1
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Parveen N, Block S, Zhdanov VP, Rydell GE, Höök F. Detachment of Membrane Bound Virions by Competitive Ligand Binding Induced Receptor Depletion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4049-4056. [PMID: 28350474 DOI: 10.1021/acs.langmuir.6b04582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multivalent receptor-mediated interactions between virions and a lipid membrane can be weakened using competitive nonpathogenic ligand binding. In particular, the subsequent binding of such ligands can induce detachment of bound virions, a phenomenon of crucial relevance for the development of new antiviral drugs. Focusing on the simian virus 40 (SV40) and recombinant cholera toxin B subunit (rCTB), and using (monosialotetrahexosyl)ganglioside (GM1) as their common receptor in a supported lipid bilayer (SLB), we present the first detailed investigation of this phenomenon by employing the quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy assisted 2D single particle tracking (SPT) techniques. Analysis of the QCM-D-measured release kinetics made it possible to determine the binding strength of a single SV40-GM1 pair. The release dynamics of SV40, monitored by SPT, revealed that a notable fraction of SV40 becomes mobile just before the release, allowing to estimate the distribution of SV40-bound GM1 receptors just prior to release.
Collapse
Affiliation(s)
- Nagma Parveen
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
| | - Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk, Russia
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
| |
Collapse
|
3
|
Multivalency-assisted control of intracellular signaling pathways: application for ubiquitin- dependent N-end rule pathway. ACTA ACUST UNITED AC 2009; 16:121-31. [PMID: 19246002 DOI: 10.1016/j.chembiol.2009.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/04/2009] [Accepted: 01/21/2009] [Indexed: 11/23/2022]
Abstract
Intracellular signaling is often mediated by a family of functionally overlapping signal mediators that contain multiple sites interacting with other proteins or ligands with weak affinity (K(d) > microM). Conjugation of multiple low-affinity ligands into a high-affinity multivalent molecule provides a means to control the entire protein family within a single intracellular pathway. The N-end rule pathway is a ubiquitin (Ub)-dependent proteolytic system where at least four Ub ligases, called N-recognins, have a common domain critical for binding to type 1 (basic) and type 2 (bulky hydrophobic) destabilizing N-terminal residues of substrates as degrons. The recent development of a heterodivalent inhibitor targeting type 1 and type 2 substrate binding sites of the N-recognin family provides new opportunities to manipulate this proteolytic pathway in biochemical and pathophysiological conditions. We overview the N-end rule pathway as an intracellular target for heterodivalent molecules and discuss the basis of thermodynamics and kinetics related to heterodivalent interactions.
Collapse
|
4
|
Sudheesh MS, Jain V, Shilakari G, Kohli DV. Development and characterization of lectin-functionalized vesicular constructs bearing amphotericin B for bio-film targeting. J Drug Target 2009; 17:148-58. [DOI: 10.1080/10611860802546629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Santore MM, Zhang J, Srivastava S, Rotello VM. Beyond molecular recognition: using a repulsive field to tune interfacial valency and binding specificity between adhesive surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:84-96. [PMID: 19209443 DOI: 10.1021/la802554s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surface-bound biomolecular fragments enable "smart" materials to recognize cells and other particles in applications ranging from tissue engineering and medical diagnostics to colloidal and nanoparticle assembly. Such smart surfaces are, however, limited in their design to biomolecular selectivity. This feature article demonstrates, using a completely nonbiological model system, how specificity can be achieved for particle (and cell) binding, employing surface designs where immobilized nanoscale adhesion elements are entirely nonselective. Fundamental principles are illustrated by a model experimental system where 11 nm cationic nanoparticles on a planar negative silica surface interact with flowing negative silica microspheres having 1.0 and 0.5 microm diameters. In these systems, the interfacial valency, defined as the number of cross-bonds needed to capture flowing particles, is tunable through ionic strength, which alters the range of the background repulsion and therefore the effective binding strength of the adhesive elements themselves. At high ionic strengths where long-range electrostatic repulsions are screened, single surface-bound nanoparticles capture microspheres, defining the univalent regime. At low ionic strengths, competing repulsions weaken the effective nanoparticle adhesion so that multiple nanoparticles are needed for microparticle capture. This article discusses important features of the univalent regime and then illustrates how multivalency produces interfacial-scale selectivity. The arguments are then generalized, providing a possible explanation for highly specific cell binding in nature, despite the degeneracy of adhesion molecules and cell types. The mechanism for the valency-related selectivity is further developed in the context of selective flocculation in the colloidal literature. Finally, results for multivalent binding are contrasted with the current thinking for interfacial design and the presentation of adhesion moieties on engineered surfaces.
