1
|
Dmitriev AV, Linsenmeier RA. pH in the vertebrate retina and its naturally occurring and pathological changes. Prog Retin Eye Res 2025; 104:101321. [PMID: 39608565 PMCID: PMC11711014 DOI: 10.1016/j.preteyeres.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This review summarizes the existing information on the concentration of H+ (pH) in vertebrate retinae and its changes due to various reasons. Special features of H+ homeostasis that make it different from other ions will be discussed, particularly metabolic production of H+ and buffering. The transretinal distribution of extracellular H+ concentration ([H+]o) and its changes under illumination and other conditions will be described in detail, since [H+]o is more intensively investigated than intracellular pH. In vertebrate retinae, the highest [H+]o occurs in the inner part of the outer nuclear layer, and decreases toward the RPE, reaching the blood level on the apical side of the RPE. [H+]o falls toward the vitreous as well, but less, so that the inner retina is acidic to the vitreous. Light leads to complex changes with both electrogenic and metabolic origins, culminating in alkalinization. There is a rhythm of [H+]o with H+ being higher during circadian night. Extracellular pH can potentially be used as a signal in intercellular volume transmission, but evidence is against pH as a normal controller of fluid transport across the RPE or as a horizontal cell feedback signal. Pathological and experimentally created conditions (systemic metabolic acidosis, hypoxia and ischemia, vascular occlusion, excess glucose and diabetes, genetic disorders, and blockade of carbonic anhydrase) disturb H+ homeostasis, mostly producing retinal acidosis, with consequences for retinal blood flow, metabolism and function.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Neurobiology, Northwestern University, Evanston, IL, USA; Department of Ophthalmology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Berkowitz BA, Paruchuri A, Stanek J, Podolsky RH, Childers KL, Roberts R. Acetazolamide Challenge Changes Outer Retina Bioenergy-Linked and Anatomical OCT Biomarkers Depending on Mouse Strain. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38488413 PMCID: PMC10946704 DOI: 10.1167/iovs.65.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that optical coherence tomography (OCT) bioenergy-linked and anatomical biomarkers are responsive to an acetazolamide (ACZ) provocation. Methods C57BL/6J mice (B6J, a strain with relatively inefficient mitochondria) and 129S6/ev mice (S6, a strain with relatively efficient mitochondria) were given a single IP injection of ACZ (carbonic anhydrase inhibitor) or vehicle. In each mouse, the Mitochondrial Configuration within Photoreceptors based on the profile shape Aspect Ratio (MCP/AR) index was determined from the hyper-reflective band immediately posterior to the external limiting membrane (ELM). In addition, we tested for ACZ-induced acidification by measuring contraction of the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness; the hyporeflective band (HB) signal intensity at the photoreceptor tips was also examined. Finally, the nuclear layer thickness was measured. Results In response to ACZ, MCP/AR was greater-than-vehicle in B6J mice and lower-than-vehicle in S6 mice. ACZ-treated B6J and S6 mice both showed ELM-RPE contraction compared to vehicle-treated mice, consistent with dehydration in response to subretinal space acidification. The HB intensity at the photoreceptor tips and the outer nuclear layer thickness (B6J and S6), as well as the inner nuclear layer thickness of B6J mice, were all lower than vehicle following ACZ. Conclusions Photoreceptor respiratory efficacy can be evaluated in vivo based on distinct rod mitochondria responses to subretinal space acidification measured with OCT biomarkers and an ACZ challenge, supporting and extending our previous findings measured with light-dark conditions.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
3
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Berkowitz BA, Qian H. OCT imaging of rod mitochondrial respiration in vivo. Exp Biol Med (Maywood) 2021; 246:2151-2158. [PMID: 34024141 DOI: 10.1177/15353702211013799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light-dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Gao S, Li Y, Bissig D, Cohen ED, Podolsky RH, Childers KL, Vernon G, Chen S, Berkowitz BA, Qian H. Functional regulation of an outer retina hyporeflective band on optical coherence tomography images. Sci Rep 2021; 11:10260. [PMID: 33986362 PMCID: PMC8119672 DOI: 10.1038/s41598-021-89599-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal retinal optical coherence tomography (OCT) images show a hyporeflective band (HB) between the photoreceptor tip and retinal pigment epithelium layers whose mechanisms are unclear. In mice, HB magnitude and the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness appear to be dependent on light exposure, which is known to alter photoreceptor mitochondria respiration. Here, we test the hypothesis that these two OCT biomarkers are linked to metabolic activity of the retina. Acetazolamide, which acidifies the subretinal space, had no significant impact on HB magnitude but produced ELM-RPE thinning. Mitochondrial stimulation with 2,4-dinitrophenol reduced both HB magnitude and ELM-RPE thickness in parallel, and also reduced F-actin expression in the same retinal region, but without altering ERG responses. For mice strains with relatively lower (C57BL/6J) or higher (129S6/ev) rod mitochondrial efficacy, light-induced changes in HB magnitude and ELM-RPE thickness were correlated. Humans, analyzed from published data captured with a different protocol, showed a similar light-dark change pattern in HB magnitude as in the mice. Our results indicate that mitochondrial respiration underlies changes in HB magnitude upstream of the pH-sensitive ELM-RPE thickness response. These two distinct OCT biomarkers could be useful indices for non-invasively evaluating photoreceptor mitochondrial metabolic activity.
Collapse
Affiliation(s)
- Shasha Gao
- Department of Ophthalmology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Bissig
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
| | | | - Gregory Vernon
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonia Chen
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Barnes S, Grove JCR, McHugh CF, Hirano AA, Brecha NC. Horizontal Cell Feedback to Cone Photoreceptors in Mammalian Retina: Novel Insights From the GABA-pH Hybrid Model. Front Cell Neurosci 2020; 14:595064. [PMID: 33328894 PMCID: PMC7672006 DOI: 10.3389/fncel.2020.595064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it’s being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl− and HCO3− permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3− efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.
Collapse
Affiliation(s)
- Steven Barnes
- Doheny Eye Institute, Los Angeles, CA, United States.,Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Grove JCR, Hirano AA, de los Santos J, McHugh CF, Purohit S, Field GD, Brecha NC, Barnes S. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. PLoS Biol 2019; 17:e3000200. [PMID: 30933967 PMCID: PMC6459543 DOI: 10.1371/journal.pbio.3000200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.
Collapse
Affiliation(s)
- James C. R. Grove
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of California, San Francisco, California, United States of America
| | - Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Janira de los Santos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Cyrus F. McHugh
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
| | - Shashvat Purohit
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Greg D. Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Dreffs A, Henderson D, Dmitriev AV, Antonetti DA, Linsenmeier RA. Retinal pH and Acid Regulation During Metabolic Acidosis. Curr Eye Res 2018; 43:902-912. [PMID: 29641914 PMCID: PMC6095710 DOI: 10.1080/02713683.2018.1458882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Changes in retinal pH may contribute to a variety of eye diseases. To study the effect of acidosis alone, we induced systemic metabolic acidosis and hypothesized that the retina would respond with altered expression of genes involved in acid/base regulation. METHODS Systemic metabolic acidosis was induced in Long-Evans rats for up to 2 weeks by adding NH4Cl to the drinking water. After 2 weeks, venous pH was 7.25 ± 0.08 (SD) and [HCO3-] was 21.4 ± 4.6 mM in acidotic animals; pH was 7.41 ± 0.03 and [HCO3-] was 30.5 ± 1.0 mM in controls. Retinal mRNAs were quantified by quantitative reverse transcription polymerase chain reaction. Protein was quantified with Western blots and localized by confocal microscopy. Retinal [H+]o was measured in vivo with pH microelectrodes in animals subjected to metabolic acidosis and in controls. RESULTS NH4Cl in drinking water or given intravenous was effective in acidifying the retina. Cariporide, a blocker of Na+/H+ exchange, further acidified the retina. Metabolic acidosis for 2 weeks led to increases of 40-100% in mRNA for carbonic anhydrase isoforms II (CA-II) and XIV (CA-XIV) and acid-sensing ion channels 1 and 4 (ASIC1 and ASIC4) (all p < 0.005). Expression of anion exchange protein 3 (AEP-3) and Na+/H+ exchanger (NHE)-1 also increased by ≥50% (both p < 0.0001). Changes were similar after 1 week of acidosis. Protein for AEP-3 doubled. NHE-1 co-localized with vascular markers, particularly in the outer plexiform layer. CA-II was located in the neural parenchyma of the ganglion cell layer and diffusely in the rest of the inner retina. CONCLUSIONS The retina responds to systemic acidosis with increased expression of proton and bicarbonate exchangers, carbonic anhydrase, and ASICs. While responses to acidosis are usually associated with renal regulation, these studies suggest that the retina responds to changes in local pH presumably to control its acid/base environment in response to systemic acidosis.
