1
|
Montaño KJ, Cuéllar C, Sotillo J. Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Front Cell Infect Microbiol 2021; 11:639573. [PMID: 33968800 PMCID: PMC8100317 DOI: 10.3389/fcimb.2021.639573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Soil-transmitted helminths (STH) affect hundreds of millions worldwide and are some of the most important neglected tropical diseases in terms of morbidity. Due to the difficulty in studying STH human infections, rodent models have become increasingly used, mainly because of their similarities in life cycle. Ascaris suum and Trichuris muris have been proven appropriate and low maintenance models for the study of ascariasis and trichuriasis. In the case of hookworms, despite most of the murine models do not fully reproduce the life cycle of Necator americanus, their proteomic similarity makes them highly suitable for the development of novel vaccine candidates and for the study of hookworm biological features. Furthermore, these models have been helpful in elucidating some basic aspects of our immune system, and are currently being used by numerous researchers to develop novel molecules with immunomodulatory proteins. Herein we review the similarities in the proteomic composition between Nippostrongylus brasiliensis, Heligmosomoides polygyrus bakeri and Trichuris muris and their respective human counterpart with a focus on the vaccine candidates and immunomodulatory proteins being currently studied.
Collapse
Affiliation(s)
- Karen J Montaño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Selenium status alters the immune response and expulsion of adult Heligmosomoides bakeri worms in mice. Infect Immun 2013; 81:2546-53. [PMID: 23649095 DOI: 10.1128/iai.01047-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri worms from a challenge infection was delayed in selenium (Se)-deficient mice. In order to explore mechanisms associated with the delayed expulsion, 3-week-old female BALB/c mice were placed on a torula yeast-based diet with or without 0.2 ppm Se, and after 5 weeks, they were inoculated with H. bakeri infective third-stage larvae (L3s). Two weeks after inoculation, the mice were treated with an anthelmintic and then rested, reinoculated with L3s, and evaluated at various times after reinoculation. Analysis of gene expression in parasite-induced cysts and surrounding tissue isolated from the intestine of infected mice showed that the local-tissue Th2 response was decreased in Se-deficient mice compared to that in Se-adequate mice. In addition, adult worms recovered from Se-deficient mice had higher ATP levels than worms from Se-adequate mice, indicating greater metabolic activity in the face of a suboptimal Se-dependent local immune response. Notably, the process of worm expulsion was restored within 2 to 4 days after feeding a Se-adequate diet to Se-deficient mice. Expulsion was associated with an increased local expression of Th2-associated genes in the small intestine, intestinal glutathione peroxidase activity, secreted Relm-β protein, anti-H. bakeri IgG1 production, and reduced worm fecundity and ATP-dependent metabolic activity.
Collapse
|
3
|
Shinya R, Morisaka H, Takeuchi Y, Ueda M, Futai K. Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach. PHYTOPATHOLOGY 2010; 100:1289-97. [PMID: 21062170 DOI: 10.1094/phyto-04-10-0109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pine wilt disease, caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, has become of worldwide quarantine concern in recent years. Here, we disclosed the surface coat (SC) proteins of the PWN which are thought to be one of the key components in pine wilt development. This is the first report that focused on the SC proteins and thoroughly identified those proteins of a plant-parasitic nematode using the proteomic approach. In this study, SC protein profiles were compared for PWNs grown on the fungus Botrytis cinerea and in host pine seedlings. The results demonstrated that the gross amount of PWN SC proteins drastically increased during infection of the host pine. Thirty-seven protein bands showed significant quantity differences between fungus-grown and host-origin PWNs, and were used for identification by matrix-assisted laser desorption ionization time of flight mass spectrometry analysis. These included several proteins that are presumed to be involved in the host immune response; for example, regulators of reactive oxygen species (ROS) and a ROS scavenger. These results might suggest that the PWN SC proteins are crucial in modulating or evading host immune response. Our data provide a new insight into the mechanism of pine wilt disease and the biological role of the SC proteins of plant-parasitic nematodes.
Collapse
|
4
|
Abstract
Oesophagostomum dentatum stages were investigated for glutathione S-transferase (GST) expression at the protein and mRNA levels. GST activity was detected in all stages (infectious and parasitic stages including third- and fourth-stage larvae of different ages as well as males and females) and could be dose-dependently inhibited with sulfobromophthalein (SBP). Addition of SBP to in vitro larval cultures reversibly inhibited development from third- to fourth-stage larvae. Two glutathione-affinity purified proteins (23 and 25 kDa) were detected in lysates of exsheathed third-stage larvae by SDS-PAGE. PCR-primers were designed based on peptide sequences and conserved GST sequences of other nematodes for complete cDNA sequences (621 and 624 nt) of 2 isoforms, Od-GST1 and Od-GST2, with 72% nucleotide similarity and 75% for the deduced proteins. Genomic sequences consisted of 7 exons and 6 introns spanning 1296 bp for Od-GST1 and 1579 and 1606 bp for Od-GST2. Quantitative real-time-PCR revealed considerably elevated levels of Od-GST1 in the early parasitic stages and slightly reduced levels of Od-GST2 in male worms. Both Od-GSTs were most similar to GST of Ancylostoma caninum (nucleotides: 73 and 70%; amino acids: 80 and 73%). The first three exons (75 amino acids) corresponded to a synthetic prostaglandin D2 synthase (53% similarity). O. dentatum GSTs might be involved in intrinsic metabolic pathways which could play a role both in nematode physiology and in host-parasite interactions.