Collapse
Affiliation(s)
- Maria M Santore
- Department of Polymer Science and Engineering and Department of Chemistry, UniVersity ofMassachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
6
|
Carlescu I, Scutaru D, Popa M, Uglea CV. Synthetic sialic-acid-containing polyvalent antiviral inhibitors. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9139-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Parfinovich EV, Mochalova LV, Molotkovskiĭ IG, Bovin NV, Vodovozova EL. [Identification of a new carbohydrate-binding site of influenza virus]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:716-20. [PMID: 19060947 DOI: 10.1134/s1068162008050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has recently been shown that the influenza virus can specifically bind the residue of a nonsialylated sulfated oligosaccharide Gal(6SO(3)H)beta1-4GlcNAcbeta (6'SLacNAc). To identify by photoaffinity labeling the virion component that binds 6'SLacNAc, we synthesized a carbohydrate probe containing a (125)I labeled diazocyclopentadien-2-yl carbonyl group as an aglycone. According to the electrophoretic data, the labeled areas corresponded to a large hemagglutinin subunit, a nucleocapsid protein, and neuraminidase (NA). Probing in the presence of an excess of 6'SLacNAcbeta-OCH(2)CH(2)NHAc glycoside resulted in redistribution of the labeling intensity, with the maximum inhibition being observed for NA. The data obtained indicate that NA is a viral 6'SLacNAc-binding protein.
Collapse
|
8
|
Vyas SP, Sihorkar V, Jain S. Mannosylated liposomes for bio-film targeting. Int J Pharm 2007; 330:6-13. [PMID: 16997519 DOI: 10.1016/j.ijpharm.2006.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 08/19/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Vesicular systems in general are investigated to achieve bacterial bio-film targeting as their architecture mimics bio-membranes in terms of structure and bio-behavior. This paper elaborates upon the role of the inherent characteristics of the carrier system and further envisages the role of anchored ligands in navigating the contents in the vicinity of bio-films. Vesicles in the present study were coated with hydrophobic derivatives of mannan (cholesteryl mannan and sialo-mannan). The prepared vesicles were characterized for size, shape, percentage entrapment and ligand binding specificity and results were compared with the uncoated versions. Using a set of in vitro and in vivo models, the bio-film targeting potential of plain and mannosylated liposomal formulations were compared. Results suggested that mannosylated vesicles could be effectively targeted to the model bacterial bio-films, compared with plain vesicles. Moreover, the sialo-mannan coated liposomes recorded superior targetability as reflected in the significantly higher percentage growth inhibition when compared with cholesteryl mannan coated liposomes. The engineered systems thus have the potential use for the delivery of anti-microbial agents to the bio-films.
Collapse
Affiliation(s)
- S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar (MP) 470003, India.
