1
|
Alaklabi S, Maguire O, Pattnaik H, Zhang Y, Chow J, Wang J, Minderman H, Iyer R. Immune Cell Molecular Pharmacodynamics of Lanreotide in Relation to Treatment Response in Patients with Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:3104. [PMID: 39272962 PMCID: PMC11394651 DOI: 10.3390/cancers16173104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.
Collapse
Affiliation(s)
- Sabah Alaklabi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Harsha Pattnaik
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jacky Chow
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Andriolo LG, Cammisotto V, Spagnoli A, Alunni Fegatelli D, Chicone M, Di Rienzo G, Dell’Anna V, Lobreglio G, Serio G, Pignatelli P. Overview of angiogenesis and oxidative stress in cancer. World J Meta-Anal 2023; 11:253-265. [DOI: 10.13105/wjma.v11.i6.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/13/2023] Open
Abstract
Neoplasms can be considered as a group of aberrant cells that need more vascular supply to fulfill all their functions. Therefore, they promote angiogenesis through the same neovascularization pathway used physiologically. Angiogenesis is a process characterized by a heterogeneous distribution of oxygen caused by the tumor and oxidative stress; the latter being one of the most powerful stimuli of angiogenesis. As a result of altered tumor metabolism due to hypoxia, acidosis occurs. The angiogenic process and oxidative stress can be detected by measuring serum and tissue biomarkers. The study of the mechanisms underlying angiogenesis and oxidative stress could lead to the identification of new biomarkers, ameliorating the selection of patients with neoplasms and the prediction of their response to possible anti-tumor therapies. In particular, in the treatment of patients with similar clinical tumor phenotypes but different prognoses, the new biomarkers could be useful. Moreover, they may lead to a better understanding of the mechanisms underlying drug resistance. Experimental studies show that blocking the vascular supply results in antiproliferative activity in vivo in neuroendocrine tumor cells, which require a high vascular supply.
Collapse
Affiliation(s)
- Luigi Gaetano Andriolo
- Department of General and Specialistic Surgery Paride Stefanini, Policlinico Umberto I, University of Rome Sapienza, Rome 06100, Italy
- Unità Operativa Complessa Chirurgia Toracica, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, University of Rome Sapienza, Rome 06100, Italy
| | - Alessandra Spagnoli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome 06100, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome 06100, Italy
| | - Michele Chicone
- Department of Clinical Pathology and Microbiology, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Gaetano Di Rienzo
- Unità Operativa Complessa Chirurgia Toracica, Ospedale Vito Fazzi, Lecce 73100, Italy
| | | | - Giambattista Lobreglio
- Department of Clinical Pathology and Microbiology, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Giovanni Serio
- Pathological Anatomy Unit, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, University of Rome Sapienza, Rome 06100, Italy
| |
Collapse
|
3
|
Tollefsen SE, Solheim O, Mjønes P, Torp SH. Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:4793. [PMID: 36902224 PMCID: PMC10003463 DOI: 10.3390/ijms24054793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Meningioma is the most frequent brain tumor, and the incidence is ever-increasing. Though often benign and slow growth, recurrence rates are substantial and today's surgical and radiation-based treatment are not without complications. No drugs specific for meningiomas are hitherto approved and patients with inoperable or recurrent meningioma are left with few treatment options. Somatostatin receptors are previously detected in meningiomas and may inhibit growth when stimulated by somatostatin. Hence, somatostatin analogs could provide a targeted drug therapy. The aim of this study was to compile the current insights of somatostatin analogs for patients with meningioma. This paper adheres to the PRISMA extension for Scoping Reviews. A systematic search was conducted in the search databases PubMed, Embase via Ovid, and Web of Science. Seventeen papers adhered to the inclusion and exclusion criteria, and critical appraisal was conducted. The overall quality of evidence is low, as none of the studies were randomized or controlled. Various efficacy of somatostatin analogs is reported, and adverse effects are sparse. Due to the beneficial effects reported by some studies, somatostatin analogs may offer a novel last-option treatment for severely ill-patients. Nonetheless, only a controlled study, preferably a randomized clinical trial, could clarify the efficacy of somatostatin analogs.
Collapse
Affiliation(s)
- Sofie Eline Tollefsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Patricia Mjønes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Sverre Helge Torp
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| |
Collapse
|
4
|
Tamura YO, Sugama J, Abe SI, Shimizu Y, Hirose H, Watanabe M. Selective somatostatin receptor 5 inhibition improves hepatic insulin sensitivity. Pharmacol Res Perspect 2023; 11:e01043. [PMID: 36585794 PMCID: PMC9803904 DOI: 10.1002/prp2.1043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a metabolic disorder with an increasing global prevalence. Somatostatin (SST), a peptide hormone, regulates hormone secretion via five SST receptor (SSTR) subtypes (SSTR1-5) in a tissue-specific manner. As SSTR5 is expressed in pancreatic β-cells and intestinal L-cells, studies have suggested that SSTR5 regulates glucose tolerance through insulin and incretin secretion, thereby having a prominent role in diabetes. Moreover, SSTR5 knockout (KO) mice display enhanced insulin sensitivity; however, the underlying mechanism has not been clarified. Therefore, in this study, we investigate the effect of SSTR5 blockade on insulin resistance and the target organ using SSTR5 KO mice and a selective SSTR5 antagonist (compound-1). High-fat diet (HFD)-fed SSTR5 KO mice exhibited significantly lower homeostasis model assessment of insulin resistance (HOMA-IR) than HFD-fed wild-type mice. Two-week oral administration of compound-1 dose-dependently and significantly reduced changes in the levels of glycosylated hemoglobin (GHb), plasma glucose, plasma insulin, and HOMA-IR in male KK-Ay /Ta Jcl mice (KK-Ay mice), a model of obese type 2 diabetes with severe insulin resistance. Additionally, compound-1 significantly increased the glucose infusion rate while decreasing hepatic glucose production in male KK-Ay mice, as evidenced by hyperinsulinemic-euglycemic clamp analyses. In addition, compound-1 ameliorated the insulin-induced Akt phosphorylation suppression by octreotide in the liver of male C57BL/6J mice. Collectively, our results demonstrate that selective SSTR5 inhibition can improve insulin sensitivity by enhancing liver insulin action; thus, selective SSTR5 antagonists represent potentially novel therapeutic agents for type 2 diabetes.
