1
|
Sharma MC, Jain D. Important role of annexin A2 (ANXA2) in new blood vessel development in vivo and human triple negative breast cancer (TNBC) growth. Exp Mol Pathol 2020; 116:104523. [PMID: 32866522 DOI: 10.1016/j.yexmp.2020.104523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022]
Abstract
Development of new blood vessels in the tumor microenvironment is an essential component of tumor progression during which newly formed blood vessels nourish tumor cells and play a critical role in rapid tumor growth, invasion and metastasis. Nevertheless, how tumor cells develop new blood vessels in the tumor microenvironment (TME) have been enigmatic. Previously, we have shown specific overexpression of ANX A2 in TNBC cells regulates plasmin generation and suspected a role in neoangiogenesis. In this report, we used Matrigel plug model of in vivo angiogenesis and confirmed its role in new blood vessel development. Next, we tested if blocking of ANX A2 in aggressive human breast TME can inhibit angiogenesis and tumor growth in vivo. We showed that aggressive human breast tumor cells growing in nude mice can induce intense neoangiogenesis in the tumor mass. Blocking of ANXA2 significantly inhibited neoangiogenesis and resulted in inhibition of tumor growth. Interestingly, we identified that blocking of ANXA2 significantly inhibited tyrosine phosphorylation (Tyr-P) of ANXA2 implying its involvement in tyrosine signaling pathway and suggesting it may regulate angiogenesis. Taken together, our experimental evidence suggests that ANX A2 could be a novel strategy for disruption of tyrosine signaling and inhibition of neoangiogenesis in breast tumor.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, United States of America; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America.
| | - Diwakar Jain
- Westchester Medical Center, NY 10595, United States of America
| |
Collapse
|
2
|
Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 2018; 144:2074-2081. [PMID: 30125343 DOI: 10.1002/ijc.31817] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of cancer cells. It exhibits high affinity binding for calcium (Ca++ ) and phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| |
Collapse
|
3
|
Cui L, Song J, Wu L, Cheng L, Chen A, Wang Y, Huang Y, Huang L. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSki cells. Oncol Lett 2016; 13:377-383. [PMID: 28123570 DOI: 10.3892/ol.2016.5406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
The epidermal growth factor receptor (EGF-R) signaling pathway is thought to have an important role in the development and progression of several carcinomas, as it is associated with cell proliferation, differentiation and migration. Activation of EGF-R signaling regulates epithelial-mesenchymal transition (EMT)-associated invasion and migration in normal and malignant epithelial cells. However, the specific mechanisms have not yet been fully elucidated. The present study utilized wound healing assays, western blotting, flow cytometry and MTT assays to demonstrate that Annexin A2 (ANXA2) is a key regulatory factor in EGF-induced EMT in CaSki cervical cancer cells. Moreover, the increased expression levels of ANXA2 promoted cell viability and migration in human CaSki cells. It was also found that silencing ANXA2 partially reverses EGF-induced EMT and inhibits cell viability and migration in CaSki cells. These findings suggest that ANXA2 is a key regulator of EGF-induced EMT in CaSki cervical cancer cells.
Collapse
Affiliation(s)
- Lei Cui
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jian Song
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liting Wu
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Luhui Cheng
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Aijun Chen
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yanlin Wang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yingdi Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Liming Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
4
|
Suzuki S, Tanigawara Y. Forced expression of S100A10 reduces sensitivity to oxaliplatin in colorectal cancer cells. Proteome Sci 2014; 12:26. [PMID: 24851084 PMCID: PMC4029833 DOI: 10.1186/1477-5956-12-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Background Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. Our recent proteomics studies have demonstrated that intracellular protein expression levels of S100A10 are significantly correlated with the sensitivity of colorectal cancer (CRC) cells to L-OHP, but not 5-FU, suggesting that S100A10 is a candidate predictive marker for the response to L-OHP. In this study, we investigated whether S100A10 is involved in L-OHP sensitivity or not. Results Forced expression of S100A10 in COLO-320 CRC cells significantly increased the 50% inhibitory concentration (IC50) for L-OHP (P = 0.003), but did not change that for 5-FU, indicating that S100A10 is more specific to L-OHP than 5-FU. Silencing of the S100A10 gene showed no apparent effect on sensitivity to L-OHP in HT29 cells. Silencing of the annexin A2 (a binding partner of S100A10) gene alone downregulated both annexin A2 and S100A10 protein levels, with no change in S100A10 gene expression. However, original levels of intact S100A10 protein in CRC cells positively correlated with S100A10 mRNA levels (P = 0.002, R = 0.91). Conclusions The present results have shown that protein expression of S100A10 was associated with resistance to L-OHP, but not 5-FU, supporting the hypothesis that S100A10 expression may predict L-OHP sensitivity. Thus, our present study provides basic findings to support that S100A10 expression can be used as a predictive marker for tumor sensitivity to L-OHP.
Collapse
Affiliation(s)
- Sayo Suzuki
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan ; Center for Pharmacy Practice, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Annexin A2 participates in human skin keloid formation by inhibiting fibroblast proliferation. Arch Dermatol Res 2014; 306:347-57. [DOI: 10.1007/s00403-014-1438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/07/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
|
6
|
Zhang W, Zhao P, Xu XL, Cai L, Song ZS, Cao DY, Tao KS, Zhou WP, Chen ZN, Dou KF. Annexin A2 promotes the migration and invasion of human hepatocellular carcinoma cells in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells. PLoS One 2013; 8:e67268. [PMID: 23950866 PMCID: PMC3741296 DOI: 10.1371/journal.pone.0067268] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
It has been reported that Annexin A2 (ANXA2) is up-regulated in hepatocellular carcinoma (HCC), but the roles of ANXA2 in the migration and invasion of HCC cells have not been determined. In this study, we found that ANXA2-specific siRNA (si-ANXA2) significantly inhibited the migration and invasion of HCC cells co-cultured with fibroblasts in vitro. In addition, the production of MMP-2 by fibroblasts cultured in supernatant collected from si-ANXA2-transfected HCC cells was notably down-regulated. ANXA2 was also found to be co-localized and co-immunoprecipitated with CD147. Further investigation revealed that the expression of ANXA2 in HCC cells affected the shedding of CD147-harboring membrane microvesicles, acting as a vehicle for CD147 in tumor-stromal interactions and thereby regulating the production of MMP-2 by fibroblasts. Together, these results suggest that ANXA2 enhances the migration and invasion potential of HCC cells in vitro by regulating the trafficking of CD147-harboring membrane microvesicles.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning Province, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning Province, China
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell University, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiu-Li Xu
- Center of Clinical Laboratory Medicine of People's Liberation Army, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lei Cai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhen-Shun Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Da-Yong Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Kai-Shan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Ping Zhou
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning Province, China
- * E-mail: (WPZ); (ZNC); (KFD)
| | - Zhi-Nan Chen
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell University, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- * E-mail: (WPZ); (ZNC); (KFD)
| | - Ke-Feng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- * E-mail: (WPZ); (ZNC); (KFD)
| |
Collapse
|
7
|
Yang T, Peng H, Wang J, Yang J, Nice EC, Xie K, Huang C. Prognostic and diagnostic significance of annexin A2 in colorectal cancer. Colorectal Dis 2013; 15:e373-81. [PMID: 23489866 DOI: 10.1111/codi.12207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/13/2013] [Indexed: 02/05/2023]
Abstract
AIM Annexin A2 (ANXA2) is known to be a tumourigenic molecule and is highly expressed in colorectal cancer (CRC). Its diagnostic and prognostic value is not fully understood. This study was designed to investigate the relationship between ANXA2 expression, clinicopathological characteristics, tumour recurrence and survival. METHOD Immunohistochemical staining was used to evaluate ANXA2 expression in 150 matched samples from patients with CRC. Overall survival and recurrence were determined by Kaplan-Meier analysis. The Cox proportional hazards model was used to determine independent factors contributing to survival and recurrence. Receiver operating characteristic (ROC) curve and liner correlation analysis were used to estimate the sensitivity and specificity of ANXA2 expression for clinical diagnosis. RESULTS ANXA2 was found to be strongly expressed in poorly differentiated tumours (P < 0.001), late stage (P = 0.020) and lymph node positivity (P = 0.002). ANXA2 expression was significantly related to recurrence (P < 0.001) and survival (P = 0.002). The Cox proportional hazards model indicated that ANXA2 expression [P < 0.001, hazard ratio (HR) = 1.366, 95% CI 1.232-1.515] and tumour location (P = 0.039, HR = 1.891, 95% CI 1.034-3.456) were independent factors in predicting overall survival while ANXA2 expression (P < 0.001, HR = 1.445, 95% CI 1.222-1.709) were independent factors predicting recurrence. Receiver operating characteristic (ROC) (AUC = 0.768, 95% CI = 0.642-0.894) and liner correlation analysis suggested that ANXA2 was suitable for the clinical diagnosis of CRC. CONCLUSION These results indicate that ANXA2 is a biomarker with diagnostic and prognostic potential for patients with CRC.