| | | | | |
Collapse
|
9
|
Dhal PK, Holmes-Farley SR, Huval CC, Jozefiak TH. Polymers as Drugs. ADVANCES IN POLYMER SCIENCE 2006. [DOI: 10.1007/12_020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Handl HL, Vagner J, Han H, Mash E, Hruby VJ, Gillies RJ. Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets 2005; 8:565-86. [PMID: 15584863 DOI: 10.1517/14728222.8.6.565] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multimeric ligands consist of multiple monomeric ligands attached to a single backbone molecule, creating a multimer that can bind to multiple receptors or targets simultaneously. Numerous examples of multimeric binding exist within nature. Due to the multiple and simultaneous binding events, multimeric ligands bind with an increased affinity compared to their corresponding monomers. Multimeric ligands may provide opportunities in the field of drug discovery by providing enhanced selectivity and affinity of binding interactions, thus providing molecular-based targeted therapies. However, gaps in our knowledge currently exist regarding the quantitative measures for important design characteristics, such as flexibility, length and orientation of the inter-ligand linkers, receptor density and ligand sequence. In this review, multimeric ligand binding in two separate phases is examined. The prerecruitment phase describes the binding of one ligand of a multimer to its corresponding receptor, an event similar to monomeric ligand binding. This results in transient increases in the local concentration of the other ligands, leading to apparent cooperativity. The postrecruitment phase only occurs once all receptors have been aligned and bound by their corresponding ligand. This phase is analogous to DNA-DNA interactions in that the stability of the complex is derived from physical orientation. Multiple factors influence the kinetics and thermodynamics of multimeric binding, and these are discussed.
Collapse
Affiliation(s)
- Heather L Handl
- Arizona Cancer Center, Department of Biochemistry and Molecular Biophysics, 1515 N. Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sen Gupta S, Raja KS, Kaltgrad E, Strable E, Finn MG. Virus–glycopolymer conjugates by copper(i) catalysis of atom transfer radical polymerization and azide–alkyne cycloaddition. Chem Commun (Camb) 2005:4315-7. [PMID: 16113733 DOI: 10.1039/b502444g] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(I)-catalyzed ATRP and azide-alkyne cycloaddition reactions together provide a versatile method for the synthesis of end-functionalized glycopolymers and their attachment to a suitably modified viral protein scaffold.
Collapse
Affiliation(s)
- Sayam Sen Gupta
- Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
12
|
Sauna ZE, Andrus MB, Turner TM, Ambudkar SV. Biochemical basis of polyvalency as a strategy for enhancing the efficacy of P-glycoprotein (ABCB1) modulators: stipiamide homodimers separated with defined-length spacers reverse drug efflux with greater efficacy. Biochemistry 2004; 43:2262-71. [PMID: 14979722 DOI: 10.1021/bi035965k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human P-glycoprotein (Pgp) is as an ATP-dependent efflux pump for a variety of chemotherapeutic drugs. The aim of this study is to evaluate whether Pgp modulators can be engineered to exhibit high-affinity binding using polyvalency. Five bivalent homodimeric polyenes based on stipiamide linked with polyethylene glycol ethers in the range of 3-50 A were synthesized and quantitatively characterized for their effect on Pgp function. The stipiamide homodimers displaced [(125)I]iodoarylazidoprazoin (IAAP), an analogue of the Pgp substrate prazosin. A minimal spacer of 11 A is necessary for inhibition of IAAP labeling, beyond which there is an inverse correlation between the length of the spacer and the IC(50) for the displacement of IAAP. ATP hydrolysis by Pgp on the other hand is stimulated by the dimers with spacers of up to 22 A, whereas dimers with longer spacers inhibit ATP hydrolysis. Finally, the homodimers reverse Pgp-mediated drug efflux in intact cells overexpressing Pgp, and 11 A is a threshold beyond which the effectiveness of the homodimers increases exponentially and levels off at 33 A. We demonstrate that dimerization and identification of an optimal spacer length increase by 11-fold the affinity of stipiamide, and this is reflected in the efficacy with which Pgp-mediated drug efflux is reversed. These results suggest that polyvalency could be a useful strategy for the development of more potent Pgp modulators.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4254, USA
| | | | | | | |
Collapse
|
13
|
Tuzikov AB, Chinarev AA, Gambaryan AS, Oleinikov VA, Klinov DV, Matsko NB, Kadykov VA, Ermishov MA, Demin IV, Demin VV, Rye PD, Bovin NV. Polyglycine II nanosheets: supramolecular antivirals? Chembiochem 2003; 4:147-54. [PMID: 12616627 DOI: 10.1002/cbic.200390025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tetraantennary peptides [glycine(n)-NHCH(2)](4)C can form stable noncovalent structures by self-assembly through intermolecular hydrogen bonding. The oligopeptide chains assemble as polyglycine II to yield submicron-sized, flat, one-molecule-thick sheets. Attachment of alpha-N-acetylneuraminic acid (Neu5Acalpha) to the terminal glycine residues gives rise to water-soluble assembled glycopeptides that are able to bind influenza virus multivalently and inhibit adhesion of the virus to cells 10(3)-fold more effectively than a monomeric glycoside of Neu5Acalpha. Another antiviral strategy based on virus-promoted assembly of the glycopeptides was also demonstrated. Consequently, the self-assembly principle offers new perspectives on the design of multivalent antivirals.