Collapse
Affiliation(s)
- Alyssa Dreffs
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Desmond Henderson
- Department of Biomedical Engineering, Northwestern University, Evanston and Chicago, IL
| | - Andrey V. Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston and Chicago, IL
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston and Chicago, IL
- Department of Neurobiology, Northwestern University, Evanston and Chicago, IL
- Department of Ophthalmology, Northwestern University, Evanston and Chicago, IL
| |
Collapse
|
9
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
10
|
Newman EA. REVIEW ■ : Regulation of Extracellular K and pH by Polarized Ion Fluxes in Glial Cells: The Retinal Müller Cell. Neuroscientist 2016. [DOI: 10.1177/107385849600200212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Müller cells, the principal glial cells of the retina, exhibit a high degree of functional and morphological polarization. An inward rectifying K+ channel, the dominant ion channel in Müller cells, is localized preferentially to cell endfeet, which terminate on the vitreal surface of the retina and on blood vessels. Two acid/ base transport systems, an Na+/HCO3-cotransporter and a CI-/HCO3-anion exchanger, also are localized preferentially to the endfeet. These functional specializations facilitate the ability of Müller cells to regulate extracellular ion levels in the retina. Müller cells regulate extracellular K+levels by transporting K+away from the neural retina to the vitreous humor and the subretinal space. Müller cells may also regulate retinal CO2and pH by the combined action of cell carbonic anhydrase and acid/base transporters localized to the endfeet, and they may control blood flow by the depolarization-induced release of potassium and protons from cell endfeet onto blood vessels. The physiology of ion transport in CNS astrocytes is not understood as well as it is in Müller cells. The presence of inward rectifying K+channels and acid/base transporters in astrocytes, however, suggests that these cells may utilize mechanisms similar to those of Müller cells in regulating the extracellular microenvironment and in controlling blood flow. The Neuroscientist 2:109-117, 1996
Collapse
Affiliation(s)
- Eric A. Newman
- Department of Physiology University of Minnesota Minneapolis, Minnesota
| |
Collapse
|
11
|
Berkowitz BA, Lewin AS, Biswal MR, Bredell BX, Davis C, Roberts R. MRI of Retinal Free Radical Production With Laminar Resolution In Vivo. Invest Ophthalmol Vis Sci 2016; 57:577-85. [PMID: 26886890 PMCID: PMC4771178 DOI: 10.1167/iovs.15-18972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent studies have suggested the hypothesis that quench-assisted 1/T1 magnetic resonance imaging (MRI) measures free radical production with laminar resolution in vivo without the need of a contrast agent. Here, we test this hypothesis further by examining the spatial and detection sensitivity of quench-assisted 1/T1 MRI to strain, age, or retinal cell layer-specific genetic manipulations. Methods We studied: adult wild-type mice; mice at postnatal day 7 (P7); cre dependent retinal pigment epithelium (RPE)-specific MnSOD knockout mice; doxycycline-treated Sod2flox/flox mice lacking the cre transgene; and α-transducin knockout (Gnat1−/−) mice on a C57Bl/6 background. Transretinal 1/T1 profiles were mapped in vivo in the dark without or with antioxidant treatment, or followed by light exposure. We calibrated profiles spatially using optical coherence tomography. Results Dark-adapted RPE-specific MnSOD knockout mice had greater than normal 1/T1 in the RPE and outer nuclear layers that was corrected to wild-type levels by antioxidant treatment. Dark and light Gnat1−/− mice also had greater than normal outer retinal 1/T1 values. In adult wild-type mice, dark values of 1/T1 in the ellipsoid region and in the outer segment were suppressed by 13 minutes of light. By 29 minutes of light, 1/T1 reduction extended to the outer nuclear layer. Gnat1−/− mice demonstrated a faster light-evoked suppression of 1/T1 values in the outer retina. In P7 mice, transretinal 1/T1 profiles were the same in dark and light. Conclusions Quench-assisted MRI has the laminar resolution and detection sensitivity to evaluate normal and pathologic production of free radicals in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Manas R Biswal
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Bryce X Bredell
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Davis
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
12
|
Dmitriev AV, Henderson D, Linsenmeier RA. Development of diabetes-induced acidosis in the rat retina. Exp Eye Res 2016; 149:16-25. [PMID: 27262608 DOI: 10.1016/j.exer.2016.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 02/02/2023]
Abstract
We hypothesized that the retina of diabetic animals would be unusually acidic due to increased glycolytic metabolism. Acidosis in tumors and isolated retina has been shown to lead to increased VEGF. To test the hypothesis we have measured the transretinal distribution of extracellular H(+) concentration (H(+)-profiles) in retinae of control and diabetic dark-adapted intact Long-Evans rats with ion-selective electrodes. Diabetes was induced by intraperitoneal injection of streptozotocin. Intact rat retinae are normally more acidic than blood with a peak of [H(+)]o in the outer nuclear layer (ONL) that averages 30 nM higher than H(+) in the choroid. Profiles in diabetic animals were similar in shape, but diabetic retinae began to be considerably more acidic after 5 weeks of diabetes. In retinae of 1-3 month diabetics the difference between the ONL and choroid was almost twice as great as in controls. At later times, up to 6 months, some diabetics still demonstrated abnormally high levels of [H(+)]o, but others were even less acidic than controls, so that the average level of acidosis was not different. Greater variability in H(+)-profiles (both between animals and between profiles recorded in one animal) distinguished the diabetic retinae from controls. Within animals, this variability was not random, but exhibited regions of higher and lower H(+). We conclude that retinal acidosis begins to develop at an early stage of diabetes (1-3 months) in rats. However, it does not progress, and the acidity of diabetic rat retina was diminished at later stages (3-6 months). Also the diabetes-induced acidosis has a strongly expressed local character. As result, the diabetic retinas show much wider variability in [H(+)] distribution than controls. pH influences metabolic and neural processes, and these results suggest that local acidosis could play a role in the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.
| | - Desmond Henderson
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States; Department of Neurobiology, 2205 Tech Drive, Northwestern University, Evanston, IL 60208, United States; Department of Ophthalmology, Northwestern University, 645 North Michigan Avenue, Suite 440, Chicago, IL 60611, United States.