Collapse
Affiliation(s)
- T Yang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
9
|
Suzuki S, Yamayoshi Y, Nishimuta A, Tanigawara Y. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells. Proteome Sci 2011; 9:76. [PMID: 22206547 PMCID: PMC3317844 DOI: 10.1186/1477-5956-9-76] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/30/2011] [Indexed: 12/27/2022] Open
Abstract
Background Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC) cell lines. We performed expression difference mapping (EDM) analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF). Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations) (P < 0.001, R2 = 0.80). We identified this protein as Protein S100-A10 (S100A10) by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.
Collapse
Affiliation(s)
- Sayo Suzuki
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
10
|
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen and angiogenin interact with common host proteins, including annexin A2, which is essential for survival of latently infected cells. J Virol 2011; 86:1589-607. [PMID: 22130534 DOI: 10.1128/jvi.05754-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection and latency-associated nuclear antigen (LANA-1) upregulate the multifunctional protein angiogenin (ANG). Our studies demonstrate that silencing ANG or inhibiting its nuclear translocation downregulates KSHV LANA-1 expression and ANG is necessary for KSHV latency, anti-apoptosis and angiogenesis (Sadagopan et al., J. Virol. 83:3342-3364, 2009; Sadagopan et al., J Virol. 85:2666-2685, 2011). Here we show that LANA-1 interacts with ANG and colocalizes in latently infected endothelial telomerase-immortalized human umbilical vein endothelial (TIVE-LTC) cells. Mass spectrometric analyses of TIVE-LTC proteins immunoprecipitated by anti-LANA-1 and ANG antibodies identified 28 common cellular proteins such as ribosomal proteins, structural proteins, tRNA synthetases, metabolic pathway enzymes, chaperons, transcription factors, antioxidants, and ubiquitin proteosome proteins. LANA-1 and ANG interaction with one of the proteins, annexin A2, was validated. Annexin A2 has been shown to play roles in cell proliferation, apoptosis, plasmin generation, exocytosis, endocytosis, and cytoskeleton reorganization. It is also known to associate with glycolytic enzyme 3-phosphoglyceratekinase in the primer recognition protein (PRP) complex that interacts with DNA polymerase α in the lagging strand of DNA during replication. A higher level of annexin A2 is expressed in KSHV+ but not in Epstein-Barr virus (EBV)+ B-lymphoma cell lines. Annexin A2 colocalized with several LANA-1 punctate spots in KSHV+ body cavity B-cell lymphoma (BCBL-1) cells. In triple-staining analyses, we observed annexin A2-ANG-LANA-1, annexin A2-ANG, and ANG-LANA-1 colocalizations. Annexin A2 appeared as punctate nuclear dots in LANA-1-positive TIVE-LTC cells. In LANA-1-negative TIVE-LTC cells, annexin A2 was detected predominately in the cytoplasm, with some nuclear spots, and colocalization with ANG was observed mostly in the cytoplasm. Annexin A2 coimmunoprecipitated with LANA-1 and ANG in TIVE-LTC and BCBL-1 cells and with ANG in 293T cells independent of LANA-1. This suggested that annexin A2 forms a complex with LANA-1 and ANG as well as a separate complex with ANG. Silencing annexin A2 in BCBL-1 cells resulted in significant cell death, downregulation of cell cycle-associated Cdk6 and of cyclin D, E, and A proteins, and downregulation of LANA-1 and ANG expression. No effect was seen in KSHV⁻ lymphoma (BJAB and Ramos) and 293T cells. These studies suggest that LANA-1 association with annexin A2/ANG could be more important than ANG association with annexin A2, and KSHV probably uses annexin A2 to maintain the viability and cell cycle regulation of latently infected cells. Since the identified LANA-1- and ANG-interacting common cellular proteins are hitherto unknown to KSHV and ANG biology, this offers a starting point for further analysis of their roles in KSHV biology, which may lead to identification of potential therapeutic targets to control KSHV latency and associated malignancies.
Collapse
|
11
|
Zhong LP, Wei KJ, Yang X, Zhang L, Zhou XJ, Pan HY, Li J, Chen WT, Zhang ZY. Increased expression of Annexin A2 in oral squamous cell carcinoma. Arch Oral Biol 2008; 54:17-25. [PMID: 18822406 DOI: 10.1016/j.archoralbio.2008.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
Abstract
Previously, in vitro cellular carcinogenesis model of oral squamous cell carcinoma (OSCC) was established with a line of human immortalized oral epithelia cells (HIOECs), a line of cancerous HB96 cells, and another kind of cells (HB56 cells) at the early stage of carcinogenesis. In this study, comparative proteomic analysis identified a panel of differentially expressed proteins among these cells, and Annexin A2 shown as one of the significantly up-regulated proteins accompanying cellular transformation. Annexin A2 was further validated for its expression in the three kinds of cells and in the clinical samples of tumour tissues and their adjacent normal epithelia from primary OSCC patients. Western blot analysis and real-time PCR detected increased Annexin A2 protein and mRNA levels in cancerous HB56 and HB96 cells over HIOECs. Immunohistochemistry showed elevated Annexin A2 protein expression in tumour tissues over the adjacent non-malignant epithelia from OSCC patients; however, the mRNA levels between tumour and normal tissues did not change significantly. Interestingly, levels of Annexin A2 protein expression negatively correlated with the tumour differentiation grades. The results presented here suggest that Annexin A2 protein may play important roles in carcinogenesis of OSCC, and it may also serve as a candidate biomarker for pathologic differentiation grade of OSCC.
Collapse
Affiliation(s)
- Lai-ping Zhong
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pena-Alonso E, Rodrigo JP, Parra IC, Pedrero JMG, Meana MVG, Nieto CS, Fresno MF, Morgan RO, Fernandez MP. Annexin A2 localizes to the basal epithelial layer and is down-regulated in dysplasia and head and neck squamous cell carcinoma. Cancer Lett 2008; 263:89-98. [PMID: 18262347 DOI: 10.1016/j.canlet.2007.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/07/2007] [Accepted: 12/14/2007] [Indexed: 12/11/2022]
Abstract
Annexin A2 is a highly expressed gene with important roles in cell membrane physiology and is frequently dysregulated in cancer. The objective of this study was to determine the pattern of expression and prognostic significance of annexin A2 protein in head and neck squamous cell carcinoma. We assessed both quantitative changes and qualitative distribution of annexin A2 mRNA and protein expression in normal and diseased tissues by immunohistochemistry, immunofluorescence and in situ hybridization. Annexin A2 expression was confined to the basal and suprabasal cells of normal epithelium and the protein cellular location was consistently observed at the cell membrane. Expression levels correlated with histopathological grade, showing significant suppression in moderately and poorly differentiated tumours. We conclude that annexin A2 exhibits a characteristic pattern of expression, distinct from other annexins and suggestive of a cell-specific functional role. The marked reduction of annexin A2 in poorly differentiated tumours and dysplastic tissue is expected to result in a loss of function aimed at the coordination of membrane signalling enzyme complexes, actin polymerization and extracellular matrix proteolysis. The phenotypic consequences may become manifest in an alteration of epithelial tissue growth and remodelling with secondary influence on tumour development, progression and metastasis.