Collapse
Affiliation(s)
- Alexander B Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow V-437, 117997, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matrosovich M, Klenk HD. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev Med Virol 2003; 13:85-97. [PMID: 12627392 DOI: 10.1002/rmv.372] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza viruses attach to susceptible cells via multivalent interactions of their haemagglutinins with sialyloligosaccharide moieties of cellular glycoconjugates. Soluble macromolecules containing sialic acid from animal sera and mucosal fluids can act as decoy receptors and competitively inhibit virus-mediated haemagglutination and infection. Although a role for these natural inhibitors in the innate anti-influenza immunity is still not clear, studies are in progress on the design of synthetic sialic acid-containing inhibitors of receptor binding which could be used as anti-influenza drugs.
Collapse
Affiliation(s)
- Mikhail Matrosovich
- Institute of Virology, Philipps University, Robert Koch Str. 17, 35037 Marburg, Germany.
| | | |
Collapse
|
15
|
Gambaryan AS, Tuzikov AB, Chinarev AA, Juneja LR, Bovin NV, Matrosovich MN. Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. Antiviral Res 2002; 55:201-5. [PMID: 12076764 DOI: 10.1016/s0166-3542(02)00020-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synthetic sialic acid-containing macromolecules inhibit influenza virus attachment to target cells and suppress the virus-mediated hemagglutination and neutralize virus infectivity in cell culture. To test the protective effects of attachment inhibitors in vivo, mice were infected with mouse-adapted influenza virus A/Aichi/2/68 (H3N2) and treated with synthetic polyacrylamide-based sialylglycopolymer PAA-YDS bearing moieties of (Neu5Acalpha2-6Galbeta1-4GlcNAcbeta1-2Manalpha1)2-3,6Manbeta1-4GlcNAcbeta1-4GlcNAc. Single intranasal inoculations with PAA-YDS 30 min before or 10 min after infection increased the survival of mice (P<0.01). Multiple treatments with aerosolized PAA-YDS on days 2-5 post infection also increased survival (P<0.01), alleviated disease symptoms, and decreased lesions in the mouse lungs. These data suggest that synthetic polyvalent inhibitors of virus attachment can be used for prevention and treatment of influenza.
