1
|
Lu W, Wen J. Metabolic reprogramming and astrocytes polarization following ischemic stroke. Free Radic Biol Med 2025; 228:197-206. [PMID: 39756488 DOI: 10.1016/j.freeradbiomed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Astrocytes are critical for maintaining neuronal activity. Activation of astrocytes, occurs within minutes from ischemic stroke onset due to ischemic causes and subsequent inflammatory damage. Activated astrocytes, also known as reactive astrocytes, are divided into two different phenotypes: A1 (pro-inflammatory) and A2 (anti-inflammatory) astrocytes. A2 astrocytes support neuronal survival and promote tissue healing, while A1 astrocytes have neurotoxic effects. Thus, polarization of reactive astrocyte into A1 or A2 genotype is closely correlated with the development of cerebral ischemia/reperfusion (I/R) injury. Metabolic reprogramming is a process that various metabolic pathways upregulate in cells to balance energy, alter their phenotype, and produce building-block requirements. A1 and A2 astrocytes display different metabolic reprogramming, such as glycolysis, glutamate uptake, and glycogenolysis. Accumulating evidence suggested that manipulation of energy metabolism homeostasis can induce astrocytes to switch from A1 to A2 phenotype. This review disucss the potential factors in affecting astrocytic polarization, emphasizes metabolic reprogramming in reactive astrocytes within the pathophysiological context of cerebral I/R, and explores the relationship between metabolic reprogramming and astrocytic polarization. Importantly, we reveal that regulating metabolic reprogramming in reactive astrocytes may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Albrecht J, Czuczwar SJ, Zielińska M, Miziak B. Methionine Sulfoximine as a Tool for Studying Temporal Lobe Epilepsy: Initiator, Developer, Attenuator. Neurochem Res 2025; 50:84. [PMID: 39843842 DOI: 10.1007/s11064-024-04329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures. Recently, a temporal lobe epilepsy (TLE) model based on local continuous infusion of MSO into the hippocampus has been developed reproducing the main features of human mesial TLE: induction of focal seizures, their spreading, increase in intensity over time, and development of spontaneous recurrent seizures. Fully developed TLE in this model is associated with hippocampal degeneration, hallmarked by reactive astrogliosis, and causally related to the concomitant loss of GS-containing astrocytes. By contrast, short-term pre-exposure of rats to relatively low MSO doses that only moderately inhibited GS, attenuated and delayed the initial seizures in the lithium-pilocarpine model of TLE and in other seizure-associated contexts: in the pentylenetetrazole kindling model in rat, and in spontaneously firing or electrically stimulated brain slices. The anti-initial seizure activity of MSO may partly bypass inhibition of GS: the postulated mechanisms include: (i) decreased release of excitatory neurotransmitter Glu, (ii) prevention or diminution of seizure-associated brain edema, (iii) stimulation of glycogenesis, an energy-sparing process; (iv) central or peripheral hypothermia. Further work is needed to verify either of the above mechanisms.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
3
|
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas USA
- Department of Cell Biology and Physiology University of New Mexico School of Medicine Albuquerque New Mexico USA
| | - Lisa Gillinder
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Aileen McGonigal
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Karin Borges
- Faculty of Medicine School of Biomedical Sciences, University of Queensland St Lucia Queensland Australia
| |
Collapse
|
4
|
Dienel GA, Gillinder L, McGonigal A, Borges K. Potential new roles for glycogen in epilepsy. Epilepsia 2023; 64:29-53. [PMID: 36117414 PMCID: PMC10952408 DOI: 10.1111/epi.17412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Seizures often originate in epileptogenic foci. Between seizures (interictally), these foci and some of the surrounding tissue often show low signals with 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in many epileptic patients, even when there are no radiologically detectable structural abnormalities. Low FDG-PET signals are thought to reflect glucose hypometabolism. Here, we review knowledge about metabolism of glucose and glycogen and oxidative stress in people with epilepsy and in acute and chronic rodent seizure models. Interictal brain glucose levels are normal and do not cause apparent glucose hypometabolism, which remains unexplained. During seizures, high amounts of fuel are needed to satisfy increased energy demands. Astrocytes consume glycogen as an additional emergency fuel to supplement glucose during high metabolic demand, such as during brain stimulation, stress, and seizures. In rodents, brain glycogen levels drop during induced seizures and increase to higher levels thereafter. Interictally, in people with epilepsy and in chronic epilepsy models, normal glucose but high glycogen levels have been found in the presumed brain areas involved in seizure generation. We present our new hypothesis that as an adaptive response to repeated episodes of high metabolic demand, high interictal glycogen levels in epileptogenic brain areas are used to support energy metabolism and potentially interictal neuronal activity. Glycogenolysis, which can be triggered by stress or oxidative stress, leads to decreased utilization of plasma glucose in epileptogenic brain areas, resulting in low FDG signals that are related to functional changes underlying seizure onset and propagation. This is (partially) reversible after successful surgery. Last, we propose that potential interictal glycogen depletion in epileptogenic and surrounding areas may cause energy shortages in astrocytes, which may impair potassium buffering and contribute to seizure generation. Based on these hypotheses, auxiliary fuels or treatments that support glycogen metabolism may be useful to treat epilepsy.