| |
Collapse
|
13
|
Dmitriev AV, Henderson D, Linsenmeier RA. Light-induced pH changes in the intact retinae of normal and early diabetic rats. Exp Eye Res 2016; 145:148-157. [PMID: 26639389 PMCID: PMC4842083 DOI: 10.1016/j.exer.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/26/2022]
Abstract
Double-barreled H(+)-selective microelectrodes were used to measure local extracellular concentration of H(+) ([H(+)]o) in the retina of dark-adapted anesthetized Long-Evans rats. The microelectrode advanced in steps of 30 μm throughout the retina from the vitreal surface to retinal pigment epithelium and then to the choroid, recording changes in [H(+)]o evoked by light stimulation. Recordings were performed in diabetic rats 1-3 months after intraperitoneal injection of streptozotocin and the results were compared with data obtained in age-matched control animals. Brief light stimulation (2.5 s) evoked changes of [H(+)]o with amplitudes of a few nM. Throughout the retina, there was a transient initial acidification for ∼200 ms followed by steady alkalinization, although amplitudes and kinetics of these components were slightly variable in different retinal layers. No significant difference was found when the light-induced [H(+)]o changes recorded in various retinal layers of early diabetic rats were compared with the [H(+)]o changes from corresponding layers of control animals. Also, when H(+)-selective microelectrodes were located in the retinal pigment epithelium (RPE) layer, an increase in H(+) was recorded, whose time course and amplitude were similar in control and diabetic rats. However, a striking difference between light-induced [H(+)]o changes in controls and diabetics was observed in the choriocapillaris, in the thin layer (10-20 μm) distal to the basal membrane of the RPE. In control rats, choroidal [H(+)]o decreased in a few cases, but much more often practically did not change. In contrast, diabetic rats demonstrated either an increase (in half of the cases) or no change in choroidal [H(+)]o. The data suggest that the active participation of the choroidal blood supply in stabilization of [H(+)]o could be partially compromised already at early stages of diabetes in rats. Interestingly, it appeared that the acid removal by the choroidal circulation was compromised most after 1 month of diabetes and tended to improve later.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.
| | - Desmond Henderson
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States; Department of Neurobiology, 2205 Tech Drive, Northwestern University, Evanston, IL 60208, United States; Department of Ophthalmology, Northwestern University, 645 North Michigan Avenue, Suite 440, Chicago, IL 60611, United States.
| |
Collapse
|
14
|
Berkowitz BA, Bredell BX, Davis C, Samardzija M, Grimm C, Roberts R. Measuring In Vivo Free Radical Production by the Outer Retina. Invest Ophthalmol Vis Sci 2016; 56:7931-8. [PMID: 26670830 DOI: 10.1167/iovs.15-18420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Excessive and continuously produced free radicals in the outer retina are implicated in retinal aging and the pathogenesis of sight-threatening retinopathies, yet measuring outer retinal oxidative stress in vivo remains a challenge. Here, we test the hypothesis that continuously produced paramagnetic free radicals from the outer retina can be measured in vivo using high-resolution (22-μm axial resolution) 1/T1magnetic resonance imaging (MRI) without and with a confirmatory quench (quench-assisted MRI). METHODS Low-dose sodium iodate-treated and diabetic C57Bl6/J mice (and their controls), and rod-dominated (129S6) or cone-only R91W;Nrl-/- mice were studied. In dark-adapted groups, 1/T1 was mapped transretinally in vivo without or with (1) the antioxidant combination of methylene blue (MB) and α-lipoic acid (LPA), or (2) light exposure; in subgroups, retinal superoxide production was measured ex vivo (lucigenin). RESULTS In the sodium iodate model, retinal superoxide production and outer retina-specific 1/T1 values were both significantly greater than normal and corrected to baseline with MB+LPA therapy. Nondiabetic mice at two ages and 1.2-month diabetic mice (before the appearance of oxidative stress) had similar transretinal 1/T1 profiles. By 2.3 months of diabetes, only outer retinal 1/T1 values were significantly greater than normal and were corrected to baseline with MB+LPA therapy. In mice with healthy photoreceptors, a light quench caused 1/T1 of rods, but not cones, to significantly decrease from their values in the dark. CONCLUSIONS Quench-assisted MRI is a feasible method for noninvasively measuring normal and pathologic production of free radicals in photoreceptors/RPE in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Bryce X Bredell
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Davis
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Switzerland
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
15
|
|
16
|
Berkowitz BA, Gorgis J, Patel A, Baameur F, Gurevich VV, Craft CM, Kefalov VJ, Roberts R. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo. FASEB J 2015; 29:554-564. [PMID: 25351983 PMCID: PMC4314227 DOI: 10.1096/fj.14-254953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/22/2014] [Indexed: 12/19/2022]
Abstract
Rod tetrameric arrestin 1 (tet-ARR1), stored in the outer nuclear layer/inner segments in the dark, modulates photoreceptor synaptic activity; light exposure stimulates a reduction via translocation to the outer segments for terminating G-protein coupled phototransduction signaling. Here, we test the hypothesis that intraretinal spin-lattice relaxation rate in the rotating frame (1/T1ρ), an endogenous MRI contrast mechanism, has high potential for evaluating rod tet-ARR1 and its reduction via translocation. Dark- and light-exposed mice (null for the ARR1 gene, overexpressing ARR1, diabetic, or wild type with or without treatment with Mn2+, a calcium channel probe) were studied using 1/T1ρ MRI. Immunohistochemistry and single-cell recordings of the retinas were also performed. In wild-type mice with or without treatment with Mn2+, 1/T1ρ of avascular outer retina (64% to 72% depth) was significantly (P < 0.05) greater in the dark than in the light; a significant (P < 0.05) but opposite pattern was noted in the inner retina (<50% depth). Light-evoked outer retina Δ1/T1ρ was absent in ARR1-null mice and supernormal in overexpressing mice. In diabetic mice, the outer retinal Δ1/T1ρ pattern suggested normal dark-to-light tet-ARR1 translocation and chromophore content, conclusions confirmed ex vivo. Light-stimulated Δ1/T1ρ in inner retina was linked to changes in blood volume. Our data support 1/T1ρ MRI for noninvasively assessing rod tet-ARR1 and its reduction via protein translocation, which can be combined with other metrics of retinal function in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology and Department of Ophthalmology, Wayne State University, Detroit, Michigan, USA;
| | | | | | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Cheryl M Craft
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, and Department of Ophthalmology and Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA; and
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
17
|
Li X, Fei J, Lei Z, Liu K, Wu J, Meng T, Yu J, Li J. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett 2014; 228:200-6. [PMID: 24821433 DOI: 10.1016/j.toxlet.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/29/2022]
Abstract
Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Kejing Liu
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingxin Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China.
