1
|
Yuan M, Liu K, Liu T, Li Q, Guo W, Zhang M, Wang X, Zhang X, Wang X. Comparative transcriptome sequencing of two shell colour variants of Haliotis discus hannai identifying genes involved in shell formation and photosensitivity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101461. [PMID: 40054054 DOI: 10.1016/j.cbd.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Shell colour variation in Haliotis discus hannai is a complex trait influenced by genetic, physiological, and environmental factors. This study investigates the molecular mechanisms underlying shell colour formation, with a focus on the roles of biomineralisation, photosensitivity, and stress resistance. Using transcriptome analysis and microstructural observations, we compared red-shelled (RS) and green-shelled (GS) variants to identify key genes and pathways associated with shell colour. The results reveal that GS variants exhibit higher expression of visual protein genes (e.g., RHO-opnGq), which are linked to light sensitivity and pigment synthesis. Additionally, RS variants show upregulated chitin biosynthesis genes (e.g., CHs-IA), potentially influencing shell structure and pigmentation. These findings suggest that these genes play a critical role in regulating pigment deposition and shell colour formation, while biomineralisation genes contribute to shell integrity. This study provides new insights into the genetic basis of shell colour variation and its ecological significance, offering valuable information for selective breeding programs.
Collapse
Affiliation(s)
| | - Kun Liu
- School of Fisheries, Ludong University, Yantai, China
| | - Tianshuo Liu
- School of Fisheries, Ludong University, Yantai, China
| | - Qianqian Li
- School of Fisheries, Ludong University, Yantai, China
| | - Wenjian Guo
- School of Fisheries, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Fisheries, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Fisheries, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Fisheries, Ludong University, Yantai, China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, China.
| |
Collapse
|
2
|
Deng JJ, Zhang JR, Mao HH, Zhang MS, Lu YS, Luo XC. Chitinases are important virulence factors in Vibrio for degrading the chitin-rich barrier of shrimp. Int J Biol Macromol 2025; 293:139215. [PMID: 39732246 DOI: 10.1016/j.ijbiomac.2024.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Vibrio-induced diseases pose a significant threat to shrimp aquaculture. While the mechanisms underlying Vibrio penetration of shrimp shells and the gastrointestinal tract remain unclear, this study implicates chitinases as critical virulence factors. Despite their inability to utilize chitin or shrimp shells as sole carbon and nitrogen sources, three major shrimp pathogens-V. alginolyticus, V. harveyi, and V. parahaemolyticus-thrive on chitin-supplemented media and efficiently degrade shrimp shells. Ten extracellular chitinases were identified and two clades, ChiA and ChiD, are conserved among three Vibrio, underscoring their critical role in chitin degradation by Vibrio. Furthermore, one or two copies of evolutionarily conserved ChtBD3 are identified, facilitating targeting chitin-rich structures as virulence factors. All chitinase genes rapidly respond to shrimp shell or colloidal chitin, particularly Vpchi90, which exhibited a 33,340.8-fold increase in expression, correlating with enhanced chitinase activity. To further investigate their functional role, rVaChi89 (ChiD) and rVpChi90 (ChiA) was successfully heterologous expressed in Bacillus subtilis, achieving yields of 0.58 and 0.91 U/mL, respectively. In vitro assay confirmed their ability to degrade shrimp shells into GlcNAc and chitooligomers, further supporting their role in host invasion. This study highlights Vibrio chitinases as critical virulence factors and potential drug targets, with implications for chitin waste recycling.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jia-Rui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - He-Hua Mao
- The Affiliated Middle School of Lingnan Normal University, Chikan District, Zhanjiang, Guangdong 524048, China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Yi-Shan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518120, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
3
|
Peng M, Cardoso JCR, Power DM. Evolution of chitin-synthase in molluscs and their response to ocean acidification. Mol Phylogenet Evol 2024; 201:108192. [PMID: 39255869 DOI: 10.1016/j.ympev.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown. Exploiting the extensive molecular resources for mollusc species it is revealed that bivalves possess the largest number of CHS genes (12-22) reported to date in eukaryotes. The evolutionary tree constructed at the class level of molluscs indicates four CHS Type II isoforms (A-D) probably existed in the most recent common ancestor, and Type II-A (Type II-A-1/Type II-A-2) and Type II-C (Type II-C-1/Type II-C-2) underwent further differentiation. Non-specific loss of CHS isoforms occurred at the class level, and in some Type II (B-D groups) isoforms the myosin head domain, which is associated with shell formation, was not preserved and highly species-specific tissue expression of CHS isoforms occurred. These observations strongly support the idea of CHS functional diversification with shell biomineralization being one of several important functions. Analysis of transcriptome data uncovered the species-specific potential of CHS isoforms in shell formation and a species-specific response to ocean acidification (OA). The impact of OA was not CHS isoform-dependent although in Mytilus, Type I-B and Type II-D gene expression was down-regulated in both M. galloprovincialis and M. coruscus. In summary, during CHS evolution the gene family expanded in bivalves generating a large diversity of isoforms with different structures and with a ubiquitous tissue distribution suggesting that chitin is involved in many biological functions. These findings provide insight into CHS evolution in molluscs and lay the foundation for research into their function and response to environmental changes.
Collapse
Affiliation(s)
- Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Salvia R, Scieuzo C, Boschi A, Pezzi M, Mistri M, Munari C, Chicca M, Vogel H, Cozzolino F, Monaco V, Monti M, Falabella P. An Overview of Ovarian Calyx Fluid Proteins of Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae): An Integrated Transcriptomic and Proteomic Approach. Biomolecules 2023; 13:1547. [PMID: 37892230 PMCID: PMC10605793 DOI: 10.3390/biom13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Boschi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
| | - Marco Pezzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Michele Mistri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Cristina Munari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße 8, D-07745 Jena, Germany;
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Adeyinka OS, Nasir IA, Tabassum B. Host-induced silencing of the CpCHI gene resulted in developmental abnormalities and mortality in maize stem borer (Chilo partellus). PLoS One 2023; 18:e0280963. [PMID: 36745624 PMCID: PMC9901779 DOI: 10.1371/journal.pone.0280963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
RNAi-based insecticides for crop protection have witnessed rapid improvement over the years. However, their potential to efficiently control maize stem borer (Chilo partellus) pests has remained underexplored. In this study, double-stranded C. partellus chitinase (dsCHI) toxicity was investigated in C. partellus larvae. Furthermore, we developed transgenic maize lines expressing dsRNA targeted against C. partellus chitinase transcripts and performed detached leaf insect feeding bioassays. Our results revealed that C. partellus chitinase transcript expression was significantly downregulated by 57% and 82% in the larvae. Larvae exhibited various phenotypic distortion levels across developmental stages, and 53% mortality occurred in transgenic fed larvae compared to those fed on nontransgenic leaves. In conclusion, we have identified the C. partellus chitinase gene as a potential target for RNAi-mediated control and demonstrated that oral delivery via bacteria and plant-mediated delivery are viable means of achieving C. partellus RNAi-mediated control.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Department of Chemistry, Physics and Atmospheric Sciences Jackson state University, Jackson, MS, United States of America
- * E-mail:
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
7
|
Inwood SN, Harrop TWR, Dearden PK. The venom composition and parthenogenesis mechanism of the parasitoid wasp Microctonus hyperodae, a declining biocontrol agent. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103897. [PMID: 36584929 DOI: 10.1016/j.ibmb.2022.103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
A biocontrol system in New Zealand using the endoparasitoid Microctonus hyperodae is failing, despite once being one of the most successful examples of classical biocontrol worldwide. Though it is of significant economic importance as a control agent, little is known about the genetics of M. hyperodae. In this study, RNA-seq was used to characterise two key traits of M. hyperodae in this system, the venom, critical for the initial success of biocontrol, and the asexual reproduction mode, which influenced biocontrol decline. Expanded characterisation of M. hyperodae venom revealed candidates involved in manipulating the host environment to source nutrition for the parasitoid egg, preventing a host immune response against the egg, as well as two components that may stimulate the host's innate immune system. Notably lacking from the venom-specific expression list was calreticulin, as it also had high expression in the ovaries. In-situ hybridisation revealed this ovarian expression was localised to the follicle cells, which may result in the deposition of calreticulin into the egg exochorion. Investigating the asexual reproduction of M. hyperodae revealed core meiosis-specific genes had conserved expression patterns with the highest expression in the ovaries, suggesting M. hyperodae parthenogenesis involves meiosis and that the potential for sexual reproduction may have been retained. Upregulation of genes involved in endoreduplication provides a potential mechanism for the restoration of diploidy in eggs after meiosis.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand; Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
8
|
Debnath D, Samal I, Mohapatra C, Routray S, Kesawat MS, Labanya R. Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111908. [PMID: 36431043 PMCID: PMC9694207 DOI: 10.3390/life12111908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The rise in the world's food demand with the increasing population threatens the existence of civilization with two equally valuable concerns: increase in global food production and sustainability in the ecosystem. Furthermore, biotic and abiotic stresses are adversely affecting agricultural production. Among them, losses caused by insect pests and pathogens have been shown to be more destructive to agricultural production. However, for winning the battle against the abundance of insect pests and pathogens and their nature of resistance development, the team of researchers is searching for an alternative way to minimize losses caused by them. Chitosan, a natural biopolymer, coupled with a proper application method and effective dose could be an integral part of sustainable alternatives in the safer agricultural sector. In this review, we have integrated the insight knowledge of chitin-chitosan interaction, successful and efficient use of chitosan, recommended and practical methods of use with well-defined doses, and last but not least the dual but contrast mode of action of the chitosan in hosts and as well as in pathogens.