Collapse
Affiliation(s)
- Gerald A. Dienel
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Cell Biology and PhysiologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Lisa Gillinder
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Aileen McGonigal
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical Sciences, University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
5
|
Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp Neurol 2021; 349:113966. [PMID: 34973964 DOI: 10.1016/j.expneurol.2021.113966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Astrocytic glycogen serves as an important glucose reserve, and its degradation provides extra support for neighboring neurons during energy deficiency. Salvianolic acid B (SAB) exerts a neuroprotective effect on reperfusion insult after cerebrovascular occlusion, but the effect of SAB on astrocytic glycogen and its relationship with neuroprotection are not completely understood. Here, we knocked down astrocyte-specific glycogen phosphorylase (GP, the rate-limiting enzyme in glycogenolysis) in vitro and in vivo and investigated the changes in key enzymes in glycogen metabolism by performing immunoblotting in vitro and immunofluorescence in vivo. Neurobehavioral and morphological assessments were conducted to uncover the outcomes during brain reperfusion. SAB accelerated astrocytic glycogenolysis by upregulating GP activity but not GP expression after reperfusion. Suppression of astrocytic glycogenolysis weakened SAB-mediated neuroprotection against the reperfusion insult. In addition, activation of glycogenolysis by SAB contributed to the survival of astrocytes and surrounding neurons by increasing antioxidant levels in astrocytes. Our data reveal that astrocytic GP represents an important metabolic target in SAB-induced protection against brain damage after cerebrovascular recanalization.
Collapse
|
6
|
Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L, Peng Z, Liu W, Hou W, Cai Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation 2021; 18:230. [PMID: 34645472 PMCID: PMC8513339 DOI: 10.1186/s12974-021-02284-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Astrocytic glycogen works as an essential energy reserve for surrounding neurons and is reported to accumulate excessively during cerebral ischemia/reperfusion (I/R) injury. Our previous study found that accumulated glycogen mobilization exhibits a neuroprotective effect against I/R damage. In addition, ischemia could transform astrocytes into A1-like (toxic) and A2-like (protective) subtypes. However, the underlying mechanism behind accumulated glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury and its relationship with the astrocytic A1/A2 paradigm is unknown. METHODS Astrocytic glycogen phosphorylase, the rate-limiting enzyme in glycogen mobilization, was specifically overexpressed and knocked down in mice and in cultured astrocytes. The I/R injury was imitated using a middle cerebral artery occlusion/reperfusion model in mice and an oxygen-glucose deprivation/reoxygenation model in cultured cells. Alterations in A1-like and A2-like astrocytes and the expression of phosphorylated nuclear transcription factor-κB (NF-κB) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were determined by RNA sequencing, immunofluorescence and immunoblotting. Metabolites, including glycogen, NADPH, glutathione and reactive oxygen species (ROS), were analyzed by biochemical analysis. RESULTS Here, we observed that astrocytic glycogen mobilization inhibited A1-like astrocytes and enhanced A2-like astrocytes after reperfusion in an experimental ischemic stroke model in vivo and in vitro. In addition, glycogen mobilization could enhance the production of NADPH and glutathione by the pentose phosphate pathway (PPP) and reduce ROS levels during reperfusion. NF-κB inhibition and STAT3 activation caused by a decrease in ROS levels were responsible for glycogen mobilization-induced A1-like and A2-like astrocyte transformation after I/R. The astrocytic A1/A2 paradigm is closely correlated with glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury. CONCLUSIONS Our data suggest that ROS-mediated NF-κB inhibition and STAT3 activation are the key pathways for glycogen mobilization-induced neuroprotection and provide a promising metabolic target for brain reperfusion injury in ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ze Fan
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lina Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Doutong Yu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Cai Y, Guo H, Fan Z, Zhang X, Wu D, Tang W, Gu T, Wang S, Yin A, Tao L, Ji X, Dong H, Li Y, Xiong L. Glycogenolysis Is Crucial for Astrocytic Glycogen Accumulation and Brain Damage after Reperfusion in Ischemic Stroke. iScience 2020; 23:101136. [PMID: 32446205 PMCID: PMC7240195 DOI: 10.1016/j.isci.2020.101136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/27/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Astrocytic glycogen is an important energy reserve in the brain and is believed to supply fuel during energy crisis. However, the pattern of glycogen metabolism in ischemic stroke and its potential therapeutic impact on neurological outcomes are still unknown. Here, we found extensive brain glycogen accumulation after reperfusion in ischemic stroke patients and primates. Glycogenolytic dysfunction in astrocytes is responsible for glycogen accumulation, caused by inactivation of the protein kinase A (PKA)-glycogen phosphorylase kinase (PhK)-glycogen phosphorylase (GP) cascade accompanied by the activation of glycogen synthase kinase-3β (GSK3β). Genetic or pharmacological augmentation of astrocytic GP could promote astrocyte and neuron survival and improve neurological behaviors. In addition, we found that insulin exerted a neuroprotective effect, at least in part by rescuing the PKA-PhK-GP cascade to maintain homeostasis of glycogen metabolism during reperfusion. Together, our findings suggest a promising intervention for undesirable outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Yanhui Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ze Fan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenhong Tang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tingting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Anqi Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liang Tao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Li
- Center for Brain Science & Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Translational Research Institute of Brain and Brain-Like Intelligence & Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| |
Collapse
|
8
|
Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med 2019; 48:2041-2051. [PMID: 29923147 DOI: 10.1007/s40279-018-0946-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095-1105, 2014) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.