Collapse
Affiliation(s)
- Yumiko Okano Tamura
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Jun Sugama
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shin-Ichi Abe
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuji Shimizu
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hideki Hirose
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masanori Watanabe
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
5
|
Electrochemical Separation and Purification of No-Carrier-Added 177Lu for Radiopharmaceutical Preparation: Translation from Bench to Bed. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
6
|
Syguła A, Ledwon A, Hasse-Lazar K, Jurecka-Lubieniecka B, Michalik B, Paliczka-Cieślik E, Zeman M, Chmielik E, Sczasny J, Jarzab B, Handkiewicz-Junak D. In patients with well-differentiated neuroendocrine tumours, there is no apparent benefit of somatostatin analogues after disease control by peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2022; 49:3841-3851. [PMID: 35503379 DOI: 10.1007/s00259-022-05792-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Peptide receptor radionuclide therapy (PRRT) and somatostatin analogues (SSAs) are commonly combined as primary treatment for neuroendocrine neoplasms (NEN), and SSAs given as maintenance. We sought to evaluate whether sequential therapy with PRRT followed by SSAs has progression or survival benefits in patients with NEN after disease control by PRRT. METHODS This prospective, randomised, single-centre study had as principal eligibility criteria: unresectable, locally advanced, or metastatic, histologically confirmed well-differentiated NEN; no symptoms/biochemical diagnosis of carcinoid syndrome; no SSAs or ≤ 3 months of SSAs before PRRT; and stable disease or partial or complete response after PRRT. Altogether, 115 patients were randomised 2:1 to an SSA group (n = 74) given octreotide acetate LAR every 4 weeks, or a control group (n = 41) receiving only best supportive care. Octreotide treatment was to stop upon intolerable toxicity or patient refusal, or, at physician/patient discretion, upon NEN progression. The primary endpoint was progression-free survival (PFS), the secondary endpoint, and overall survival (OS). RESULTS Median (25th-75th percentile) follow-up from the first PRRT activity to death or latest observation was 6.6 (3.18-10.22) years. During that time, 71/115 patients (62%) progressed, 52/74 (70%) in the SSA group, and 19/41 (46%) in the control group (p = 0.01). Eighty-eight/115 patients (76%) died, 58/74 (78%) in the SSA group, and 30/41 (73%) in the control group (p = 0.52). Median (95% CI) PFS was 4.7 (2.8-7.7) years in the SSA group, and 6.4 (4.1-not reached) years in controls. Overall, median OS was 6.6 years. Neither PFS nor OS differed between groups (p = 0.129, p = 0.985, respectively). CONCLUSIONS In patients with disease control after PRRT, subsequent SSA treatment appeared not to be associated with better PFS or OS. Whether to continue SSA administration upon progression after PRRT requires evaluation in a prospective, randomised, controlled multicentre study with a relatively homogeneous sample.
Collapse
Affiliation(s)
- Aleksandra Syguła
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Aleksandra Ledwon
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Kornelia Hasse-Lazar
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Beata Jurecka-Lubieniecka
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Barbara Michalik
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Ewa Paliczka-Cieślik
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Marcin Zeman
- The Oncologic and Reconstructive Surgery Clinic, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Ewa Chmielik
- Tumor Pathology Department, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Joanna Sczasny
- Radiology and Diagnostic Imaging Department, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland
| | - Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Gliwice Branch, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 16, 44-101, Gliwice, Poland.
| |
Collapse
|
7
|
Fodi CK, Schittenhelm J, Honegger J, Castaneda-Vega SG, Behling F. The Current Role of Peptide Receptor Radionuclide Therapy in Meningiomas. J Clin Med 2022; 11:jcm11092364. [PMID: 35566491 PMCID: PMC9104797 DOI: 10.3390/jcm11092364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Meningiomas are the most common primary intracranial tumors. The majority of patients can be cured by surgery, or tumor growth can be stabilized by radiation. However, the management of recurrent and more aggressive tumors remains difficult because no established alternative treatment options exist. Therefore, innovative therapeutic approaches are needed. Studies have shown that meningiomas express somatostatin receptors. It is well known from treating neuroendocrine tumors that peptide radioreceptor therapy that targets somatostatin receptors can be effective. As yet, this therapy has been used for treating meningiomas only within individual curative trials. However, small case series and studies have demonstrated stabilization of the disease. Therefore, we see potential for optimizing this therapeutic option through the development of new substances and specific adaptations to the different meningioma subtypes. The current review provides an overview of this topic.
Collapse
Affiliation(s)
- Christina-Katharina Fodi
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Jürgen Honegger
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
| | - Salvador Guillermo Castaneda-Vega
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany;
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Felix Behling
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
- Correspondence: ; Tel.: +49-707129-80235; Fax: +49-707129-4549
| |
Collapse
|
8
|
Heo Y, Yoon E, Jeon YE, Yun JH, Ishimoto N, Woo H, Park SY, Song JJ, Lee W. Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand binding specificity. eLife 2022; 11:76823. [PMID: 35446253 PMCID: PMC9054131 DOI: 10.7554/elife.76823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Somatostatin is a peptide hormone that regulates endocrine systems by binding to G-protein-coupled somatostatin receptors. Somatostatin receptor 2 (SSTR2) is a human somatostatin receptor and is highly implicated in hormone disorders, cancers, and neurological diseases. Here, we report the high-resolution cryo-EM structure of full-length human SSTR2 bound to the agonist somatostatin (SST-14) in complex with inhibitory G (Gi) proteins. Our structural and mutagenesis analyses show that seven transmembrane helices form a deep pocket for ligand binding and that SSTR2 recognizes the highly conserved Trp-Lys motif of SST-14 at the bottom of the pocket. Furthermore, our sequence analysis combined with AlphaFold modeled structures of other SSTR isoforms provide a structural basis for the mechanism by which SSTR family proteins specifically interact with their cognate ligands. This work provides the first glimpse into the molecular recognition mechanism of somatostatin receptors and a crucial resource to develop therapeutics targeting somatostatin receptors.