Collapse
Affiliation(s)
- Emma Pena-Alonso
- Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shkoda A, Werner T, Daniel H, Gunckel M, Rogler G, Haller D. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J Proteome Res 2007; 6:1114-25. [PMID: 17330946 DOI: 10.1021/pr060433m] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of intestinal epithelial cell (IEC) function is a critical component in the initiation and perpetuation of chronic intestinal inflammation in the genetically susceptible host. We applied proteome analysis (PA) to characterize changes in the protein expression profile of primary IEC from patients with Crohn's disease (CD) and ulcerative colitis (UC). Surgical specimens from 18 patients with active CD (N = 6), UC (N = 6), and colonic cancer (N = 6) were used to purify primary IEC from ileal and colonic tissues. Changes in protein expression were identified using 2D-gel electrophoreses (2D SDS-PAGE) and peptide mass fingerprinting via MALDI-TOF mass spectrometry (MS) as well as Western blot analysis. PA of primary IEC from inflamed ileal tissue of CD patients and colonic tissue of UC patients identified 21 protein spots with at least 2-fold changes in steady-state expression levels compared to the noninflamed tissue of control patients. Statistical significance was achieved for 9 proteins including the Rho-GDP dissociation inhibitor alpha that was up-regulated in CD and UC patients. Additionally, 40 proteins with significantly altered expression levels were identified in IEC from inflamed compared to noninflamed tissue regions of single UC (N = 2) patients. The most significant change was detected for programmed cell death protein 8 (7.4-fold increase) and annexin 2A (7.7-fold increase). PA in primary IEC from IBD patients revealed significant expression changes of proteins that are associated with signal transduction, stress response as well as energy metabolism. The induction of Rho GDI alpha expression may be associated with the destruction of IEC homeostasis under condition of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Anna Shkoda
- Else-Kroener-Fresenius Center for Experimental Nutritional Medicine, Molecular Nutrition, Technical University of Munich, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Demasi MAA, Montor WR, Ferreira GB, Pimenta DC, Labriola L, Sogayar MC. Differential proteomic analysis of the anti-proliferative effect of glucocorticoid hormones in ST1 rat glioma cells. J Steroid Biochem Mol Biol 2007; 103:137-48. [PMID: 17127050 DOI: 10.1016/j.jsbmb.2006.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 08/17/2006] [Indexed: 02/02/2023]
Abstract
Glucocorticoid hormones (GCs) exert a potent anti-proliferative activity on several cell types. The classic molecular mechanism of GCs involves modulation of the activity of the glucocorticoids receptor, a transcriptional regulator. However, the anti-proliferative effect of GCs may also involve modulation of processes such as translation, subcellular localization and post-translational modifications, which are not reflected at the mRNA level. To investigate these potential effects of GCs, we employed the proteomic approach (two-dimensional electrophoresis and mass spectrometry) and the ST1 cells, obtained from the C6 rat glioma cell line, as a model. GC treatment leads ST1 cells to a complete transformed-to-normal phenotypic reversion and loss of their tumorigenic potential. By comparing sets of 2D nuclear protein profiles of ST1 cells treated (or not) with hydrocortisone (Hy), 13 polypeptides displaying >or=two-fold difference in abundance upon Hy treatment were found. Five of these polypeptides were identified by peptide mass fingerprinting, including Annexin 2 (ANX2), hnRNP A3 and Ubiquitin. Evidence obtained by Western blot analysis indicates that ANX2 is present in the nucleus and has its subcellular localization modulated by GC-treatment of ST1 cells. Our findings indicate complementary mechanisms contributing to the regulation of gene expression associated with ST1 cells' response to GCs.
Collapse
Affiliation(s)
- Marcos A A Demasi
- Instituto de Química, Universidade de São Paulo, 05508-900 SP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Singh P. Role of Annexin-II in GI cancers: interaction with gastrins/progastrins. Cancer Lett 2006; 252:19-35. [PMID: 17188424 PMCID: PMC1941619 DOI: 10.1016/j.canlet.2006.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/06/2006] [Indexed: 12/27/2022]
Abstract
The role of the gastrin peptide hormones (G17, G34) and their precursors (progastrins, PG; gly-extended gastrin, G-gly), in gastrointestinal (GI) cancers has been extensively reviewed in recent years [W. Rengifo-Cam, P. Singh, Role of progastrins and gastrins and their receptors in GI and pancreatic cancers: targets for treatment, Curr. Pharm. Des. 10 (19) (2004) 2345-2358; M. Dufresne, C. Seva, D. Fourmy, Cholecystokinin and gastrin receptors, Physiol. Rev. 86 (3) (2006) 805-847; A. Ferrand, T.C. Wang, Gastrin and cancer: a review, Cancer Lett. 238 (1) (2006) 15-29]. A possible important role of progastrin peptides in colon carcinogenesis has become evident from experiments with transgenic mouse models [W. Rengifo-Cam, P. Singh, (2004); A. Ferrand, T.C. Wang, (2006)]. It is now known that growth stimulatory and co-carcinogenic effects of gastrin/PG peptides are mediated by both proliferative and anti-apoptotic effects of the peptides on target cells [H. Wu, G.N. Rao, B. Dai, P. Singh, Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3, J. Biol. Chem. 275 (42) (2000) 32491-32498; H. Wu, A. Owlia, P. Singh, Precursor peptide progastrin(1-80) reduces apoptosis of intestinal epithelial cells and upregulates cytochrome c oxidase Vb levels and synthesis of ATP, Am. J. Physiol. Gastrointest. Liver Physiol. 285 (6) (2003) G1097-G1110]. Several receptor subtypes have been described that mediate growth effects of gastrin peptides [W. Rengifo-Cam, P. Singh (2004); M. Dufresne, C. Seva, D. Fourmy, (2006)]. Recently, we identified Annexin II as a high affinity binding protein for gastrin/PG peptides [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798]. Importantly, the expression of Annexin II was required for mediating growth stimulatory effects of gastrin and PG peptides on intestinal epithelial and colon cancer cells [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798], suggesting that Annexin-II may represent the elusive novel receptor for gastrin/PG peptides. The importance of this finding in relation to the structure and function of Annexin-II, especially in GI cancers, is described below. Since this surprising finding represents a new front in our understanding of the mechanisms involved in mediating growth effects of gastrin/PG peptides in GI cancers, our current understanding of the role of Annexin-II in proliferation and metastasis of cancer cells is additionally reviewed.
Collapse
Affiliation(s)
- Pomila Singh
- Department of Neuroscience and Cell Biology, 10.104 Medical Research Building, Route 1043, University of Texas Medical Branch, 301University Blvd., Mail Route 1043, Galveston, TX 77555-1043, USA.
| |
Collapse
|
16
|
Singh P, Wu H, Clark C, Owlia A. Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells. Oncogene 2006; 26:425-40. [PMID: 16832341 DOI: 10.1038/sj.onc.1209798] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We and others have reported the presence of novel progastrin (PG)/gastrin receptors on normal and cancerous intestinal cells. We had earlier reported the presence of 33-36 kDa gastrin-binding proteins on cellular membranes of colon cancer cells. The goal of the current study was to identify the protein(s) in the 33-36 kDa band, and analyse its functional significance. A carbodiimide crosslinker was used for crosslinking radio-labeled gastrins to membrane proteins from gastrin/PG responsive cell lines. Native membrane proteins, crosslinked to the ligand, were solubulized and enriched by >1000-fold, and analysed by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. The peptide masses were researched against the NCBInr database using the ProFound search engine. Annexin II (ANX II) was identified, and confirmed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. As HCT-116 cells express autocrine PG, the in situ association of PG with ANX II was demonstrated in pulldown assays. Direct binding of PG with ANX II was confirmed in an in vitro binding assay. In order to confirm a functional importance of these observations, sense and anti-sense (AS) ANX II RNA-expressing clones of intestinal epithelial (IEC-18) and human colon cancer (HCT-116) cell lines were generated. AS clones demonstrated a significant loss in the growth response to exogenous (IEC-18) and autocrine (HCT-116) PG. We have thus discovered that membrane-associated ANX II binds PG/gastrins, and partially mediates growth factor effects of the peptides.