Collapse
Affiliation(s)
- Kristy Martin
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia.
| | - Romain Meeusen
- Vrije Universiteit Brussel Human Performance Research Group, Brussels, Belgium
| | - Kevin G Thompson
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
- New South Wales Institute of Sport, Sydney, NSW, Australia
| | - Richard Keegan
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| |
Collapse
|
9
|
Öz G, DiNuzzo M, Kumar A, Moheet A, Khowaja A, Kubisiak K, Eberly LE, Seaquist ER. Cerebral glycogen in humans following acute and recurrent hypoglycemia: Implications on a role in hypoglycemia unawareness. J Cereb Blood Flow Metab 2017; 37:2883-2893. [PMID: 27834283 PMCID: PMC5536796 DOI: 10.1177/0271678x16678240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supercompensated brain glycogen levels may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) following recurrent hypoglycemia (RH) by providing energy for the brain during subsequent periods of hypoglycemia. To assess the role of glycogen supercompensation in the generation of HAAF, we estimated the level of brain glycogen following RH and acute hypoglycemia (AH). After undergoing 3 hyperinsulinemic, euglycemic and 3 hyperinsulinemic, hypoglycemic clamps (RH) on separate occasions at least 1 month apart, five healthy volunteers received [1-13C]glucose intravenously over 80+ h while maintaining euglycemia. 13C-glycogen levels in the occipital lobe were measured by 13C magnetic resonance spectroscopy at ∼8, 20, 32, 44, 56, 68 and 80 h at 4 T and glycogen levels estimated by fitting the data with a biophysical model that takes into account the tiered glycogen structure. Similarly, prior 13C-glycogen data obtained following a single hypoglycemic episode (AH) were fitted with the same model. Glycogen levels did not significantly increase after RH relative to after euglycemia, while they increased by ∼16% after AH relative to after euglycemia. These data suggest that glycogen supercompensation may be blunted with repeated hypoglycemic episodes. A causal relationship between glycogen supercompensation and generation of HAAF remains to be established.
Collapse
Affiliation(s)
- Gülin Öz
- 1 Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Mauro DiNuzzo
- 2 Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjali Kumar
- 3 Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Amir Moheet
- 3 Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Ameer Khowaja
- 3 Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Kristine Kubisiak
- 4 Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Lynn E Eberly
- 4 Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
10
|
Hong S, Ahn JY, Cho GS, Kim IH, Cho JH, Ahn JH, Park JH, Won MH, Chen BH, Shin BN, Tae HJ, Park SM, Cho JH, Choi SY, Lee JC. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia. Neural Regen Res 2015; 10:1604-11. [PMID: 26692857 PMCID: PMC4660753 DOI: 10.4103/1673-5374.167757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia.
Collapse
Affiliation(s)
- Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
11
|
Abstract
Objective: To analyze the mechanism of neuroprotection of insulin and which blood glucose range was benefit for insulin exerting neuroprotective action. Data Sources: The study is based on the data from PubMed. Study Selection: Articles were selected with the search terms “insulin”, “blood glucose”, “neuroprotection”, “brain”, “glycogen”, “cerebral ischemia”, “neuronal necrosis”, “glutamate”, “γ-aminobutyric acid”. Results: Insulin has neuroprotection. The mechanisms include the regulation of neurotransmitter, promoting glycogen synthesis, and inhibition of neuronal necrosis and apoptosis. Insulin could play its role in neuroprotection by avoiding hypoglycemia and hyperglycemia. Conclusions: Intermittent and long-term infusion insulin may be a benefit for patients with ischemic brain damage at blood glucose 6–9 mmol/L.