Collapse
Affiliation(s)
- Yunseok Heo
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Eojin Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ye-Eun Jeon
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Naito Ishimoto
- Drug Design Laboratory, Yokohama City University, Yokohama, Japan
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Yokohama City University, Yokohama, Japan
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
10
|
Jahn U, Ilan E, Velikyan I, Fröss-Baron K, Lubberink M, Sundin A. Receptor depletion and recovery in small-intestinal neuroendocrine tumors and normal tissues after administration of a single intravenous dose of octreotide measured by 68Ga-DOTATOC PET/CT. EJNMMI Res 2021; 11:118. [PMID: 34822040 PMCID: PMC8617112 DOI: 10.1186/s13550-021-00860-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Low-grade neuroendocrine tumors (NETs) are characterized by an abundance of somatostatin receptors (SSTR) that can be targeted with somatostatin analogs (SSA). When activated with a single dose of SSA, the receptor-ligand complex is internalized, and the receptor is by default recycled within 24 h. Ongoing medication with long-acting SSAs at 68Ga-DOTA-SSA-PET has been shown to increase the tumor-to-normal organ contrast. This study was performed to investigate the time-dependent extended effect (7 h) of a single intravenous dose of 400 µg short-acting octreotide on the tumor versus normal tissue uptake of 68Ga-DOTATOC. METHODS Patients with small-intestinal NETs received a single intravenous dose of 400 µg octreotide and underwent dynamic abdominal 68Ga-DOTATOC-PET/CT at three sessions (0, 3 and 6 h) plus static whole-body (WB) PET/CT (1, 4 and 7 h), starting each PET/CT session by administering 167 ± 21 MBq, 23.5 ± 4.2 µg (mean ± SD, n = 12) of 68Ga-DOTATOC. A previously acquired clinical whole-body 68Ga-DOTATOC scan was used as baseline. SUV and net uptake rate Ki were calculated in tumors, and SUV in healthy organs. RESULTS Tumor SUV decreased significantly from baseline to 1 h post-injection but subsequently increased over time and became similar to baseline at 4 h and 7 h. The tumor net uptake rate, Ki, similarly increased significantly over time and showed a linear correlation both with SUV and tumor-to-blood ratio. By contrast, the uptake in liver, spleen and pancreas remained significantly below baseline levels also at 7 h and the receptor turn-over in tumors thus exceeded that in the normal tissue, with restitution of tumor 68Ga-DOTATOC uptake mainly completed at 7 h. These results however differed depending on tumor size, with significant increases in Ki and SUV between the 1st and 2nd PET, in large tumors (≥ 4 mL) but not in small (> 1 to < 4 mL) tumors. CONCLUSION SSTR recycling is faster in small-intestinal NETs than in liver, spleen and pancreas. This opens the possibility to protect normal tissues during PRRT by administering a single dose of cold peptide hours before peptide receptor radionuclide therapy (PRRT), and most likely additionally improve the availability and uptake of the therapeutic preparation in the tumors.
Collapse
Affiliation(s)
- Ulrika Jahn
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. .,Uppsala University Hospital, 75185, Uppsala, Sweden.
| | - Ezgi Ilan
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Katarzyna Fröss-Baron
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Sundin
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
11
|
Vitali E, Piccini S, Trivellin G, Smiroldo V, Lavezzi E, Zerbi A, Pepe G, Lania AG. The impact of SST2 trafficking and signaling in the treatment of pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2021; 527:111226. [PMID: 33675866 DOI: 10.1016/j.mce.2021.111226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic neuroendocrine tumors (Pan-NETs), are heterogeneous neoplasms, whose incidence and prevalence are increasing worldwide. Pan-NETs are characterized by the expression of somatostatin receptors (SSTs). In particular, SST2 is the most widely distributed SST in NETs, thus representing the main molecular target for somatostatin analogs (SSAs). SSAs are currently approved for the treatment of well-differentiated NETs, and radionuclide-labeled SSAs are used for diagnostic and treatment purposes. SSAs, by binding to SSTs, have been shown to inhibit hormone secretion and thus provide control of hypersecretion symptoms, when present, and inhibit tumor proliferation. After SSA binding to SST2, the fate of the receptor is determined by trafficking mechanisms, crucial for the response to endogenous or pharmacological ligands. Although SST2 acts mostly through G protein-dependent mechanism, receptor-ligand complex endocytosis and receptor trafficking further regulate its function. SST2 mediates the decrease of hormone secretion via a G protein-dependent mechanism, culminating with the inhibition of adenylyl cyclase and calcium channels; it also inhibits cell proliferation and increases apoptosis through the modulation of protein tyrosine phosphatases. Moreover, SST2 inhibits angiogenesis and cell migration. In this respect, the cross-talk between SST2 and its interacting proteins, including Filamin A (FLNA) and aryl hydrocarbon receptor-interacting protein (AIP), plays a crucial role for SST2 signaling and responsiveness to SSAs. This review will focus on recent studies from our and other groups that have investigated the trafficking and signaling of SST2 in Pan-NETs, in order to provide insights into the mechanisms underlying tumor responsiveness to pharmacological treatments.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.
| | - S Piccini
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - G Trivellin
- Laboratory of Cellular and Molecular Endocrinology, Italy; Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - V Smiroldo
- Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - E Lavezzi
- Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Pancreas Surgery Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - G Pepe
- Nuclear Medicine Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A G Lania
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
12
|
Jepsen SL, Albrechtsen NJW, Windeløv JA, Galsgaard KD, Hunt JE, Farb TB, Kissow H, Pedersen J, Deacon CF, Martin RE, Holst JJ. Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner. JCI Insight 2021; 6:143228. [PMID: 33434183 PMCID: PMC7934931 DOI: 10.1172/jci.insight.143228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas B Farb
- Lilly Research Laboratories, Lilly, Indianapolis, Indiana, USA
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Hillerød University Hospital, Hillerød, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Inhibition of ASIC-Mediated Currents by Activation of Somatostatin 2 Receptors in Rat Dorsal Root Ganglion Neurons. Mol Neurobiol 2021; 58:2107-2117. [PMID: 33411247 DOI: 10.1007/s12035-020-02257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Somatostatin (SST) and its analogues like octreotide (OCT) have analgesic effect on a variety of pain through peripheral SST receptors (SSTRs). However, the precise molecular mechanisms have not yet been fully elucidated. This research aimed to identify possible antinociceptive mechanisms, showing functional links of the SSTR2 and acid-sensing ion channels (ASICs). Herein, we reported that OCT inhibited the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. OCT concentration-dependently decreased the peak amplitude of acid-evoked inward currents, which were mediated by ASICs. OCT shifted concentration-response curve to protons downwards, with a decrease of 36.53 ± 5.28% in the maximal current response to pH 4.5 in the presence of OCT. OCT inhibited ASIC-mediated currents through SSTR2, since the inhibition was blocked by Cyn 154806, a specific SSTR2 antagonist. The OCT inhibition of ASIC-mediated currents was mimicked by H-89, a membrane-permeable inhibitor of PKA, and reversed by internal treatment of an adenylyl cyclase activator forskolin or 8-Br-cAMP. OCT also decreased the number of action potentials induced by acid stimuli through SSTR2. Finally, peripheral administration of 20 μM OCT, but not 2 μM OCT, significantly relieved nociceptive responses to intraplantar injection of acetic acid in rats. This occurred through local activation of SSTR2 in the injected hindpaw and was reversed following co-application of Cyn 154806. Our results indicate that activation SSTR2 by OCT can inhibit the activity of ASICs via an intracellular cAMP and PKA signaling pathway in rat DRG neurons. These observations demonstrate a cross-talk between ASICs and SSTR2 in peripheral sensory neurons, which was a novel peripheral analgesic mechanism of SST and its analogues.