| |
Collapse
|
18
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
19
|
Hirasawa H, Yamada M, Kaneko A. Acidification of the synaptic cleft of cone photoreceptor terminal controls the amount of transmitter release, thereby forming the receptive field surround in the vertebrate retina. J Physiol Sci 2012; 62:359-75. [PMID: 22773408 PMCID: PMC10717482 DOI: 10.1007/s12576-012-0220-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate retina, feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the formation of the center-surround receptive field of retinal cells, which induces contrast enhancement of visual images. The mechanism underlying surround inhibition is not fully understood. In this review, we discuss this issue, focusing on our recent hypothesis that acidification of the synaptic cleft of the cone photoreceptor terminal causes this inhibition by modulating the Ca channel of the terminals. We present evidence that the acidification is caused by proton excretion from HCs by a vacuolar type H(+) pump. Recent publications supporting or opposing our hypothesis are discussed.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Laboratory for Neuroinformatics, Riken Brain Science Institute, Wako, Saitama, 351-0198 Japan
| | - Masahiro Yamada
- Laboratory for Neuroinformatics, Riken Brain Science Institute, Wako, Saitama, 351-0198 Japan
| | - Akimichi Kaneko
- Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832 Japan
| |
Collapse
|
20
|
Kamiji NL, Yamamoto K, Hirasawa H, Yamada M, Usui S, Kurokawa M. Proton feedback mediates the cascade of color-opponent signals onto H3 horizontal cells in goldfish retina. Neurosci Res 2012; 72:306-15. [PMID: 22326780 DOI: 10.1016/j.neures.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/28/2022]
Abstract
It has been postulated that horizontal cells (HCs) send feedback signals onto cones via a proton feedback mechanism, which generates the center-surround receptive field of bipolar cells, and color-opponent signals in many non-mammalian vertebrates. Here we used a strong pH buffer, HEPES, to reduce extracellular proton concentration changes and so determine whether protons mediate color-opponent signals in goldfish H3 (triphasic) HCs. Superfusion with 10mM HEPES-fortified saline elicited depolarization of H3 HCs' dark membrane potential and enhanced hyperpolarizing responses to blue stimuli, but suppressed both depolarization by yellow and orange and hyperpolarization by red stimuli. The response components suppressed by HEPES resembled the inverse of spectral responses of H2 (biphasic) HCs. These results are consistent with the Stell-Lightfoot cascade model, in which the HEPES-suppressed component of H3 HCs was calculated using light responses recorded experimentally in H1 (monophasic) and H2 HCs. Selective suppression of long- or long-+middle-wavelength cone signals by long-wavelength background enhanced the responses to short-wavelength stimuli. These results suggest that HEPES inhibited color opponent signals in H3 HCs, in which the source of opponent-color signals is primarily a feedback from H2 HCs and partly from H1 HCs onto short-wavelength cones, probably mediated by protons.
Collapse
Affiliation(s)
- Nilton L Kamiji
- Riken Brain Science Institute, Laboratory for Neuroinformatics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Krizaj D, Mercer AJ, Thoreson WB, Barabas P. Intracellular pH modulates inner segment calcium homeostasis in vertebrate photoreceptors. Am J Physiol Cell Physiol 2010; 300:C187-97. [PMID: 20881233 DOI: 10.1152/ajpcell.00264.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal metabolic and electrical activity is associated with shifts in intracellular pH (pH(i)) proton activity and state-dependent changes in activation of signaling pathways in the plasma membrane, cytosol, and intracellular compartments. We investigated interactions between two intracellular messenger ions, protons and calcium (Ca²(+)), in salamander photoreceptor inner segments loaded with Ca²(+) and pH indicator dyes. Resting cytosolic pH in rods and cones in HEPES-based saline was acidified by ∼0.4 pH units with respect to pH of the superfusing saline (pH = 7.6), indicating that dissociated inner segments experience continuous acid loading. Cytosolic alkalinization with ammonium chloride (NH₄Cl) depolarized photoreceptors and stimulated Ca²(+) release from internal stores, yet paradoxically also evoked dose-dependent, reversible decreases in [Ca²(+)](i). Alkalinization-evoked [Ca²(+)](i) decreases were independent of voltage-operated and store-operated Ca²(+) entry, plasma membrane Ca²(+) extrusion, and Ca²(+) sequestration into internal stores. The [Ca²(+)](i)-suppressive effects of alkalinization were antagonized by the fast Ca²(+) buffer BAPTA, suggesting that pH(i) directly regulates Ca²(+) binding to internal anionic sites. In summary, this data suggest that endogenously produced protons continually modulate the membrane potential, release from Ca²(+) stores, and intracellular Ca²(+) buffering in rod and cone inner segments.
Collapse
Affiliation(s)
- David Krizaj
- Department of Ophthalmology, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, 84132, USA.
| | | | | | | |
Collapse
|
22
|
Kalt W, Hanneken A, Milbury P, Tremblay F. Recent research on polyphenolics in vision and eye health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4001-4007. [PMID: 20102149 DOI: 10.1021/jf903038r] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A long-standing yet controversial bioactivity attributed to polyphenols is their beneficial effects in vision. Although anecdotal case reports and in vitro research studies provide evidence for the visual benefits of anthocyanin-rich berries, rigorous clinical evidence of their benefits is still lacking. Recent in vitro studies demonstrate that anthocyanins and other flavonoids interact directly with rhodopsin and modulate visual pigment function. Additional in vitro studies show flavonoids protect a variety of retinal cell types from oxidative stress-induced cell death, a neuroprotective property of significance because the retina has the highest metabolic rate of any tissue and is particularly vulnerable to oxidative injury. However, more information is needed on the bioactivity of in vivo conjugates and the accumulation of flavonoids in ocular tissues. The direct and indirect costs of age-related vision impairment provide a powerful incentive to explore the potential for improved vision health through the intake of dietary polyphenolics.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE Comparative studies suggest that increasing photoreceptor oxygen consumption in dim light, relative to bright light, may make the outer retina susceptible to hypoxia at light levels relevant to aviation at night. Accordingly, this study investigates effects of relevant oxygenation states on sensitivity to a dynamic contrast stimulus at low photopic and mesopic light levels experienced during night flying. METHODS Threshold sensitivity to frequency-doubled contrast stimuli was assessed under mild hypoxia (breathing 14.1% oxygen), hyperoxia (100% oxygen), and normoxia (air) using frequency doubling perimetry, viewing at background fields of approximately 10 cd/m2 and approximately 1 cd/m2. Data were analyzed by retinal eccentricity and visual field quadrant. RESULTS At low photopic luminance (approximately 10 cd/m2), sensitivity was marginally enhanced when breathing 100% oxygen. At mesopic luminance (approximately 1 cd/m2), sensitivity was consistently poorest with hypoxia and greatest with supplementary oxygen at all eccentricities and in all field quadrants, suggesting oxygen-dependent performance. CONCLUSIONS The known effects of oxygenation state on pupil size are likely to influence frequency doubling perimetry thresholds, but oxygen-dependent changes in mesopic sensitivity are greater than expected from altered retinal illumination alone and support outer retinal (photoreceptor) susceptibility to hypoxia under twilight viewing.
Collapse
|
24
|
Varela Lopez O, Alvarez Vazquez JC, Gonzalez Cantalapiedra A, Rosolen SG. Effects of hypercapnia on the electroretinogram in sevoflurane and isoflurane anaesthetized dogs. Doc Ophthalmol 2010; 121:9-20. [DOI: 10.1007/s10633-010-9223-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
25
|
Makani S, Chesler M. Rapid rise of extracellular pH evoked by neural activity is generated by the plasma membrane calcium ATPase. J Neurophysiol 2009; 103:667-76. [PMID: 19939954 DOI: 10.1152/jn.00948.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hippocampus, synchronous activation of CA1 pyramidal neurons causes a rapid, extracellular, population alkaline transient (PAT). It has been suggested that the plasma membrane Ca(2+)-ATPase (PMCA) is the source of this alkalinization, because it exchanges cytosolic Ca(2+) for external H(+). Evidence supporting this hypothesis, however, has thus far been inconclusive. We addressed this long-standing problem by measuring surface alkaline transients (SATs) from voltage-clamped CA1 pyramidal neurons in juvenile mouse hippocampal slices, using concentric (high-speed, low-noise) pH microelectrodes placed against the somata. In saline containing benzolamide (a poorly permeant carbonic anhydrase blocker), a 2-s step from -60 to 0 mV caused a mean SAT of 0.02 unit pH. Addition of 5 mM HEPES to the artificial cerebrospinal fluid diminished the SAT by 91%. Nifedipine reduced the SAT by 53%. Removal of Ca(2+) from the saline abolished the SAT, and addition of BAPTA to the patch pipette reduced it by 79%. The inclusion of carboxyeosin (a PMCA inhibitor) in the pipette abolished the SAT, whether it was induced by a depolarizing step, or by simulated, repetitive, antidromic firing. The peak amplitude of the "antidromic" SAT of a single cell averaged 11% of the PAT elicited by comparable real antidromic activation of the CA1 neuronal population. Caloxin 2A1, an extracellular PMCA peptide inhibitor, blocked both the SAT and PAT by 42%. These results provide the first direct evidence that the PMCA can explain the extracellular alkaline shift elicited by synchronous firing.