Collapse
Affiliation(s)
| | - Yu Pei
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Blanco AM, Gómez-Boronat M, Pérez-Maceira J, Mancebo MJ, Aldegunde M. Brain glycogen supercompensation after different conditions of induced hypoglycemia and sustained swimming in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2015; 187:55-60. [PMID: 25956213 DOI: 10.1016/j.cbpa.2015.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Brain glycogen is depleted when used as an emergency energy substrate. In mammals, brain glycogen levels rebound to higher than normal levels after a hypoglycemic episode and a few hours after refeeding or administration of glucose. This phenomenon is called glycogen supercompensation. However, this mechanism has not been investigated in lower vertebrates. The aim of this study was therefore to determine whether brain glycogen supercompensation occurs in the rainbow trout brain. For this purpose, short-term brain glucose and glycogen contents were determined in rainbow trout after being subjected to the following experimental conditions: i) a 5-day or 10-day fasting period and refeeding; ii) a single injection of insulin (4 mg kg(-1)) and refeeding; and iii) sustained swimming and injection of glucose (500 mg kg(-1)). Food deprivation during the fasting periods and insulin administration both induced a decrease in glucose and glycogen levels in the brain. However, only refeeding after 10 days of fasting significantly increased the brain glycogen content above control levels, in a clear short-term supercompensation response. Unlike in mammals, prolonged exercise did not alter brain glucose or glycogen levels. Furthermore, brain glycogen supercompensation was not observed after glucose administration in fish undergoing sustained swimming. To our knowledge, this is the first study providing direct experimental evidence for the existence of a short-term glycogen supercompensation response in a teleost brain, although the response was only detectable after prolonged fasting.
Collapse
Affiliation(s)
- A M Blanco
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Gómez-Boronat
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J Pérez-Maceira
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M J Mancebo
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Aldegunde
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Khowaja A, Choi IY, Seaquist ER, Öz G. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans. Metab Brain Dis 2015; 30:255-61. [PMID: 24676563 PMCID: PMC4392006 DOI: 10.1007/s11011-014-9530-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 01/31/2023]
Abstract
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.
Collapse
Affiliation(s)
- Ameer Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis 2015; 30:307-16. [PMID: 24643875 PMCID: PMC4169361 DOI: 10.1007/s11011-014-9524-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K(+) by astrocytes, thereby leading to increased extracellular K(+) and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K(+) homeostasis and increased susceptibility to seizures in epilepsy.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy,
| | | | | | | |
Collapse
|
15
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
16
|
Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation. Neurobiol Dis 2011; 45:177-87. [PMID: 21854850 DOI: 10.1016/j.nbd.2011.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/11/2011] [Accepted: 08/03/2011] [Indexed: 11/23/2022] Open
Abstract
The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H.
Collapse
|
17
|
Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 2011; 3:e00062. [PMID: 21722095 PMCID: PMC3153963 DOI: 10.1042/an20100029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia–ischaemia) injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2). Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein)-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase), EAAT-1 (excitatory amino acid transporter-1; also known as GLAST), MCT-1 (monocarboxylate transporter-1) and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP), which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.
Collapse
|
18
|
Tesfaye N, Seaquist ER, Oz G. Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J Neurosci Res 2011; 89:1905-12. [PMID: 21732401 DOI: 10.1002/jnr.22703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/19/2011] [Accepted: 05/02/2011] [Indexed: 11/11/2022]
Abstract
Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors, including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen noninvasively, but, in the past several years, the development of a noninvasive localized (13) C nuclear magnetic resonance (NMR) spectroscopy method has allowed the study of glycogen metabolism in the conscious human. With this technique, (13) C-glucose is administered intravenously, and its incorporation into and washout from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia, and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest that glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, (13) C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
19
|
Canada SE, Weaver SA, Sharpe SN, Pederson BA. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res 2011; 89:585-91. [PMID: 21259334 DOI: 10.1002/jnr.22579] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/11/2010] [Accepted: 11/16/2010] [Indexed: 11/07/2022]
Abstract
Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established.
Collapse
Affiliation(s)
- Sarah E Canada
- Indiana University School of Medicine, Muncie and Ball State University, Muncie, Indiana 47306, USA
| | | | | | | |
Collapse
|
20
|
Abstract
OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels ("supercompensates") after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo (13)C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [(13)C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-(13)C]glucose to prelabel glycogen, the rate of label wash-out from [1-(13)C]glycogen was higher (0.12 +/- 0.05 vs. 0.03 +/- 0.06 micromol x g(-1) x h(-1), means +/- SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 +/- 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 +/- 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25-50% enriched [1-(13)C]glucose over 22-54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 +/- 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 +/- 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P <or= 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans.