Collapse
Affiliation(s)
- P Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Annexin A2 (ANXA2) is a Ca(2+)-binding protein that is up-regulated in virally transformed cell lines and in human tumors. Here, we show that ANXA2 binds directly to both ribonucleotide homopolymers and human c-myc RNA. ANXA2 was shown to bind specifically to poly(G) with high affinity (K(d) = 60 nM) and not to poly(A), poly(C), or poly(U). The binding of ANXA2 to poly(G) required Ca(2+) (A(50%) = 10 microM). The presence of RNA in the immunoprecipitates of ANXA2 isolated from HeLa cells established that ANXA2 formed a ribonucleoprotein complex in vivo. Sucrose gradient analysis showed that ANXA2 associates with ribonucleoprotein complexes and not with polyribosomes. Reverse transcriptase-PCR identified c-myc mRNA as a component of the ribonucleoprotein complex formed by ANXA2 in vivo, and binding studies confirmed a direct interaction between ANXA2 and c-myc mRNA. Transfection of LNCaP cells with the ANXA2 gene resulted in the up-regulation of c-Myc protein. These findings identify ANXA2 as a Ca(2+)-dependent RNA-binding protein that interacts with the mRNA of the nuclear oncogene, c-myc.
Collapse
Affiliation(s)
- Nolan R Filipenko
- Cancer Biology Research Group, Departments of Biochemistry & Molecular Biology and Oncology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
18
|
Liu J, Rothermund CA, Ayala-Sanmartin J, Vishwanatha JK. Nuclear annexin II negatively regulates growth of LNCaP cells and substitution of ser 11 and 25 to glu prevents nucleo-cytoplasmic shuttling of annexin II. BMC BIOCHEMISTRY 2003; 4:10. [PMID: 12962548 PMCID: PMC200965 DOI: 10.1186/1471-2091-4-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 09/09/2003] [Indexed: 12/16/2022]
Abstract
BACKGROUND Annexin II heavy chain (also called p36, calpactin I) is lost in prostate cancers and in a majority of prostate intraepithelial neoplasia (PIN). Loss of annexin II heavy chain appears to be specific for prostate cancer since overexpression of annexin II is observed in a majority of human cancers, including pancreatic cancer, breast cancer and brain tumors. Annexin II exists as a heterotetramer in complex with a protein ligand p11 (S100A10), and as a monomer. Diverse cellular functions are proposed for the two forms of annexin II. The monomer is involved in DNA synthesis. A leucine-rich nuclear export signal (NES) in the N-terminus of annexin II regulates its nuclear export by the CRM1-mediated nuclear export pathway. Mutation of the NES sequence results in nuclear retention of annexin II. RESULTS Annexin II localized in the nucleus is phosphorylated, and the appearance of nuclear phosphorylated annexin II is cell cycle dependent, indicating that phosphorylation may play a role in nuclear entry, retention or export of annexin II. By exogenous expression of annexin II in the annexin II-null LNCaP cells, we show that wild-type annexin II is excluded from the nucleus, whereas the NES mutant annexin II localizes in both the nucleus and cytoplasm. Nuclear retention of annexin II results in reduced cell proliferation and increased doubling time of cells. Expression of annexin II, both wild type and NES mutant, causes morphological changes of the cells. By site-specific substitution of glutamic acid in the place of serines 11 and 25 in the N-terminus, we show that simultaneous phosphorylation of both serines 11 and 25, but not either one alone, prevents nuclear localization of annexin II. CONCLUSION Our data show that nuclear annexin II is phosphorylated in a cell cycle-dependent manner and that substitution of serines 11 and 25 inhibit nuclear entry of annexin II. Aberrant accumulation of nuclear annexin II retards proliferation of LNCaP cells.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christy A Rothermund
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jesus Ayala-Sanmartin
- INSERM U538, Trafic membranaire et signalisation dans les cellules épithéliales, CHU Saint Antoine, 27, rue Chaligny, 75012 Paris, France
| | - Jamboor K Vishwanatha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Roda O, Valero ML, Peiró S, Andreu D, Real FX, Navarro P. New insights into the tPA-annexin A2 interaction. Is annexin A2 CYS8 the sole requirement for this association? J Biol Chem 2003; 278:5702-9. [PMID: 12468550 DOI: 10.1074/jbc.m207605200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Annexin A2 has been described as an important receptor for tissue-type plasminogen activator in endothelium and other cell types. Interaction between tissue-type plasminogen activator and its cellular receptor is critical for many of the functions of this protease. The annexin A2 motif that mediates tissue plasminogen activator interaction has been assigned to the hexapeptide LCKLSL in the amino-terminal domain of the protein, and it has been proposed that Cys(8) of this sequence is essential for tPA binding. In an attempt to identify other amino acids critical for tPA-annexin A2 interaction, we have analyzed a set of peptides containing several modifications of the original hexapeptide, including glycine scans, alanine scans, d-amino acid scans, conservative mutations, cysteine blocking, and enantiomer and retroenantiomer sequences. Using a non-radioactive competitive binding assay, we have found that all cysteine-containing peptides, independently of their sequence, compete the interaction between tPA and annexin A2. Cysteine-containing peptides also inhibit tPA binding to the surface of cultured human umbilical vein endothelial cells (HUVEC). Mass spectrometry demonstrates that the peptides bind through a disulfide bond to a cysteine residue of annexin A2, the same mechanism that has been suggested for the inhibition mediated by homocysteine. These data call for a revision of the role of the LCKLSL sequence as the sole annexin A2 structural region required to bind tPA and indicate that further studies are necessary to better define the annexin A2-tPA interaction.
Collapse
Affiliation(s)
- Oriol Roda
- Departament de Ciències Experimentales i de la Salut, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra and Unitat de Biologia Cel.lular i Molecular, Institut Municipal d'Investigació Mèdica, 08003-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Tuszynski GP, Sharma MR, Rothman VL, Sharma MC. Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc Res 2002; 64:448-62. [PMID: 12453439 DOI: 10.1006/mvre.2002.2444] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Angiostatin(AS), an internal fragment of plasminogen, is one of the most potent specific inhibitors of angiogenesis. Angiostatin treatment has resulted in the complete regression of human tumors implanted subcutaneously into nude mice and has great therapeutic value (O'Reilly et al., Nat. Med. 2, 689-692, 1996). Despite promising therapeutic value in the treatment of cancer, the mechanism of its action is still unknown. We found that angiostatin binds to a 35-kDa protein in bovine aortic endothelial (BAE) cells (Sharma et al., Proc. Am. Assoc. Cancer Res. 42, 568, A3050, 2002). In an attempt to begin to understand angiostatin's mechanism of action, we have purified and characterized this 35-kDa protein from BAE cells. Internal peptide sequence analysis of purified protein demonstrated (SLYYIQQDTK, SYSPYDMLESIK, and ALLYLXGGDD) 100% sequence identity with tyrosine kinase substrate annexin II. Solid phase binding analysis suggests that angiostatin specifically bound to purified annexin II immobilized on 96-well plastic plates. Hundred-fold molar excess of unlabeled AS and anti-annexin II antibody inhibited bindings 85 and 55%, respectively, suggesting specific interaction. Annexin II is a predominant receptor for angiostatin, since neutralizing the angiostatin by soluble receptor (annexin II) effectively blocks angiostatin's anti-EC activity. Similarly, saturating the annexin II receptor by plasminogen in endothelial cells also blocks angiostatin's activity. Both angiostatin and plasminogen bind to purified annexin II in BAE cells saturably with apparent K(d) values of 101 and 164 nM, respectively, for purified annexin II and K(d) values of 83 and 125 nM, respectively, for BAE cells. Anti-annexin II monoclonal antibody inhibited angiostatin and plasminogen binding to endothelial cells by 68 and 62%, respectively, supporting our in vitro studies that annexin II is a receptor for angiostatin. Angiostatin-binding protein/annexin II specifically expressed in endothelial cells but not in fibroblasts suggests its EC-specific function. Epsilon-aminocaproic acid, a lys analogue, effectively blocks angiostatin and annexin II interaction, indicating that the lysine-binding domain of AS is required for binding to annexin II. These results suggest that the antiangiogenic action of angiostatin may be mediated via interaction with annexin II. Identification of annexin II as a receptor for angiostatin provides further evidence that clotting and fibrinolytic pathways are directly involved in the angiogenic process.
