1
|
Lee DK, Oh J, Park HW, Gee HY. Anchorage Dependence and Cancer Metastasis. J Korean Med Sci 2024; 39:e156. [PMID: 38769921 PMCID: PMC11106561 DOI: 10.3346/jkms.2024.39.e156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The process of cancer metastasis is dependent on the cancer cells' capacity to detach from the primary tumor, endure in a suspended state, and establish colonies in other locations. Anchorage dependence, which refers to the cells' reliance on attachment to the extracellular matrix (ECM), is a critical determinant of cellular shape, dynamics, behavior, and, ultimately, cell fate in nonmalignant and cancer cells. Anchorage-independent growth is a characteristic feature of cells resistant to anoikis, a programmed cell death process triggered by detachment from the ECM. This ability to grow and survive without attachment to a substrate is a crucial stage in the progression of metastasis. The recently discovered phenomenon named "adherent-to-suspension transition (AST)" alters the requirement for anchoring and enhances survival in a suspended state. AST is controlled by four transcription factors (IKAROS family zinc finger 1, nuclear factor erythroid 2, BTG anti-proliferation factor 2, and interferon regulatory factor 8) and can detach cells without undergoing the typical epithelial-mesenchymal transition. Notably, AST factors are highly expressed in circulating tumor cells compared to their attached counterparts, indicating their crucial role in the spread of cancer. Crucially, the suppression of AST substantially reduces metastasis while sparing primary tumors. These findings open up possibilities for developing targeted therapies that inhibit metastasis and emphasize the importance of AST, leading to a fundamental change in our comprehension of how cancer spreads.
Collapse
Affiliation(s)
- Dong Ki Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Korea
| | - Jongwook Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Choi SI, Maeng YS, Kim TI, Lee Y, Kim YS, Kim EK. Lysosomal trafficking of TGFBIp via caveolae-mediated endocytosis. PLoS One 2015; 10:e0119561. [PMID: 25853243 PMCID: PMC4390356 DOI: 10.1371/journal.pone.0119561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/10/2015] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-beta-induced protein (TGFBIp) is ubiquitously expressed in the extracellular matrix (ECM) of various tissues and cell lines. Progressive accumulation of mutant TGFBIp is directly involved in the pathogenesis of TGFBI-linked corneal dystrophy. Recent studies reported that mutant TGFBIp accumulates in cells; however, the trafficking of TGFBIp is poorly understood. Therefore, we investigated TGFBIp trafficking to determine the route of its internalization and secretion and to elucidate its roles in the pathogenesis of granular corneal dystrophy type 2 (GCD2). Our data indicate that newly synthesized TGFBIp was secreted via the endoplasmic reticulum/Golgi-dependent secretory pathway, and this secretion was delayed in the corneal fibroblasts of patients with GCD2. We also found that TGFBIp was internalized by caveolae-mediated endocytosis, and the internalized TGFBIp accumulated after treatment with bafilomycin A1, an inhibitor of lysosomal degradation. In addition, the proteasome inhibitor MG132 inhibits the endocytosis of TGFBIp. Co-immunoprecipitation revealed that TGFBIp interacted with integrin αVβ3. Moreover, treatment with arginine-glycine-aspartic acid (RGD) tripeptide suppressed the internalization of TGFBIp. These insights on TGFBIp trafficking could lead to the identification of novel targets and the development of new therapies for TGFBI-linked corneal dystrophy.
Collapse
Affiliation(s)
- Seung-il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yangsin Lee
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
3
|
Rankin CR, Hilgarth RS, Leoni G, Kwon M, Den Beste KA, Parkos CA, Nusrat A. Annexin A2 regulates β1 integrin internalization and intestinal epithelial cell migration. J Biol Chem 2013; 288:15229-39. [PMID: 23558678 DOI: 10.1074/jbc.m112.440909] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gastrointestinal epithelium functions as an important barrier that separates luminal contents from the underlying tissue compartment and is vital in maintaining mucosal homeostasis. Mucosal wounds in inflammatory disorders compromise the critical epithelial barrier. In response to injury, intestinal epithelial cells (IECs) rapidly migrate to reseal wounds. We have previously observed that a membrane-associated, actin binding protein, annexin A2 (AnxA2), is up-regulated in migrating IECs and plays an important role in promoting wound closure. To identify the mechanisms by which AnxA2 promotes IEC movement and wound closure, we used a loss of function approach. AnxA2-specific shRNA was utilized to generate IECs with stable down-regulation of AnxA2. Loss of AnxA2 inhibited IEC migration while promoting enhanced cell-matrix adhesion. These functional effects were associated with increased levels of β1 integrin protein, which is reported to play an important role in mediating the cell-matrix adhesive properties of epithelial cells. Because cell migration requires dynamic turnover of integrin-based adhesions, we tested whether AnxA2 modulates internalization of cell surface β1 integrin required for forward cell movement. Indeed, pulse-chase biotinylation experiments in IECs lacking AnxA2 demonstrated a significant increase in cell surface β1 integrin that was accompanied by decreased β1 integrin internalization and degradation. These findings support an important role of AnxA2 in controlling dynamics of β1 integrin at the cell surface that in turn is required for the active turnover of cell-matrix associations, cell migration, and wound closure.
Collapse
Affiliation(s)
- Carl R Rankin
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30306, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Javier-Reyna R, Hernández-Ramírez V, González-Robles A, Galván-Mendoza I, Osorio-Trujillo C, Talamás-Rohana P. Rab7 and actin cytoskeleton participate during mobilization of β1EHFNR in fibronectin-stimulated Entamoeba histolyticatrophozoites. Microsc Res Tech 2011; 75:285-93. [DOI: 10.1002/jemt.21056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023]
|
5
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
6
|
Manikwar P, Tejo BA, Shinogle H, Moore DS, Zimmerman T, Blanco F, Siahaan TJ. Utilization of I-domain of LFA-1 to Target Drug and Marker Molecules to Leukocytes. Theranostics 2011; 1:277-89. [PMID: 21611107 PMCID: PMC3100608 DOI: 10.7150/thno/v01p0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/09/2011] [Indexed: 01/02/2023] Open
Abstract
The long-term objective of this project is to utilize the I-domain protein for the α-subunit of LFA-1 to target drugs to lymphocytes by binding to ICAM receptors on the cell surface. The short-term goal is to provide proof-of-concept that I-domain conjugated to small molecules can still bind to and uptake by ICAM-1 on the surface of lymphocytes (i.e., Raji cells). To accomplish this goal, the I-domain protein was labeled with FITC at several lysine residues to produce the FITC-I-domain and CD spectroscopy showed that the FITC-I-domain has a secondary structure similar to that of the parent I-domain. The FITC-I-domain was taken up by Raji cells via receptor-mediated endocytosis and its uptake can be blocked by anti-I-domain mAb but not by its isotype control. Antibodies to ICAM-1 enhance the binding of I-domain to ICAM-1, suggesting it binds to ICAM-1 at different sites than the antibodies. The results indicate that fluorophore modification does not alter the binding and uptake properties of the I-domain protein. Thus, I-domain could be useful as a carrier of drug to target ICAM-1-expressing lymphocytes.