Collapse
Affiliation(s)
- Debanjana Debnath
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Chinmayee Mohapatra
- Department of Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Snehasish Routray
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
| | - Rini Labanya
- Department of Soil Science & Agricultural Chemistry, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India
- Correspondence:
| |
Collapse
|
9
|
Li L, Wang YQ, Li GY, Song QS, Stanley D, Wei SJ, Zhu JY. Genomic and transcriptomic analyses of chitin metabolism enzymes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21950. [PMID: 35809232 DOI: 10.1002/arch.21950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and β-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-β-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
10
|
Gama MDVF, Moraes CS, Gomes B, Diaz-Albiter HM, Mesquita RD, Seabra-Junior E, Azambuja P, Garcia EDS, Genta FA. Structure and expression of Rhodnius prolixus GH18 chitinases and chitinase-like proteins: Characterization of the physiological role of RpCht7, a gene from subgroup VIII, in vector fitness and reproduction. Front Physiol 2022; 13:861620. [PMID: 36262251 PMCID: PMC9574080 DOI: 10.3389/fphys.2022.861620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14–20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.
Collapse
Affiliation(s)
| | | | - Bruno Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hector Manuel Diaz-Albiter
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- El Colegio de la Frontera Sur, ECOSUR, Campeche, Mexico
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eloy Seabra-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Universidade Federal Fluminense, UFF, Rio de Janeiro, Brazil
| | - Eloi de Souza Garcia
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- *Correspondence: Fernando Ariel Genta, ,
| |
Collapse
|
11
|
Waithaka MK, Osuga IM, Kabuage LW, Subramanian S, Muriithi B, Wachira AM, Tanga CM. Evaluating the growth and cost-benefit analysis of feeding improved indigenous chicken with diets containing black soldier fly larva meal. FRONTIERS IN INSECT SCIENCE 2022; 2:933571. [PMID: 38468810 PMCID: PMC10926451 DOI: 10.3389/finsc.2022.933571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/11/2022] [Indexed: 03/13/2024]
Abstract
The high cost of feed has been the major hindrance to a hindrance to the growth, sustainability, profitability, and expansion of poultry production. Black soldier fly larva (BSFL) meal is one of the most promising alternative protein sources widely accepted globally. This study evaluated the growth performance of improved indigenous chicken (IIC)-fed diets containing different inclusion levels of BSFL meals. The BSFL meal inclusion rates included 0% (Diet0), 5% (Diet1), 10% (Diet2), 15% (Diet3), and 20% (Diet4) as replacement to the expensive fish meal in chick and grower diets. Our results showed that diet significantly affected the average daily feed intake, feed conversion ratio, and average daily weight gain of the chicks. The average daily weight gain and feed conversion ratio, except average daily feed intake of the growers, was not significantly affected by diets. The gross profit margin, cost-benefit ratio, and return on investment of feeding birds with BSFL meal varied significantly. The highest cost-benefit ratio of 2.12 was recorded for birds fed on Diet4. Our findings demonstrate that insect-based feeds can successfully and cost-effectively replace fish meal up to 20% without compromising the growth performance of the birds. Therefore, BSFL meal could be incorporated as an essential part of poultry feed production for IIC, potentially reducing the total feed cost while maintaining optimal production and reducing the cost of meat and egg products.
Collapse
Affiliation(s)
- Mwangi K. Waithaka
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Animal Sciences, Kenyatta University, Nairobi, Kenya
| | - Isaac M. Osuga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Animal Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Lucy W. Kabuage
- Department of Animal Sciences, Kenyatta University, Nairobi, Kenya
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Beatrice Muriithi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Ann M. Wachira
- Non-Ruminant Research Institute (NRI), Kenya Agricultural and Livestock Research Organization (KALRO), Naivasha, Kenya
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
12
|
Da Costa GV, Neto MFA, Da Silva AKP, De Sá EMF, Cancela LCF, Vega JS, Lobato CM, Zuliani JP, Espejo-Román JM, Campos JM, Leite FHA, Santos CBR. Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. Int J Mol Sci 2022; 23:8218. [PMID: 35897792 PMCID: PMC9332482 DOI: 10.3390/ijms23158218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is the main vector that transmits viral diseases such as dengue, hemorrhagic dengue, urban yellow fever, zika, and chikungunya. Worldwide, many cases of dengue have been reported in recent years, showing significant growth. The best way to manage diseases transmitted by Aedes aegypti is to control the vector with insecticides, which have already been shown to be toxic to humans; moreover, insects have developed resistance. Thus, the development of new insecticides is considered an emergency. One way to achieve this goal is to apply computational methods based on ligands and target information. In this study, sixteen compounds with acceptable insecticidal activities, with 100% larvicidal activity at low concentrations (2.0 to 0.001 mg·L−1), were selected from the literature. These compounds were used to build up and validate pharmacophore models. Pharmacophore model 6 (AUC = 0.78; BEDROC = 0.6) was used to filter 4793 compounds from the subset of lead-like compounds from the ZINC database; 4142 compounds (dG < 0 kcal/mol) were then aligned to the active site of the juvenile hormone receptor Aedes aegypti (PDB: 5V13), 2240 compounds (LE < −0.40 kcal/mol) were prioritized for molecular docking from the construction of a chitin deacetylase model of Aedes aegypti by the homology modeling of the Bombyx mori species (PDB: 5ZNT), which aligned 1959 compounds (dG < 0 kcal/mol), and 20 compounds (LE < −0.4 kcal/mol) were predicted for pharmacokinetic and toxicological prediction in silico (Preadmet, SwissADMET, and eMolTox programs). Finally, the theoretical routes of compounds M01, M02, M03, M04, and M05 were proposed. Compounds M01−M05 were selected, showing significant differences in pharmacokinetic and toxicological parameters in relation to positive controls and interaction with catalytic residues among key protein sites reported in the literature. For this reason, the molecules investigated here are dual inhibitors of the enzymes chitin synthase and juvenile hormonal protein from insects and humans, characterizing them as potential insecticides against the Aedes aegypti mosquito.