Collapse
Affiliation(s)
- George P Tuszynski
- Department of Surgery, MCP Hahnemann University, MS #413, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
22
|
Eberhard DA, Karns LR, VandenBerg SR, Creutz CE. Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 2001; 114:3155-66. [PMID: 11590242 DOI: 10.1242/jcs.114.17.3155] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study investigated mechanisms controlling the nuclear-cytoplasmic partitioning of annexin II (AnxII). AnxII and its ligand, p11, were localized by immunofluorescence to the cytoplasmic compartment of U1242MG cells, with minimal AnxII or p11 detected within nuclei. Similarly, GFP-AnxII and GFP-p11 chimeras localized to the endogenous proteins. Likewise, GFP-AnxII(1-22) was excluded from nuclei, whereas GFP-AnxII(23-338) and GFP alone were distributed throughout the cells. Immunoprecipitation and biochemical studies showed that GFP-AnxII did not form heteromeric complexes with endogenous p11 and AnxII. Thus, the AnxII N-tail is necessary and sufficient to cause nuclear exclusion of the GFP fusion protein but this does not involve p11 binding. A nuclear export signal consensus sequence was found in the AnxII 3-12 region. The consensus mutant GFP-AnxII(L10A/L12A) confirmed that these residues are necessary for nuclear exclusion. The nuclear exclusion of GFP-AnxII(1-22) was temperature-dependent and reversible, and the nuclear export inhibitor leptomycin B (LmB) caused GFP-AnxII or overexpressed AnxII monomer to accumulate in nuclei. Therefore, AnxII monomer can enter the nucleus and is actively exported. However, LmB had little effect on the localization of AnxII/p11 complex in U1242MG cells, indicating that the complex is sequestered in the cytoplasm. By contrast, LmB treatment of v-src-transformed fibroblasts caused endogenous AnxII to accumulate in nuclei. The LmB-induced nuclear accumulation of AnxII was accelerated by pervanadate and inhibited by genistein, suggesting that phosphorylation promotes nuclear entry of AnxII. Thus, nuclear exclusion of AnxII results from nuclear export of the monomer and sequestration of AnxII/p11 complex, and may be modulated by phosphorylation.
Collapse
Affiliation(s)
- D A Eberhard
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
23
|
Mai J, Waisman DM, Sloane BF. Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:215-30. [PMID: 10708859 DOI: 10.1016/s0167-4838(99)00274-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.
Collapse
Affiliation(s)
- J Mai
- Department of Pharmacology, Wayne State University, School of Medicine, 540 East Canfield, Detroit, MI 48201, USA
| | | | | |
Collapse
|
24
|
Chiang Y, Rizzino A, Sibenaller ZA, Wold MS, Vishwanatha JK. Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem 1999; 199:139-47. [PMID: 10544962 DOI: 10.1023/a:1006942128672] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein-tyrosine kinase substrate annexin II is a growth regulated gene whose expression is increased in several human cancers. While the precise function of this protein is not understood, annexin II is proposed to be involved in multiple physiological activities, including DNA synthesis and cell proliferation. Targeted disruption of the annexin II gene affects calcium signaling, tyrosine phosphorylation and apoptosis, indicating the important physiological role of this protein. We used a transient co-transfection assay to regulate annexin II expression in human HeLa, 293 and 293T cells, and measured the effects of annexin II down regulation on DNA synthesis and proliferation. Transfection of cells with an antisense annexin II vector results in inhibition of cell division and proliferation, with concomitant reduction in annexin II message and protein levels. Cellular DNA synthesis is significantly reduced in antisense transfected cells. Replication extracts made from antisense transfected cells have significantly reduced efficiency to support SV40 in vitro DNA replication, while the extracts made from sense transfected cells are fully capable of replication. Our results indicate an important role of annexin II in cellular DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- Y Chiang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-4525, USA
| | | | | | | | | |
Collapse
|
25
|
Chiang Y, Davis RG, Vishwanatha JK. Altered expression of annexin II in human B-cell lymphoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:295-301. [PMID: 8898868 DOI: 10.1016/0167-4889(96)00103-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Annexin II is a growth-regulated gene, whose expression is significantly increased in various human cancers. We examined annexin II expression in II human B-cell lymphoma cell lines and in normal B-cells. Wide variation was observed in the levels of annexin II in these cell lines. Annexin II overexpression was observed in 5 cell lines, while significantly reduced expression was observed in Raji, OMA-BL-1 and REH cell lines. Analysis of the annexin II gene, mRNA and protein in Raji and OMA-BL-1 cell lines indicated that annexin II gene was unaltered and that a low level of annexin II transcripts are produced in these cells. Down-regulation of annexin II expression was at the transcriptional level, and no reexpression of annexin II was observed after treatment of cells with demethylating agents. Thus methylation of the annexin II gene does not appear to be responsible for annexin II down-regulation. A slow migrating altered form of annexin II was detected in Raji and OMA-BL-1 cells, which was detected with the anti-chicken annexin II antiserum, but not with the anti-human annexin II antiserum. The slow migrating annexin II species was found to be sensitive to dephosphorylation by calf intestinal alkaline phosphatase, resulting in reduction of the size of the protein on SDS-polyacrylamide gels. The phosphorylated annexin II was also observed in nuclear extracts of human K562 and HeLa cells. Thus, Raji and OMA-BL-1 cells exclusively produce a phosphorylated form of annexin II, and phosphorylated annexin II may be important for cell survival and proliferation.
Collapse
Affiliation(s)
- Y Chiang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-4525, USA
| | | | | |
Collapse
|
26
|
Fey MF, Moffat GJ, Vik DP, Meisenhelder J, Saris CJ, Hunter T, Tack BF. Complete structure of the murine p36 (annexin II) gene. Identification of mRNAs for both the murine and the human gene with alternatively spliced 5' noncoding exons. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1306:160-70. [PMID: 8634333 DOI: 10.1016/0167-4781(95)00238-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
p36 (also termed annexin II) is a 39 kDa Ca2+/phospholipid-binding, membrane-associated protein that is a protein-tyrosine kinase substrate. We report here studies of the noncoding exons of p36, which combined with our earlier studies of the coding exons, allow us to conclude that the murine p36 gene is 34 kb in length with 14 exons. Comparison of the genes coding for mouse and human p36 (annexin II) and mouse, rat and human p35 (annexin I) and pigeon cp35 (an annexin I-related protein) shows strong genomic structural conservation supporting the hypothesis that these genes had a common ancestor. Both human and murine p36 mRNAs were found to be alternatively spliced in their 5' noncoding region. In both cases exon 2 is a cassette exon, which is present in a small fraction of p36 mRNAs. In type 1 mouse p36 mRNA the first noncoding 44 base exon 1 is joined to exon 3, the first of the 12 coding exons. In type 2 mRNA a 70 base noncoding exon (exon 2) is inserted between exon 1 and exon 3. Type 1 mRNA was present in all cell types studied as revealed by Northern analysis and primer extension, whereas type 2 mRNA could only be detected by RACE or PCR, indicating that it is of very low abundance. The major transcription start site of the mouse p36 gene was mapped by primer extension to be 61 bp upstream of the AUG initiation codon, which corresponds to type 1 mRNA, The murine p36 gene enhancer/promoter region contains a putative TATA box and several other potential regulatory sequences. The two alternatively-spliced human p36 mRNAs differ by the presence or absence of a noncoding 81 base exon (exon 2) inserted after exon 1, with exon 2-containing mRNAs representing approximately 10% of total p36 mRNA. The 300 bp spanning the promoter and exons 1-3 of the human and murine p36 genes show strong sequence homology immediately before and after the major transcription start site except in the region corresponding to exon 2, where homology is more limited.