Collapse
|
14
|
Expression of Somatostatin Receptor Subtypes (SSTR-1-SSTR-5) in Pediatric Hematological and Oncological Disorders. Molecules 2020; 25:molecules25235775. [PMID: 33297556 PMCID: PMC7730851 DOI: 10.3390/molecules25235775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hematological and oncological disorders represent leading causes of childhood mortality. Neuropeptide somatostatin (SST) has been previously demonstrated in various pediatric tumors, but limited information exists on the expression and characteristics of SST receptors (SSTR) in hematological and oncological disorders of children. We aimed to investigate the expression of mRNA for SSTR subtypes (SSTR-1–5) in 15 pediatric hematological/oncological specimens by RT-PCR. The presence and binding characteristics of SSTRs were further studies by ligand competition assay. Our results show that the pediatric tumor samples highly expressed mRNA for the five SSTR subtypes with various patterns. The mRNA for SSTR-2 was detected in all specimens independently of their histological type. A Hodgkin lymphoma sample co-expressed mRNA for all five SSTR subtypes. SSTR-3 and SSTR-5 were detected only in malignant specimens, such as rhabdomyosarcoma, Hodgkin lymphoma, acute lymphoblastic leukemia, and a single nonmalignant condition, hereditary spherocytosis. The incidence of SSTR-1 and SSTR-4 was similar (60%) in the 15 specimens investigated. Radioligand binding studies demonstrated the presence of specific SSTRs and high affinity binding of SST analogs in pediatric solid tumors investigated. The high incidence of SSTRs in hematological and oncological disorders in children supports the merit of further investigation of SSTRs as molecular targets for diagnosis and therapy.
Collapse
|
15
|
Danalev D, Borisova D, Yaneva S, Georgieva M, Balacheva A, Dzimbova T, Iliev I, Pajpanova T, Zaharieva Z, Givechev I, Naydenova E. Synthesis, in vitro biological activity, hydrolytic stability and docking of new analogs of BIM-23052 containing halogenated amino acids. Amino Acids 2020; 52:1581-1592. [PMID: 33215308 DOI: 10.1007/s00726-020-02915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
One of the potent somatostatin analogs, BIM-23052 (DC-23-99) D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2, has established in vitro growth hormone inhibitory activity in nM concentrations. It is also characterized by high affinity to some somatostatin receptors which are largely distributed in the cell membranes of many tumor cells. Herein, we report the synthesis of a series of analogs of BIM-23052 containing halogenated Phe residues using standard solid-phase peptide method Fmoc/OtBu-strategy. The cytotoxic effects of the compounds were tested in vitro against two human tumor cell lines-breast cancer cell line and hepatocellular cancer cell line, as well as on human non-tumorigenic epithelial cell line. Analogs containing fluoro-phenylalanines are cytotoxic in μM range, as the analog containing Phe (2-F) showed better selectivity against human hepatocellular cancer cell line. The presented study also reveals that accumulation of halogenated Phe residues does not increase the cytotoxicity according to tested cell lines. The calculated selective index reveals different mechanisms of antitumor activity of the parent compound BIM-23052 and target halogenated analogs for examined breast tumor cell lines. All peptides tested have high antitumor activity against the HepG2 cell line (IC50 ≈ 100 μM and SI > 5) compared to breast cells. This is probably due to the high permeability of the cell membrane and the higher metabolic activity of hepatocytes. In silico docking studies confirmed that all obtained analogs bind well with the somatostatin receptors with preference to ssrt3 and ssrt5. All target compounds showed high hydrolytic stability at acid and neutral pH, which mimic physiological condition in stomach and human plasma.
Collapse
Affiliation(s)
- Dancho Danalev
- Biotechnology Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Desislava Borisova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Spaska Yaneva
- Department of Fundamental of Chemical Technology, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Maya Georgieva
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anelia Balacheva
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tatyana Dzimbova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria.,South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 25, 1113, Sofia, Bulgaria
| | - Tamara Pajpanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zdravka Zaharieva
- Biotechnology Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria.,Testing Center Global Test Ltd, 31 Krushovski vrah Street, Sofia, Bulgaria
| | - Ivan Givechev
- Biotechnology Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria.,Testing Center Global Test Ltd, 31 Krushovski vrah Street, Sofia, Bulgaria
| | - Emilia Naydenova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria.