Collapse
|
7
|
Shi F, Harman J, Fujiwara K, Sottile J. Collagen I matrix turnover is regulated by fibronectin polymerization. Am J Physiol Cell Physiol 2010; 298:C1265-75. [PMID: 20107040 DOI: 10.1152/ajpcell.00341.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) remodeling occurs during normal homeostasis and also plays an important role during development, tissue repair, and in various disease processes. ECM remodeling involves changes in the synthesis, deposition, and degradation of ECM molecules. ECM molecules can be degraded extracellularly, as well as intracellularly following endocytosis. Our data show that the ECM protein fibronectin is an important regulator of ECM remodeling. We previously showed that agents that inhibit the polymerization of fibronectin into ECM fibrils promote the loss of preexisting fibronectin matrix and accelerate fibronectin endocytosis and degradation. In this paper we show that inhibition of fibronectin polymerization leads to the loss of collagen I matrix fibrils and a corresponding increase in the levels of endocytosed collagen I. In contrast, manipulations that stabilize fibronectin matrix fibrils, such as caveolin-1 depletion, stabilize collagen I matrix fibrils and cause a decrease in ECM collagen I endocytosis. Our data also show that endocytosis of ECM collagen I is regulated by both beta1 integrins and Endo180/urokinase plasminogen activator associated protein (uPARAP). Unexpectedly, Endo180/uPARAP was also shown to promote the endocytosis of fibronectin from the ECM. These data demonstrate that fibronectin polymerization regulates the remodeling of ECM collagen I, in part, by regulating collagen I endocytosis. Furthermore, these data show that processes that regulate ECM deposition coordinately regulate the removal of proteins from the ECM. These data highlight the complexity of ECM remodeling. This multifaceted regulatory process may be important to ensure tight regulation of ECM fibronectin and collagen I levels.
Collapse
Affiliation(s)
- Feng Shi
- Aab Cardiovascular Research Institute, Univ. of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
8
|
Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A. Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G965-76. [PMID: 18755811 PMCID: PMC2584823 DOI: 10.1152/ajpgi.00082.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of beta(1)-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, beta(1)-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent beta(1)-integrin internalization. However, beta(1)-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized beta(1)-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased beta(1)-integrin endocytosis. Our data suggest that, in migrating IEC, beta(1)-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.
Collapse
Affiliation(s)
- Elena V. Vassilieva
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kirsten Gerner-Smidt
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Andrei I. Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Asma Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; and Gastroenterology and Hepatology Division, Department of Medicine, The University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
9
|
Abstract
Cell adhesion, migration and the maintenance of cell polarity are all processes that depend on the correct targeting of integrins and the dynamic remodelling of integrin-containing adhesion sites. The importance of the endo/exocytic cycle of integrins as a key regulator of these functions is increasingly recognized. Several recent publications have provided mechanistic insight into how integrin traffic is regulated in cells. Increasing evidence suggests that small GTPases such as Arf6 and members of the Rab family control integrin internalization and recycling back to the plasma membrane along microtubules. The fine tuning of these trafficking events seems to be mediated by specific guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition, several kinases regulate integrin traffic. The identification of their substrates has demonstrated how these kinases regulate integrin traffic by controlling small GTPases or stabilizing cytoskeletal tracks that are crucial for efficient traffic of integrins to the plasma membrane.
Collapse
|
10
|
Anderson ME, Tejo BA, Yakovleva T, Siahaan TJ. Characterization of Binding Properties of ICAM-1 Peptides to LFA-1: Inhibitors of T-cell Adhesion. Chem Biol Drug Des 2006; 68:20-8. [PMID: 16923022 DOI: 10.1111/j.1747-0285.2006.00407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we characterized the binding site of two intercellular adhesion molecule-1-derived cyclic peptides, cIBC and cIBR, to the LFA-1 on the surface of T cells. These peptides had been able to inhibit LFA-1/intercellular adhesion molecule-1 signal by blocking the signal-2 of immune synapse. Both peptides prefer to bind to the closed form of LFA-1 I-domain, indicating that two peptides act as allosteric inhibitors against intercellular adhesion molecule-1. Binding site mapping using monoclonal antibodies proposes that cIBC binds to around residues 266-272 of LFA-1 I-domain where this site is adjacent to the metal ion-dependent adhesion site. On the other hand, cIBR binds to the pocket called L-site where is distant from metal ion-dependent adhesion site. Cross-inhibition mapping between two peptides show that cIBR could inhibit the binding of cIBC but not vice versa, suggesting that cIBR has some properties that allow this peptide bind to more than one site. Structural comparison between cIBC and cIBR reveals that cIBR is more flexible than cIBC, allowing this peptide bind to exposed region, such as cIBC-binding site as well as cramped pocket like L-site. Our findings are important for understanding the selectivity of cIBC and cIBR peptides; thus, they can be conjugated with drugs and transported specifically to the target.
Collapse
Affiliation(s)
- Meagan E Anderson
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
11
|
Zecchinon L, Fett T, Vanden Bergh P, Desmecht D. Bind another day: The LFA-1/ICAM-1 interaction as therapeutic target. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cair.2006.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sottile J, Chandler J. Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol Biol Cell 2004; 16:757-68. [PMID: 15563605 PMCID: PMC545909 DOI: 10.1091/mbc.e04-08-0672] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Extracellular matrix remodeling occurs during development, tissue repair, and in a number of pathologies, including fibrotic disorders, hypertension, and atherosclerosis. Extracellular matrix remodeling involves the complex interplay between extracellular matrix synthesis, deposition, and degradation. Factors that control these processes are likely to play key roles in regulating physiological and pathological extracellular matrix remodeling. Our data show that fibronectin polymerization into the extracellular matrix regulates the deposition and stability of other extracellular matrix proteins, including collagen I and thrombospondin-1 (Sottile and Hocking, 2002. Mol. Biol. Cell 13, 3546). In the absence of continual fibronectin polymerization, there is a loss of fibronectin matrix fibrils, and increased levels of fibronectin degradation. Fibronectin degradation occurs intracellularly after endocytosis and can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and by caveolae-disrupting agents. Down-regulation of caveolin-1 by RNAi inhibits loss of fibronectin matrix fibrils, fibronectin internalization, and fibronectin degradation; these processes can be restored by reexpression of caveolin-1. These data show that fibronectin matrix turnover occurs through a caveolin-1-dependent process. Caveolin-1 regulation of fibronectin matrix turnover is a novel mechanism regulating extracellular matrix remodeling.
Collapse
Affiliation(s)
- Jane Sottile
- Center for Cardiovascular Research, Department of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | | |
Collapse
|
13
|
Rappoport JZ, Taha BW, Lemeer S, Benmerah A, Simon SM. The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J Biol Chem 2003; 278:47357-60. [PMID: 14530274 DOI: 10.1074/jbc.c300390200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous biologically relevant substrates are selectively internalized via clathrin-mediated endocytosis. At the plasma membrane the AP-2 complex plays a major role in clathrin coat formation, interacting with both cargo and clathrin. Utilizing simultaneous dual-channel total internal reflection fluorescence microscopy we have analyzed components of the AP-2 complex (alpha- and beta 2-adaptin) during clathrin-mediated endocytosis. Although in static images enhanced green fluorescent protein-tagged AP-2 markers significantly co-localized with clathrin and other components of clathrin-coated pits, AP-2 did not seem to be present in clathrin spots that appeared to undergo internalization or motility parallel to the plane of the plasma membrane. Two populations of clathrin at the plasma membrane seem to exist, the dynamic and the static, and AP-2 appears to be only found within the latter. These results suggest that colocalized clathrin/AP-2 puncta may represent loci for coated pit production and that previous models that assumed AP-2 was retained within clathrin coats during endocytosis may need to be re-evaluated.