Collapse
Affiliation(s)
- A S Gambaryan
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142 782, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
16
|
Schaschke N, Matschiner G, Zettl F, Marquardt U, Bergner A, Bode W, Sommerhoff CP, Moroder L. Bivalent inhibition of human beta-tryptase. CHEMISTRY & BIOLOGY 2001; 8:313-27. [PMID: 11325588 DOI: 10.1016/s1074-5521(01)00011-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Human beta-tryptase is a mast cell specific trypsin-like serine protease that is thought to play a key role in the pathogenesis of diverse allergic and inflammatory disorders like asthma and psoriasis. The recently resolved crystal structure revealed that the enzymatically active tetramer consists of four quasi-identical monomers. The spatial display of the four identical active sites represents an ideal basis for the rational design of bivalent inhibitors. RESULTS Based on modeling experiments homobivalent inhibitors were constructed using (i) 6A,6D-dideoxy-6A,6D-diamino-beta-cyclodextrin as a rigid template to bridge the space between the two pairs of identical active sites and (ii) 3-(aminomethyl)benzene as a headgroup to occupy the arginine/lysine specific S1 subsites. A comparative analysis of the inhibitory potencies of synthetic constructs that differ in size and type of the spacer between headgroup and template revealed that the construct contained two 3-(aminomethyl)benzenesulfonyl-glycine groups linked to the 6A,6D-diamino groups of beta-cyclodextrin as an almost ideal bivalent inhibitor with a cooperativity factor of 1.9 vs. the ideal value of 2. The bivalent binding mode is supported by the inhibitor/tetramer ratio of 2:1 required for inactivation of tryptase and by X-ray analysis of the inhibitor/tryptase complex. CONCLUSION The results obtained with the rigid cyclodextrin template underlined the importance of a minimal loss of conformational entropy in bivalent binding, but also showed the limitations imposed by such rigid core molecules in terms of optimal occupancy of binding sites and thus of enthalpic strains in bidentate binding modes. The main advantage of bivalent inhibitors is their high selectivity for the target enzyme that can be achieved utilizing the principle of multivalency.
Collapse
Affiliation(s)
- N Schaschke
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Miller-Podraza H, Johansson L, Johansson P, Larsson T, Matrosovich M, Karlsson KA. A strain of human influenza A virus binds to extended but not short gangliosides as assayed by thin-layer chromatography overlay. Glycobiology 2000; 10:975-82. [PMID: 11030743 DOI: 10.1093/glycob/10.10.975] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A human strain of influenza virus (A, H1N1) was shown to bind in an unexpected way to leukocyte and other gangliosides when compared with avian virus (A, H4N6) as assayed on TLC plates. The human strain bound only to species with about 10 or more sugars, while the avian strain bound to a wide range of gangliosides including the 5-sugar gangliosides. By use of specific lectins, antibodies, and FAB and MALDI-TOF mass spectrometry an attempt was done to preliminary identify the sequences of leukocyte gangliosides recognized by the human strain. The virus binding pattern did not follow binding by VIM-2 monoclonal antibody and was not identical with binding by anti-sialyl Lewis x antibody. There was no binding by the virus of linear NeuAcalpha3- or NeuAcalpha6-containing gangliosides with up to seven monosaccharides per mol of ceramide. Active species were minor NeuAcalpha6-containing molecules with probably repeated HexHexNAc units and fucose branches. This investigation demonstrates marked distinctions in the recognition of gangliosides between avian and human influenza viruses. Our data emphasize the importance of structural factors associated with more distant parts of the binding epitope and the complexity of carbohydrate recognition by human influenza viruses.
Collapse
Affiliation(s)
- H Miller-Podraza
- Institute of Medical Biochemistry, Göteborg University, P.O. Box 440, SE 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Zhou WJ, Kurth MJ, Hsieh YL, Krochta JM. Synthesis and Characterization of New Styrene Main-Chain Polymer with Pendant Lactose Moiety through Urea Linkage. Macromolecules 1999. [DOI: 10.1021/ma990397v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Jing Zhou
- Department of Chemistry, University of California, Davis, California 95616
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, California 95616
| | - You-Lo Hsieh
- Department of Fiber and Polymer Science, University of California, Davis, California 95616
| | - John M. Krochta
- Department of Food Science and Technology, University of California, Davis, California 95616
| |
Collapse
|
19
|
Ding WD, Mitsner B, Krishnamurthy G, Aulabaugh A, Hess CD, Zaccardi J, Cutler M, Feld B, Gazumyan A, Raifeld Y, Nikitenko A, Lang SA, Gluzman Y, O'Hara B, Ellestad GA. Novel and specific respiratory syncytial virus inhibitors that target virus fusion. J Med Chem 1998; 41:2671-5. [PMID: 9667956 DOI: 10.1021/jm980239e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W D Ding