| |
Collapse
|
16
|
Mansi R, Nicolas GP, Del Pozzo L, Abid KA, Grouzmann E, Fani M. Evaluation of a New 177Lu-Labeled Somatostatin Analog for the Treatment of Tumors Expressing Somatostatin Receptor Subtypes 2 and 5. Molecules 2020; 25:E4155. [PMID: 32932783 PMCID: PMC7570871 DOI: 10.3390/molecules25184155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted radionuclide therapy of somatostatin receptor (SST)-expressing tumors is only partially addressed by the established somatostatin analogs having an affinity for the SST subtype 2 (SST2). Aiming to target a broader spectrum of tumors, we evaluated the bis-iodo-substituted somatostatin analog ST8950 ((4-amino-3-iodo)-d-Phe-c[Cys-(3-iodo)-Tyr-d-Trp-Lys-Val-Cys]-Thr-NH2), having subnanomolar affinity for SST2 and SST5, labeled with [177Lu]Lu3+ via the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Human Embryonic Kidney (HEK) cells stably transfected with the human SST2 (HEK-SST2) and SST5 (HEK-SST5) were used for in vitro and in vivo evaluation on a dual SST2- and SST5-expressing xenografted mouse model. natLu-DOTA-ST8950 showed nanomolar affinity for both subtypes (IC50 (95% confidence interval): 0.37 (0.22-0.65) nM for SST2 and 3.4 (2.3-5.2) for SST5). The biodistribution of [177Lu]Lu-DOTA-ST8950 was influenced by the injected mass, with 100 pmol demonstrating lower background activity than 10 pmol. [177Lu]Lu-DOTA-ST8950 reached its maximal uptake on SST2- and SST5-tumors at 1 h p.i. (14.17 ± 1.78 and 1.78 ± 0.35%IA/g, respectively), remaining unchanged 4 h p.i., with a mean residence time of 8.6 and 0.79 h, respectively. Overall, [177Lu]Lu-DOTA-ST8950 targets SST2-, SST5-expressing tumors in vivo to a lower extent, and has an effective dose similar to clinically used radiolabeled somatostatin analogs. Its main drawbacks are the low uptake in SST5-tumors and the persistent kidney uptake.
Collapse
Affiliation(s)
- Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland; (R.M.); (L.D.P.)
| | - Guillaume Pierre Nicolas
- Division of Nuclear Medicine, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland;
| | - Luigi Del Pozzo
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland; (R.M.); (L.D.P.)
| | - Karim Alexandre Abid
- Catecholamine and Peptides Laboratory, Department of Laboratories, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (K.A.A.); (E.G.)
| | - Eric Grouzmann
- Catecholamine and Peptides Laboratory, Department of Laboratories, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (K.A.A.); (E.G.)
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland; (R.M.); (L.D.P.)
| |
Collapse
|
17
|
Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules 2020; 25:4012. [PMID: 32887456 PMCID: PMC7504749 DOI: 10.3390/molecules25174012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways. Interestingly, the expression of SSTRs is significantly enhanced in many solid tumors, especially gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). Thus, somatostatin analogs (SSAs) have been developed to improve the stability of the endogenous ligand and so extend its half-life. Radiolabeled analogs have been developed with several radioelements such as indium-111, technetium-99 m, and recently gallium-68, fluorine-18, and copper-64, to visualize the distribution of receptor overexpression in tumors. Internal metabolic radiotherapy is also used as a therapeutic strategy (e.g., using yttrium-90, lutetium-177, and actinium-225). With some radiopharmaceuticals now used in clinical practice, somatostatin analogs developed for imaging and therapy are an example of the concept of personalized medicine with a theranostic approach. Here, we review the development of these analogs, from the well-established and authorized ones to the most recently developed radiotracers, which have better pharmacokinetic properties and demonstrate increased efficacy and safety, as well as the search for new clinical indications.
Collapse
Affiliation(s)
- Romain Eychenne
- UPS, CNRS, SPCMIB (Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique)—UMR 5068, Université de Toulouse, F-31062 Toulouse, France; (R.E.); (E.B.)
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint Herblain, France;
- CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Inserm, Université de Nantes, F-44000 Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis, Rennes, F-35000, France;
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Mickael Bourgeois
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint Herblain, France;
- CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Inserm, Université de Nantes, F-44000 Nantes, France
| | - Pascal Loyer
- INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Inserm, Univ Rennes, F-35000 Rennes, France;
| | - Eric Benoist
- UPS, CNRS, SPCMIB (Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique)—UMR 5068, Université de Toulouse, F-31062 Toulouse, France; (R.E.); (E.B.)
| | - Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, F-35000, France;
- INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Inserm, Univ Rennes, F-35000 Rennes, France;
| |
Collapse
|
18
|
Szőke É, Bálint M, Hetényi C, Markovics A, Elekes K, Pozsgai G, Szűts T, Kéri G, Őrfi L, Sándor Z, Szolcsányi J, Pintér E, Helyes Z. Small molecule somatostatin receptor subtype 4 (sst 4) agonists are novel anti-inflammatory and analgesic drug candidates. Neuropharmacology 2020; 178:108198. [PMID: 32739276 DOI: 10.1016/j.neuropharm.2020.108198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022]
Abstract
We provided strong proof of concept evidence that somatostatin mediates potent analgesic and anti-inflammatory actions via its receptor subtype 4 (sst4) located both at the periphery and the central nervous system. Therefore, sst4 agonists are promising novel drug candidates for neuropathic pain and neurogenic inflammation, but rational drug design was not possible due to the lack of knowledge about its 3-dimensional structure. We modeled the sst4 receptor structure, described its agonist binding properties, and characterized the binding of our novel small molecule sst4 agonists (4-phenetylamino-7H-pyrrolo[2,3-d]pyrimidine derivatives) using an in silico platform. In addition to the in silico binding data, somatostatin displacement by Compound 1 was demonstrated in the competitive binding assay on sst4-expressing cells. In vivo effects were investigated in rat models of neurogenic inflammation and chronic traumatic neuropathic pain. We defined high- and low-affinity binding pockets of sst4 for our ligands, binding of the highest affinity compounds were similar to that of the reference ligand J-2156. We showed potent G-protein activation with the highest potency of 10 nM EC50 value and highest efficacy of 342%. Oral administration of 100 μg/kg of 5 compounds significantly inhibited acute neurogenic plasma protein extravasation in the paw skin by 40-60%, one candidate abolished and 3 others diminished sciatic nerve-ligation induced neuropathic hyperalgesia by 28-62%. The in silico predictions on sst4-ligands were tested in biological systems. Low oral dose of our novel agonists inhibit neurogenic inflammation and neuropathic pain, which opens promising drug developmental perspectives for these unmet medical need conditions.
Collapse
Affiliation(s)
- Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary.