Collapse
Affiliation(s)
- Glauber V. Da Costa
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Moysés F. A. Neto
- Laboratory Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (M.F.A.N.); (F.H.A.L.)
| | - Alicia K. P. Da Silva
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Ester M. F. De Sá
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Luanne C. F. Cancela
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Jeanina S. Vega
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Cássio M. Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Juliana P. Zuliani
- Laboratory Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho 78912-000, RO, Brazil;
| | - José M. Espejo-Román
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| | - Franco H. A. Leite
- Laboratory Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (M.F.A.N.); (F.H.A.L.)
| | - Cleydson B. R. Santos
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| |
Collapse
|
13
|
Camilli MP, Kadri SM, Alvarez MVN, Ribolla PEM, Orsi RO. Zinc supplementation modifies brain tissue transcriptome of Apis mellifera honeybees. BMC Genomics 2022; 23:282. [PMID: 35395723 PMCID: PMC8994358 DOI: 10.1186/s12864-022-08464-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bees are the most important group of pollinators worldwide and their populations are declining. In natural conditions, Apis mellifera depends exclusively on food from the field to meet its physiological demands. In the period of scarcity, available resources are insufficient and artificial supplementation becomes essential for maintaining the levels of vitamins, proteins, carbohydrates, and minerals of colonies. Among these minerals, zinc is essential in all living systems, particularly for the regulation of cell division and protein synthesis, and is a component of more than 200 metalloenzymes. RESULTS The total RNA extracted from the brain tissue of nurse bees exposed to different sources and concentrations of zinc was sequenced. A total of 1,172 genes in the treatment that received an inorganic source of zinc and 502 genes that received an organic source of zinc were found to be differentially expressed among the control group. Gene ontology enrichment showed that zinc can modulate important biological processes such as nutrient metabolism and the molting process. CONCLUSIONS Our results indicate that zinc supplementation modulates the expression of many differentially expressed genes and plays an important role in the development of Apis mellifera bees. All the information obtained in this study can contribute to future research in the field of bee nutrigenomics.
Collapse
Affiliation(s)
- Marcelo Polizel Camilli
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP São Paulo State University, São Paulo, Botucatu, Brazil.
| | - Samir Moura Kadri
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP São Paulo State University, São Paulo, Botucatu, Brazil
| | | | | | - Ricardo Oliveira Orsi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP São Paulo State University, São Paulo, Botucatu, Brazil
| |
Collapse
|
14
|
The Role of Chitooligosaccharidolytic β- N-Acetylglucosamindase in the Molting and Wing Development of the Silkworm Bombyx mori. Int J Mol Sci 2022; 23:ijms23073850. [PMID: 35409210 PMCID: PMC8998872 DOI: 10.3390/ijms23073850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
The insect glycoside hydrolase family 20 β-N-acetylhexosaminidases (HEXs) are key enzymes involved in chitin degradation. In this study, nine HEX genes in Bombyx mori were identified by genome-wide analysis. Bioinformatic analysis based on the transcriptome database indicated that each gene had a distinct expression pattern. qRT-PCR was performed to detect the expression pattern of the chitooligosaccharidolytic β-N-acetylglucosaminidase (BmChiNAG). BmChiNAG was highly expressed in chitin-rich tissues, such as the epidermis. In the wing disc and epidermis, BmChiNAG has the highest expression level during the wandering stage. CRISPR/Cas9-mediated BmChiNAG deletion was used to study the function. In the BmChiNAG-knockout line, 39.2% of female heterozygotes had small and curly wings. The ultrastructure of a cross-section showed that the lack of BmChiNAG affected the stratification of the wing membrane and the formation of the correct wing vein structure. The molting process of the homozygotes was severely hindered during the larva to pupa transition. Epidermal sections showed that the endocuticle of the pupa was not degraded in the mutant. These results indicate that BmChiNAG is involved in chitin catabolism and plays an important role in the molting and wing development of the silkworm, which highlights the potential of BmChiNAG as a pest control target.
Collapse
|
15
|
Zulkifli NFNM, Seok-Kian AY, Seng LL, Mustafa S, Kim YS, Shapawi R. Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS One 2022; 17:e0263924. [PMID: 35213590 PMCID: PMC8880436 DOI: 10.1371/journal.pone.0263924] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/29/2022] [Indexed: 01/16/2023] Open
Abstract
Nutritional value of black soldier fly (Hermetia illucens) larvae (BSFL) processed by three different methods of treatment was compared. The resulting products were the spray-dried BSFL (SPR), oven-dried BSFL 1 (OVN1) and oven-dried BSFL 2 (OVN2). Proximate chemical composition, and profiles of amino acids, fatty acids, minerals, heavy metals, vitamins and nucleotides were analysed and compared. The tested BSFL meals were considered to have a good profile of essential amino acids (EAAs), with leucine, lysine, valine, and histidine being the dominant EAAs. Their content of saturated fatty acids exceeded that of the unsaturated fatty acids. Vitamins B1, B2, and C were also present in the samples. Minerals such as calcium, potassium, phosphorus, sodium, magnesium, zinc, iron, manganese and copper were found to be in adequate amounts in almost all the samples. Heavy metals in the BSFL meals were mostly below 1g kg-1. Nucleotides such as inosine monophosphate and uridine monophosphate occurred in all the BSFL meals. Other nucleotides, including guanosine monophosphate, adenosine monophosphate, xanthosine monophosphate, and cytidine monophosphate were detected in either or both of SPR and OVN2. In general, the nutritional value of the BSFL meals tested in the present study was influenced by the method of processing.
Collapse
Affiliation(s)
| | - Annita Yong Seok-Kian
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Lim Leong Seng
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Saleem Mustafa
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Yang-Su Kim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| |
Collapse
|
16
|
Kurihara Y, Iwai H, Kono N, Tomita M, Arakawa K. Initial parasitic behaviour of the temporary social parasitic ant Polyrhachis lamellidens can be induced by host-like cuticles in laboratory environment. Biol Open 2022; 11:274825. [PMID: 35199830 PMCID: PMC8966776 DOI: 10.1242/bio.058956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Polyrhachis lamellidens is a temporary social parasitic species. When a newly mated queen encounters a host worker, it opens its jaws, mounts and rubs the body of the host worker, called rubbing behaviour. This behaviour is different from aggressive behaviour and is considered to be a preparatory action before invasion of the host colony. However, it is unclear what cues trigger rubbing behaviour. Therefore, in this study, we used glass beads that imitated the insect body surfaces and searched for triggers. Although P. lamellidens did not respond to the cuticular compounds only, cuticular compounds and chitin coatings on glass beads elicited responses that were similar to those towards live samples. The rubbing behaviour of P. lamellidens was elicited in response to a cuticle-like surface that mimicked a procuticle by combining the compounds with chitin. These results suggest that host recognition and nest-mate recognition are supported by different mechanisms.