- Departments of Bioorganic/Enzymology, Wyeth-Lederle Vaccines and Pediatrics, Medicinal Chemistry, and Infectious Diseases, Wyeth-Ayerst Research, Pearl River, New York 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rao J, Lahiri J, Isaacs L, Weis RM, Whitesides GM. A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin. Science 1998; 280:708-11. [PMID: 9563940 DOI: 10.1126/science.280.5364.708] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tris(vancomycin carboxamide) binds a trivalent ligand derived from D-Ala-D-Ala with very high affinity: dissociation constant (Kd) approximately 4 x 10(-17) +/- 1 x 10(-17) M. High-affinity trivalent binding and monovalent binding are fundamentally different. In trivalent (and more generally, polyvalent) binding, dissociation occurs in stages, and its rate can be accelerated by monovalent ligand at sufficiently high concentrations. In monovalent binding, dissociation is determined solely by the rate constant for dissociation and cannot be accelerated by added monomer. Calorimetric measurements for the trivalent system indicate an approximately additive gain in enthalpy relative to the corresponding monomers. This system is one of the most stable organic receptor-ligand pairs involving small molecules that is known. It illustrates the practicality of designing very high-affinity systems based on polyvalency.
Collapse
Affiliation(s)
- J Rao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
21
|
Pagé D, Roy R. Synthesis and biological properties of mannosylated starburst poly(amidoamine) dendrimers. Bioconjug Chem 1997; 8:714-23. [PMID: 9327136 DOI: 10.1021/bc970126u] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Starburst PAMAM dendrimers ending with mannopyranoside residues were readily synthesized in large scale and good yields from commercially available dendrimers bearing high-density amine functionality on their surface and p-isothiocyanatophenyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranoside. The first four generations of this novel class of monodispersed neoglycoconjugates having up to 32 mannoside units were evaluated as ligands for the phytohemagglutinins from concanavalin A (Con A) and Pisum sativum (pea lectin) using enzyme-linked lectin assay (ELLA) and turbidimetric analyses. The binding properties of these glycodendrimers, together with reference monosaccharides, were determined using yeast mannan as a coating antigen and peroxidase-labeled lectins. These mannosylated dendrimers were demonstrated to be potent inhibitors with IC50 values 400 times better than those of monomeric methyl alpha-D-mannopyranoside taken as a standard. Their lipophilic character was shown to be sufficient for their direct use as coating antigens in microtiter plate assays. Moreover, their ability to bind and form insoluble carbohydrate-lectin complexes was also demonstrated by radial double immunodiffusion and turbidimetric analyses. Furthermore, the ability of these ligands to selectively precipitate a mannose-binding protein (Con A) from a crude lectin mixture was also demonstrated using polyacrylamide gel electrophoresis (SDS-PAGE). These multivalent neoglycoconjugates were shown to constitute novel biochromatography materials of high affinity for the easy isolation of carbohydrate-binding proteins.
Collapse
Affiliation(s)
- D Pagé
- Department of Chemistry, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
22
|
Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Bovin NV, Matrosovich MN. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). Virology 1997; 232:345-50. [PMID: 9191848 DOI: 10.1006/viro.1997.8572] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synthetic sialylglycoconjugates bearing 3'-sialyllactose, 6'-sialyllactose, or 6'-sialyl(N-acetyllactosamine) moieties attached to the polyacrylic acid carrier (P-3-SL, P-6-SL, and P-6-SLN, respectively) were prepared and tested for their ability to bind to influenza virus isolates from different hosts in a competitive solid phase assay. The virus panel included egg-grown avian and porcine strains, as well as human viruses isolated and propagated solely in mammalian (MDCK) cells and their egg-adapted variants. A clear correlation was observed between the pattern of virus binding of two glycopolymers, P-3-SL and P-6-SLN, and the host species from which the virus was derived. Avian isolates displayed a high binding affinity for P-3-SL and a two to three orders of magnitude lower affinity for P-6-SLN. By contrast, all non-egg-adapted human A and B viruses bound P-6-SLN strongly but did not bind P-3-SL. Unlike the "authentic" human strains, their egg-adapted counterparts acquired an ability to bind P-3-SL, indicative of a shift in the receptor-binding phenotype toward the recognition of Neu5Ac2-3Gal-terminated sugar sequences. Among the porcine viruses and human isolates with porcine hemagglutinin, few displayed an avian-like binding phenotype, while others differed from both avian and human strains by a reduced ability to discriminate between P-3-SL and P-6-SLN. Our data show that sialylglycopolymers may become a useful tool in studies on molecular mechanisms of interspecies transfer, tissue specificity, and other structure-function relationships of the influenza virus hemagglutinin.