Collapse
Affiliation(s)
- M F Fey
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dubois T, Oudinet JP, Russo-Marie F, Rothhut B. In vivo and in vitro phosphorylation of annexin II in T cells: potential regulation by annexin V. Biochem J 1995; 310 ( Pt 1):243-8. [PMID: 7646452 PMCID: PMC1135879 DOI: 10.1042/bj3100243] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to understand how signal transduction occurs during T cell activation, it is necessary to identify the key regulatory molecules whose function is influenced by phosphorylation. Annexins II (A-II) and V (A-V) belong to a large family of Ca(2+)-dependent phospholipid-binding proteins. Among many putative functions, annexins may be involved in signal transduction during cellular proliferation and differentiation. In the present study we show that A-II is phosphorylated in vivo in the Jurkat human T cell line. Indeed, A-II is phosphorylated after stimulation by phorbol myristate acetate and on serine residues after T cell antigen receptor (TcR) stimulation. In cytosol from Jurkat cells, A-II is phosphorylated only by Ca2+/phospholipid-stimulated kinases such as Ca(2+)-dependent protein kinases C (cPKCs). A-V inhibits the phosphorylation of A-II and other substrates of cPKCs and has no effect on kinases activated only by phospholipids. In conclusion, A-II is phosphorylated both in vitro and in vivo in Jurkat cells, and may play a role as a substrate during signal transduction in lymphocytes via the TcR through the PKC pathway. On the other hand, A-V could act as a potent modulator of cPKCs in Jurkat cells.
Collapse
Affiliation(s)
- T Dubois
- Laboratoire de Signalisation, Inflammation et Transformation Cellulaire, INSERM U.332, Institut Cochin de Génétique Moléculaire (ICGM), Université René Descartes, Paris, France
| | | | | | | |
Collapse
|
28
|
Abstract
The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca(2+)-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.
Collapse
Affiliation(s)
- D M Waisman
- Department of Medical Biochemistry, Faculty of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
29
|
Bhavani K, de la Monte S, Brown NV, Xu YY, Sasaki Y, Wands JR. Effect of ethanol on p36 protein kinase substrate and insulin receptor substrate 1 expression and tyrosyl phosphorylation in human hepatocellular carcinoma cells. Alcohol Clin Exp Res 1995; 19:441-6. [PMID: 7542850 DOI: 10.1111/j.1530-0277.1995.tb01528.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ethanol inhibits insulin (IN) and epidermal growth factor (EGF)-induced hepatocyte DNA synthesis. Growth factor receptor kinases, such as IN and EGF, phosphorylate insulin receptor substrate (IRS-1) and p36 protein kinase substrate, respectively, on tyrosine residues. IRS-1 and p36 are thought to be important intracellular signal transduction molecules involved in the regulation of cell growth. These investigations explored the effect of ethanol additions on the expression and tyrosyl phosphorylation (TP) of p36 and IRS-1 in a human hepatocellular carcinoma cell line (FOCUS) in relationship to cell proliferation induced by IN and serum growth factor stimulation. It was found that p36 was constitutively and highly expressed in serum-starved cells and protein, and mRNA levels did not change with cell proliferation induced by growth factors. However, exposure of FOCUS cells to ethanol additions substantially inhibited TP of p36. The early TP of IRS-1 induced by IN stimulation was also reduced by ethanol additions. Finally, there was a parallel decrease of FOCUS cell proliferation in ethanol-exposed cultures. These studies suggest that one possible mechanism of ethanol inhibitory effect on cell proliferation is through reduced TP of putative intracellular signal transduction molecules, such as p36 and IRS-1.
Collapse
Affiliation(s)
- K Bhavani
- Molecular Hepatology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, USA
| | | | | | | | | | | |
Collapse
|
30
|
de la Monte SM, Bhavani K, Xu YY, Puisieux A, Wands JR. Modulation of p36 gene expression in human neuronal cells. J Neurol Sci 1995; 128:122-33. [PMID: 7738588 DOI: 10.1016/0022-510x(94)00218-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
p36 is a calcium/lipid-binding phosphoprotein that is expressed at high levels in proliferating and transformed cells, and at low levels in terminally differentiated cells, such as CNS neurons. The calcium-dependent binding to membrane phospholipids, and its capacity to interact with intermediate filament proteins suggest that p36 may be involved in the transduction of extracellular signals. The present work examines p36 gene expression in the mature CNS, primary primitive neuroectodermal tumors (PNETs), and transformed PNET cell lines. p36 immunoreactivity was not observed in normal adult human brain, but low levels of the protein were detected by Western blot analysis. Following acute anoxic cerebral injury, the mean levels of p36 protein were elevated two-fold, and injured neurons exhibited increased p36 immunoreactivity. This phenomenon was likely to have been mediated by post-transcriptional mechanisms since there was no corresponding change in the level p36 mRNA. p36 immunoreactivity was detected in 8 of 9 primary PNETs, and in 3 of 3 neurofilament-expressing PNET cell lines. The levels of p36 protein in PNET cell lines were 5-fold higher than in adult human brain tissue. Although p36 gene expression was generally high in proliferating PNET cells, the levels of p36 mRNA and protein were not strictly correlated with DNA synthesis. Instead, p36 gene expression was modulated in both proliferating and non-proliferating PNET cell cultures by treatment with 50 mIU/ml of insulin, 100 mM ethanol, or 5 microM retinoic acid. The frequent discordances observed experimentally and in vivo between p36 mRNA and p36 protein expression suggest that the steady-state levels of p36 protein in neuronal cells may be regulated primarily by post-transcriptional mechanisms.
Collapse
Affiliation(s)
- S M de la Monte
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
31
|
Shen WJ, Avery J, Totty NF, Hsuan JJ, Whitaker M, Moss SE. Identification and partial sequence analysis of novel annexins in Lytechinus pictus oocytes. Biochem J 1994; 304 ( Pt 3):911-6. [PMID: 7818497 PMCID: PMC1137419 DOI: 10.1042/bj3040911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The annexins are a major class of calcium-binding proteins with unknown functions. In an attempt to define novel model systems in which to study members of the annexin family, we have investigated the expression of annexins in eggs from the sea urchin Lytechinus pictus. Western blot analysis of L. pictus eggs using antisera raised against human annexins I, V and VI revealed the presence of immunoreactive proteins of approximately 34 kDa, 35 kDa and 68 kDa respectively. The sea urchin annexins behaved similarly to their mammalian counterparts, both during purification and in their ability to bind calcium-dependently to anionic phospholipids. Of the three sea urchin annexins, the 34 kDa form was most abundant, yielding sufficient quantities for peptide microsequencing. The amino acid sequences derived in this way showed the L. pictus annexin to be closely related both to mammalian annexin I and to annexins IX, X and XII from Drosophila and Hydra. However, N-terminal sequence from the L. pictus annexin showed it to be a novel member of the annexin super-gene family. The results are interesting in view of the complex evolution of the annexin gene family, and also point to the potential usefulness of echinoderm eggs as a model system in which to study annexin function.
Collapse
Affiliation(s)
- W J Shen
- Department of Physiology, University College London, U.K
| | | | | | | | | | | |
Collapse
|
32
|
Theobald J, Smith PD, Jacob SM, Moss SE. Expression of annexin VI in A431 carcinoma cells suppresses proliferation: a possible role for annexin VI in cell growth regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:383-90. [PMID: 7918674 DOI: 10.1016/0167-4889(94)90099-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human A431 cells exhibit many characteristics typical of transformed cells, such as lack of contact inhibition and reduced growth factor requirement. We have used these cells as a model for the study of annexin VI function, since they do not normally express this protein. In this study we isolated two stably transfected clones, both of which were found to express annexin VI at physiological levels, and examined various growth parameters associated with the transformed phenotype. In low serum, normal A431 cells had doubling times similar to those observed in high serum. However, although the annexin VI transfectants grew only slightly more slowly than controls in high serum, their doubling time was significantly increased in low serum. Moreover, in low serum the annexin VI transfectants stopped proliferating after reaching confluence, indicating contact inhibition. Fluorescence activated cell sorting analysis revealed that the annexin VI+ cells were growth arrested in the G1 phase of the cell cycle when cultured in low serum, whereas annexin VI- clones exhibited the same proportion of mitotic cells in both low and high serum. Thus, expression of annexin VI in a heterologous cell line has a moderating influence on cell proliferation suggesting a possible role for annexin VI in cell growth regulation.