Collapse
Affiliation(s)
- Joshua Z Rappoport
- The Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
14
|
Anderson ME, Siahaan TJ. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides 2003; 24:487-501. [PMID: 12732350 DOI: 10.1016/s0196-9781(03)00083-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review describes the role of modulation of intracellular adhesion molecule-1 (ICAM-1)/leukocyte function-associated antigen-1 (LFA-1) interaction in controlling autoimmune diseases or inducing immunotolerance. ICAM-1/LFA-1 interaction is essential for T-cell activation as well as for migration of T-cells to target tissues. This interaction also functions, along with Signal-1, as a co-stimulatory signal (Signal-2) for T-cell activation, which is delivered by the T-cell receptors (TCR)-major histocompatibility complex (MHC)-peptide complex. Therefore, blocking ICAM-1/LFA-1 interaction can suppress T-cell activation in autoimmune diseases and organ transplantation. Many types of inhibitors (i.e. antibodies, peptides, small molecules) have been developed to block ICAM-1/LFA-1 interactions, and some of these molecules have reached clinical trials. Peptides derived from ICAM-1 and LFA-1 sequences have been shown to inhibit T-cell adhesion and activation. In addition, these inhibitors have been useful in elucidating the mechanism of ICAM-1/LFA-1 interaction. Besides binding to LFA-1, the ICAM-1 peptide can be internalized by LFA-1 receptors into the cytoplasmic domain of T-cells. Therefore, this ICAM-1 peptide can be utilized to selectively target toxic drugs to T-cells, thus avoiding harmful side effects. Finally, bi-functional inhibitory peptide (BPI), which is made by conjugating the antigenic peptide and an LFA-1 peptide, can alter the T-cell commitment from T-helper-1 (Th1) to T-helper-2 (Th2)-like cells, suggesting that this peptide may have a role in blocking the formation of the "immunological synapse."
Collapse
Affiliation(s)
- Meagan E Anderson
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | |
Collapse
|
15
|
Rappoport JZ, Simon SM. Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 2003; 116:847-55. [PMID: 12571282 DOI: 10.1242/jcs.00289] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simultaneous dual-color total-internal-reflection fluorescence microscopy (TIR-FM) was performed to analyze the internalization and distribution of markers for clathrin-mediated endocytosis (clathrin, dynamin1, dynamin2 and transferrin) in migrating cells. In MDCK cells, which endogenously express dynamin2, the dynamin2-EGFP fluorescence demonstrated identical spatial and temporal behavior as clathrin both prior to and during internalization. By contrast, in the same cells, the neuronal dynamin1 only localized with clathrin just prior to endocytosis. In migrating cells, each endocytic marker was polarized towards the leading edge, away from the lagging edge. These observations suggest a re-evaluation of the functional differences between dynamin1 and dynamin2, and of the role of clathrin-mediated endocytosis in cell migration.
Collapse
Affiliation(s)
- Joshua Z Rappoport
- The Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, Box 304, New York, NY 10021, USA
| | | |
Collapse
|
16
|
Yusuf-Makagiansar H, Makagiansar IT, Hu Y, Siahaan TJ. Synergistic inhibitory activity of alpha- and beta-LFA-1 peptides on LFA-1/ICAM-1 interaction. Peptides 2001; 22:1955-62. [PMID: 11786177 DOI: 10.1016/s0196-9781(01)00546-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Interactions of cell-adhesion molecule LFA-1 and its ligand ICAM-1 play important roles during immune and inflammatory responses. Critical residues of LFA-1 for ICAM-1 binding are known to be in the I-domain of the alpha-subunit and the I-like domain of the beta-subunit. On the basis of our previous work demonstrating the inhibitory activity of I-domain cyclic peptide cLAB.L on LFA-1/ICAM-1 interaction, here we have explored the activity of I-like-domain peptide LBE on the binding mechanism of cLAB.L. LBE enhances cLAB.L binding to T-cells and epithelial cells. The adherence of T-cells to epithelial monolayers was suppressed by the two peptides. The addition of LBE to the monolayers prior to the addition cLAB.L produced a better inhibitory effect than the reverse procedure. LBE, but not cLAB.L, changes the ICAM-1 conformation, suggesting that LBE binds to ICAM-1 at sites that are distinct from these of cLAB.L and induces improved conformation in ICAM-1 for binding to cLAB.L.
Collapse
Affiliation(s)
- H Yusuf-Makagiansar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
17
|
Yusuf-Makagiansar H, Siahaan TJ. Binding and internalization of an LFA-1-derived cyclic peptide by ICAM receptors on activated lymphocyte: a potential ligand for drug targeting to ICAM-1-expressing cells. Pharm Res 2001; 18:329-35. [PMID: 11442273 DOI: 10.1023/a:1011007014510] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The interaction of cell-adhesion molecules LFA-1/ICAM-1 is critical for many inflammatory and immune responses. Blockades of this interaction using antibodies or peptide analogs are being developed as therapeutic approaches for inflammatory and autoimmune diseases. The aim of this study is to examine the binding and internalization mechanisms of LFA-1 peptide [cLAB.L or cyclo-(1,12)-PenITDGEATDSGC] mediated by ICAM receptors on the surface of lymphocytes. METHODS The binding and internalization of cLAB.L were evaluated using fluorescence-labeled cLAB.L on activated Molt-3 cells, measured by flow cytometry. Confocal fluorescence microscopy was also used to image the distribution of peptide binding and internalization. RESULTS The binding of FITC-cLAB.L exhibited bimodal cell distribution and was enhanced by Ca2+ and Mg2+. Marked differences in peptide binding were found between 37 and 4 degrees C, as well as between activated and non-activated cells. Unlabeled peptide, low temperature, and the absence of cell activation suppress the peptide binding. The presence of peptide in the cytoplasm was detected in 37 but not 4 degrees C binding. Peptide cLAB.L inhibited the binding of monoclonal antibodies to domain D1 of ICAM-1 and domain D1 of ICAM-3. CONCLUSIONS Peptide cLAB.L can bind to the D1-domain of ICAM-1 and, to a lesser extent, to ICAM-3 on activated T-cells. Peptide binding indicates responses to the multiple and dynamic states of activated receptor ICAMs, this peptide may also be internalized by ICAM receptors on T-cells. This work suggests that cLAB.L has a therapeutic potential to target drugs to ICAM-1 expressing cells including autoreactive lymphocytes and inflamed tissues.
Collapse
Affiliation(s)
- H Yusuf-Makagiansar
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence 60047, USA
| | | |
Collapse
|
18
|
Le PU, Benlimame N, Lagana A, Raz A, Nabi IR. Clathrin-mediated endocytosis and recycling of autocrine motility factor receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility. J Cell Sci 2000; 113 ( Pt 18):3227-40. [PMID: 10954421 DOI: 10.1242/jcs.113.18.3227] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autocrine motility factor receptor (AMF-R) is internalized via a clathrin-independent pathway to smooth endoplasmic reticulum tubules. This endocytic pathway is shown here to be inhibited by methyl-(beta)-cyclodextrin (m(beta)CD) implicating caveolae or caveolae-like structures in AMF internalization to smooth ER. AMF-R is also internalized via a clathrin-dependent pathway to a transferrin receptor-negative, LAMP-1/lgpA-negative endocytic compartment identified by electron microscopy as a multivesicular body (MVB). Endocytosed AMF recycles to cell surface fibrillar structures which colocalize with fibronectin; AMF-R recycling is inhibited at 20 degrees C, which blocks endocytosis past the early endosome, but not by m(beta)CD demonstrating that AMF-R recycling to fibronectin fibrils is mediated by clathrin-dependent endocytosis to MVBs. Microtubule disruption with nocodazole did not affect delivery of bAMF to cell surface fibrils indicating that recycling bAMF traverses the MVB but not a later endocytic compartment. Plating NIH-3T3 cells on an AMF coated substrate did not specifically affect cell adhesion but prevented bAMF delivery to cell surface fibronectin fibrils and reduced cell motility. AMF-R internalization and recycling via the clathrin-mediated pathway are therefore rate-limiting for cell motility. This recycling pathway to the site of deposition of fibronectin may be implicated in the de novo formation of cellular attachments or the remodeling of the extracellular matrix during cell movement.