Collapse
Affiliation(s)
- Yu Kurihara
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hironori Iwai
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobuaki Kono
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Kazuharu Arakawa
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
17
|
Zozo B, Wicht MM, Mshayisa VV, van Wyk J. The Nutritional Quality and Structural Analysis of Black Soldier Fly Larvae Flour before and after Defatting. INSECTS 2022; 13:insects13020168. [PMID: 35206741 PMCID: PMC8879260 DOI: 10.3390/insects13020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary The increasing global population and consumer demand for protein will render the provision of protein a serious future challenge, thus placing substantial pressure on the food industry to provide for the human population. The lower environmental impact of insect farming makes the consumption of insects such as black soldier fly larvae (BSFL) an appealing solution, although consumers in developed countries often respond to the idea of eating insects with aversion. One approach to adapt consumers to insects as part of their diet is through the application of making insect-based products in an unrecognized form. Nutritional value and structural properties of the BSFL flours (full fat and defatted) were assessed. Defatted as well as full-fat flour both displayed good nutritional and structural characteristics for use in many food applications. Abstract This study aimed to assess the nutritional information and structural overview of the BSFL (black soldier fly larva) flours (full fat and defatted). The BSFL flours were obtained by freeze-drying the larvae and the removal of fat using hexane and isopropanol ratio of 3:2 (v/v), these solvents were used due to their defatting efficiency and because they are less toxic. Nutritional and structural analyses were conducted using standard methods. The full-fat and defatted flours had high protein content (45.82% and 56.11% respectively). Defatting significantly (p < 0.05) increases the protein content by approximately 10%, while the fat content decreased from 25.78% in full-fat larvae to 4.8% in defatted larvae. The compositional data were qualitatively confirmed with Universal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (UATR-FTIR) mainly in the amide I and II regions. Thermal gravimetry (TG) and differential scanning calorimeter (DSC) analysis, showed the conformational physical changes induced due to removal of fat which affected protein denaturation. DSC analysis displayed curves of both endothermic and exothermic reactions. During the first heating program, both samples had wide endothermic heating peaks ranging from 42 to 112 °C, which may be attributed to the water content in the samples evaporating. The first stage of the decomposition process was important, with loss of free and loosely bound water up to 150 °C, according to TGA curves. Protein and carbohydrates volatilized during the second stage of decomposition. The third level may be linked to polypeptide decomposition. FTIR revealed that the defatting process induced structural modifications on the amide I (1650 cm−1) and amide II (1540 cm−1) regions. Defatting has a significant effect on the functional groups and nutritional value of the BSFL. Defatted as well as full-fat flour both show good nutritional and structural characteristics for use in many food applications, however the improved proximate composition of the defatted BSFL can be applied to food products using BSFL flour as an alternative ingredient.
Collapse
Affiliation(s)
- Bongisiwe Zozo
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa;
- Correspondence:
| | - Merrill Margaret Wicht
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Vusi Vincent Mshayisa
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (V.V.M.); (J.v.W.)
| | - Jessy van Wyk
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (V.V.M.); (J.v.W.)
| |
Collapse
|
18
|
Chemical and Molecular Composition of the Chrysalis Reveals Common Chitin-rich Structural Framework for Monarchs and Swallowtails. J Mol Biol 2022; 434:167456. [PMID: 35045329 DOI: 10.1016/j.jmb.2022.167456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022]
Abstract
The metamorphosis of a caterpillar into a butterfly is an awe-inspiring example of how extraordinary functions are made possible through specific chemistry in nature's complex systems. The chrysalis exoskeleton is revealed and shed as a caterpillar transitions to butterfly form. We employed solid-state NMR to evaluate the chemical composition and types of biomolecules in the chrysalides from which Monarch and Swallowtail butterflies emerged. The chrysalis composition was remarkably similar between Monarch and Swallowtail. Chitin is the major polysaccharide component, present together with proteins and catechols or catechol-type linkages in each chrysalis. The high chitin content is comparable to the highest chitin-containing insect exoskeletons. Proteomics analysis of associated soluble proteins indicated the presence of chitinases that could be involved in synthesis and remodeling of the chrysalis as well as key cuticular proteins which play a role in the structural integrity of the chrysalis. The nearly identical 13C CPMAS NMR spectra of each chrysalis and similar structural proteins supports the presence of underlying design principles integrating chitin and protein partners to elaborate the chrysalis.
Collapse
|
19
|
Kostag M, El Seoud OA. Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Qu MB, Sun SP, Liu YS, Deng XR, Yang J, Yang Q. Insect group II chitinase OfChtII promotes chitin degradation during larva-pupa molting. INSECT SCIENCE 2021; 28:692-704. [PMID: 32306549 DOI: 10.1111/1744-7917.12791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The insect group II chitinase (ChtII, also known as Cht10) is a unique chitinase with multiple catalytic and chitin-binding domains. It has been proven genetically to be an essential chitinase for molting. However, ChtII's role in chitin degradation during insect development remains poorly understood. Obtaining this knowledge is the key to fully understanding the chitin degradation system in insects. Here, we investigated the role of OfChtII during the molting of Ostrinia furnacalis, a model lepidopteran pest insect. OfChtII was expressed earlier than OfChtI (OfCht5) and OfChi-h, at both the gene and protein levels during larva-pupa molting as evidenced by quantitative polymerase chain reaction and western blot analyses. A truncated OfChtII, OfChtII-B4C1, was recombinantly expressed in Pichia pastoris cells and purified to homogeneity. The recombinant OfChtII-B4C1 loosened compacted chitin particles and produced holes in the cuticle surface as evidenced by scanning electron microscopy. It synergized with OfChtI and OfChi-h when hydrolyzing insoluble α-chitin. These findings suggested an important role for ChtII during insect molting and also provided a strategy for the coordinated degradation of cuticular chitin during insect molting by ChtII, ChtI and Chi-h.
Collapse
Affiliation(s)
- Ming-Bo Qu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shao-Peng Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuan-Sheng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiao-Rui Deng
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Cloning, Characterization, and RNA Interference Effect of the UDP-N-Acetylglucosamine Pyrophosphorylase Gene in Cnaphalocrocis medinalis. Genes (Basel) 2021; 12:genes12040464. [PMID: 33805104 PMCID: PMC8064113 DOI: 10.3390/genes12040464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis is a major pest of rice and is difficult to control. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is a key enzyme in the chitin synthesis pathway in insects. In this study, the UAP gene from C. medinalis (CmUAP) was cloned and characterized. The cDNA of CmUAP is 1788 bp in length, containing an open reading frame of 1464 nucleotides that encodes 487 amino acids. Homology and phylogenetic analyses of the predicted protein indicated that CmUAP shared 91.79%, 87.89%, and 82.75% identities with UAPs of Glyphodes pyloalis, Ostrinia furnacalis, and Heortia vitessoides, respectively. Expression pattern analyses by droplet digital PCR demonstrated that CmUAP was expressed at all developmental stages and in 12 tissues of C. medinalis adults. Silencing of CmUAP by injection of double-stranded RNA specific to CmUAP caused death, slow growth, reduced feeding and excretion, and weight loss in C. medinalis larvae; meanwhile, severe developmental disorders were observed. The findings suggest that CmUAP is essential for the growth and development of C. medinalis, and that targeting the CmUAP gene through RNAi technology can be used for biological control of this insect.
Collapse
|
22
|
Chitin Synthesis and Degradation in Crustaceans: A Genomic View and Application. Mar Drugs 2021; 19:md19030153. [PMID: 33804177 PMCID: PMC8002005 DOI: 10.3390/md19030153] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.
