12 and primary human skeletal muscle cells revealed a significant and persistent upregulation (4- to 7-fold; P < 0.05) of Malat1 mRNA during the differentiation of myoblasts into myotubes. Conversely, targeted knockdown of Malat1 using siRNA suppressed myoblast proliferation by arresting cell growth in the G(0)/G(1) phase. These results reveal Malat1 as novel downstream target of myostatin with a considerable ability to regulate myogenesis. The identification of new targets of myostatin will have important repercussions for regenerative biology through inhibition and/or reversal of muscle atrophy and wasting diseases.
Collapse
Affiliation(s)
- Rani Watts
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
43
|
Marchesi I, Nieddu V, Caracciolo V, Maioli M, Gaspa L, Giordano A, Bagella L. Activation and function of murine Cyclin T2A and Cyclin T2B during skeletal muscle differentiation. J Cell Biochem 2013; 114:728-34. [DOI: 10.1002/jcb.24414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
|
44
|
|
45
|
Wang D, Bai X, Tian Q, Lai Y, Lin EA, Shi Y, Mu X, Feng JQ, Carlson CS, Liu CJ. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation. Cell Mol Life Sci 2012; 69:1855-73. [PMID: 22179841 PMCID: PMC3319484 DOI: 10.1007/s00018-011-0901-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/16/2023]
Abstract
Granulin-epithelin precursor (GEP) is an autocrine growth factor that has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation. Here we report that GEP was expressed in skeletal muscle tissue and its level was differentially altered in the course of C2C12 myoblast fusion. The GEP expression during myoblast fusion was a consequence of MyoD transcription factor binding to several E-box (CANNTG) sequences in the 5'-flanking regulatory region of GEP gene, followed by transcription. Recombinant GEP potently inhibited myotube formation from C2C12 myoblasts whereas the knockdown of endogenous of GEP via a siRNA approach accelerated the fusion of myoblasts to myotubes. Interestingly, the muscle fibers of GEP knockdown mice were larger in number but noticeably smaller in size when compared to the wild-type. Mechanistic studies revealed that during myoblast fusion, the addition of GEP led to remarkable reductions in the expressions of muscle-specific transcription factors, including MyoD. In addition, the regulation of myotube formation by GEP is mediated by the anti-myogenic factor JunB, which is upregulated following GEP stimulation. Thus, GEP growth factor, JunB, and MyoD transcription factor form a regulatory loop and act in concert in the course of myogenesis.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Orthopedics, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaohui Bai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, China
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongjie Lai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Edward A. Lin
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongxiang Shi
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Xiaodong Mu
- Stem Cell Research Center, Children’s Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219
| | - Jian Q. Feng
- Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Cathy S. Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
46
|
Ricotti L, Polini A, Genchi GG, Ciofani G, Iandolo D, Vazão H, Mattoli V, Ferreira L, Menciassi A, Pisignano D. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater 2012; 7:035010. [DOI: 10.1088/1748-6041/7/3/035010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. ACTA ACUST UNITED AC 2012; 18:1153-66. [PMID: 21944754 DOI: 10.1016/j.chembiol.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/16/2022]
Abstract
Muscle regeneration declines with aging and myopathies, and reprogramming of differentiated muscle cells to their progenitors can serve as a robust source of therapeutic cells. Here, we used the Cre-Lox method to specifically label postmitotic primary multinucleated myotubes and then utilized small molecule inhibitors of tyrosine phosphatases and apoptosis to dedifferentiate these myotubes into proliferating myogenic cells, without gene overexpression. The reprogrammed, fusion competent, muscle precursor cells contributed to muscle regeneration in vitro and in vivo and were unequivocally distinguished from reactivated reserve cells because of the lineage marking method. The small molecule inhibitors downregulated cell cycle inhibitors and chromatin remodeling factors known to promote and maintain the cell fate of myotubes, facilitating cell fate reversal. Our findings enhance understanding of cell-fate determination and create novel therapeutic approaches for improved muscle repair.
Collapse
|
48
|
Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, Phylactou LA. Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One 2012; 7:e29896. [PMID: 22235349 PMCID: PMC3250496 DOI: 10.1371/journal.pone.0029896] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/08/2011] [Indexed: 01/18/2023] Open
Abstract
Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulation of myogenesis. Our current interest is to investigate whether down-regulation of MRFs in terminally differentiated mouse myotubes can induce reversal of muscle cell differentiation. Results from this work showed that reduction of myogenin levels in terminally differentiated mouse myotubes can reverse their differentiation state. Down-regulation of myogenin in terminally differentiated mouse myotubes induces cellular cleavage into mononucleated cells and cell cycle re-entry, as shown by re-initiation of DNA synthesis and increased cyclin D1 and cyclin E2 levels. Finally, we provide evidence that down-regulation of myogenin causes cell cycle re-entry (via down-regulation of MyoD) and cellularisation through separate pathways. These data reveal the important role of myogenin in maintaining terminal muscle cell differentiation and point to a novel mechanism by which muscle cells could be re-activated through its down-regulation.
Collapse
Affiliation(s)
| | - Paschalis Nicolaou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mustafa Anayasa
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - James B. Uney
- The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
49
|
Balan OV, Ozernuk ND. Expression of the gene MyoD and m-cadherin in the myogenic precursor cell culture isolated from muscles of rats at different stages of ontogenesis. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Pas MFW, Visscher AH. Genetic regulation of meat production by embryonic muscle formation - a review. J Anim Breed Genet 2011; 111:404-12. [DOI: 10.1111/j.1439-0388.1994.tb00477.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|