Collapse
Affiliation(s)
- P U Le
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA, Anton ES. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 2000; 27:33-44. [PMID: 10939329 DOI: 10.1016/s0896-6273(00)00007-6] [Citation(s) in RCA: 441] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mice that are mutant for Reelin or Dab1, or doubly mutant for the VLDL receptor (VLDLR) and ApoE receptor 2 (ApoER2), show disorders of cerebral cortical lamination. How Reelin and its receptors regulate laminar organization of cerebral cortex is unknown. We show that Reelin inhibits migration of cortical neurons and enables detachment of neurons from radial glia. Recombinant and native Reelin associate with alpha3beta1 integrin, which regulates neuron-glia interactions and is required to achieve proper laminar organization. The effect of Reelin on cortical neuronal migration in vitro and in vivo depends on interactions between Reelin and alpha3beta1 integrin. Absence of alpha3beta1 leads to a reduction of Dab1, a signaling protein acting downstream of Reelin. Thus, Reelin may arrest neuronal migration and promote normal cortical lamination by binding alpha3beta1 integrin and modulating integrin-mediated cellular adhesion.
Collapse
Affiliation(s)
- L Dulabon
- Department of Biology and Neuroscience, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Skinner MA, Wildeman AG. beta(1) integrin binds the 16-kDa subunit of vacuolar H(+)-ATPase at a site important for human papillomavirus E5 and platelet-derived growth factor signaling. J Biol Chem 1999; 274:23119-27. [PMID: 10438481 DOI: 10.1074/jbc.274.33.23119] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins mediate adhesive interactions between cells and the extracellular matrix, and play a role in cell migration, proliferation, differentiation, cytoskeletal organization, and signal transduction. We have identified an interaction between the beta(1) integrin and the 16-kDa subunit of vacuolar H(+)-ATPase (16K). This interaction was first isolated in a yeast two-hybrid screen and confirmed by coimmunoprecipitation and in in vitro binding assays using bacterially expressed proteins. Immunofluorescent studies performed in L6 myoblasts expressing both native and epitope-tagged 16K demonstrate co-localization with beta(1) integrin in focal adhesions. Deletion of the fourth of four transmembrane helices in 16K results in loss of interaction with beta(1) integrin in vitro and in the two-hybrid system, and less prominent staining in focal adhesions. This helix is also required for ligand-independent activation of platelet-derived growth factor-beta receptor signaling by the human papillomavirus E5 oncoprotein. Overexpression of 16K or expression of 16K lacking this helix alters the morphology of myoblasts and fibroblasts, suggesting that the interaction of 16K with integrins could be important for cell growth control. We also discuss the possible role 16K might play in integrin movement.
Collapse
Affiliation(s)
- M A Skinner
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
22
|
Simon AR, Warrens AN, Sykes M. Efficacy of adhesive interactions in pig-to-human xenotransplantation. IMMUNOLOGY TODAY 1999; 20:323-30. [PMID: 10379051 DOI: 10.1016/s0167-5699(99)01485-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Successful xenotransplantation depends on many factors, one being the interactions of cross-species adhesion molecule-ligand pairs. Depending on the approach used to facilitate xenotransplantation, these interactions can play differing roles. Here, André Simon, Anthony Warrens and Megan Sykes review the existing information on pig-to-human adhesive interactions and its implication for different approaches to pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- A R Simon
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Surgical Service, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149-5102, 13th Street, Boston, MA 02129, USA.
| | | | | |
Collapse
|
23
|
Abstract
Polarization of the motile cell is associated with the formation of a distinct plasma membrane domain, the pseudopod, whose stabilization determines the directionality of cell movement. The rapid movement of cells over a substrate requires that an essential aspect of cell motility must be the supply of the necessary molecular machinery to the site of pseudopodial extension. Renewal of this pseudopodial domain requires the directed delivery to the site of pseudopodial protrusion of proteins which regulate actin cytoskeleton dynamics, cell-substrate adhesion, and localized degradation of the extracellular matrix. Polarized targeting mechanisms include the targeted delivery of beta-actin mRNA to the leading edge and microtubule-based vesicular traffic. The latter may include Golgi-derived vesicles of the biosynthetic pathway as well as clathrin-dependent and clathrin-independent endocytosis and recycling. Coordination of protrusive activities and supply mechanisms is critical for efficient cellular displacement and may implicate small GTPases of the Rho family. While the specific molecular mechanisms underlying pseudopodial protrusion of the motile cell are well-characterized, discussion of these diverse mechanisms in the context of cellular polarization has been limited.
Collapse
Affiliation(s)
- I R Nabi
- Département de pathologie et biologie cellulaire, Université de Montréal, Quebec, Canada H3C 3J7.
| |
Collapse
|
24
|
Gürsoy RN, Siahaan TJ. Binding and internalization of an ICAM-1 peptide by the surface receptors of T cells. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 53:414-21. [PMID: 10406219 DOI: 10.1034/j.1399-3011.1999.00079.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this work was to evaluate the binding characteristics of a cyclic peptide, cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH (cIBR), to Molt-3 T cells. This cIBR peptide is derived from sequence numbers 11-20 of intercellular adhesion molecule-1 (ICAM-1). Binding studies were performed using a fluorescence-labeled peptide (FITC-cIBR) in which the fluorescence marker fluorescein 5-isothiocyanate (FITC) was conjugated to the N-terminal of the cIBR peptide. The binding affinity of the FITC-cIBR peptide to Molt-3 T cells was evaluated using a FACScan flow cytometer. The binding specificity of the FITC-cIBR peptide was also confirmed by inhibition of binding using unlabeled peptide (cIBR). The results show that FITC-cIBR binds to two populations of T cells with different affinities; population 1 has high cell numbers (75%) but low affinity, and population 2 has high binding affinity but low cell numbers (25%). Binding to both populations was saturable and could be inhibited by the unlabeled peptide (cIBR), suggesting a receptor-mediated binding process. In addition to binding, receptor-mediated internalization was also observed for population 2; this was confirmed by confocal microscopy and temperature-dependence studies at 37 degrees C and 4 degrees C. The binding and internalization of this peptide may be carried out by surface receptors on Molt-3 T cells such as LFA-1. In the future, the binding and internalization of cIBR peptide can be utilized as a method of targeted drug delivery to leukocytes for the treatment of leukocyte-related diseases.
Collapse
Affiliation(s)
- R N Gürsoy
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence 66047, USA
| | | |
Collapse
|
25
|
Gürsoy RN, Jois DS, Siahaan TJ. Structural recognition of an ICAM-1 peptide by its receptor on the surface of T cells: conformational studies of cyclo (1, 12)-Pen-Pro-Arg-Gly-Gly-Ser-Val-Leu-Val-Thr-Gly-Cys-OH. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 53:422-31. [PMID: 10406220 DOI: 10.1034/j.1399-3011.1999.00080.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.
Collapse
Affiliation(s)
- R N Gürsoy
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence 66047, USA
| | | | | |
Collapse
|
26
|
Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 1999; 112 ( Pt 6):833-44. [PMID: 10036233 DOI: 10.1242/jcs.112.6.833] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Transmembrane 4 Superfamily member, PETA-3/CD151, is ubiquitously expressed by endothelial cells in vivo. In cultured human umbilical vein endothelial cells PETA-3 is present on the plasma membrane and predominantly localises to regions of cell-cell contact. Additionally, this protein is abundant within an intracellular compartment which accounts for up to 66% of the total PETA-3 expressed. Intracellular PETA-3 showed colocalisation with transferrin receptor and CD63 suggesting an endosomal/lysosomal localisation which was supported by immuno-electronmicroscopy studies. Co-immunoprecipitation experiments investigating possible interactions of PETA-3 with other molecules demonstrated associations with several integrin chains including beta1, beta3, beta4, (alpha)2, (alpha)3, (alpha)5, (alpha)6 and provide the first report of Transmembrane 4 Superfamily association with the (alpha)6beta4 integrin. Using 2-colour confocal microscopy, we demonstrated similar localisation of PETA-3 and integrin chains within cytoplasmic vesicles and endothelial cell junctions. In order to assess the functional implications of PETA-3/integrin associations, the effect of anti-PETA-3 antibodies on endothelial function was examined. Anti-PETA-3 mAb inhibited endothelial cell migration and modulated in vitro angiogenesis, but had no detectable effect on neutrophil transendothelial migration. The broad range of integrin associations and the presence of PETA-3 with integrins both on the plasma membrane and within intracellular vesicles, suggests a primary role for PETA-3 in regulating integrin trafficking and/or function.