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | - Krisztián Elekes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | | | - György Kéri
- Vichem Chemie Research Ltd, Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Pharmacy Faculty, Semmelweis University, Budapest, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary; Algonist GmbH, Vienna, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; János Szentágothai Research Center & Centre for Neuroscience, University of Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary; Algonist GmbH, Vienna, Austria
| |
Collapse
|
19
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Xiang Q, Li JJ, Li CY, Tian RB, Li XH. Somatostatin Type 2 Receptor Antibody Enhances Mechanical Hyperalgesia in the Dorsal Root Ganglion Neurons after Sciatic Nerve-pinch Injury: Evidence of Behavioral Studies and Bax Protein Expression. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:791-797. [PMID: 31686636 DOI: 10.2174/1871527318666191101094412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Our previous study has indicated that somatostatin potently inhibits neuropathic pain through the activation of its type 2 receptor (SSTR2) in mouse dorsal root ganglion and spinal cord. However, the underlying mechanism of this activation has not been elucidated clearly. OBJECTIVE The aim of this study is to perform the pharmacological studies on the basis of sciatic nerve-pinch mice model and explore the underlying mechanism involving SSTR2. METHODS On the basis of a sciatic nerve-pinch injury model, we aimed at comparing the painful behavior and dorsal root ganglion neurons neurochemical changes after the SSTR2 antibody (anti- SSTR2;5μl,1μg/ml) administration in the mouse. RESULTS After pinch nerve injury, we found that the mechanical hyperalgesia and severely painful behavior (autotomy) were detected after the application of SSTR2 antibody (anti-SSTR2; 5μl, 1μg/ml) on the pinch-injured nerve. The up-regulated phosphorylated ERK (p-ERK) expression and the apoptotic marker (i.e., Bax) were significantly decreased in DRGs after anti-SSTR2 treatment. CONCLUSION The current data suggested that inhibitory changes in proteins from the apoptotic pathway in anti-SSTR2-treated groups might be taking place to overcome the protein deficits caused by SSTR2 antibody and supported the new therapeutic intervention with SSTR2 antagonist for neuronal degeneration following nerve injury.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Jing-Jing Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Chun-Yan Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Rong-Bo Tian
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Xian-Hui Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| |
Collapse
|
21
|
Synthesis, in vitro biological activity and docking of new analogs of BIM-23052 containing unnatural amino acids. Amino Acids 2019; 51:1247-1257. [PMID: 31350614 DOI: 10.1007/s00726-019-02758-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/28/2019] [Indexed: 01/29/2023]
Abstract
Somatostatin (SST) is an endogenous cyclic tetradecapeptide hormone that exerts multiple biological activities via a family of five receptors. BIM-23052 (DC-23-99) D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2 is a linear SST analog with established in vitro GH-inhibitory activity and high affinity to sstr5, sstr3 and sstr2. The different SSTR subtypes are expressed in different tissues and in some tumor cells. Based on this finding, a series of new analogs of BIM-23052 with expected antitumor activity have been synthesized. The Thr at position 6 in BIM-23052 was replaced by the conformationally hindered Tle, Aib, Ac5c and Ac6c of the new analogs. The peptides were synthesized by standard solid-phase peptide chemistry methods, Fmoc strategy. The cytotoxic effects of the compounds were tested in vitro against a panel of tumor cell lines: HT-29, MDA-MB-23, Hep-G2, HeLa and the normal human diploid cell line Lep-3. All five somatostatin receptor subtypes were modeled and docking was performed to determine the binding affinity of the analogs. The new peptides exhibited different concentration-dependent antiproliferative effect on the tumor cell lines after 24 h of treatment. The compound 3B (Aib6) demonstrated the most pronounced antiproliferative effects on HepG-2 cells with the IC50 = 0.01349 nM. Docking confirmed that all compounds bind well to SST receptors with preference to sstr3 and sstr5, which is most probably the reason for the observed biological effects.
Collapse
|
22
|
Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci 2019; 7:461-471. [PMID: 30656305 DOI: 10.1039/c8bm01340c] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery is emerging as a promising strategy to achieve better clinical outcomes. Actively targeted drug delivery that utilizes overexpressed receptors or antigens on diseased tissues is receiving increasing scrutiny, especially due to the uncertainty of existence of the enhanced permeability and retention (EPR) effect in cancer patients. Peptide ligands are advantageous over other classes of targeting ligands due to their accessibility of high-throughput screening, ease of synthesis, high specificity and affinity, etc. In this review, we briefly summarize the resources of peptide ligands and discuss the pitfalls and perspectives of peptide ligand-mediated targeted delivery of nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P.R. China.
| | | | | | | |
Collapse
|
23
|
Tian R, Jacobson O, Niu G, Kiesewetter DO, Wang Z, Zhu G, Ma Y, Liu G, Chen X. Evans Blue Attachment Enhances Somatostatin Receptor Subtype-2 Imaging and Radiotherapy. Theranostics 2018; 8:735-745. [PMID: 29344302 PMCID: PMC5771089 DOI: 10.7150/thno.23491] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/25/2017] [Indexed: 01/07/2023] Open
Abstract
Purpose: Radionuclide therapy directed against tumors that express somatostatin receptors (SSTRs) has proven effective for the treatment of advanced, low- to intermediate-grade neuroendocrine tumors in the clinic. In clinical usage, somatostatin peptide-based analogs, labeled with therapeutic radionuclides, provide an overall response rate of about 30%, despite the high cumulative activity injected per patient. We set out to improve the effectiveness of somatostatin radiotherapy by preparing a chemical analog that would clear more slowly through the urinary tract and, concomitantly, have increased blood circulation half-life and higher targeted accumulation in the tumors. Experimental Design: We conjugated a common, clinically-used SST peptide derivative, DOTA-octreotate, to an Evans blue analog (EB), which reversibly binds to circulating serum albumin. The resulting molecule was used to chelate 86Y and 90Y, a diagnostic and a therapeutic radionuclide, respectively. The imaging capabilities and the radiotherapeutic efficacy of the resulting radioligand was evaluated in HCT116/SSTR2, HCT116, and AR42J cell lines that express differing levels of SST2 receptors. Results: The synthesized radiopharmaceutical retained affinity and specificity to SSTR2. The new molecule also retained the high internalization rate of DOTA-octreotate, and therefore, showed significantly higher accumulation in SSTR2-positive tumors. Labeling of our novel EB-octreotate derivative with the therapeutic, pure beta emitter, 90Y, resulted in improved tumor response and survival rates of mice bearing SSTR2 xenografts and had long term efficacy when compared to DOTA-octreotate itself. Conclusions: The coupling of a targeted peptide, a therapeutic radionuclide, and the EB‑based albumin binding provides for effective treatment of SSTR2-containing tumors.