Collapse
|
23
|
Xu CD, Liu YK, Qiu LY, Wang SS, Pan BY, Li Y, Wang SG, Tang B. GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens. Sci Rep 2021; 11:5246. [PMID: 33664411 PMCID: PMC7933274 DOI: 10.1038/s41598-021-84760-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Collapse
Affiliation(s)
- Cai-Di Xu
- College of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yong-Kang Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Sha-Sha Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bi-Ying Pan
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yan Li
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
24
|
Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021; 11:5032. [PMID: 33658582 PMCID: PMC7930282 DOI: 10.1038/s41598-021-84385-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Collapse
Affiliation(s)
- Carmen Scieuzo
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Franco
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Flora Cozzolino
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Milvia Chicca
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara Scapoli
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Heiko Vogel
- grid.418160.a0000 0004 0491 7131Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Maria Monti
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Chiara Ferracini
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Pietro Pucci
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Alberto Alma
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Patrizia Falabella
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
25
|
Wang G, Gou Y, Guo S, Zhou JJ, Liu C. RNA interference of trehalose-6-phosphate synthase and trehalase genes regulates chitin metabolism in two color morphs of Acyrthosiphon pisum Harris. Sci Rep 2021; 11:948. [PMID: 33441844 PMCID: PMC7806880 DOI: 10.1038/s41598-020-80277-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Trehalose-6-phosphate synthase (TPS) and trehalase (TRE) directly regulate trehalose metabolism and indirectly regulate chitin metabolism in insects. Real-time quantitative PCR (RT-qPCR) and RNA interference (RNAi) were used to detect the expressions and functions of the ApTPS and ApTRE genes. Abnormal phenotypes were found after RNAi of ApTRE in the Acyrthosiphon pisum. The molting deformities were observed in two color morphs, while wing deformities were only observed in the red morphs. The RNAi of ApTPS significantly down-regulated the expression of chitin metabolism-related genes, UDP-N-acetyglucosamine pyrophosphorylase (ApUAP), chitin synthase 2 (Apchs-2), Chitinase 2, 5 (ApCht2, 5), endo-beta-N-acetylglucosaminidase (ApENGase) and chitin deacetylase (ApCDA) genes at 24 h and 48 h; The RNAi of ApTRE significantly down-regulated the expression of ApUAP, ApCht1, 2, 8 and ApCDA at 24 h and 48 h, and up-regulated the expression of glucose-6-phosphate isomerase (ApGPI) and Knickkopf protein (ApKNK) genes at 48 h. The RNAi of ApTRE and ApTPS not only altered the expression of chitin metabolism-related genes but also decreased the content of chitin. These results demonstrated that ApTPS and ApTRE can regulate the chitin metabolism, deepen our understanding of the biological functions, and provide a foundation for better understanding the molecular mechanism of insect metamorphosis.
Collapse
Affiliation(s)
- Guang Wang
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Yuping Gou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Sufan Guo
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Jing-Jiang Zhou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Changzhong Liu
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| |
Collapse
|
26
|
Thermal degradation and lifetime of β-chitin from Dosidicus gigas squid pen: Effect of impact at 9.7 GPa and a comparative study with α-chitin. Carbohydr Polym 2021; 251:116987. [PMID: 33142559 DOI: 10.1016/j.carbpol.2020.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
The kinetics of thermal degradation of β-chitin extracted from Dosidicus gigas squid pen, was studied at normal conditions as well as after being subjected to the action of high-pressure impact of 9.7 GPa. The integral iso-conversional procedure of Kissinger-Akahira-Sunose (KAS) recommended by the ICTAC kinetics committee was applied to the non-isothermal data obtained from thermogravimetry (TGA). Lifetimes were predicted without assumption of any reaction model. Heating rates of β = 10, 15, 20 and 25 °C/min under nitrogen atmosphere were used from room temperature to 1300 °C. A comparative study with α-chitin was performed. All the samples were structurally and chemically characterized by several techniques. The extracted β-chitin was found to be in the monohydrate form; while with the action of high-pressure impact, it was transformed into β-chitin dehydrate showing slightly higher stability. Reliable prediction for lifetimes considering working temperatures over 425 K was found for α and β-chitin.
Collapse
|
27
|
The Developmental Transcriptome of Bagworm, Metisa plana (Lepidoptera: Psychidae) and Insights into Chitin Biosynthesis Genes. Genes (Basel) 2020; 12:genes12010007. [PMID: 33374651 PMCID: PMC7822449 DOI: 10.3390/genes12010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/11/2023] Open
Abstract
Bagworm, Metisa plana (Lepidoptera: Psychidae) is a ubiquitous insect pest in the oil palm plantations. M. plana infestation could reduce the oil palm productivity by 40% if it remains untreated over two consecutive years. Despite the urgency to tackle this issue, the genome and transcriptome of M. plana have not yet been fully elucidated. Here, we report a comprehensive transcriptome dataset from four different developmental stages of M. plana, comprising of egg, third instar larva, pupa and female adult. The de novo transcriptome assembly of the raw data had produced a total of 193,686 transcripts, which were then annotated against UniProt, NCBI non-redundant (NR) database, Gene Ontology, Cluster of Orthologous Group, and Kyoto Encyclopedia of Genes and Genomes databases. From this, 46,534 transcripts were annotated and mapped to 146 known metabolic or signalling KEGG pathways. The paper further identified 41 differentially expressed transcripts encoding seven genes in the chitin biosynthesis pathways, and their expressions across each developmental stage were further analysed. The genetic diversity of M. plana was profiled whereby there were 21,516 microsatellite sequences and 379,895 SNPs loci found in the transcriptome of M. plana. These datasets add valuable transcriptomic resources for further study of developmental gene expression, transcriptional regulations and functional gene activities involved in the development of M. plana. Identification of regulatory genes in the chitin biosynthesis pathway may also help in developing an RNAi-mediated pest control management by targeting certain pathways, and functional studies of the genes in M. plana.
Collapse
|
28
|
Dong Y, Hu S, Zhao X, He Q, Yang Q, Zhang L. Virtual screening, synthesis, and bioactivity evaluation for the discovery of β-N-acetyl-D-hexosaminidase inhibitors. PEST MANAGEMENT SCIENCE 2020; 76:3030-3037. [PMID: 32248665 DOI: 10.1002/ps.5852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Molting is an essential insect developmental process, in which a variety of enzymes are involved. The inhibition of these enzymes effect normal insect growth and development and may even cause death. OfHex1, one of the β-N-acetyl-D-hexosaminidases, is a key enzyme involved in the molting process of the Asian corn borer (Ostrinia furnacalis), and is deemed a potential insecticidal target. RESULTS Based on the crystal structure of OfHex1, virtual screening was carried out to obtain a novel class of OfHex1 inhibitors, of which, 28 compounds were subjected to bioactivity evaluation. The compound 3, N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)benzamide, showed good inhibition against OfHex1 with a Ki value of 11.2 μM. Structure optimization and molecular docking were applied for the structure-activity relationship analysis. The results also showed that the cyano group of this compound was essential for the maintenance of its inhibitory activity against OfHex1. Additionally, the interaction between this compound and Trp490, Glu328, Tyr475 and Trp524 were important for inhibitory activity. CONCLUSION The advantages of the derivatives of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile, which have simple chemical structures and are easily synthesized, suggests them to be developed further as potential OfHex1 inhibitors for pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Song Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiao Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qi He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Mahmood S, Kumar M, Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Novel insecticidal chitinase from the insect pathogen Xenorhabdus nematophila. Int J Biol Macromol 2020; 159:394-401. [PMID: 32422264 DOI: 10.1016/j.ijbiomac.2020.05.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022]
Abstract
Xenorhabdus nematophila strain ATCC 19061 is an insect pathogen that produces various protein toxins which intoxicate and kill its larval host. In the present study, we have described the cloning, expression and characterization of a 76-kDa chitinase protein of X. nematophila. A 1.9 kb DNA sequence encoding the chitinase gene was PCR amplified and cloned. Further, the chitinase protein was expressed in Escherichia coli and purified by using affinity chromatography. Two highly conserved domains were identified GH18 and ChiA. The purified chitinase protein showed chitobiosidase activity, β-N-acetylglucosaminidase and endochitinase activity, when enzyme activity was measured using respective substrates. The purified chitinase protein was found to be orally toxic to the larvae of a major crop pest, Helicoverpa armigera when fed to the larvae mixed with artificial diet. It also had adverse effect on the growth and development of the surviving larvae. Surviving larvae showed 9-fold reduction in weight, as a result the transformation of larvae into pupae was adversely affected. Our results demonstrated that the chitinase protein of X. nematophila has insecticidal property and can prove to be a potent candidate for pest control in plants.