Collapse
MESH Headings
- Antigens, CD/analysis
- Antigens, CD/physiology
- Cell Membrane/physiology
- Cell Membrane/ultrastructure
- Cell Movement
- Cells, Cultured
- Endocytosis
- Endosomes/ultrastructure
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Humans
- Integrins/analysis
- Intercellular Junctions/physiology
- Intercellular Junctions/ultrastructure
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Neovascularization, Physiologic
- Platelet Membrane Glycoproteins/analysis
- Receptors, Transferrin/analysis
- Tetraspanin 24
- Tetraspanin 30
- Umbilical Veins
Collapse
Affiliation(s)
- P M Sincock
- Division of Haematology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Xue L, Ainsworth AJ, Hanson L, Ye Q, Noya M. Identification of a channel catfish, Ictalurus punctatus (Rafinesque), leukocyte-specific leucine zipper protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:149-163. [PMID: 10227482 DOI: 10.1016/s0145-305x(98)00048-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Five clones isolated from a channel catfish cDNA library were each reactive with monoclonal antibodies (mAbs) C3-1 and 51A only. The size of the cDNA inserts from C3-1 and 51A positive clones was 2.5 Kb and identical based on sequence analysis. Monoclonal antibodies C3-1 and 51A specifically reacted with the expressed product of the 2.5 Kb cDNA clone. The complete DNA sequence indicated that the 2.5 Kb cDNA encoded an approximately 50 Kd protein molecule consisting of 445 amino acids. Sequence analysis showed that this putative protein was a potential leucine-zipper DNA binding protein. Comparison of the deduced amino acid sequence demonstrated homology (14.6 to 19.5%) throughout the sequence of the catfish protein with a group of cytoplasmic-leucine zipper containing proteins of humans; paraneoplastic cellebellar degeneration related (cdr) antigen 2 and 3 with 39.8 to 56.3% homology in the leucine-zipper motif (amino acids 52 through 175 in the catfish protein). This protein was detected in nuclear extracts. cytoplasmic membrane preparations and cytosolic extracts of neutrophils and lymphocytes when reacted with mAbs C3-1 and 51A in an ELISA. However, the intensity of the reactions was dependent upon the cell type and cellular component. The putative cdr protein was not detected with any appreciable intensity in preparations from other cell types. This finding strongly suggests that this protein is expressed in a leukocyte-specific manner and is unique among the cdr group in that it is being expressed in a site that is not immune privileged.
Collapse
Affiliation(s)
- L Xue
- St. Jude Medical Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
28
|
Mazaki Y, Uchida H, Hino O, Hashimoto S, Sabe H. Paxillin isoforms in mouse. Lack of the gamma isoform and developmentally specific beta isoform expression. J Biol Chem 1998; 273:22435-41. [PMID: 9712867 DOI: 10.1074/jbc.273.35.22435] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Paxillin, a focal adhesion protein, exists as multiple isoforms in humans (alpha, beta, and gamma). To understand more about the physiological role of each isoform, we have employed the mouse system. We found that although the alpha and beta isoforms are present in the mouse, the gamma isoform is not. The alpha isoform protein was detected clearly in most adult tissues, whereas the beta isoform protein was almost undetectable except in spleen, testis, thymus, and lung. On the other hand, mRNAs of both isoforms were detectable in all tissues we examined. High levels of the beta isoform protein was detected in peritoneal exudate macrophage cells in adult mouse as well as in cultured fibroblasts, together with the alpha isoform. The alpha isoform was expressed at a constant level throughout the embryonic stages we examined, whereas the beta isoform protein was detected at the mid-stages of development and increased to levels almost equal to those of the alpha isoform during the late stages of embryogenesis. Therefore, unlike the alpha isoform, expression of the beta isoform protein is restricted in adult tissues. Moreover, we showed that alpha and beta isoforms were colocalized within the same focal adhesion plaques, and cytoplasmic pools of both isoforms exist in the perinuclear area, colocalized with the Golgi apparatus.
Collapse
Affiliation(s)
- Y Mazaki
- Department of Molecular Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
29
|
Geng JG, Raub TJ, Baker CA, Sawada GA, Ma L, Elhammer AP. Expression of a P-selectin ligand in zona pellucida of porcine oocytes and P-selectin on acrosomal membrane of porcine sperm cells. Potential implications for their involvement in sperm-egg interactions. J Cell Biol 1997; 137:743-54. [PMID: 9151678 PMCID: PMC2139885 DOI: 10.1083/jcb.137.3.743] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The selectin family of cell adhesion molecules mediates initial leukocyte adhesion to vascular endothelial cells at sites of inflammation. O-glycan structural similarities between oligosaccharides from human leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) and from zona pellucida glycoproteins of porcine oocytes indicate the possible existence of a P-selectin ligand in the zona pellucida. Here, using biochemical as well as morphological approaches, we demonstrate that a P-selectin ligand is expressed in the porcine zona pellucida. In addition, a search for a specific receptor for this ligand leads to the identification of P-selectin on the acrosomal membrane of porcine sperm cells. In vitro binding of porcine acrosome-reacted sperm cells to oocytes was found to be Ca2+ dependent and inhibitable with either P-selectin, P-selectin receptor-globulin, or leukocyte adhesion blocking antibodies against P-selectin and PSGL-1. Moreover, porcine sperm cells were found to be capable of binding to human promyeloid cell line HL-60. Taken together, our findings implicate a potential role for the oocyte P-selectin ligand and the sperm P-selectin in porcine sperm-egg interactions.
Collapse
Affiliation(s)
- J G Geng
- Cell Biology and Inflammation Research, Pharmacia and Upjohn, Inc., Kalamazoo, Michigan 49001, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Coopman PJ, Thomas DM, Gehlsen KR, Mueller SC. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells. Mol Biol Cell 1996; 7:1789-804. [PMID: 8930900 PMCID: PMC276026 DOI: 10.1091/mbc.7.11.1789] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3 antibodies and the laminin peptide HGD-6 activate the alpha 3 beta 1 integrin, which results in a downstream signaling cascade stimulating phagocytosis.
Collapse
Affiliation(s)
- P J Coopman
- Department of Cell Biology, Georgetown University Medical School, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
31
|
Van Nhieu GT, Krukonis ES, Reszka AA, Horwitz AF, Isberg RR. Mutations in the cytoplasmic domain of the integrin beta1 chain indicate a role for endocytosis factors in bacterial internalization. J Biol Chem 1996; 271:7665-72. [PMID: 8631804 DOI: 10.1074/jbc.271.13.7665] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations that result in defective beta1-integrin focal adhesion formation were analyzed for effects on bacterial internalization. Mutations in the cytoplasmic domain of the beta1 chain that disrupt the sequence NPIY resulted in integrins deficient in bacterial uptake. Other mutations in the beta1 chain that reduced cytoskeletal association showed enhanced bacterial uptake. Replacement of the NPIY sequence of the beta1 subunit by the endocytosis internalization sequence PPGY resulted in integrin receptors highly proficient in bacterial internalization, yet severely defective in focal contact localization. Electron microscopy indicated that coated structures associated specifically with bacteria-binding beta1-integrins, with an apparent recruitment of coated pits from ventral cell surfaces to apical surfaces corresponding to nascent bacterial phagosomes. Clathrin inhibition studies indicated a role for the adaptor molecule AP2 as well as clathrin in integrin-mediated bacterial internalization. These results indicate that association of beta1-integrins with the cytoskeleton at focal contacts interferes with integrin-mediated bacterial internalization. Also, although actin polymerization is required for bacterial uptake, clathrin is probably involved in bacterial uptake promoted by beta-1-integrins.