Collapse
|
24
|
Kendler DB, Araújo ML, Alencar R, de Souza Accioly MT, Bulzico DA, de Noronha Pessoa CC, Accioly FA, de Farias TP, Lopes FPPL, Corbo R, Vaisman M, Vaisman F. Somatostatin receptor subtype 1 might be a predictor of better response to therapy in medullary thyroid carcinoma. Endocrine 2017; 58:474-480. [PMID: 28948577 DOI: 10.1007/s12020-017-1424-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Medullary thyroid carcinoma (MTC) is a malignant neoplasm of parafollicular cells. Because it is a neuroendocrine tumor, it has known somatostatin receptors (SSTRs). The actual frequencies of the SSTR subtypes and their potential influences (by binding with endogenous somatostatin) on MTC cell proliferation have not been fully elucidated to date. The present study evaluated the occurrence of SSTR subtypes 1, 2, 3 and 5 as well as the possible role that each subtype plays in the clinical evolution of patients with MTC. METHODS This retrospective, longitudinal study analyzed thyroid surgical material from 42 patients with MTC. Immunohistochemical staining was performed with monoclonal antibodies against subtypes 1, 2, 3 and 5 of SSTR. The histological material was classified as negative, focal positive or diffuse positive, in relation to each of the SSTR subtypes. The initial response to treatment, clinical course and patient mortality rate were assessed and related to the presence of SSTR subtypes. RESULTS The most prevalent SSTR subtype was SSTR 3, which was found in 81% of the patients, when considering any pattern of positivity. However, subtype 2 had the lowest number of positive patients, with 28.6% demonstrating any positive pattern. Subtypes 1 and 5 had an intermediate prevalence of positivity, with subtype 1 present in 45.2% of the patients and subtype 5 positive in 54.8% of the patients, when considering any pattern of positivity. The presence of STR 1, in the form of diffuse positivity, independently predicted a better response to the initial therapy, with a hazard ratio (HR) of 4.80 (p = 0.03). CONCLUSION This is the first study to show the correlation of the presence of SSTR1, detected by monoclonal immunohistochemical techniques, and better response to initial treatment and possibly better long-term clinical response in patients with MTC. In addition, these patients had low positivity rates for SSTR2, which might explain the low sensitivity of diagnostic and limited therapeutic response to octrotide based radioisotopes.
Collapse
Affiliation(s)
- Daniel Barretto Kendler
- Endocrinology Department, Universidade Federal do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Mario Lucio Araújo
- Pathology department, Instituto Nacional do Cancer do Rio de Janeiro, R. Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, RJ, 20220-400, Brazil
| | - Renata Alencar
- Endocrinology Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Maria Theresa de Souza Accioly
- Pathology department, Instituto Nacional do Cancer do Rio de Janeiro, R. Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, RJ, 20220-400, Brazil
| | - Daniel Alves Bulzico
- Endocrinology Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Cencita Cordeiro de Noronha Pessoa
- Endocrinology Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Fernanda Andrade Accioly
- Endocrinology Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Terence Pires de Farias
- Head and Neck Surgery Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Flaia Paiva Proença Lobo Lopes
- Nuclear Medicine Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Rossana Corbo
- Endocrinology Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Mario Vaisman
- Endocrinology Department, Universidade Federal do Rio de Janeiro, R. Prof. Rodolpho Paulo Rocco, 255 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Fernanda Vaisman
- Endocrinology Department, Instituto Nacional do Cancer do Rio de Janeiro, Praça da Cruz Vermelha 23, 8th floor, Centro, Rio de Janeiro, RJ, 20230-130, Brazil.
| |
Collapse
|
25
|
Charoenpitakchai M, Liu E, Zhao Z, Koyama T, Huh WJ, Berlin J, Hande K, Walker R, Shi C. In liver metastases from small intestinal neuroendocrine tumors, SSTR2A expression is heterogeneous. Virchows Arch 2017; 470:545-552. [PMID: 28213807 PMCID: PMC5623953 DOI: 10.1007/s00428-017-2093-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/23/2023]
Abstract
We examined somatostatin receptor type 2A (SSTR2A) expression in primary and metastatic small intestinal neuroendocrine tumors (SI-NETs). We retrieved 156 liver metastases from 26 patients (10 males, 16 females) who had two or more liver lesions resected. A representative formalin-fixed paraffin-embedded section of tumor tissue from each liver metastasis and from the primary tumor, when available, were immunohistochemically stained for SSTR2A. SSTR2A expression was evaluated by the Her2/neu-scoring system and the scoring system proposed by Volante et al. Based on the Her2/neu-scoring system, moderate to strong SSTR2A expression was observed in 121 of 156 (78%) liver metastases. In 15 (58%) subjects, all liver metastases showed moderate to strong SSTR2A expression, whereas in 11 (42%) one or more liver tumors had weak or no expression. Of the 16 stained primaries, 11 (69%) showed heterogeneous SSTR2A expression. The corresponding liver metastases showed only weak to no expression in one, moderate to strong in five, and both weak to no and moderate to strong expression in five of the 11 cases. Using the Volante scoring system, no tumor was scored 0 (0%), two were scored 1 (1%), 38 were scored 2 (24%), and 116 were scored 3 (74%). No statistically significant association was observed between SSTR2A expression and Ki67 index (p = 0.56). Fifteen of 18 (83%) metastatic tumors with a Ki67 index >20% showed moderate to strong SSTR2A. Most liver tumors with weak SSTR2A expression or an IHC score of 2 were detected by OctreoScan. SSTR2A expression in liver metastases of SI-NETs can be variable, even between lesions in the same patient. Expression in metastatic lesions is not always similar to that in the primary tumor. SSTR2A expression is not associated with the Ki67 index.