Collapse
Affiliation(s)
- J Theobald
- Department of Physiology, University College London, UK
| | | | | | | |
Collapse
|
33
|
Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:63-93. [PMID: 8155692 DOI: 10.1016/0304-4157(94)90019-1] [Citation(s) in RCA: 815] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P Raynal
- Laboratory of Cell Biology and Genetics, NIH, NIDDK, Bethesda, MD 20892
| | | |
Collapse
|
34
|
Zeng FY, Gerke V, Gabius HJ. Identification of annexin II, annexin VI and glyceraldehyde-3-phosphate dehydrogenase as calcyclin-binding proteins in bovine heart. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1019-27. [PMID: 8365543 DOI: 10.1016/0020-711x(93)90116-v] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Matrix-immobilized calcyclin as affinity ligand in chromatography led to purification of three protein bands at 68, 36 and 35 kDa from bovine heart that required Ca2+ for binding. 2. Polyacrylamide-immobilized phosphatidylserine separated this fraction into a phospholipid-binding part (68 kDa, 35 kDa), also attaching to phospholipid vesicles even in the presence of calcyclin, and a flow-through part, constituting approx 30% of the total fraction (36 kDa). 3. Enzyme assays and electrophoretic mobility showed an at least close relationship of the 36 kDa band to glyceraldehyde-3-phosphate dehydrogenase. Interaction between enzyme and calcyclin in a solid-phase assay was inhibited by sialoglycoproteins and depended strongly on the integrity of carboxyl and hydrophobic groups of the enzyme. The interaction between the two proteins had a KD value of 110 nM. 4. Application of annexin-specific antibodies revealed an immunological relationship of the 35 and 68 kDa calcyclin-binding proteins to members of the annexin family, namely to annexin II (35 kDa) and annexin VI (68 kDa). The N-terminal amino acid sequence of a cleavage peptide of the 68 kDa protein was identical to a sequence stretch in human annexin VI, corroborating this evidence.
Collapse
Affiliation(s)
- F Y Zeng
- Institut für Pharmazeutische Chemie, Marburg, Germany
| | | | | |
Collapse
|
35
|
Raynal P, Hullin F, Ragab-Thomas JM, Fauvel J, Chap H. Annexin 5 as a potential regulator of annexin 1 phosphorylation by protein kinase C. In vitro inhibition compared with quantitative data on annexin distribution in human endothelial cells. Biochem J 1993; 292 ( Pt 3):759-65. [PMID: 8318006 PMCID: PMC1134178 DOI: 10.1042/bj2920759] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vitro phosphorylation of annexin 1 by purified rat brain protein kinase C (PKC) has been studied in the presence of annexin 5, which is not a substrate for PKC. Annexin 5 promoted a dose-dependent inhibition of annexin 1 phosphorylation, which could be overcome by increasing the concentration of phosphatidylserine (PtdSer). In addition, a close relationship was found between the amount of PtdSer uncovered by annexin 5 and the residual phosphorylation of annexin 1. These data fit with the 'surface depletion model' explaining the antiphospholipase activity of annexins. In order to check the possibility that the in vitro effect of annexin 5 could be of some physiological relevance, annexins 1, 2, and 5, as well as the light chain of calpactin 1 (p11), have been quantified in human endothelial cells by measuring the radioactivity bound to the proteins after Western blotting with specific antibodies and 125I-labelled secondary antibody. Our data indicate that annexins 1 and 5, PKC and PtdSer are present in human endothelial cells in relative amounts very similar to those used in vitro under conditions permitting the detection of the inhibitory effect of annexin 5. Since annexin 1 remained refractory to PKC-dependent phosphorylation in intact cells, we suggest that annexin 5 might exert its inhibitory effect towards PKC in vivo, provided that its binding to phospholipids can occur at physiological (micromolar) concentrations of Ca2+. This was previously shown to occur in vitro using phosphatidylethanolamine/phosphatidic acid vesicles [Blackwood and Ernst (1990) Biochem. J. 266, 195-200]. Using identical assay conditions, which also allowed expression of PKC activity, annexin 5 again inhibited annexin 1 phosphorylation without interfering with PKC autophosphorylation. These data suggest that annexins 1 and 5 might interact with each other on the lipid surface, resulting in a specific inhibition of annexin 1 phosphorylation by PKC. Whether a similar mechanism also occurs in vivo remains to be determined.
Collapse
Affiliation(s)
- P Raynal
- INSERM Unité 326, Phospholipides Membranaires, Signalisation Cellulaire et Lipoprotéines, Hôpital Purpan, Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Vishwanatha JK, Kumble S. Involvement of annexin II in DNA replication: evidence from cell-free extracts of Xenopus eggs. J Cell Sci 1993; 105 ( Pt 2):533-40. [PMID: 8408282 DOI: 10.1242/jcs.105.2.533] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-free extracts of Xenopus eggs efficiently initiate and complete semiconservative DNA replication of exogenously added plasmid DNA. DNA replication in such extracts can be neutralized by a monoclonal antibody (D1/274.5) against human annexin II. Specific immunodepletion of Xenopus annexin II from the egg extracts results in loss of DNA replicative ability. Immunodepletion of annexin II does not prevent nuclear assembly, a stringent requirement for DNA synthesis on exogenous DNA in this system. Replicative ability can be restored to the immunodepleted extracts by the addition of purified human annexin II. These results demonstrate that annexin II is involved in chromosomal DNA replication and has a role in the cell cycle of higher eukaryotes.
Collapse
Affiliation(s)
- J K Vishwanatha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-4525
| | | |
Collapse
|
37
|
Harder T, Thiel C, Gerke V. Formation of the annexin II2p112 complex upon differentiation of F9 teratocarcinoma cells. J Cell Sci 1993; 104 ( Pt 4):1109-17. [PMID: 8314895 DOI: 10.1242/jcs.104.4.1109] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Murine teratocarcinoma F9 cells, which remain undifferentiated under standard cell culture conditions, can form cellular layers resembling early embryonic tissues upon induction of differentiation by retinoic acid and cyclic AMP. We have employed a combination of Northern and Western blot analyses to elucidate the regulation of expression of the tyrosine kinase substrate annexin II and its cellular ligand p11 during this differentiation process. Interestingly, the synthesis of the two subunits of the annexin II2p112 complex is not coregulated during F9 differentiation. Annexin II, which is only very weakly expressed in undifferentiated F9 cells, shows a strong increase in the amount of transcript and protein once the differentiated phenotype is established. The level of this induction does not depend on the type of F9 differentiation. In contrast to the regulated synthesis of annexin II, a significant amount of p11 mRNA and protein is already present in the undifferentiated cells and remains constant during the differentiation of F9 cells. Immunofluorescence analysis reveals that annexin II and p11 are concentrated in the submembranous region of the differentiated F9 cells. In contrast, p11 is uniformly distributed throughout the cytoplasm of undifferentiated cells. p11 is translocated to the submembranous region of the undifferentiated F9 cells upon coexpression of an exogenous annexin II introduced by transient transfection. Thus the localization of annexin II and p11 to the submembranous cytoskeleton depends on the formation of the tight annexin II2p112 complex.
Collapse
Affiliation(s)
- T Harder
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Göttingen, FRG
| | | | | |
Collapse
|
38
|
Moss SE, Jacob SM, Davies AA, Crumpton MJ. A growth-dependent post-translational modification of annexin VI. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1160:120-6. [PMID: 1420329 DOI: 10.1016/0167-4838(92)90045-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Annexin VI (p68, 67-kDa calelectrin) is a member of a family of Ca2+/phospholipid-binding proteins, that includes p35 (annexin I) and p36 (annexin II), the major cellular substrates for phosphorylation by the epidermal growth factor receptor and pp60v-src tyrosine kinase activities, respectively. We report here that like annexins I and II, annexin VI is phosphorylated in vivo, but that in contrast, annexin VI phosphorylation is associated with cell growth. In both Swiss 3T3 fibroblasts and human T-lymphoblasts the pattern of phosphorylation followed an almost identical profile. In particular, annexin VI was not phosphorylated in quiescent cells, but was phosphorylated on serine and to a lesser extent threonine, several hours following cell stimulation. Furthermore, annexin VI also incorporated phosphate in a growth-dependent manner, in a form other than a phosphoamino-acid. The phosphate was visualised following acid hydrolysis of immunoprecipitated annexin VI, as part of a complex having high mobility on 2-D thin-layer electrophoresis. The identity of this complex is not known. The results suggest that a post-translational modification other than direct protein phosphorylation may influence the activity of annexin VI and provide evidence linking cell growth with regulation of annexin VI function.