Collapse
Affiliation(s)
- G T Van Nhieu
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
32
|
Tímár J, Bazaz R, Kimler V, Haddad M, Tang DG, Robertson D, Tovari J, Taylor JD, Honn KV. Immunomorphological characterization and effects of 12-(S)-HETE on a dynamic intracellular pool of the alpha IIb beta 3-integrin in melanoma cells. J Cell Sci 1995; 108 ( Pt 6):2175-86. [PMID: 7545685 DOI: 10.1242/jcs.108.6.2175] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In metastatic B16a murine melanoma cells, alpha IIb beta 3 integrin was shown to be one of the key adhesion molecules responsible for matrix adhesion and spreading. Upon stimulation, alpha IIb beta 3 can be upregulated at the cell surface due to translocation of the receptor to the plasma membrane from an intracellular pool. Here we have characterized this integrin pool as a tubulovesicular structure (TVS) corresponding to endosomes. TVS was found to be associated temporarily with microtubules and intermediate filaments especially after protein kinase C (PKC) stimulation with a lipoxygenase metabolite of arachidonic acid, 12-(S)-hydroxyeicosatetraenoic acid [12-(S)-HETE]. After PKC stimulation, the predominantly vesicular TVS became elongated and alpha IIb beta 3 appeared at the apical plasma membrane and microvilli. Disruption of either the microtubules or intermediate filaments prevented the 12-(S)-HETE effect both on vesicular to tubular transition of TVS as well as on surface expression of this integrin. The connection with the Golgi system of the integrin-containing TVS was proved by a Golgi-inhibitor (brefeldin A) pretreatment, which prevented the PKC-stimulation-induced TVS elongation and subsequent receptor-upregulation at the cell surface. After a soluble ligand binding (mAb to the alpha IIb beta 3 complex) the surface receptor endocytosed back to the TVS indicating the presence of a dynamic, cytoskeleton associated integrin pool in melanoma cells.
Collapse
Affiliation(s)
- J Tímár
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis Medical University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gaietta G, Redelmeier TE, Jackson MR, Tamura RN, Quaranta V. Quantitative measurement of alpha 6 beta 1 and alpha 6 beta 4 integrin internalization under cross-linking conditions: a possible role for alpha 6 cytoplasmic domains. J Cell Sci 1994; 107 ( Pt 12):3339-49. [PMID: 7706390 DOI: 10.1242/jcs.107.12.3339] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In epithelial cells integrins are segregated on discrete domains of the plasma membrane. Redistribution may also occur during migration or differentiation. However, little is known about the mechanisms that control such redistribution. Receptor internalization may be a part of one such mechanism. We developed a quantitative assay and measured internalization of two epithelial integrin heterodimers, alpha 6 beta 1 and alpha 6 beta 4, induced by cross-linking with specific antibodies. alpha 6 beta 1 is a receptor for EHS laminin, while alpha 6 beta 4 is a receptor for a component of the basement membrane. alpha 6 beta 4 plays an important role in the establishment of hemidesmosomes, and becomes redistributed on the epithelial cell surface when cells are in a migratory phase. We report that alpha 6 beta 4 is efficiently internalized in human keratinocytes. More than 25% of cell surface alpha 6 beta 4 was internalized at 30 minutes, after cross-linking with A9, an anti-beta 4 monoclonal antibody. alpha 6 beta 1 is also internalized, in melanoma and teratocarcinoma cells, with maximum values of 20% of total receptors expressed at the cell surface. No significant difference was observed between the alpha 6 isoforms A and B in these assays. To determine whether alpha 6 cytoplasmic domains could influence integrin endocytosis, we prepared chimeric constructs with the extracellular domain of a reporter protein (CD8), and the cytoplasmic domains of either alpha 6 A or alpha 6 B. Both alpha 6 cytoplasmic domains but not a control cytoplasmic domain promoted internalization of the chimeric proteins, after cross-linking with antibody. Internalization of alpha 6 integrins may have a role in redistributing these receptors at the cell surface. Furthermore, the cytoplasmic domains of alpha 6 may be involved in regulating integrin internalization.
Collapse
Affiliation(s)
- G Gaietta
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
34
|
Abstract
Incubation of cells with selenite, under conditions in which there is no effect on cell viability, results in a decrease in the rate of their subsequent attachment to extracellular matrix proteins such as fibronectin (1). The attachment was inhibited by a pentapeptide containing the RGD sequence and by antibody against the cellular fibronectin receptor (alpha 5 beta 1 integrin), indicating that it is receptor-mediated. To investigate whether exposure to selenite has an effect on fibronectin receptors, we assayed for their presence on the cell surface by measuring the ability of cells to attach to a surface that had been coated with antibodies to the receptor. Brief exposure of cells to low concentrations of selenite resulted in a significant decrease in their ability to attach to monoclonal antibodies against the alpha 5 or beta 1 subunits of the fibronectin receptor, as well as to polyclonal antibodies against the complete receptor. This indicates that exposure to selenite results in a decrease in receptors that are present at the cell surface. Exposure of the cells to selenate, selenocystine or selenomethionine did not result in a significant decrease in cell surface receptors. Preincubation of the cells with selenite was required for the effect, indicating that selenite does not directly interfere with receptor structure or function.
Collapse
Affiliation(s)
- L Yan
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | | |
Collapse
|
35
|
Altankov G, Grinnell F. Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading. J Cell Biol 1993; 120:1449-59. [PMID: 8449988 PMCID: PMC2119743 DOI: 10.1083/jcb.120.6.1449] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To learn more about the possible role of the coated pits endocytic pathway in cell adhesion, we studied attachment and spreading of fibroblasts whose coated pits were disrupted by depletion of intercellular potassium. Fibroblasts incubated in suspension in potassium-free medium lost 80% of their intracellular potassium within 10 min and showed disrupted coated pits based on fluorescence staining of clathrin. Potassium-depleted cells attached and spread on fibronectin-coated substrata over the same time course (15 min-2 h) as control cells. Unlike controls, however, potassium-depleted fibroblasts attained a radial morphology with circumferentially organized actin filament bundles and were unable to make the transition to a polarized morphology with stress fibers. In the radially spread fibroblasts, fibronectin receptors and vinculin colocalized in focal adhesion sites and appeared to be membrane insertion points for circumferentially arranged actin filament bundles, but these sites were much smaller than the focal adhesion plaques in polarized cells. The effects of potassium depletion on cell adhesion were reversible. Within 1 h after switching K(+)-depleted fibroblasts to medium containing KCl, cells developed a polarized morphology with actin stress fibers inserting into focal adhesion plaques. Coated pits also reformed on the cell surface during this time. Because formation of focal adhesion plaques preceded reappearance of clathrin-coated pits at the cell margins, it seems unlikely that coated pits play a direct role in adhesion plaque assembly. Polarization of fibroblasts upon addition of KCl was inhibited by ouabain showing that intracellular potassium was required for activity. Polarization also was inhibited when potassium-depleted cells were switched to potassium-containing medium under hypertonic or acidified conditions, both of which have been shown to inhibit receptor-mediated endocytosis. Our results suggest that the coated pit endocytic pathway is not required for initial attachment, spreading, and formation of focal adhesions by fibroblasts, but may play a role in cell polarization.