Collapse
|
5
|
Enzymatic antioxidant systems in helminth parasites. Parasitol Res 2009; 105:593-603. [PMID: 19462181 DOI: 10.1007/s00436-009-1483-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Parasitic helminths have a coexistence with mammalian hosts whereby they survive for several years in known hostile conditions of their hosts. Many explanations exist describing how these parasitic helminths are able to survive. In the last years, a lot of studies have focused on both enzymatic and non-enzymatic antioxidant systems now shown to exist in these parasites and which may serve as defence tactics against the host-generated oxygen radicals. The relevance of antioxidant enzymes is confirmed by the fact that some of these molecules represent putative protective anti-parasite vaccines (i.e. in schistosomiasis). This review tries to compile what is known to date of the enzymatic antioxidant systems in selected parasitic helminths.
Collapse
|
6
|
Kristan DM. Chronic calorie restriction increases susceptibility of laboratory mice (Mus musculus) to a primary intestinal parasite infection. Aging Cell 2007; 6:817-25. [PMID: 17973970 DOI: 10.1111/j.1474-9726.2007.00345.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Long-term calorie restriction (CR) has numerous benefits; however, effects of CR on susceptibility to intact pathogens are not well understood. Because CR enhances immune function of laboratory mice (Mus musculus), it was hypothesized that mice subjected to CR would be less susceptible to experimental infections of the intestinal parasite Heligmosomoides bakeri. Furthermore, because H. bakeri must combat a greater host immune response by CR mice compared to fully fed mice, it also was also hypothesized that (i) worms living in CR hosts would have lower reproduction than worms from ad libitum-fed mice, and (ii) CR mice would have a more female-biased sex ratio as male worms may be more vulnerable to host immune response than female worms. Mice were subjected to CR for 6.7 months and were then infected with H. bakeri for one additional month. As expected, CR mice had equal or enhanced immune response (eosinophils and immunoglobin G1 production) to H. bakeri infection compared to ad libitum-fed mice, and CR mice harbored a more female-biased sex ratio than ad libitum-fed mice. Contrary to predictions, CR mice had more worms than ad libitum-fed mice and the worms from CR mice produced more eggs than worms from ad libitum-fed mice. These data indicate that, despite the evidence that long-term CR enhances traditional measures of immune function, CR may actually increase susceptibility to intact parasite infection. Furthermore, changes in worm reproduction and differential survival of male vs. female worms may influence host-parasite transmission dynamics during long-term host CR.
Collapse
Affiliation(s)
- Deborah M Kristan
- Department of Biological Sciences, California State University, San Marcos, San Marcos, CA 92096, USA.
| |
Collapse
|
7
|
Bourgeois AC, Scott ME, Sabally K, Koski KG. Low dietary boron reduces parasite (nematoda) survival and alters cytokine profiles but the infection modifies liver minerals in mice. J Nutr 2007; 137:2080-6. [PMID: 17709446 DOI: 10.1093/jn/137.9.2080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although boron (B) is an essential trace mineral, any interactions that it may have with gastrointestinal (GI) nematode infections are unknown. This study explored whether low dietary B would: 1) alter survival or reproduction of Heligmosomoides bakeri (Nematoda); 2) modify the resulting cytokine response to this parasitic infection; or 3) influence liver mineral concentrations in the infected host. Balb/c mice were fed either a low-B (0.2 microg B/g), marginal (2.0 microg B/g), or control (12.0 microg B/g) diet. Diets commenced 3 wk before a primary infection and were fed for 4 wk (primary infection protocol) and 8-9 wk (challenge infection protocol). Mice were killed 6 d post-primary infection (d6ppi), or dewormed then reinfected (challenge infection protocol) and killed 14 or 21 d post-challenge infection (d14pci or d21pci, respectively). Low and marginal dietary B intakes impaired survival of the parasite, reduced intestinal inflammation, and modulated a broad range of cytokines and chemokines despite similar liver B concentrations in diet groups. Compared with control mice, cytokine production was lower following low and marginal B intakes at d6ppi but was elevated at d21pci. Serum alkaline phosphatase was higher at d6ppi than at d14pci and d21pci. Compared with d14pci, liver zinc, iron, and B concentrations were reduced at d21pci when worm numbers were also lower, whereas concentrations of sodium, potassium, molybdenum, chromium, and sulfur were higher. This study shows that parasite survival and cytokine and inflammatory responses are modified by dietary B intake but indicates that a GI nematode infection alters liver mineral concentrations.