Collapse
Affiliation(s)
- Gülin Oz
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Walling SG, Rigoulot MA, Scharfman HE. Acute and chronic changes in glycogen phosphorylase in hippocampus and entorhinal cortex after status epilepticus in the adult male rat. Eur J Neurosci 2007; 26:178-89. [PMID: 17614948 PMCID: PMC2504499 DOI: 10.1111/j.1460-9568.2007.05657.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glial cells provide energy substrates to neurons, in part from glycogen metabolism, which is influenced by glycogen phosphorylase (GP). To gain insight into the potential subfield and laminar-specific expression of GP, histochemistry can be used to evaluate active GP (GPa) or totalGP (GPa + GPb). Using this approach, we tested the hypothesis that changes in GP would occur under pathological conditions that are associated with increased energy demand, i.e. severe seizures (status epilepticus or 'status'). We also hypothesized that GP histochemistry would provide insight into changes in the days and weeks after status, particularly in the hippocampus and entorhinal cortex, where there are robust changes in structure and function. One hour after the onset of pilocarpine-induced status, GPa staining was reduced in most regions of the hippocampus and entorhinal cortex relative to saline-injected controls. One week after status, there was increased GPa and totalGP, especially in the inner molecular layer, where synaptic reorganization of granule cell mossy fibre axons occurs (mossy fibre sprouting). In addition, patches of dense GP reactivity were evident in many areas. One month after status, levels of GPa and totalGP remained elevated in some areas, suggesting an ongoing role of GP or other aspects of glycogen metabolism, possibly due to the evolution of intermittent, recurrent seizures at approximately 3-4 weeks after status. Taken together, the results suggest that GP is dynamically regulated during and after status in the adult rat, and may have an important role in the pilocarpine model of epilepsy.
Collapse
Affiliation(s)
- Susan G. Walling
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, Rte 9 W, West Haverstraw, New York 10993–1195 USA
- Department of Psychology, Behavioural Neuroscience, Memorial University of Newfoundland, St. John’s, NL Canada
| | - Marie-Aude Rigoulot
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, Rte 9 W, West Haverstraw, New York 10993–1195 USA
- INSERM U 666, Faculty of Medicine, 11 rue Humann, Strasbourg Cedex, France
| | - Helen E. Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, Rte 9 W, West Haverstraw, New York 10993–1195 USA
- Departments of Pharmacology and Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Otori T, Friedland JC, Sinson G, McIntosh TK, Raghupathi R, Welsh FA. Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain. J Neurotrauma 2004; 21:707-18. [PMID: 15253799 DOI: 10.1089/0897715041269623] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that traumatic brain injury (TBI) increases the vulnerability of the brain to an acute episode of hypoxia-ischemia. The objective of the present study was to determine whether TBI alters the vulnerability of the brain to a delayed episode of ischemia and, if so, to identify contributing mechanisms. Sprague-Dawley rats were subjected to lateral fluid-percussion (FP) brain injury (n = 14) of moderate severity (2.3-2.5 atm), or sham-injury (n = 12). After recovery for 24 h, all animals underwent an 8-min episode of forebrain ischemia, followed by survival for 6 days. Ischemic damage in the hippocampus and cerebral cortex of the FP-injured hemisphere was compared to that in the contralateral hemisphere and to that in sham-injured animals. Remarkably, the number of surviving CA(1) neurons in the middle and lateral segments of the hippocampus in the FP-injured hemisphere was significantly greater than that in the contralateral hemisphere and sham-injured animals (p < 0.05). Likewise, in the cerebral cortex the number of damaged neurons tended to be lower in the FP-injured hemisphere than in the contralateral hemisphere. These results suggest that TBI decreased the vulnerability of the brain to a delayed episode of ischemia. To determine whether TBI triggers protective metabolic alterations, glycogen levels were measured in cerebral cortex and hippocampus in additional animals 24 h after FP-injury (n = 13) or sham-injury (n = 7). Cortical glycogen levels in the ipsilateral hemisphere increased to 12.9 +/- 6.4 mmol/kg (mean +/- SD), compared to 6.4 +/- 1.8 mmol/kg in the opposite hemisphere and 5.7 +/- 1.3 mmol/kg in sham-injured animals (p < 0.001). Similarly, in the hippocampus glycogen levels in the FP-injured hemisphere increased to 13.4 +/- 4.9 mmol/kg, compared to 8.1 +/- 2.4 mmol/kg in the contralateral hemisphere (p < 0.004) and 6.2 +/- 1.5 mmol/kg in sham-injured animals (p < 0.001). These results demonstrate that TBI triggers a marked accumulation of glycogen that may protect the brain during ischemia by serving as an endogenous source of metabolic energy.