Collapse
Affiliation(s)
- G Altankov
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
36
|
Affiliation(s)
- C Enrich
- Departmento de Biologia Celular, Facultad Medicina, Universitat de Barcelona, Spain
| | | |
Collapse
|
37
|
Arnaout MA, Michishita M, Sharma CP. On the regulation of beta 2 integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 323:171-9. [PMID: 1362476 DOI: 10.1007/978-1-4615-3396-2_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The complex functions played by beta 2 integrins in mediating a large variety of adhesive interactions of leukocytes are highly regulated. This regulation results in transient adaptations/associations, permitting physical and functional recycling of these receptors during chemotaxis, phagocytosis and target-cell killing. The structural definition of these adaptations will lead not only to a better understanding of how these receptors are regulated in leukocytes but also shed valuable light on how these integrins integrate diverse extracellular signals into spatially and temporaly coordinated cellular responses.
Collapse
Affiliation(s)
- M A Arnaout
- Leukocyte Biology and Inflammation Program, Massachusetts General Hospital, Boston
| | | | | |
Collapse
|
38
|
Takakura Y, Trammel AM, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. II. Effects of conditioned media from astroglial and glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1070:11-9. [PMID: 1751516 DOI: 10.1016/0005-2736(91)90140-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of glucose uptake by an astroglial cell secreted factor(s) was studied in primary cultures of brain microvessel endothelial cells (BMECs). Uptake of a non-metabolizable glucose analog, 3-O-[3H]methyl-D-glucose ([3H]3MG), was measured after the BMECs were treated with media conditioned by primary cultures of rat astrocytes (Astrocyte Conditioned Media: ACM) or rat C6 glioma cells (Glioma Cell Conditioned Media: GCM). Uptake of [3H]3MG was significantly increased by ACM (30-50%) and GCM (60-200%) treatments, whereas conditioned medium from 3T3 fibroblasts (3T3) caused no significant effect. The elevation in [3H]3MG uptake increased with increasing time of exposure of BMECs to these conditioned media (CM), and the effect was shown to be reversible. Glucose depletion of CM was shown not to be a factor. The presence of cycloheximide, a protein synthesis inhibitor, during treatment of the BMECs with ACM and GCM blocked the increase in [3H]3MG uptake by the cells. These results suggested that ACM or GCM treatment elevated de novo synthesis of brain-type glucose transporter (GLUT1). Indeed, enhanced GLUT1 expression by these treatments in BMECs was demonstrated directly by enzyme-linked immunosorbent assay (ELISA) using antibodies against human GLUT1. After trypsinization of ACM and GCM, both conditioned media still induced significant stimulation of [3H]3MG uptake by BMECs. A significant increase in [3H]3MG uptake was also observed when ACM or GCM was exposed to BMECs through a dialysis membrane with a molecular weight cutoff of 1000. To examine whether the effects were specific to brain endothelial cells, [3H]3MG uptake experiments were performed employing aortic endothelial cells (AECs), pulmonary microvessel endothelial cells (PMECs), and 3T3 cells. ACM treatment did not alter 3MG uptake by these cells, suggesting that the ACM effect was specific to BMECs. On the other hand, [3H]3MG uptake by AECs and PMECs treated with GCM was significantly enhanced. The present study demonstrated that some factor(s) of relatively small molecular weight, which was released from astrocytes or glioma cells, stimulated glucose uptake by enhancing GLUT1 synthesis in BMECs.
Collapse
Affiliation(s)
- Y Takakura
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence 66045
| | | | | | | | | | | | | |
Collapse
|
39
|
Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1070:1-10. [PMID: 1751515 DOI: 10.1016/0005-2736(91)90139-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The basic characteristics of hexose uptake and regulation of the glucose transporter (GLUT1) by D-glucose and insulin were studied in primary cultures of bovine brain microvessel endothelial cells (BMECs). A non-metabolizable glucose analog, 3-O-[3H]methyl-D-glucose [( 3H]3MG), was used as a model substrate, and the uptake was studied using BMECs grown in tissue culture plates. Uptake of [3H]3MG was equilibrative, temperature-dependent, and independent of sodium. The uptake also decreased gradually with culture age from 7 to 13 days. Saturation kinetics were observed for [3H]3MG uptake and the apparent Km and Vmax values were determined to be 13.2 mM and 169 nmol/mg per min, respectively. Pre-incubation with high concentrations of D-glucose and 3MG accelerated [3H]3MG uptake by BMECs by a counter-transport mechanism. D-Glucose, 2-deoxy-D-glucose, D-mannose, D-xylose, D-galactose and D-ribose showed significant competitive inhibition with [3H]3MG, whereas L-glucose, D-fructose, and sucrose did not affect [3H]3MG uptake by BMECs. [3H]3MG uptake was inhibited significantly by cytochalasin B and phloretin but not by phlorizin, 2,4-dinitrophenol, or ouabain. D-Glucose starvation of BMECs by incubation with D-glucose-free media for 24 h resulted in a significant increase (40-70%) in uptake of [3H]3MG compared with control conditions (7.3 mM D-glucose). Low D-glucose treatments (2.43 and 1.83 mM) for 7 days induced a slight but significant increase (20%) in [3H]3MG uptake, while long-term high glucose treatments (25 mM) showed no significant effect on [3H]3MG uptake irrespective of exposure time. The increase in [3H]3MG accumulation following D-glucose starvation was dependent upon starvation time (12 to 48 hr) and protein synthesis. Refeeding of D-glucose (7.3 mM) to D-glucose-starved BMECs resulted in a return of [3H]3MG uptake to control levels in 48 h. The D-glucose-starvation-induced increase in [3H]3MG uptake was shown to result from an increase in Vmax; the Km remained constant. In addition, D-glucose-starved BMECs were shown to have an increased level of GLUT1 using an antibody against human GLUT1 and an enzyme-linked immunosorbent assay (ELISA). The increased uptake following D-glucose starvation was not significantly affected by the presence of L-glucose, was partially impaired by the presence of D-galactose, D-fructose, and D-xylose, and was completely inhibited by the presence of D-mannose and 3MG. Furthermore, preincubation of BMECs with insulin (10 micrograms/ml) for 20 min did not affect the uptake of [3H]3MG or 2-deoxy-D-[3H]glucose ([3H]2DG).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Takakura
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence 66045
| | | | | | | | | | | |
Collapse
|
40
|
Orlando R, Cheresh D. Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin alpha v beta 3 and its ligand. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55029-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
DiMilla PA, Barbee K, Lauffenburger DA. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 1991; 60:15-37. [PMID: 1883934 PMCID: PMC1260035 DOI: 10.1016/s0006-3495(91)82027-6] [Citation(s) in RCA: 412] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Migration of mammalian blood and tissue cells over adhesive surfaces is apparently mediated by specific reversible reactions between cell membrane adhesion receptors and complementary ligands attached to the substratum. Although in a number of systems these receptors and ligand molecules have been isolated and identified, a theory capable of predicting the effects of their properties on cell migration behavior currently does not exist. We present a simple mathematical model for elucidating the dependence of cell speed on adhesion-receptor/ligand binding and cell mechanical properties. Our model can be applied to propose answers to questions such as: does an optimal adhesiveness exist for cell movement? How might changes in receptor and ligand density and/or affinity affect the rate of migration? Can cell rheological properties influence movement speed? This model incorporates cytoskeletal force generation, cell polarization, and dynamic adhesion as requirements for persistent cell movement. A critical feature is the proposed existence of an asymmetry in some cell adhesion-receptor property, correlated with cell polarity. We consider two major alternative mechanisms underlying this asymmetry: (a) a spatial distribution of adhesion-receptor number due to polarized endocytic trafficking and (b) a spatial variation in adhesion-receptor/ligand bond strength. Applying a viscoelastic-solid model for cell mechanics allows us to represent one-dimensional locomotion with a system of differential equations describing cell deformation and displacement along with adhesion-receptor dynamics. In this paper, we solve these equations under the simplifying assumption that receptor dynamics are at a quasi-steady state relative to cell locomotion. Thus, our results are strictly valid for sufficiently slow cell movement, as typically observed for tissue cells such as fibroblasts. Numerical examples relevant to experimental systems are provided. Our results predict how cell speed might vary with intracellular contractile force, cell rheology, receptor/ligand kinetics, and receptor/ligand number densities. A biphasic dependence is shown to be possible with respect to some of the system parameters, with position of the maxima essentially governed by a balance between transmitted contractile force and adhesiveness. We demonstrate that predictions for the two alternative asymmetry mechanisms can be distinguished and could be experimentally tested using cell populations possessing different adhesion-receptor numbers.