Collapse
Affiliation(s)
- A S Gambaryan
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Roy R. Recent developments in the rational design of multivalent glycoconjugates. GLYCOSCIENCE SYNTHESIS OF SUBSTRATE ANALOGS AND MIMETICS 1997. [DOI: 10.1007/bfb0119259] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Sigal GB, Mammen M, Dahmann G, Whitesides GM. Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus: The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J Am Chem Soc 1996. [DOI: 10.1021/ja953729u] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Chapter one Introduction. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1460-1567(06)80015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Haataja S, Tikkanen K, Nilsson U, Magnusson G, Karlsson KA, Finne J. Oligosaccharide-receptor interaction of the Gal alpha 1-4Gal binding adhesin of Streptococcus suis. Combining site architecture and characterization of two variant adhesin specificities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47008-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Mochalova LV, Tuzikov AB, Marinina VP, Gambaryan AS, Byramova NE, Bovin NV, Matrosovich MN. Synthetic polymeric inhibitors of influenza virus receptor-binding activity suppress virus replication. Antiviral Res 1994; 23:179-90. [PMID: 7519002 DOI: 10.1016/0166-3542(94)90016-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new approach to anti-influenza chemotherapy is based on the development of synthetic inhibitors of virus attachment to host cells. These inhibitors are prepared by anchoring the minimum receptor determinant of influenza virus, sialic acid, to polymeric or liposomal carriers. In this study, a series of poly(acrylic acid-co-acrylamides) and dextrans bearing pendant glycylamidobenzylsialoside groups were synthesized and evaluated for their binding to a panel of influenza A and B virus strains and for their ability to inhibit virus infectivity in cell culture. Significant type-, subtype-, and strain-specific variation in virus susceptibility to the synthetic inhibitors was observed. Among the viruses tested, H3 subtype strains evolved in humans since 1975 were the most sensitive, while the earlier H3 viruses and the type B strains were resistant. The virus-inhibitory potency of the polymeric sialosides correlated with their bindings to the virus, and was dependent on the virus affinity for the ligand, the density of the ligand, and the nature and molecular mass of the polymeric carrier. In embryonated eggs, the antiviral effect of poly(acryloyl-glycylamidobenzylsialoside-co-acrylic acid) was comparable to that of equine alpha 2-macroglobulin.
Collapse
Affiliation(s)
- L V Mochalova
- Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Dean B, Oguchi H, Cai S, Otsuji E, Tashiro K, Hakomori S, Toyokuni T. Synthesis of multivalent beta-lactosyl clusters as potential tumor metastasis inhibitors. Carbohydr Res 1993; 245:175-92. [PMID: 8370021 DOI: 10.1016/0008-6215(93)80071-l] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A beta-lactosyl residue was linked to the amino groups of L-lysyl-L-lysine through spacer arms of three different lengths (C2, C4, and C9) to give trivalent beta-lactosyl clusters in order to increase the inhibitory activity of the beta-lactosyl group against tumor cell colonization. Thus, O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-2,3, 6-tri-O-acetyl-glucopyranosyl trichloroacetimidate was treated with methyl or benzyl hydroxyethanoate, methyl or benzyl 4-hydroxybutanoate, and methyl 9-hydroxynonanoate, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate to give the corresponding beta-lactosides. These were coupled to L-lysyl-L-lysine, after conversion to the N-hydroxysuccinimide esters, to yield the corresponding trivalent beta-lactosyl-L-lysyl-L-lysine conjugates in good yields. The beta-lactosyl group with a C4 spacer arm was also coupled similarly to poly(L-lysine) (M(r) 3800) to form a polyvalent beta-lactosyl cluster. Coinjection of the trivalent (with C2 and C4 spacer arms) and polyvalent beta-lactosyl clusters with the highly metastatic B16 murine melanoma cells inhibited the formation of lung colonies in C57/BL mice, whereas the trivalent cluster with a C9 spacer arm displayed no activity.