Collapse
Affiliation(s)
- Sachin Makani
- Department of Physiology and Neuroscience, New York University Langone Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
26
|
Adijanto J, Banzon T, Jalickee S, Wang NS, Miller SS. CO2-induced ion and fluid transport in human retinal pigment epithelium. ACTA ACUST UNITED AC 2009; 133:603-22. [PMID: 19468075 PMCID: PMC2713148 DOI: 10.1085/jgp.200810169] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the intact eye, the transition from light to dark alters pH, [Ca2+], and [K] in the subretinal space (SRS) separating the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE). In addition to these changes, oxygen consumption in the retina increases with a concomitant release of CO2 and H2O into the SRS. The RPE maintains SRS pH and volume homeostasis by transporting these metabolic byproducts to the choroidal blood supply. In vitro, we mimicked the transition from light to dark by increasing apical bath CO2 from 5 to 13%; this maneuver decreased cell pH from 7.37 ± 0.05 to 7.14 ± 0.06 (n = 13). Our analysis of native and cultured fetal human RPE shows that the apical membrane is significantly more permeable (≈10-fold; n = 7) to CO2 than the basolateral membrane, perhaps due to its larger exposed surface area. The limited CO2 diffusion at the basolateral membrane promotes carbonic anhydrase–mediated HCO3 transport by a basolateral membrane Na/nHCO3 cotransporter. The activity of this transporter was increased by elevating apical bath CO2 and was reduced by dorzolamide. Increasing apical bath CO2 also increased intracellular Na from 15.7 ± 3.3 to 24.0 ± 5.3 mM (n = 6; P < 0.05) by increasing apical membrane Na uptake. The CO2-induced acidification also inhibited the basolateral membrane Cl/HCO3 exchanger and increased net steady-state fluid absorption from 2.8 ± 1.6 to 6.7 ± 2.3 µl × cm−2 × hr−1 (n = 5; P < 0.05). The present experiments show how the RPE can accommodate the increased retinal production of CO2 and H2O in the dark, thus preventing acidosis in the SRS. This homeostatic process would preserve the close anatomical relationship between photoreceptor outer segments and RPE in the dark and light, thus protecting the health of the photoreceptors.
Collapse
Affiliation(s)
- Jeffrey Adijanto
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Yanamala N, Tirupula KC, Balem F, Klein-Seetharaman J. pH-dependent Interaction of Rhodopsin with Cyanidin-3-glucoside. 1. Structural Aspects. Photochem Photobiol 2009; 85:454-62. [DOI: 10.1111/j.1751-1097.2008.00517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Activation of TGF-beta/activin signalling resets the circadian clock through rapid induction of Dec1 transcripts. Nat Cell Biol 2008; 10:1463-9. [PMID: 19029909 DOI: 10.1038/ncb1806] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/11/2008] [Indexed: 11/09/2022]
Abstract
The circadian clock is reset by external time cues for synchronization to environmental changes. In mammals, the light-input signalling pathway mediated by Per gene induction has been extensively studied. On the other hand, little is known about resetting mechanisms that are independent of Per induction. Here we show that activation of activin receptor-like kinase (ALK), triggered by TGF-beta, activin or alkali signals, evoked resetting of the cellular clock independently of Per induction. The resetting was mediated by an immediate-early induction of Dec1, a gene whose physiological role in the function of the circadian clock has been unclear. Acute Dec1 induction was a prerequisite for ALK-mediated resetting and upregulation was dependent on SMAD3, which was phosphorylated for activation in response to the resetting stimuli. Intraperitoneal injection of TGF-beta into wild-type or Dec1-deficient mice demonstrated that Dec1 has an essential role in phase-shift of clock gene expression in the kidney and adrenal gland. These results indicate that ALK-SMAD3-Dec1 signalling provides an input pathway in the mammalian molecular clock.
Collapse
|
30
|
Jouhou H, Yamamoto K, Homma A, Hara M, Kaneko A, Yamada M. Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase. J Physiol 2007; 585:401-12. [PMID: 17932147 DOI: 10.1113/jphysiol.2007.142646] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In order to interpret the formation of receptive field surrounds in retinal neurons, a proton-mediated mechanism was proposed to mediate feedback from horizontal cells (HCs) to cone photoreceptors. To verify the idea that depolarized HCs release protons, we measured, by a fluorescence ratiometric technique, the pH of the immediate external surface (pHs) of HCs isolated from the carp or goldfish retina. When HCs stained by 5-hexadecanoylaminofluorescein, a pH-sensitive lipophilicdye, were depolarized by bath-application of kainate or high-K+ medium, pHs was lowered. The amount of pHs change was monotonically dependent on the degree of depolarization, as much as 0.21 +/- 0.05 pH units by 100 mV depolarization (induced by 100 mm K+). Acidification was suppressed by 400 nm bafilomycin A1, a specific inhibitor of the vacuolar type H+ pump (V-ATPase), suggesting that depolarization released protons from HCs via the voltage-sensitive H+ pump. Immunocytochemical analysis, using an anti-V-ATPase antibody, revealed the existence of V-ATPase in dissociated HCs. These results support the hypothesis that the feedback from HCs to cones could be proton mediated.
Collapse
Affiliation(s)
- Hiroshi Jouhou
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Davis JA, Handford PA, Redfield C. The N1317H Substitution Associated with Leber Congenital Amaurosis Results in Impaired Interdomain Packing in Human CRB1 Epidermal Growth Factor-like (EGF) Domains. J Biol Chem 2007; 282:28807-28814. [PMID: 17660513 DOI: 10.1074/jbc.m704015200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-binding epidermal growth factor-like (cbEGF) domain is a widely occurring module in proteins of diverse function. Amino acid substitutions that disrupt its structure or calcium affinity have been associated with various disorders. The extracellular portion of CRB1, the human homologue of Drosophila Crumbs, exhibits a modular domain organization that includes EGF and cbEGF domains. The N1317H substitution in the 19th cbEGF domain of CRB1 is associated with the serious visual disorder Leber congenital amaurosis. We have investigated the structure and Ca(2+) binding of recombinant wild-type and N1317H CRB1 fragments (EGF18-cbEGF19) using NMR and find that Ca(2+) binding is altered, resulting in disruption of long range interactions between adjacent EGF domains in CRB1. From these observations, we propose that this substitution affects the structural integrity of CRB1 in the inter-photoreceptor matrix of the retina, where it is expressed. Furthermore, we identify disease-causing substitutions in other cbEGF-containing proteins that are likely to result in similar disruption of interdomain packing, supporting the hypothesis that the tandem cbEGF domain linkages are critical for the structure and function of proteins containing cbEGF domains.