Collapse
Affiliation(s)
- Tatsuo Otori
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
23
|
Oz G, Henry PG, Seaquist ER, Gruetter R. Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 2003; 43:323-9. [PMID: 12742076 DOI: 10.1016/s0197-0186(03)00019-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The concentration and metabolism of the primary carbohydrate store in the brain, glycogen, is unknown in the conscious human brain. This study reports the first direct detection and measurement of glycogen metabolism in the human brain, which was achieved using localized 13C NMR spectroscopy. To enhance the NMR signal, the isotopic enrichment of the glucosyl moieties was increased by administration of 80 g of 99% enriched [1-13C]glucose in four subjects. 3 h after the start of the label administration, the 13C NMR signal of brain glycogen C1 was detected (0.36+/-0.07 micromol/g, mean+/-S.D., n=4). Based on the rate of 13C label incorporation into glycogen and the isotopic enrichment of plasma glucose, the flux through glycogen synthase was estimated at 0.17+/-0.05 micromol/(gh). This study establishes that brain glycogen can be measured in humans and indicates that its metabolism is very slow in the conscious human. The noninvasive detection of human brain glycogen opens the prospect of understanding the role and function of this important energy reserve under various physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Gülin Oz
- Department of Radiology, Center for MR Research, University of Minnesota, 2021 6th St. S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The brain contains a small but significant amount of glycogen, which has long been considered to play an insignificant role in the brain. In this study, brain glycogen metabolism was measured using (13)C NMR spectroscopy at 9.4 T. Brain glycogen metabolism was modulated by hyperinsulinemia resulting in a net accumulation. The role of glycogen in maintaining brain function is unknown; one possibility is that it may serve as an endogenous glucose reservoir to protect the brain against severe hypoglycemia. To address this possibility, rats were subjected to insulin-induced moderate hypoglycemia and when the level of brain glucose approached zero, brain glycogen content began to decrease gradually, demonstrating utilization of this glucose reservoir. The brain glycogen signal never became undetectable, however, even during 2 hr of hypoglycemia. When plasma and brain glucose concentrations were restored, glycogen increased and the concentration exceeded the pre-hypoglycemic level by several-fold. The data suggest that brain glycogen can provide fuel for extended periods of time when glucose supply is inadequate. Furthermore, brain glycogen can rebound (super-compensate) after a single episode of hypoglycemia. We postulate that brain glycogen serves as an energy store during hypoglycemia and that it may participate in the creation of reduced physiological responses to hypoglycemia that are involved in a symptom often observed in patients with diabetes, hypoglycemia unawareness.
Collapse
Affiliation(s)
- In-Young Choi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
25
|
Allaman I, Lengacher S, Magistretti PJ, Pellerin L. A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Physiol Cell Physiol 2003; 284:C696-704. [PMID: 12421692 DOI: 10.1152/ajpcell.00202.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine has been proposed as a key factor regulating the metabolic balance between energy supply and demand in the central nervous system. Because astrocytes represent an important cellular element in the control of brain energy metabolism, we investigated whether adenosine could induce long-term changes of glycogen levels in primary cultures of mouse cortical astrocytes. We observed that adenosine increased glycogen content, up to 300%, in a time- (maximum at 8 h) and concentration-dependent manner with an EC(50) of 9.69 microM. Pharmacological experiments using the broad-spectrum agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and specific agonists for the A(1), A(2A), and A(3) receptors [N(6)-cyclopentyladenosine (CPA), CGS-21680, and IB-MECA, respectively] suggest that the effect of adenosine is mediated through activation of the low-affinity A(2B) adenosine receptor subtype. Interestingly, adenosine induces in parallel the expression of the protein targeting to glycogen (PTG), one of the protein phosphatase-1 glycogen-targeting subunits that has been implicated in the control of glycogen levels in various tissues. These results indicate that adenosine can exert long-term control over glycogen levels in astrocytes and might therefore play a significant role in physiological and/or pathological processes involving long-term modulation of brain energy metabolism.
Collapse
Affiliation(s)
- Igor Allaman
- Institut de Physiologie, Faculté de Médecine, Université de Lausanne, Switzerland
| | | | | | | |
Collapse
|
26
|
Cruz NF, Dienel GA. High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 2002; 22:1476-89. [PMID: 12468892 DOI: 10.1097/01.wcb.0000034362.37277.c0] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The concentration of glycogen, the major brain energy reserve localized mainly in astrocytes, is generally reported as about 2 or 3 micromol/g, but sometimes as high as 3.9 to 8 micromol/g, in normal rat brain. The authors found high but very different glycogen levels in two recent studies in which glycogen was determined by the routine amyloglucosidase procedure in 0.03N HCl digests either of frozen powders (4.8 to 6 micromol/g) or of ethanol-insoluble fractions (8 to 12 micromol/g). To evaluate the basis for these discrepant results, glycogen was assayed in parallel extracts of the same samples. Glycogen levels in ethanol extracts were twice those in 0.03N HCl digests, suggesting incomplete enzyme inactivation even with very careful thawing. The very high glycogen levels were biologically active and responsive to physiologic and pharmacological challenge. Glycogen levels fell after brief sensory stimulation, and metabolic labeling indicated its turnover under resting conditions. About 95% of the glycogen was degraded under in vitro ischemic conditions, and its "carbon equivalents" recovered mainly as glc, glc-P, and lactate. Resting glycogen stores were reduced by about 50% by chronic inhibition of nitric oxide synthase. Because neurotransmitters are known to stimulate glycogenolysis, stress or sensory activation due to animal handling and tissue-sampling procedures may stimulate glycogenolysis during an experiment, and glycogen lability during tissue sampling and extraction can further reduce glycogen levels. The very high glycogen levels in normal rat brain suggest an unrecognized role for astrocytic energy metabolism during brain activation.