Collapse
Affiliation(s)
- Saquib Mahmood
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mukesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
30
|
Adachi H, Matsuda K, Nishida K, Hanson P, Kondo S, Gotoh H. Structure and development of the complex helmet of treehoppers (Insecta: Hemiptera: Membracidae). ZOOLOGICAL LETTERS 2020; 6:3. [PMID: 32123574 PMCID: PMC7041272 DOI: 10.1186/s40851-020-00155-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 05/08/2023]
Abstract
Some insects possess complex three-dimensional (3D) structures that develop under the old cuticle prior to the last imaginal molt. Adult treehoppers (Insecta: Hemiptera: Auchenorrhyncha: Membracidae) have one such complex 3D structure, known as a helmet, on their dorsal side. The adult helmet likely forms inside the nymphal pronotum during the final instar nymphal stage. Previous morphological studies have reported that the adult helmet is a large, bi-layered, plywood-like structure, whereas the nymphal pronotum is a monolayer, sheath-like structure. The adult helmet is much larger than nymphal helmet. Thus, the emergence of the adult helmet involves two structural transitions: a transition from a monolayer, sheath-like pronotum to a bi-layer, plywood-like helmet, and a transition in size from small to large. However, when, how, and in what order these transitions occur within the nymphal cuticle is largely unknown. To determine how adult helmet development occurs under the nymphal cuticle, in the present study we describe the morphology of the final adult helmet and investigate developmental trajectories of the helmet during the final instar nymphal stage. We used micro-CT, scanning electron microscope and paraffin sections for morphological observations, and used Antianthe expansa as a model species. We found that the structural transition (from monolayer, sheath-like structure to bi-layer, roof-like structure) occurs through the formation of a "miniature" of the adult helmet during the middle stage of development and that subsequently, extensive folding and furrows form, which account for the increase in size. We suggest that the making of a "miniature" is the key developmental step for the formation of various 3D structures of treehopper helmets.
Collapse
Affiliation(s)
- Haruhiko Adachi
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka Japan
| | - Keisuke Matsuda
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka Japan
| | - Kenji Nishida
- Collaborator, Museo de Zoología, Universidad de Costa Rica and Estación Biológica Monteverde, Monteverde, Puntarenas, Costa Rica
| | - Paul Hanson
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | - Shigeru Kondo
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka Japan
| | - Hiroki Gotoh
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo, Hokkaido Japan
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540 Japan
| |
Collapse
|
31
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|
32
|
Omar MAA, Ao Y, Li M, He K, Xu L, Tong H, Jiang M, Li F. The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. INSECT MOLECULAR BIOLOGY 2019; 28:550-567. [PMID: 30739379 DOI: 10.1111/imb.12572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is a polyphagous insect that attacks tens of plant and causes substantial economic loss. Insect chitinases are required to remove the old cuticle to allow for continued growth and development. Though insect chitinases have been well studied in tens of insects, their functions in mealybug are still not addressed. Here, we sequenced the transcriptomes of adult males and females, from which eight chitinase genes were identified. We then used the method of rapid amplification of cDNA ends to amplify their full length. Phylogenetic analysis indicated that these genes clustered into five subgroups. Among which, group II PsCht2 had the longest transcript and was highly expressed at second instar nymph. PsCht10, PsCht3-3 and PsIDGF were highly expressed in the adult females, whereas PsCht4 and PsCht4-1 were significantly expressed at the male pupa and adult male. Next, we knocked down all eight chitinase genes by feeding the double-stranded RNA. Knockdown of PsCht4 or PsCht4-1 led to the failure of moult and, silencing PsCht5 resulted in pupation defect, while silencing PsCht10 led to small body size, suggesting these genes have essential roles in development and can be used as a potential target for pest control.
Collapse
Affiliation(s)
- Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Y Ao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - M Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - K He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - L Xu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - H Tong
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - M Jiang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - F Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Lyu Z, Chen J, Li Z, Cheng J, Wang C, Lin T. Knockdown of β-N-acetylglucosaminidase gene disrupts molting process in Heortia vitessoides Moore. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21561. [PMID: 31218752 DOI: 10.1002/arch.21561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
β-N-acetylglucosaminidase (NAG) is a key enzyme in insect chitin metabolism and plays an important role in many physiological activities of insects. The HvNAG1 gene was identified from the Heortia vitessoides Moore (Lepidoptera: Crambidae) cDNA library and its expression patterns were determined using quantitative real-time polymerase chain reaction. The results indicated that HvNAG1 mRNA levels were high in the midgut and before molting, and 20E could induce its expression. Subsequently, the HvNAG1 gene was knocked down via RNA interference to identify its functions. We found that 3 μg of dsNAG1 resulted in optimal interference at 48 and 72 hr after injection, causing a decrease in NAG1 protein content, which resulted in abnormal or lethal phenotypes, and a sharp decrease in the survival rate. These results indicate that HvNAG1 plays a key role in the molting process of H. vitessoides. However, the silencing of HvNAG1 had no significant effect on the chitin metabolism-related genes tested in this study. Our present study provides a reference for further research on the utility of key genes involved in the chitin metabolic pathway in the insect molting process.
Collapse
Affiliation(s)
- Zihao Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jingxiang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhixing Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jie Cheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunyan Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Chen W, Zhou Y, Yang Q. Structural dissection reveals a general mechanistic principle for group II chitinase (ChtII) inhibition. J Biol Chem 2019; 294:9358-9364. [PMID: 31053640 DOI: 10.1074/jbc.ra119.007812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Small-molecule inhibitors of insect chitinases have potential applications for controlling insect pests. Insect group II chitinase (ChtII) is the most important chitinase in insects and functions throughout all developmental stages. However, the possibility of inhibiting ChtII by small molecules has not been explored yet. Here, we report the structural characteristics of four molecules that exhibited similar levels of inhibitory activity against OfChtII, a group II chitinase from the agricultural pest Asian corn borer Ostrinia furnacalis These inhibitors were chitooctaose ((GlcN)8), dipyrido-pyrimidine derivative (DP), piperidine-thienopyridine derivative (PT), and naphthalimide derivative (NI). The crystal structures of the OfChtII catalytic domain complexed with each of the four inhibitors at 1.4-2.0 Å resolutions suggested they all exhibit similar binding modes within the substrate-binding cleft; specifically, two hydrophobic groups of the inhibitor interact with +1/+2 tryptophan and a -1 hydrophobic pocket. The structure of the (GlcN)8 complex surprisingly revealed that the oligosaccharide chain of the inhibitor is orientated in the opposite direction to that previously observed in complexes with other chitinases. Injection of the inhibitors into 4th instar O. furnacalis larvae led to defects in development and pupation. The results of this study provide insights into a general mechanistic principle that confers inhibitory activity against ChtII, which could facilitate rational design of agrochemicals that target ecdysis of insect pests.