Collapse
Affiliation(s)
- P A DiMilla
- Department of Chemical Engineering, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
42
|
De Strooper B, Van Leuven F, Carmeliet G, Van Den Berghe H, Cassiman JJ. Cultured human fibroblasts contain a large pool of precursor beta 1-integrin but lack an intracellular pool of mature subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 199:25-33. [PMID: 1906002 DOI: 10.1111/j.1432-1033.1991.tb16087.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous work has shown the presence of an important intracellular pool of beta 1-integrin subunit in human skin fibroblasts as detected with monoclonal antibody DH12 [De Strooper, B., Van der Schueren, B., Jaspers, M., Saison, M., Spaepen, M., Van Leuven, F., Van den Berghe, H. & Cassiman, J. J. (1989) J. Histochem. Cytochem. 37,299-307]. To analyze this more quantitatively, a radioimmunoassay with radioiodinated monoclonal antibody was developed. The total amount of specific binding sites for monoclonal antibody DH12 on skin fibroblasts was between 0.8-1.5 x 10(6)/cell. After permeabilizing the cells with digitonin, a threefold increase in specific binding was observed, which suggested that about 60% of the total amount of beta 1-subunit was localized intracellularly. From pulse/chase experiments, it was deduced that an important pool of precursor subunit, as defined by its sensitivity to endoglycosidase treatment, existed in fibroblasts. Since in steady-state-labeling conditions, at least three to four times more precursor than mature subunit was immunoprecipitated with monoclonal antibody DH12, we suggested that the intracellular pool of beta 1-integrin subunit is mainly precursor pool. This precursor pool contains a degradation compartment and a maturation compartment. Other investigators have found evidence for a recirculating pool of mature integrin in Chinese hamster ovary cells. Therefore, the presence of a recirculating pool of integrin in human fibroblasts was also considered. The data obtained with mAb DH12 showed that less than 10% of the surface pool of integrin was internalized by endocytosis. Since, however, cross linking of beta 1-integrins with polyclonal antibodies leads to rapid endocytosis of most of the integrin, it remains possible that the quantitatively small effect was actually an artefact induced by the divalent mAb. We conclude that the intracellular pool of beta 1-integrins observed in our previous studies consists of precursor and that in skin fibroblasts no mature beta 1-integrin is available intracellularly for rapid quantitative modulations at the cell surface.
Collapse
Affiliation(s)
- B De Strooper
- Centre for Human Genetics, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
43
|
Le Varlet B, Staquet MJ, Dezutter-Dambuyant C, Gaucherand M, Schmitt D. Expression and endocytosis of integrin VLA receptors for collagen, fibronectin and laminin by normal human keratinocytes. J Dermatol Sci 1991; 2:287-99. [PMID: 1655008 DOI: 10.1016/0923-1811(91)90053-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Very Late Activation (VLA) antigen family is involved in cell-extracellular matrix interactions and consists of six heterodimeric cell surface receptors with a common beta 1 and a variable alpha subunit. Using a panel of specific antibodies, we showed that human epidermal basal cells expressed VLA-2, VLA-3 and VLA-6 but failed to express VLA-4. Their functional roles were investigated and VLA-2 appeared as a specific receptor for type IV collagen and also as a laminin receptor. VLA-3 appeared as a receptor for fibronectin and laminin and to a lesser extent as a type I collagen receptor. VLA-6 appeared as a specific receptor for laminin. It also appeared that the VLA-alpha subunit specifically mediates the recognition of ligand but the beta 1 subunit is also involved in adhesion and that both subunits have a synergistic influence. Immunoprecipitation analyses confirmed that VLA-2, VLA-3 and VLA-6 were expressed by basal keratinocytes. Endocytosis of VLA-2 and VLA-3 was observed involving coated vesicles and endosomes that are structures characteristic of a receptor-mediated pathway. These findings provide first evidence that normal human basal keratinocytes are able of endocytosis mediated by receptors. Taken together, these results indicate that multiple VLA receptors function in combination to mediate epidermal basal cell adhesion to extracellular matrix.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cells, Cultured
- Endocytosis/physiology
- Extracellular Matrix/metabolism
- Fluorescent Antibody Technique
- Humans
- Integrins/immunology
- Integrins/metabolism
- Integrins/physiology
- Keratinocytes/metabolism
- Keratinocytes/physiology
- Keratinocytes/ultrastructure
- Precipitin Tests
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Collagen
- Receptors, Fibronectin
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Laminin
- Receptors, Very Late Antigen/immunology
- Receptors, Very Late Antigen/metabolism
- Receptors, Very Late Antigen/physiology
Collapse
Affiliation(s)
- B Le Varlet
- INSERM U 209, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | |
Collapse
|
44
|
Fogerty FJ, Mosher DF. Mechanisms for organization of fibronectin matrix. CELL DIFFERENTIATION AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF DEVELOPMENTAL BIOLOGISTS 1990; 32:439-50. [PMID: 2151569 DOI: 10.1016/0922-3371(90)90061-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- F J Fogerty
- Department of Medicine, University of Wisconsin, Madison 53706
| | | |
Collapse
|
45
|
Raub TJ, Koroly MJ, Roberts RM. Rapid endocytosis and recycling of wheat germ agglutinin binding sites on CHO cells: evidence for two compartments in a nondegradative pathway. J Cell Physiol 1990; 144:52-61. [PMID: 2365746 DOI: 10.1002/jcp.1041440108] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The internalization and recycling of CHO cell plasma membrane components have been quantified by using iodinated wheat germ agglutinin (WGA) as an adsorptive tracer. Most of these binding sites are thought to be composed of a subpopulation of plasma membrane proteins called high-molecular-weight acidic glycoproteins (HMWAG). Greater than 90% of the WGA bound on the cell surface can be removed by brief treatment with N-acetylglucosamine (GlcNAc). At 37 degrees C, endocytosis of WGA that had been allowed to bind to the surface at 4 degrees C is curvilinear with an initial rapid phase occurring with a t1/2 of 6-8 min. Within 20 min, accumulation has slowed gradually to steady-state with 65% of the cell-associated WGA located intracellularly or resistant to removal by GlcNAc. These portions are unaffected by increasing the extracellular concentration of WGA from 0.003 microM to 2.8 microM. By using pulse-chase experiments, the observed decrease in rate of endocytosis is shown to be due to return of the WGA-HMWAG complexes to the cell surface. More than 60% of the WGA that had been internalized is recycled within 30 min, with a mean t1/2 of 17 min. Recycling involved at least two intracellular populations where a significant fraction (less than 30%) of the WGA-HMWAG complexes are lost gradually from the rapidly recycling pool. Most of the WGA-HMWAG complexes that had internalized are not delivered to the lysosome. These results demonstrate the magnitude of rapid and continuous recycling of WGA binding sites between the cell surface and endosomes in fibroblasts.
Collapse
Affiliation(s)
- T J Raub
- Drug Delivery Systems Research, Upjohn Company, Kalamazoo, Michigan 49001
| | | | | |
Collapse
|