Collapse
Affiliation(s)
- S E Moss
- Department of Physiology, University College London, UK
| | | | | | | |
Collapse
|
39
|
Seigel GM, Notter MF. Loss of transformed phenotype upon senescence of Rous sarcoma virus-infected chicken neuroretinal cells. J Virol 1992; 66:6242-7. [PMID: 1326672 PMCID: PMC283681 DOI: 10.1128/jvi.66.10.6242-6247.1992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Success in obtaining permanent Rous sarcoma virus-infected chicken cell lines has been limited because of a senescence phenomenon. We show that a diminished, transformed phenotype, followed by dramatic morphological changes, precedes senescence. These changes are associated with continued expression of pp60v-src, as well as specific alterations in expression of two possible phosphorylated substrates of pp60v-src.
Collapse
Affiliation(s)
- G M Seigel
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, New York 14642
| | | |
Collapse
|
40
|
Abstract
A differentiation-defective variant (DD-1) of the MM14 myoblasts acquired the ability to synthesize DNA in response to treatment with epidermal growth factor (EGF) (R. W. Lim and S. D. Hauschka, 1984, Dev. Biol. 105, 48) and no longer expressed myogenic determinant genes (i.e., MyoD and myogenin) (P.R. Mueller, and B. Wold, 1989, Science 246, 780). To determine the effect of expression of MyoD on EGF responsiveness, DD-1 cells were cotransfected with a MyoD expression vector and with pRSVneo. A clone, MyoDD-1 cells, which was G418 resistant, formed multinuclear syncitia, and also expressed MyoD and myogenin, was further characterized. EGF responsiveness, as assessed by DNA synthesis, was decreased 5- to 10-fold in the MyoDD-1 cells from that in G418-resistant control DD-1 cells, despite similar EGF receptor numbers and binding affinities of the receptors. Responsiveness of MyoDD-1 cells to fibroblast growth factor (FGF) was also diminished although to a lesser extent. To determine the effects of decreased myogenic determinant gene expression on mitogen responsiveness, MM14 myoblasts were grown in medium supplemented with 5 microM 5-bromo-2'-deoxyuridine (BUdR-MM14). BUdR-MM14 cells had decreased expression of MyoD and myogenin, did not fuse, and had an altered morphology, from round to flat. The BUdR effect on fusion and cell shape was reversed by growth in control medium. BUdR-MM14 cells were responsive to EGF and had enhanced responsiveness to FGF. The combined studies support the view that expression of MyoD and/or myogenin contributes to negative regulation of mitogen responsiveness.
Collapse
Affiliation(s)
- J R Wolf
- T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington 40506-02256
| | | | | |
Collapse
|
41
|
|
42
|
Towle C, Treadwell B. Identification of a novel mammalian annexin. cDNA cloning, sequence analysis, and ubiquitous expression of the annexin XI gene. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42782-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Smallwood MF, Gurr SJ, McPherson MJ, Roberts K, Bowles DJ. The pattern of plant annexin gene expression. Biochem J 1992; 281 ( Pt 2):501-5. [PMID: 1736896 PMCID: PMC1130713 DOI: 10.1042/bj2810501] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptide sequence data derived from a plant annexin, P34 [Smallwood, Keen & Bowles (1990) Biochem. J. 270, 157-161] was used to design amplimers for PCR. A unique fragment of 95 bp, amplified from tomato (Lycopersicon esculertum) genomic DNA, was used in Northern analyses and demonstrated a differential pattern of expression in vegetative tissues of tomato, potato (Solanum tuberosum) and barley (Hordeum vulgare). The tissue-specific abundance of the annexin transcript was found to correlate closely with abundance of annexin protein as revealed by their partial purification and analysis with antisera specific for annexins isolated from tomato suspension-culture cells.
Collapse
Affiliation(s)
- M F Smallwood
- Department of Biochemistry and Molecular Biology, University of Leeds, U.K
| | | | | | | | | |
Collapse
|
44
|
Patte C, Rothhut B, Russo-Marie F, Blanquet PR. Possible involvement of a lipocortin in the initiation of DNA synthesis by human endothelial cells. Exp Cell Res 1991; 197:12-20. [PMID: 1833215 DOI: 10.1016/0014-4827(91)90474-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This work focused on three themes. First, evidence was obtained for the presence of proteins of 34, 35, 32, and 69 kDa immunologically related to lipocortins I, II, V, and VI, respectively, in human umbilical vein endothelial (HUVE) cells. The 69-kDa protein (p69), but not proteins related to lipocortins I, II, and V, exhibited an increased phosphorylation after exposure of cells to basic fibroblast growth factor (bFGF) and phorbol ester PMA. Second, treatment of HUVE cell particulate fractions with EGTA and hydrophobic affinity chromatography in combination with conventional techniques provided extracts rich in p69 and purified p69. p69 from control cells and extracts from control, bFGF-treated, and PMA-treated cells were found to possess anti-phospholipase A2 (PLA2) activity of lipocortin. In contrast, a striking reverse effect occurred when extracts were obtained from cells exposed to bFGF plus PMA. Third, the combination of bFGF and PMA induced a stimulated PLA2-catalyzed release of arachidonic acid in HUVE cells. This arachidonate production was shown to be involved in the decision of cells to enter into DNA synthesis. Taken together, the present results suggest that phosphorylation of p69 is causally involved in the control of commitment to growth in HUVE cells by acting as a coupling mechanism between surface stimuli and arachidonate pathways.
Collapse
Affiliation(s)
- C Patte
- Unité de Recherches Gérontologiques, INSERM U.118, affiliée CNRS, Association Claude-Bernard
| | | | | | | |
Collapse
|
45
|
Izant J, Bryson L. Xenopus annexin II (calpactin I) heavy chain has a distinct amino terminus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55099-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
46
|
Jindal HK, Chaney WG, Anderson CW, Davis RG, Vishwanatha JK. The protein-tyrosine kinase substrate, calpactin I heavy chain (p36), is part of the primer recognition protein complex that interacts with DNA polymerase alpha. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67770-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Steiner SM, Keutzer JC, Hirschhorn RR. Prostaglandin endoperoxide synthase (cyclooxygenase) mRNA and protein production in mouse myoblasts and a differentiation-defective variant. Exp Cell Res 1991; 192:643-6. [PMID: 1671013 DOI: 10.1016/0014-4827(91)90088-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Northern blot analysis revealed that a differentiation-defective variant (DD-1) of MM14 mouse myoblasts has seven times the prostaglandin endoperoxide synthase mRNA than the parental MM14 myoblasts. There was an even greater increase in the level of prostaglandin endoperoxide synthase protein in the DD-1 cells as compared to that in the MM14 myoblasts. In fact, prostaglandin endoperoxide synthase was not detectable by Western blot analysis of extracts from MM14 myoblasts. Since prostaglandin endoperoxide synthase has been reported to be a gene whose expression is induced transiently, i.e., growth-regulated, upon mitogen stimulation of quiescent cells, the RNA abundance of other growth-regulated genes was examined including: KC, JE, c-myc, 1B6, and vimentin. Northern blot analysis revealed that the mRNA abundance of JE, KC, and c-myc is 12-, 17-, and 2-fold higher, respectively, in growing DD-1 cells than in growing MM14 myoblasts. In contrast, there was little difference in the mRNA abundance of 1B6 and vimentin. These results are consistent with the hypothesis that increases in the levels of expression of prostaglandin endoperoxide synthase and some growth-regulated genes are integral to the expression of the differentiation-defective phenotype and may in fact contribute to this phenotype.
Collapse
Affiliation(s)
- S M Steiner
- Molecular and Cell Biology, T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington 40506-0225
| | | | | |
Collapse
|