Collapse
Affiliation(s)
- Wei Chen
- From the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China and
| | - Yong Zhou
- School of Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qing Yang
- From the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China and .,School of Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
35
|
Computational Study for the Unbinding Routes of β- N-Acetyl-d-Hexosaminidase Inhibitor: Insight from Steered Molecular Dynamics Simulations. Int J Mol Sci 2019; 20:ijms20061516. [PMID: 30917577 PMCID: PMC6471479 DOI: 10.3390/ijms20061516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
β-N-Acetyl-d-hexosaminidase from Ostrinia furnacalis (OfHex1) is a new target for the design of insecticides. Although some of its inhibitors have been found, there is still no commercial drug available at present. The residence time of the ligand may be important for its pharmacodynamic effect. However, the unbinding routes of ligands from OfHex1 still remain largely unexplored. In the present study, we first simulated the six dissociation routes of N,N,N-trimethyl-d-glucosamine-chitotriomycin (TMG-chitotriomycin, a highly selective inhibitor of OfHex1) from the active pocket of OfHex1 by steered molecular dynamics simulations. By comparing the potential of mean forces (PMFs) of six routes, Route 1 was considered as the most possible route with the lowest energy barrier. Furthermore, the structures of six different states for Route 1 were snapshotted, and the key amino acid residues affecting the dissociated time were analyzed in the unbinding pathway. Moreover, we also analyzed the "open⁻close" mechanism of Glu368 and Trp448 and found that their conformational changes directly affected the dissociation of TMG-chitotriomycin. Our findings would be helpful to understanding and identifying novel inhibitors against OfHex1 from virtual screening or lead-optimization.
Collapse
|
36
|
Harðardóttir HM, Male R, Nilsen F, Eichner C, Dondrup M, Dalvin S. Chitin synthesis and degradation in Lepeophtheirus salmonis: Molecular characterization and gene expression profile during synthesis of a new exoskeleton. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:123-133. [DOI: 10.1016/j.cbpa.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
|
37
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
38
|
Liu X, Zhang J, Zhu KY. Chitin in Arthropods: Biosynthesis, Modification, and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:169-207. [PMID: 31102247 DOI: 10.1007/978-981-13-7318-3_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
39
|
Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk. Mediators Inflamm 2018; 2018:9853192. [PMID: 30498395 PMCID: PMC6222239 DOI: 10.1155/2018/9853192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7. The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.
Collapse
|
40
|
Zhang X, Chang H, Dong Z, Zhang Y, Zhao D, Ye L, Xia Q, Zhao P. Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage. Proteomics 2018; 18:e1700389. [PMID: 29687606 DOI: 10.1002/pmic.201700389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/20/2018] [Indexed: 11/07/2022]
Abstract
The silk gland of silkworm produces silk proteins during larval development. Many studies have long focused on the silk gland of the fifth instar larvae, but few have investigated this gland at other larval stages. In the present study, the silk gland proteomes of the fourth instar and fourth molt are analyzed using liquid chromatography-tandem mass spectrometry. In total, 2654 proteins are identified from the silk gland. A high abundance of ribosomal proteins and RR-motif chitin-binding proteins is identified during day 2 of the fourth instar (IV-2) larval developmental stage, and the expression of cuticular proteins analogous to peritrophin (CPAP)-motif chitin-binding proteins is higher during the fourth molt (IV-M). In all, nine enzymes are found to be involved in the chitin regeneration pathway in the silk gland. Among them, two chitinase and two chitin deacetylases are identified as CPAP-motif proteins. Furthermore, the expression of CPAP3-G, the most abundant CPAP-motif cuticular protein in the silk gland during the IV-M stage, is investigated using western blot and immunofluorescence analyses; CPAP3-G shows a reverse changing trend with chitin in the silk gland. The findings of this study suggest that CPAP-motif chitin-binding proteins are involved in the degradation of the chitin layer in the silk gland. The data have been deposited to the ProteomeXchange with identifier PXD008677.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China.,College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Lin Ye
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, P. R. China
| |
Collapse
|
41
|
Liu SH, Li HF, Yang Y, Yang RL, Yang WJ, Jiang HB, Dou W, Smagghe G, Wang JJ. Genome-wide identification of chitinase and chitin deacetylase gene families in the oriental fruit fly, Bactrocera dorsalis (Hendel). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:13-22. [PMID: 29733998 DOI: 10.1016/j.cbd.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/03/2023]
Abstract
Chitinases (Chts) and chitin deacetylases (CDAs) are important enzymes required for chitin metabolism in insects. In this study, 12 Cht-related genes (including seven Cht genes and five imaginal disc growth factor genes) and 6 CDA genes (encoding seven proteins) were identified in Bactrocera dorsalis using genome-wide searching and transcript profiling. Based on the conserved sequences and phylogenetic relationships, 12 Cht-related proteins were clustered into eight groups (group I-V and VII-IX). Further domain architecture analysis showed that all contained at least one chitinase catalytic domain, however, only four (BdCht5, BdCht7, BdCht8 and BdCht10) possessed chitin-binding domains. The subsequent phylogenetic analysis revealed that seven CDAs were clustered into five groups (group I-V), and all had one chitin deacetylase catalytic domain. However, only six exhibited chitin-binding domains. Finally, the development- and tissue-specific expression profiling showed that transcript levels of the 12 Cht-related genes and 6 CDA genes varied considerably among eggs, larvae, pupae and adults, as well as among different tissues of larvae and adults. Our findings illustrate the structural differences and expression patterns of Cht and CDA genes in B. dorsalis, and provide important information for the development of new pest control strategies based on these vital enzymes.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, PR China
| | - Hong-Fei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, PR China
| | - Wen-Jia Yang
- Key & Special Laboratory of Guizhou Education Department for Pest Control and Resource Utilization, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, PR China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, PR China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, PR China; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
42
|
Gedling CR, Smith CM, LeMoine CMR, Cassone BJ. The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity. PLoS One 2018; 13:e0192003. [PMID: 29377955 PMCID: PMC5788362 DOI: 10.1371/journal.pone.0192003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant's defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle "regurgitome" and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions.
Collapse
Affiliation(s)
- Cassidy R. Gedling
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States of America
| | | | | | - Bryan J. Cassone
- Department of Biology, Brandon University, Brandon, MB, Canada
- * E-mail:
| |
Collapse
|
43
|
Zhou F, Zhou K, Huang J, Yang Q, Jiang S, Qiu L, Yang L, Jiang S. Characterization and expression analysis of a chitinase gene (PmChi-5) from black tiger shrimp (Penaeus monodon) under pathogens infection and ambient ammonia-N stress. FISH & SHELLFISH IMMUNOLOGY 2018; 72:117-123. [PMID: 29100985 DOI: 10.1016/j.fsi.2017.10.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/25/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Chitinases are crucial enzymes for crustaceans. Previous researches had already revealed that chitinases play important roles in digestion, molting and defense against viruses. In the present study, a chitinase cDNA was identified from black tiger shrimp (Penaeus monodon) and designated as PmChi-5. The full-length PmChi-5 cDNA was 2860 bp in size, containing an open reading frame (ORF) of 1731 bp that encoded a protein of 576 amino acids with a deduced molecular weight of 64.8 kDa. Expression of the PmChi-5 mRNA was ubiquitously detected in all selected tissues, with the highest level in the gill and hepatopancreas. PmChi-5 was expressed throughout the whole larvae stages, and the highest level at Mysis3 stage, which indicated that PmChi-5 may be involved in larval metamorphosis. After challenged with Streptococcus agalactiae and Vibrio harveyi, the transcripts of PmChi-5 were found to be up-regulated significantly both in hepatopancreas and gill. Besides, the ammonia nitrogen stress treatment was also carried out, PmChi-5 transcripts were significantly changed in hepatopancreas and gill. The results showed that PmChi-5 may be involved in molting, larval metamorphosis, the immune defenses to pathogens infection and ammonia-N stress.