Collapse
Affiliation(s)
- Jason A Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
32
|
Ogilvie JM, Ohlemiller KK, Shah GN, Ulmasov B, Becker TA, Waheed A, Hennig AK, Lukasiewicz PD, Sly WS. Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response. Proc Natl Acad Sci U S A 2007; 104:8514-9. [PMID: 17485676 PMCID: PMC1895981 DOI: 10.1073/pnas.0702899104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Indexed: 11/18/2022] Open
Abstract
Members of the carbonic anhydrase (CA) family play an important role in the regulation of pH, CO(2), ion, and water transport. CA IV and CA XIV are membrane-bound isozymes expressed in the eye. CA IV immunostaining is limited to the choriocapillaris overlying the retina, whereas CA XIV is expressed within the retina in Müller glial cells and retinal pigment epithelium. Here, we have characterized the physiological and morphological phenotype of the CA IV-null, CA XIV-null, and CA IV/CA XIV-double-null mouse retinas. Flash electroretinograms performed at 2, 7, and 10 months of age showed that the rod/cone a-wave, b-wave, and cone b-wave were significantly reduced (26-45%) in the CA XIV-null mice compared with wild-type littermates. Reductions in the dark-adapted response were not progressive between 2 and 10 months, and no differences in retinal morphology were observed between wild-type and CA XIV-null mice. Müller cells and rod bipolar cells had a normal appearance. Retinas of CA IV-null mice showed no functional or morphological differences compared with normal littermates. However, CA IV/CA XIV double mutants showed a greater deficit in light response than the CA XIV-null retina. Our results indicate that CA XIV, which regulates extracellular pH and pCO(2), plays an important part in producing a normal retinal light response. A larger functional deficit in the CA IV/CA XIV double mutants suggests that CA IV can also contribute to pH regulation, at least in the absence of CA XIV.
Collapse
Affiliation(s)
| | - Kevin K. Ohlemiller
- Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gul N. Shah
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Barbara Ulmasov
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Timothy A. Becker
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | | | | | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| |
Collapse
|
33
|
Jonz MG, Barnes S. Proton modulation of ion channels in isolated horizontal cells of the goldfish retina. J Physiol 2007; 581:529-41. [PMID: 17331999 PMCID: PMC2075170 DOI: 10.1113/jphysiol.2006.125666] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transient changes in extracellular pH (pH(o)) occur in the retina and may have profound effects on neurotransmission and visual processing due to the pH sensitivity of ion channels. The present study characterized the effects of acidification on the activity of membrane ion channels in isolated horizontal cells (HCs) of the goldfish retina using whole-cell patch-clamp recording. Currents recorded from HCs were characterized by prominent inward rectification at potentials negative to -80 mV, a negative slope conductance between -70 and -40 mV, a sustained inward current, and outward rectification positive to 40 mV. Inward currents were identified as those of inward rectifier K(+) (Kir) channels and Ca(2+) channels by their sensitivity to 10 mM Cs(+) or 20 microm Cd(2+), respectively. Both of these currents were reduced when pH(o) decreased from 7.8 to 6.8. Glutamate (1 mM)-activated currents were also identified, as were hemichannel currents that were enhanced by removal of extracellular Ca(2+) and application of 1 mM quinidine. Both glutamate-activated and hemichannel currents were suppressed by a similar reduction of pH(o). When all of these H(+)-inhibited currents were blocked, a small, sustained inward current at -60 mV increased following a decrease in pH(o) from 7.8 to 6.8. In addition, slope conductance between -70 and -20 mV increased during this acidification. Suppression of this H(+)-activated current by removal of extracellular Na(+), and an extrapolated E(rev) near E(Na), indicated that this current was carried predominantly by Na(+) ions.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5 Canada.
| | | |
Collapse
|
34
|
Ettaiche M, Deval E, Cougnon M, Lazdunski M, Voilley N. Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci 2006; 26:5800-9. [PMID: 16723538 PMCID: PMC6675265 DOI: 10.1523/jneurosci.0344-06.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The action of extracellular protons on retinal activity and phototransduction occurs through pH-sensitive elements, mainly membrane conductances present on the different cell types of the outer and inner nuclear layers and of the ganglion cell layer. Acid-sensing ion channels (ASICs) are depolarizing conductances that are directly activated by protons. We investigated the participation of ASIC1a, a particular isoform of ASICs, in retinal physiology in vivo using electroretinogram measurements. In situ hybridization and immunohistochemistry localized ASIC1a in the outer and inner nuclear layers (cone photoreceptors, horizontal cells, some amacrine and bipolar cells) and in the ganglion cell layer. Both the in vivo knockdown of ASIC1a by antisense oligonucleotides and the in vivo blocking of its activity by PcTx1, a specific venom peptide, were able to decrease significantly and reversibly the photopic a- and b-waves and oscillatory potentials. Our study indicates that ASIC1a is an important channel in normal retinal activity. Being present in the inner segments of cones and inner nuclear layer cells, and mainly at synaptic cleft levels, it could participate in gain adaptation to ambient light of the cone pathway, facilitating cone hyperpolarization in brightness and modulating synaptic transmission of the light-induced visual signal.
Collapse
|
35
|
Vessey JP, Stratis AK, Daniels BA, Da Silva N, Jonz MG, Lalonde MR, Baldridge WH, Barnes S. Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse. J Neurosci 2006; 25:4108-17. [PMID: 15843613 PMCID: PMC6724943 DOI: 10.1523/jneurosci.5253-04.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generation of center-surround antagonistic receptive fields in the outer retina occurs via inhibitory feedback modulation of presynaptic voltage-gated calcium channels in cone photoreceptor synaptic terminals. Both conventional and unconventional neurotransmitters, as well as an ephaptic effect, have been proposed, but the intercellular messaging that mediates the inhibitory feedback signal from postsynaptic horizontal cells (HCs) to cones remains unknown. We examined the possibility that proton concentration in the synaptic cleft is regulated by HCs and that it carries the feedback signal to cones. In isolated, dark-adapted goldfish retina, we assessed feedback in the responses of HCs to light and found that strengthened pH buffering reduced both rollback and the depolarization to red light. In zebrafish retinal slices loaded with Fluo-4, depolarization with elevated K(+) increased Ca signals in the synaptic terminals of cone photoreceptors. Kainic acid, which depolarizes HCs but has no direct effect on cones, depressed the K(+)-induced Ca signal, whereas CNQX, which hyperpolarizes HCs, increased the Ca signals, suggesting that polarization of HCs alters inhibitory feedback to cones. We found that these feedback signals were blocked by elevated extracellular pH buffering, as well as amiloride and divalent cations. Voltage clamp of isolated HCs revealed an amiloride-sensitive conductance that could mediate modulation of cleft pH dependent on the membrane potential of these postsynaptic cells.
Collapse
Affiliation(s)
- John P Vessey
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nagelhus EA, Mathiisen TM, Bateman AC, Haug FM, Ottersen OP, Grubb JH, Waheed A, Sly WS. Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes. Proc Natl Acad Sci U S A 2005; 102:8030-5. [PMID: 15901897 PMCID: PMC1142392 DOI: 10.1073/pnas.0503021102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes important to many cell types throughout the body. They help determine levels of H(+) and HCO(-)(3) and thereby regulate intracellular and extracellular pH and volume. CA XIV, an extracellular membrane-bound CA, was recently shown to be present in brain and retina. Here, we analyze the subcellular distribution of CA XIV in retina by high-resolution immunogold cytochemistry and show that the distribution in retina (on glial cells but not neurons) is different from that reported for brain (on neurons but not glia). In addition, CA XIV is strongly expressed on retinal pigment epithelium (RPE). The specific membrane domains that express CA XIV were endfoot and nonendfoot membranes on Muller cells and astrocytes and apical and basolateral membranes of RPE. Gold particle density was highest on microvilli plasma membranes of RPE, where it was twice that of glial endfoot and Muller microvilli membranes and four times that of other glial membrane domains. Neither neurons nor capillary endothelial cells showed detectable labeling for CA XIV. This enrichment of CA XIV on specific membrane domains of glial cells and RPE suggests specialization for buffering pH and volume in retinal neurons and their surrounding extracellular spaces. We suggest that CA XIV is the target of CA inhibitors that enhance subretinal fluid absorption in macular edema. In addition, CA XIV may facilitate CO(2) removal from neural retina and modulate photoreceptor function.