Collapse
Affiliation(s)
- B Dean
- Biomembrane Institute and University of Washington, Seattle 98119
| | | | | | | | | | | | | |
Collapse
|
30
|
Srnka CA, Tiemeyer M, Gilbert JH, Moreland M, Schweingruber H, de Lappe BW, James PG, Gant T, Willoughby RE, Yolken RH. Cell surface ligands for rotavirus: mouse intestinal glycolipids and synthetic carbohydrate analogs. Virology 1992; 190:794-805. [PMID: 1325706 DOI: 10.1016/0042-6822(92)90917-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rotaviral binding to receptors on epithelial cells in the small intestine is thought to be a key event in the infection process and may be carbohydrate-mediated. Strain SA11 of rotavirus bound in vitro both to glycolipids isolated from mouse small intestine and to authentic glycolipids using thin layer chromatography overlay and microtiter well adsorption assays. Neutral mouse intestinal glycolipids which bound rotavirus were GA1 (Gal beta 1----3GalNAc beta 1---4Glc beta 1----4Glc beta 1----1-ceramide) and pentaosylceramides with terminal N-acetylgalactosamine, while acidic lipids which bound rotavirus included cholesterol 3-sulfate and two compounds termed bands 80 and 81. Digestion with ceramide glycanase suggested that bands 80 and 81 have lactosyl ceramide cores and an unidentified acidic moiety(s). No sialic-acid-containing glycolipids tested were active in viral binding. Band 81, which may have a ganglio core, bound rotavirus with greatest avidity, followed by GA1. Of authentic glycolipids assayed, only GA1 and GA2 (GalNAc beta 1----4Gal beta 1----4Glc beta 1----1-ceramide) displayed rotaviral binding. A phosphatidylethanolamide dipalmitoyl-containing neoglycolipid analog of GA2 bound rotavirus with avidity similar to native GA2. Substitution of beta 1----4-linked GlcNAc or beta 1----3-linked GalNAc for terminal GalNAc of GA2 neoglycolipid supported rotaviral binding, while other substitutions abrogated it. These findings suggest that a carbohydrate epitope similar to that of GA2 is sufficient for in vitro rotaviral binding, although binding may be enhanced by galactose and/or an acidic moiety in a secondary epitope.
Collapse
Affiliation(s)
- C A Srnka
- Glycomed, Incorporated, Alameda, California 94501
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matrosovich MN, Mochalova LV, Marinina VP, Byramova NE, Bovin NV. Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS Lett 1990; 272:209-12. [PMID: 1699804 DOI: 10.1016/0014-5793(90)80486-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anomeric aminobenzylglycosides of Neu5Ac were coupled with the polyacrylate carrier and a number of synthetic polyvalent sialosides obtained were investigated as inhibitors of influenza virus attachment. The inhibitory activity of polymeric sialosides is highly dependent upon the Neu5Ac residue content and the nature of the carrier. The polyacrylic acid based polymer bearing 10 mol% of Neu5Ac is 3 orders of magnitude more potent inhibitor than the corresponding monovalent benzylsialoside and considerably more active than fetuin.
Collapse
Affiliation(s)
- M N Matrosovich
- Institute of Poliomyelitis and Viral Encephalitides, USSR Academy of Medical Sciences, Moscow Region
| | | | | | | | | |
Collapse
|