Collapse
Affiliation(s)
- Nancy F Cruz
- Department of Neurology, Slot 500, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Shorey Building, Room 7S/15, Little Rock, AR 72205, U.S.A
| | | |
Collapse
|
27
|
Bernard-Hélary K, Ardourel MY, Hévor T, Cloix JF. In vivo and in vitro glycogenic effects of methionine sulfoximine are different in two inbred strains of mice. Brain Res 2002; 929:147-55. [PMID: 11864619 DOI: 10.1016/s0006-8993(01)03380-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the relationship between brain glycogen anabolism and methionine sulfoximine (MSO)-induced seizures in two inbred mouse strains that presented differential susceptibility to the convulsant. CBA/J was considered a MSO-high-reactive strain and C57BL/6J a MSO-low-reactive strain. Accordingly, the dose of MSO needed to induce seizures in CBA/J mice is lower than that in C57BL/6J mice, and CBA/J mice which had seizures, died during the first convulsion. In addition, the time--course of the MSO effect is faster in CBA/J mice than that in C57BL/6J mice. Analyses were performed in C57BL/6J and CBA/J mice after administration of 75 (subconvulsive dose) and 40 mg/kg of MSO (subconvulsive dose, not lethal dose), respectively. In the preconvulsive period, MSO induced an increase in the brain glycogen content of C57BL/6J mice only. Twenty-four hours after MSO administration, the brain glycogen content increased in both strains. The activity and expression of fructose-1,6-bisphosphatase, the last key enzyme of the gluconeogenic pathway, were increased in MSO-treated C57BL/6J mice as compared to control mice, at all experimental time points, whereas they were increased in CBA/J mice only 24 h after MSO administration. These latter results correspond to CBA/J mice that did not have seizures. Interestingly, the differences observed in vivo were consistent with results in primary cultured astrocytes from the two strains. This data suggests that the metabolism impairment, which was not a consequence of seizures, could be related to the difference in seizure susceptibility between the two strains, depending on their genetic background.
Collapse
Affiliation(s)
- Katy Bernard-Hélary
- Métabolisme Cérébral et Neuropathologies, UPRES EA 2633, Université d'Orléans, Enceinte du Château, Bâtiment 23, Avenue du Parc Floral, BP 6759, 45067 Orléans CEDEX 2, France
| | | | | | | |
Collapse
|
28
|
Dombro RS, Bender AS, Norenberg MD. Association between cell swelling and glycogen content in cultured astrocytes. Int J Dev Neurosci 2000; 18:161-9. [PMID: 10715570 DOI: 10.1016/s0736-5748(99)00084-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Treatment of cultured rat astrocytes with hypotonic media or with 1 mM glutamate for 90 min caused cell swelling and a significant increase in glycogen content. Conversely, treatment with hypertonic media caused cell shrinkage with a corresponding decrease in astrocyte glycogen, which was proportional to the increasing osmolality of the hypertonic media. The glutamate receptor antagonist, MK-801, lowered both the glutamate-induced swelling and glycogen increase. These findings demonstrate a correlation between changes in cell volume and astrocyte glycogen content. This may explain the increased astrocytic glycogen observed in many neuropathological conditions where astrocyte swelling occurs. Because glycogen represents the largest energy reserve in the central nervous system, a swelling-induced disturbance in glycogen metabolism may lead to abnormal glial-neuronal interactions resulting in impaired brain bioenergetics.
Collapse
Affiliation(s)
- R S Dombro
- Veterans Administration Medical Center, Miami, FL, USA
| | | | | |
Collapse
|
29
|
Choi IY, Tkác I, Ugurbil K, Gruetter R. Noninvasive measurements of [1-(13)C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 1999; 73:1300-8. [PMID: 10461925 DOI: 10.1046/j.1471-4159.1999.0731300.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a specific 13C NMR localization method, 13C label incorporation into the glycogen C1 resonance was measured while infusing [1-(13)C]glucose in intact rats. The maximal concentration of [1-(13)C]glycogen was 5.1 +/- 0.6 micromol g(-1) (mean +/- SE, n = 8). During the first 60 min of acute hyperglycemia, the rate of 13C label incorporation (synthase flux) was 2.3 +/- 0.7 micromol g(-1) h(-1) (mean +/- SE, n = 9 rats), which was higher (p < 0.01) than the rate of 0.49 +/- 0.14 micromol g(-1) h(-1) measured > or = 2 h later. To assess whether the incorporation of 13C label was due to turnover or net synthesis, the infusion was continued in seven rats with unlabeled glucose. The rate of 13C label decline (phosphorylase flux) was lower (0.33 +/- 0.10 micromol g(-1) h(-1)) than the initial rate of label incorporation (p < 0.01) and appeared to be independent of the duration of the preceding infusion of [1-(13)C]glucose (p > 0.05 for correlation). The results implied that net glycogen synthesis of approximately 3 micromol g(-1) had occurred, similar to previous reports. When infusing unlabeled glucose before [1-(13)C]glucose in three studies, the rate of glycogen C1 accumulation was 0.46 +/- 0.08 micromol g(-1) h(-1). The results suggest that steady-state glycogen turnover rates during hyperglycemia are approximately 1% of glucose consumption.