Collapse
Affiliation(s)
- Erlend A Nagelhus
- Nordic Centre for Water Imbalance Related Disorders and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
CADETTI L, THORESON WB, PICCOLINO M. Pre- and post-synaptic effects of manipulating surface charge with divalent cations at the photoreceptor synapse. Neuroscience 2005; 129:791-801. [PMID: 15541900 PMCID: PMC1383428 DOI: 10.1016/j.neuroscience.2004.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2004] [Indexed: 11/25/2022]
Abstract
Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to -40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors.
Collapse
Affiliation(s)
- L. CADETTI
- Departments of Ophthalmology, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biology, University of Ferrara, 44100 Ferrara, Italy
| | - W. B. THORESON
- Departments of Ophthalmology, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- *Correspondence to: W. B. Thoreson, Ophthalmology Department, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198–5540, USA. Tel: +1-402-559-2019; fax: +1-402-559-5514. E-mail address: (W. B. Thoreson)
| | - M. PICCOLINO
- Department of Biology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
38
|
Dmitriev AV, Mangel SC. Retinal pH reflects retinal energy metabolism in the day and night. J Neurophysiol 2004; 91:2404-12. [PMID: 14960560 DOI: 10.1152/jn.00881.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extracellular pH of living tissue in the retina and elsewhere in the brain is lower than the pH of the surrounding milieu. We have shown that the pH gradient between the in vitro retina and the superfusion solution is regulated by a circadian (24-h) clock so that it is smaller in the subjective day than in the subjective night. We show here that the circadian changes in retinal pH result from a clock-mediated change in the generation of H+ that accompanies energy production. To demonstrate this, we suppressed energy metabolism and recorded the resultant reduction in the pH difference between the retina and superfusate. The magnitude of the reduction in the pH gradient correlated with the extent of energy metabolism suppression. We also examined whether the circadian-induced increase in acid production during the subjective night results from an increase in energy metabolism or from the selective activation of glycolysis compared with oxidative phosphorylation. We found that the selective suppression of either oxidative phosphorylation or glycolysis had almost identical effects on the dynamics and extent of H+ production during the subjective day and night. Thus the proportion of glycolysis and oxidative phosphorylation is maintained the same regardless of circadian time, and the pH difference between the tissue and superfusion solution can therefore be used to evaluate total energy production. We conclude that circadian clock regulation of retinal pH reflects circadian regulation of retinal energy metabolism.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, 1719 6th Avenue S., CIRC-425, Birmingham, AL 35294-0021, USA.
| | | |
Collapse
|
39
|
Lilley S, LeTissier P, Robbins J. The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci 2004; 24:1013-22. [PMID: 14762119 PMCID: PMC6793592 DOI: 10.1523/jneurosci.3191-03.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 10/28/2003] [Accepted: 11/12/2003] [Indexed: 11/21/2022] Open
Abstract
The conduction of acid-evoked currents in central and sensory neurons is now primarily attributed to a family of proteins called acid-sensing ion channels (ASICs). In peripheral neurons, their physiological function has been linked to nociception, mechanoreception, and taste transduction; however, their role in the CNS remains unclear. This study describes the discovery of a proton-gated current in rat retinal ganglion cells termed I(Na(H+)), which also appears to be mediated by ASICs. RT-PCR confirmed the presence of ASIC mRNA (subunits la, 2a, 2b, 3, and 4) in the rat retina. Electrophysiological investigation showed that all retinal ganglion cells respond to rapid extracellular acidification with the activation of a transient Na+ current, the size of which increases with increasing acidification between pH 6.5 and pH 3.0. I(Na(H+)) desensitizes completely in the continued presence of acid, its current-voltage relationship is linear and its reversal potential shifts with E(Na). I(Na(H+)) is reversibly inhibited by amiloride (IC(50), 188 microm) but is resistant to block by TTX (0.5 microm), Cd2+ (100 microm), procaine (10 mm), and is not activated by capsaicin (0.5 microm). I(Na(H+)) is not potentiated by Zn2+ (300 microm) or Phe-Met-Arg-Phe-amide (50microm) but is inhibited by neuropeptide-FF (50microm). Acute application of pH 6.5 to retinal ganglion cells causes sustained depolarization and repetitive firing similar to the trains of action potentials normally associated with current injection into these cells. The presence of a proton-gated current in the neural retina suggests that ASICs may have a more diverse role in the CNS.
Collapse
Affiliation(s)
- Sarah Lilley
- Neural Injury and Repair Group, Centre for Neuroscience Research, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | | | | |
Collapse
|
40
|
Abstract
The regulation of pH is a vital homeostatic function shared by all tissues. Mechanisms that govern H+ in the intracellular and extracellular fluid are especially important in the brain, because electrical activity can elicit rapid pH changes in both compartments. These acid-base transients may in turn influence neural activity by affecting a variety of ion channels. The mechanisms responsible for the regulation of intracellular pH in brain are similar to those of other tissues and are comprised principally of forms of Na+/H+ exchange, Na+-driven Cl-/HCO3- exchange, Na+-HCO3- cotransport, and passive Cl-/HCO3- exchange. Differences in the expression or efficacy of these mechanisms have been noted among the functionally and morphologically diverse neurons and glial cells that have been studied. Molecular identification of transporter isoforms has revealed heterogeneity among brain regions and cell types. Neural activity gives rise to an assortment of extracellular and intracellular pH shifts that originate from a variety of mechanisms. Intracellular pH shifts in neurons and glia have been linked to Ca2+ transport, activation of acid extrusion systems, and the accumulation of metabolic products. Extracellular pH shifts can occur within milliseconds of neural activity, arise from an assortment of mechanisms, and are governed by the activity of extracellular carbonic anhydrase. The functional significance of these compartmental, activity-dependent pH shifts is discussed.