Collapse
Affiliation(s)
- Annie-Claude Bourgeois
- Institute of Parasitology, McGill University (Macdonald Campus), Ste-Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
8
|
Bernal D, Carpena I, Espert AM, De la Rubia JE, Esteban JG, Toledo R, Marcilla A. Identification of proteins in excretory/secretory extracts of Echinostoma friedi (Trematoda) from chronic and acute infections. Proteomics 2006; 6:2835-43. [PMID: 16572468 DOI: 10.1002/pmic.200500571] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, we describe the investigation of Echinostoma friedi excretory/secretory products using a proteomic approach combined with the use of heterologous antibodies. We have identified 18 protein spots corresponding to ten proteins, including cytoskeletal proteins like actin, tropomyosin, and paramyosin; glycolytic enzymes like enolase, glyceraldehyde 3P dehydrogenase, and aldolase; detoxifying enzymes like GSTs; and stress proteins like heat shock protein (Hsp) 70. Among these proteins, both actin and, to a lesser extent, Hsp70, exhibited differential expression patterns between chronic and acute infections in the Echinostoma-rodent model, suggesting that these proteins may play a role in the survival within the host.
Collapse
Affiliation(s)
- Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències, Universitat de Valencia, Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Perbandt M, Höppner J, Betzel C, Walter RD, Liebau E. Structure of the major cytosolic glutathione S-transferase from the parasitic nematode Onchocerca volvulus. J Biol Chem 2005; 280:12630-6. [PMID: 15640152 DOI: 10.1074/jbc.m413551200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Onchocerciasis is a debilitating parasitic disease caused by the filarial worm Onchocerca volvulus. Similar to other helminth parasites, O. volvulus is capable of evading the host's immune responses by a variety of defense mechanisms, including the detoxification activities of the glutathione S-transferases (GSTs). Additionally, in response to drug treatment, helminth GSTs are highly up-regulated, making them tempting targets both for chemotherapy and for vaccine development. We analyzed the three-dimensional x-ray structure of the major cytosolic GST from O. volvulus (Ov-GST2) in complex with its natural substrate glutathione and its competitive inhibitor S-hexylglutathione at 1.5 and 1.8 angstrom resolution, respectively. From the perspective of the biochemical classification, the Ov-GST2 seems to be related to pi-class GSTs. However, in comparison to other pi-class GSTs, in particular to the host's counterpart, the Ov-GST2 reveals significant and unusual differences in the sequence and overall structure. Major differences can be found in helix alpha-2, an important region for substrate recognition. Moreover, the binding site for the electrophilic co-substrate is spatially increased and more solvent-accessible. These structural alterations are responsible for different substrate specificities and will form the basis of parasite-specific structure-based drug design investigations.
Collapse
Affiliation(s)
- Markus Perbandt
- Institute of Biochemistry and Foodchemistry, Department of Biochemistry and Molecularbiology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
van Rossum AJ, Jefferies JR, Rijsewijk FAM, LaCourse EJ, Teesdale-Spittle P, Barrett J, Tait A, Brophy PM. Binding of hematin by a new class of glutathione transferase from the blood-feeding parasitic nematode Haemonchus contortus. Infect Immun 2004; 72:2780-90. [PMID: 15102788 PMCID: PMC387910 DOI: 10.1128/iai.72.5.2780-2790.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phase II detoxification system glutathione transferase (GST) is associated with the establishment of parasitic nematode infections within the gastrointestinal environment of the mammalian host. We report the functional analysis of a GST from an important worldwide parasitic nematode of small ruminants, Haemonchus contortus. This GST shows limited activity with a range of classical GST substrates but effectively binds hematin. The high-affinity binding site for hematin was not present in the GST showing the most identity, CE07055 from the free-living nematode Caenorhabditis elegans. This finding suggests that the high-affinity binding of hematin may represent a parasite adaptation to blood or tissue feeding from the host.
Collapse
Affiliation(s)
- Arjan J van Rossum
- Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Adcock HJ, Brophy PM, Teesdale-Spittle PH, Buckberry LD. Cysteine conjugate beta-lyase activity in three species of parasitic helminth. Int J Parasitol 1999; 29:543-8. [PMID: 10428630 DOI: 10.1016/s0020-7519(99)00022-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Living organisms employ a variety of metabolic pathways when detoxifying xenobiotic compounds, including the formation of cysteine S-conjugates via glutathione conjugation. However, cysteine conjugate beta-lyase (CCBL) catalysed beta-cleavage, of certain cysteine conjugates, is known to cause cytotoxicity. This study represents the first investigation into the expression of CCBL and other associated enzymes in helminth species. A survey of the three major groups of parasitic helminths [cestodes (Moniezia expansa), digeneans (Fasciola hepatica) and nematodes (Necator americanus, Heligmosomoides polygyrus)] has been made. The presence of CCBL enzymes within Moniezia expansa, Necator americanus and Heligmosomoides polygyrus has been established. Each species was screened for gamma-glutamyl transpeptidase activity and transaminase activity towards L-aspartate, L-alanine, L-albizziin and L-phenylalanine. Aspartate and alanine aminotransferase activity were detected in all four species tested. Gamma-glutamyl transpeptidase activity was only detected in Moniezia expansa and Necator americanus.
Collapse
Affiliation(s)
- H J Adcock
- Department of Chemistry, De Montfort University, The Gateway, Leicester, UK
| | | | | | | |
Collapse
|