Collapse
Affiliation(s)
- I Y Choi
- Department of Radiology, Center for MR Research, University of Minnesota, Minneapolis, USA
| | | | | | | |
Collapse
|
30
|
Farkas V, Kelenyi G, Sandor A. A dramatic accumulation of glycogen in the brown adipose tissue of rats following recovery from cold exposure. Arch Biochem Biophys 1999; 365:54-61. [PMID: 10222038 DOI: 10.1006/abbi.1999.1157] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a morphological study of brown adipose tissue (BAT) of rats returned after exposure to cold (+5 degrees C) to neutral temperature (+25 degrees C), striking periodic acid Schiff staining was observed, indicating substantial glycogen accumulation. Enzymatic analysis revealed that the glycogen content increased from the 4.05 +/- 0.51 (micromol glucose unit per gram of tissue, mean +/- SE) control value to 57.3 +/- 9.66 when the animals were returned to neutral temperature for 24 h after a 1-week cold period. Glycogen repletion was also observed in liver and skeletal muscle; however, the glycogen levels in these tissues never exceeded the control values. The accumulation of glycogen in the BAT started by the 3rd hour of replacement and peaked by the 24th hour. This glycogen was readily utilized during the next short cold exposure of the animals. The plasma leptin concentration was reduced at the cold temperature. The hexokinase II activity in the BAT increased to 29.3 +/- 1.46 vs the 11.8 +/- 1.06 control (mU/mg protein +/- SE) after a 1-week cold exposure and this level was maintained during the return to neutral temperature. The total glycogen synthetase (GStot) and the glycogen synthetase a activity also increased after a 1-week cold exposure and increased further during the replacement. The level of GStot reached 26.9 +/- 1.39 vs 9.54 +/- 1.43 control by the 24th hour of replacement. At the same time, the glycogen phosphorylase a activity declined during the replacement. The concentration of glucose 6-phosphate (an activator of GS) decreased in the cold but returned to normal during the replacement. These changes in the BAT are in favor of glycogen synthesis.
Collapse
Affiliation(s)
- V Farkas
- Department of Biochemistry, University Medical School, Pecs, Hungary
| | | | | |
Collapse
|
31
|
Abstract
BACKGROUND This review article deals with the role of calcium in ischemic cell death. A calcium-related mechanism was proposed more than two decades ago to explain cell necrosis incurred in cardiac ischemia and muscular dystrophy. In fact, an excitotoxic hypothesis was advanced to explain the acetylcholine-related death of muscle end plates. A similar hypothesis was proposed to explain selective neuronal damage in the brain in ischemia, hypoglycemic coma, and status epilepticus. SUMMARY OF REVIEW The original concepts encompass the hypothesis that cell damage in ischemia-reperfusion is due to enhanced activity of phospholipases and proteases, leading to release of free fatty acids and their breakdown products and to degradation of cytoskeletal proteins. It is equally clear that a coupling exists between influx of calcium into cells and their production of reactive oxygen species, such as .O2, H2O2, and .OH. Recent results have underscored the role of calcium in ischemic cell death. A coupling has been demonstrated among glutamate release, calcium influx, and enhanced production of reactive metabolites such as .O2-, .OH, and nitric oxide. It has become equally clear that the combination of .O2- and nitric oxide can yield peroxynitrate, a metabolite with potentially devastating effects. The mitochondria have again come into the focus of interest. This is because certain conditions, notably mitochondrial calcium accumulation and oxidative stress, can trigger the assembly (opening) of a high-conductance pore in the inner mitochondrial membrane. The mitochondrial permeability transition (MPT) pore leads to a collapse of the electrochemical potential for H+, thereby arresting ATP production and triggering production of reactive oxygen species. The occurrence of an MPT in vivo is suggested by the dramatic anti-ischemic effect of cyclosporin A, a virtually specific blocker of the MPT in vitro in transient forebrain ischemia. However, cyclosporin A has limited effect on the cell damage incurred as a result of 2 hours of focal cerebral ischemia, suggesting that factors other than MPT play a role. It is discussed whether this could reflect the operation of phospholipase A2 activity and degradation of the lipid skeleton of the inner mitochondrial membrane. CONCLUSIONS Calcium is one of the triggers involved in ischemic cell death, whatever the mechanism.
Collapse
Affiliation(s)
- T Kristián
- Center for the Study of Neurological Disease, The Queen's Medical Center, Honolulu, Hawaii 96813, USA.
| | | |
Collapse
|
32
|
Katsura KI, Folbergrová J, Siesjö BK. Changes in labile energy metabolites, redox state and intracellular pH in postischemic brain of normo- and hyperglycemic rats. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00317-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|