Collapse
Affiliation(s)
- Mitchell Chesler
- Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
41
|
Hirasawa H, Kaneko A. pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. ACTA ACUST UNITED AC 2003; 122:657-71. [PMID: 14610018 PMCID: PMC2229595 DOI: 10.1085/jgp.200308863] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround–receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 μM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
42
|
Yuan Y, Shimura M, Hughes BA. Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 2003; 549:429-38. [PMID: 12665599 PMCID: PMC2342945 DOI: 10.1113/jphysiol.2003.042341] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2003] [Accepted: 03/11/2003] [Indexed: 11/08/2022] Open
Abstract
Inwardly rectifying K+ (Kir) channels in the apical membrane of the retinal pigment epithelium (RPE) play a key role in the transport of K+ into and out of the subretinal space (SRS), a small extracellular compartment surrounding photoreceptor outer segments. Recent molecular and functional evidence indicates that these channels comprise Kir7.1 channel subunits. The purpose of this study was to determine whether Kir channels in the RPE are modulated by extracellular (pHo) or intracellular pH (pHi), both of which change upon illumination of the dark-adapted retina. The Kir current (IKir) in acutely dissociated bovine RPE cells was recorded in the whole-cell configuration while altering pHo or pHi. In cells dialysed with pipette solution buffered to pH 7.2, step changes in pHo from 7.4 to 8.0, 7.0 or 6.5 had little effect on IKir. Acidification to pHo 6.0, however, caused a transient activation of IKir followed by a slower inhibition. To determine the dependence of IKir on pHi, we altered pHi within individual RPE cells at constant pHo by imposing transmembrane acetate concentration gradients. These experiments revealed a biphasic relationship between IKir and pHi: IKir was maximal at about pHi 7.1, but decreased sharply at more acidic or alkaline levels. To evaluate the role of Kir7.1 channels in the pHi-dependent changes in IKir, we tested the effect of transmembrane acetate concentration gradients on Rb+ currents, which are 10-fold larger than K+ currents for this channel subtype. Inwardly rectifying Rb+ currents were maximal at about pHi 7.0 and were inhibited by intracellular alkalinization or acidification. We conclude that the Kir conductance in the RPE is modulated by intracellular pH in the physiological range and that this reflects the behaviour of Kir7.1 channels. This sensitivity to pHi may provide an important mechanism linking photoreceptor activity and RPE function.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
43
|
Hamann S, Kiilgaard JF, la Cour M, Prause JU, Zeuthen T. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 2003; 76:493-504. [PMID: 12634113 DOI: 10.1016/s0014-4835(02)00329-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The retinal pigment epithelium (RPE) of the eye transports water and lactate ions in the direction from retina to choroid. The water transport is important in maintenance of retinal adhesion and the transport of lactate ions serves to regulate the lactate levels and pH of the subretinal space. This study investigates by means of a non-invasive technique the mechanism of coupling between transport of H(+), lactate ion, and water in the monocarboxylate transporter (MCT1) located in the apical (retinal) membrane of a mammalian RPE. Primary cultures of porcine RPE cells were grown to confluence and placed in a perfusion chamber in which the solution facing the retinal membrane could be changed rapidly. Two types of experiments were performed: Changes in cell water volume were measured by self-quenching of the fluorescent dye Calcein, and changes in intracellular pH were measured ratiometrically using the fluorescent dye BCECF. In lactate-free solutions, mannitol addition to the retinal bath caused intracellular acidification and cell shrinkage, given by a single osmotic water permeability of 1.2+/-0.1 x 10(-4)cmsec(-1) (osmoll(-1))(-1). In solutions containing 50 mmoll(-1) lactate, however, the mannitol-induced cell shrinkage was faster and the cells alkalinized. These effects were not linear functions of the magnitude of the imposed osmotic gradients: Both volume effects and changes in intracellular pH showed apparent saturation with increasing gradients. Abrupt isosmotic replacement of Cl(-) with lactate in the concentration range from 3 to 50 mmoll(-1) caused an immediate cell swelling as well as an immediate intracellular acidification; both effects showed apparent saturation with increasing lactate concentration. The K(m) values were: 11+/-2 mmoll(-1) for the water fluxes and 13+/-4 mmoll(-1) for the H(+) and lactate fluxes. The data suggest that H(2)O is cotransported along with H(+) and lactate ions in MCT1 localized to the retinal membrane. The study emphasizes the importance of this cotransporter in the maintenance of water homeostasis and pH in the subretinal space of a mammalian tissue and supports our previous study performed by an invasive technique in an amphibian tissue.
Collapse
Affiliation(s)
- Steffen Hamann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins in a general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the direction of fluid transport in both the corneal epi- and endothelium, as well as the ciliary epithelium and retinal pigment epithelium.
Collapse
Affiliation(s)
- Steffen Hamann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
45
|
Abstract
A proton pump acidifies synaptic vesicles and provides the electrochemical gradient for transmitter uptake. Although external protons can modulate membrane voltage- and ligand-gated conductances, the fate of the protons released when vesicles fuse with the plasma membrane is unclear. In the dark, the glutamate-laden vesicles of cone photoreceptors fuse continuously with the plasma membrane. I now show that vesicular protons feed back to block the nearby calcium channels that mediate release. This local proton-mediated feedback is a novel mechanism through which neurons may regulate the release of transmitter.
Collapse
Affiliation(s)
- S H DeVries
- Department of Ophthalmology and Visual Science, Houston Health Science Center, University of Texas, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Bok D, Schibler MJ, Pushkin A, Sassani P, Abuladze N, Naser Z, Kurtz I. Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am J Physiol Renal Physiol 2001; 281:F920-35. [PMID: 11592950 DOI: 10.1152/ajprenal.2001.281.5.f920] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human NBC1 gene encodes two electrogenic sodium-bicarbonate cotransport proteins, pNBC1 and kNBC1, which are candidate proteins for mediating electrogenic sodium-bicarbonate cotransport in ocular cells. Mutations in the coding region of the human NBC1 gene in exons common to both pNBC1 and kNBC1 result in a syndrome with a severe ocular and renal phenotype (blindness, band keratopathy, glaucoma, cataracts, and proximal renal tubular acidosis). In the present study, we determined the pattern of electrogenic sodium-bicarbonate cotransporter protein expression in rat eye. For this purpose, pNBC1- and kNBC1-specific antibodies were generated and used to detect these NBC1 protein variants by immunoblotting and immunocytochemistry. pNBC1 is expressed in cornea, conjunctiva, lens, ciliary body, and retina, whereas the expression of kNBC1 is restricted to the conjunctiva. These results provide the first evidence for extrarenal kNBC1 protein expression. The data in this study will serve as a basis for understanding the molecular mechanisms responsible for abnormalities in ocular electrogenic sodium-bicarbonate cotransport in patients with mutations in the NBC1 gene.
Collapse
Affiliation(s)
- D Bok
- Jules Stein Eye Institute, Department of Neurobiology, University of California Los Angeles School of Medicine, Los Angeles, 90095-1689, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mangel SC. Circadian clock regulation of neuronal light responses in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:505-18. [PMID: 11420966 DOI: 10.1016/s0079-6123(01)31040-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S C Mangel
- Department of Neurobiology, University of Alabama School of Medicine, CIRC 425, 1719 6th Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
48
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Although it is generally accepted that the acid-base ratio of tissue, as represented by the pH, is strictly regulated to maintain normal function, recent studies in the mammalian nervous system have shown that neuronal activity can result in significant shifts in pH. In the mammalian retina, many cellular phenomena, including neuronal activity, are regulated by a circadian clock. We thus investigated whether a clock regulates retinal pH, using pH-sensitive microelectrodes to measure the extracellular pH (pH(o)) of the in vitro rabbit retina in the subjective day and night, that is, under conditions of constant darkness. These measurements demonstrated that a circadian clock regulates the pH(o) of the rabbit retina so that the pH(o) is lower at night than in the day. This day/night difference in retinal pH(o) was observed when the rabbits were maintained on a normal light/dark cycle and after they were maintained on a light/dark cycle that was phase-delayed by 9 hr. Continuous recordings of retinal pH(o) around subjective dusk indicated that the change from daytime to nighttime pH(o) is relatively fast and suggested that the clock that regulates pH(o) is located in the retina. The lowest pH(o) recorded in the retina in both the day and night was in the vicinity of the inner segments of photoreceptor cells, supporting the idea that photoreceptors serve as the primary source of protons. The circadian-induced shift in pH(o) was several times greater than light-induced pH(o) changes. These findings suggest that a circadian clock in the mammalian retina regulates retinal pH.
Collapse
|
50
|
Wistrand PJ. Carbonic anhydrase inhibition in ophthalmology: carbonic anhydrases in cornea, lens, retina and lacrimal gland. EXS 2001:413-24. [PMID: 11268527 DOI: 10.1007/978-3-0348-8446-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- P J Wistrand
- Department of Ophthalmology, University Hospital, S-751 85, Uppsala, Sweden
| |
Collapse
|