Collapse
Affiliation(s)
- Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Kaimin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China.
| |
Collapse
|
44
|
Murata Y, Osakabe M. Developmental Phase-Specific Mortality After Ultraviolet-B Radiation Exposure in the Two-Spotted Spider Mite. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1448-1455. [PMID: 29069313 DOI: 10.1093/ee/nvx169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
45
|
Thorat L, Oulkar D, Banerjee K, Gaikwad SM, Nath BB. High-throughput mass spectrometry analysis revealed a role for glucosamine in potentiating recovery following desiccation stress in Chironomus. Sci Rep 2017; 7:3659. [PMID: 28623254 PMCID: PMC5473918 DOI: 10.1038/s41598-017-03572-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
Desiccation tolerance is an essential survival trait, especially in tropical aquatic organisms that are vulnerable to severe challenges posed by hydroperiodicity patterns in their habitats, characterized by dehydration-rehydration cycles. Here, we report a novel role for glucosamine as a desiccation stress-responsive metabolite in the underexplored tropical aquatic midge, Chironomus ramosus. Using high- throughput liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis, biochemical assays and gene expression studies, we confirmed that glucosamine was essential during the recovery phase in C. ramosus larvae. Additionally, we demonstrated that trehalose, a known stress-protectant was crucial during desiccation but did not offer any advantage to the larvae during recovery. Based on our findings, we emphasise on the collaborative interplay of glucosamine and trehalose in conferring overall resilience to desiccation stress and propose the involvement of the trehalose-chitin metabolic interface in insects as one of the stress-management strategies to potentiate recovery post desiccation through recruitment of glucosamine.
Collapse
Affiliation(s)
- Leena Thorat
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Dasharath Oulkar
- National Referral Laboratory, National Research Centre for Grapes, Pune, 412307, India
| | - Kaushik Banerjee
- National Referral Laboratory, National Research Centre for Grapes, Pune, 412307, India
| | - Sushama M Gaikwad
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
46
|
Fan XJ, Yang C, Zhang C, Ren H, Zhang JD. Cloning, Site-Directed Mutagenesis, and Functional Analysis of Active Residues in Lymantria dispar Chitinase. Appl Biochem Biotechnol 2017; 184:12-24. [PMID: 28577192 DOI: 10.1007/s12010-017-2524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Chitinases are glycosyl hydrolases that catalyze the hydrolysis of β-(1,4)-glycosidic bonds in chitin, the major structural polysaccharide presented in the cuticle and gut peritrophic matrix of insects. Two aspartate residues (D143, D145) and one tryptophan (W146) in the Lymantria dispar chitinase are highly conserved residues observed within the second conserved motif of the family 18 chitinase catalytic region. In this study, a chitinase cDNA, LdCht5, was cloned from L. dispar, and the roles of the three residues were investigated using site-directed mutagenesis and substituting them with three other amino acids. Seven mutant proteins, D143E, D145E, W146G, D143E/D145E, D143E/W146G, D145E/W146G, and D143E/D145E/W146G, as well as the wild-type enzyme, were produced using the baculovirus-insect cell line expression system. The enzymatic and kinetic properties of these mutant enzymes were measured using the oligosaccharide substrate MU-(GlcNAc)3. Among the seven mutants, the D145E, D143E/D145E, and D145E/W146G mutations kept some extant catalytic activity toward MU-(GlcNAc)3, while the D143E, W146G, D143E/W146G, and D143E/D145E/W146G mutant enzymes were inactivated. Compared with the mutant enzymes, the wild-type enzyme had higher values of k cat and k cat / K m . A study of the multiple point mutations in the second conserved catalytic region would help to elucidate the role of the critical residues and their relationships.
Collapse
Affiliation(s)
- Xiao-Jun Fan
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Chun Yang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Chang Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Hui Ren
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China.
| |
Collapse
|
47
|
Ikeda M, Kakizaki H, Matsumiya M. Biochemistry of fish stomach chitinase. Int J Biol Macromol 2017; 104:1672-1681. [PMID: 28365290 DOI: 10.1016/j.ijbiomac.2017.03.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/04/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Fish are reported to exhibit chitinase activity in the stomach. Analyses of fish stomach chitinases have shown that these enzymes have the physiological function of degrading chitinous substances ingested as diets. Osteichthyes, a group that includes most of the fishes, have several chitinases in their stomachs. From a phylogenetic analysis of the chitinases of vertebrates, these particular molecules were classified into a fish-specific group and have different substrate specificities, suggesting that they can degrade ingested chitinous substances efficiently. On the other hand, it has been suggested that coelacanth (Sarcopterygii) and shark (Chondrichthyes) have a single chitinase enzyme in their stomachs, which shows multiple functions. This review focuses on recent research on the biochemistry of fish stomach chitinases.
Collapse
Affiliation(s)
- Mana Ikeda
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiromi Kakizaki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Masahiro Matsumiya
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
48
|
Chen C, Yang H, Tang B, Yang WJ, Jin DC. Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:19-28. [PMID: 28363844 DOI: 10.1016/j.cbpb.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023]
Abstract
Chitinase is used to degrade chitin in insect cuticles and the peritrophic matrix. In this study, the full-length cDNA sequence of a Cht gene (SfCht7) was identified and characterized from the white-black planthopper, Sogatella furcifera. The SfCht7 cDNA was 3148bp, contained an open reading frame of 2877bp and encoded 958 amino acids with a predicted molecular weight of 107.9kDa. Homology analysis indicated that SfCht7 has typical chitinase features include a chitin-binding domain, two catalytic domains and a signal peptide region. Phylogenetic analysis suggested that SfCht7 belonged to the group III chitinases. Quantitative real-time PCR analyses showed that SfCht7 was highly expressed before molting. After injecting SfCht7 double-stranded RNA in the nymph stage, insects exhibited phenotypes of difficulty in molting and wing development. A lethal phenotype was that nymph bodies exuviated from the head but the old cuticle did not detach completely from the body. Another lethal phenotype was that elongated distal wing pads of fifth-instar nymphs with junctions between the thorax and abdomen in the treatment group that were thinner than in the control group, giving a "wasp-waisted" appearance. In another phenotype that was not lethal, nymphs exuviated and old cuticles detached completely from the body, but the wings of adults did not stretch normally.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; College of Tobacco Science of Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Wen-Jia Yang
- Key & Special Laboratory of Guizhou Education Department for Pest Control and Resource Utilization, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
49
|
Macedo L, Antonino de Souza Junior J, Coelho R, Fonseca F, Firmino A, Silva M, Fragoso R, Albuquerque E, Silva M, de Almeida Engler J, Terra W, Grossi-de-Sa M. Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biori.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Liao ZH, Kuo TC, Kao CH, Chou TM, Kao YH, Huang RN. Identification of the chitinase genes from the diamondback moth, Plutella xylostella. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:769-780. [PMID: 27417424 DOI: 10.1017/s0007485316000511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.
Collapse
Affiliation(s)
- Z H Liao
- Department of Life Science,National Central University,Chung-Li,Taoyuan,Taiwan 320,ROC
| | - T C Kuo
- Department of Biochemistry,Taipei Medical University,250 Wu-Hsing Street,Taipei 110,Taiwan
| | - C H Kao
- Applied Zoology Division,Taiwan Agricultural Research Institute,Council of Agriculture,Executive Yua,Wufeng,Taichung 41362,Taiwan
| | - T M Chou
- Applied Zoology Division,Taiwan Agricultural Research Institute,Council of Agriculture,Executive Yua,Wufeng,Taichung 41362,Taiwan
| | - Y H Kao
- Department of Life Science,National Central University,Chung-Li,Taoyuan,Taiwan 320,ROC
| | - R N Huang
- Department of Entomology,College of Bioresources and Agriculture, National Taiwan University,Taipei 106,Taiwan
| |
Collapse
|