Collapse
Affiliation(s)
- Mongkon Charoenpitakchai
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C-3321 MCN, Nashville, TN, 37232-2561, USA
| | - Eric Liu
- Department of Surgery, Rocky Mountain Cancer Centers, Denver, CO, 80218, USA
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C-3321 MCN, Nashville, TN, 37232-2561, USA
| | - Jordan Berlin
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Kenneth Hande
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232-2561, USA
| | - Ronald Walker
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37027, USA
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C-3321 MCN, Nashville, TN, 37232-2561, USA.
| |
Collapse
|
26
|
Abstract
This review article has for major main objectives to give an overlook of the major physiological effects of somatostatin on different organs. It will cover first the general aspect of the hormone, its cDNA and its protein maturation process, as well as its characterization in various organs. This aspect will be followed by the factors involved in the control of its secretion, its intracellular mode of action, and its general action on physiological processes. Secondly, the review will focus on the pancreas, looking at its in vivo and in vitro actions with special attention on its effects on normal pancreas growth and pancreatic tumors.
Collapse
Affiliation(s)
- Jean Morisset
- From the Département de Médecine, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Paragliola RM, Prete A, Papi G, Torino F, Corsello A, Pontecorvi A, Corsello SM. Clinical utility of lanreotide Autogel ® in gastroenteropancreatic neuroendocrine tumors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3459-3470. [PMID: 27822010 PMCID: PMC5087808 DOI: 10.2147/dddt.s76732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Somatostatin analogs (SSAs), which were initially used to control hormonal syndromes associated with neuroendocrine neoplasms (NENs), have been successfully proposed as antiproliferative agents, able to control tumor growth in patients affected by gastroenteropancreatic (GEP)-NENs. The development of long-acting formulations of SSAs which require only weekly or monthly injections can improve patient compliance. In particular, lanreotide (LAN) Autogel®, which is a viscous aqueous formulation supplied in ready-to-use prefilled syringes, can be administered every 28–56 days. Since its introduction in the clinical practice, several studies evaluated the clinical utility of LAN Autogel in the medical treatment of GEP-NENs. Although there is no evidence of an overall survival benefit, these studies confirm the efficacy of LAN Autogel in terms of benefit in progression-free survival, and in more than half of cases, a reduction of tumor markers can be observed during treatment with this drug. Moreover, LAN Autogel is widely recognized to be effective in controlling tumor-related symptoms in the majority of patients affected by GEP tumors, especially in patients affected by carcinoid syndrome, improving considerably patients’ quality of life.
Collapse
Affiliation(s)
| | - Alessandro Prete
- Department of Medicine, Unit of Endocrinology, Università Cattolica del Sacro Cuore
| | - Giampaolo Papi
- Department of Medicine, Unit of Endocrinology, Università Cattolica del Sacro Cuore
| | | | - Andrea Corsello
- Department of General Medicine and Endocrine Tumor Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alfredo Pontecorvi
- Department of Medicine, Unit of Endocrinology, Università Cattolica del Sacro Cuore
| | | |
Collapse
|
28
|
Peptide aromatic interactions modulated by fluorinated residues: Synthesis, structure and biological activity of Somatostatin analogs containing 3-(3',5'difluorophenyl)-alanine. Sci Rep 2016; 6:27285. [PMID: 27271737 PMCID: PMC4895178 DOI: 10.1038/srep27285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
Somatostatin is a 14-residue peptide hormone that regulates the endocrine system by binding to five G-protein-coupled receptors (SSTR1–5). We have designed six new Somatostatin analogs with L-3-(3′,5′-difluorophenyl)-alanine (Dfp) as a substitute of Phe and studied the effect of an electron-poor aromatic ring in the network of aromatic interactions present in Somatostatin. Replacement of each of the Phe residues (positions 6, 7 and 11) by Dfp and use of a D-Trp8 yielded peptides whose main conformations could be characterized in aqueous solution by NMR. Receptor binding studies revealed that the analog with Dfp at position 7 displayed a remarkable affinity to SSTR2 and SSTR3. Analogs with Dfp at positions 6 or 11 displayed a π-π interaction with the Phe present at 11 or 6, respectively. Interestingly, these analogs, particularly [D-Trp8,L-Dfp11]-SRIF, showed high selectivity towards SSTR2, with a higher value than that of Octreotide and a similar one to that of native Somatostatin.
Collapse
|
29
|
Murray PG, Higham CE, Clayton PE. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-GH axis: the past 60 years. J Endocrinol 2015; 226:T123-40. [PMID: 26040485 DOI: 10.1530/joe-15-0120] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/19/2022]
Abstract
At the time of the publication of Geoffrey Harris's monograph on 'Neural control of the pituitary gland' 60 years ago, the pituitary was recognised to produce a growth factor, and extracts administered to children with hypopituitarism could accelerate growth. Since then our understanding of the neuroendocrinology of the GH axis has included identification of the key central components of the GH axis: GH-releasing hormone and somatostatin (SST) in the 1970s and 1980s and ghrelin in the 1990s. Characterisation of the physiological control of the axis was significantly advanced by frequent blood sampling studies in the 1980s and 1990s; the pulsatile pattern of GH secretion and the factors that influenced the frequency and amplitude of the pulses have been defined. Over the same time, spontaneously occurring and targeted mutations in the GH axis in rodents combined with the recognition of genetic causes of familial hypopituitarism demonstrated the key factors controlling pituitary development. As the understanding of the control of GH secretion advanced, developments of treatments for GH axis disorders have evolved. Administration of pituitary-derived human GH was followed by the introduction of recombinant human GH in the 1980s, and, more recently, by long-acting GH preparations. For GH excess disorders, dopamine agonists were used first followed by SST analogues, and in 2005 the GH receptor blocker pegvisomant was introduced. This review will cover the evolution of these discoveries and build a picture of our current understanding of the hypothalamo-GH axis.
Collapse
Affiliation(s)
- P G Murray
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - C E Higham
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - P E Clayton
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| |
Collapse
|
30
|
Signore A. The Use of Radiolabeled Somatostatin Analogue in Medical Diagnosis. SOMATOSTATIN ANALOGUES 2015:31-34. [DOI: 10.1002/9781119031659.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Shahbaz M, Ruliang F, Xu Z, Benjia L, Cong W, Zhaobin H, Jun N. mRNA expression of somatostatin receptor subtypes SSTR-2, SSTR-3, and SSTR-5 and its significance in pancreatic cancer. World J Surg Oncol 2015; 13:46. [PMID: 25890201 PMCID: PMC4328977 DOI: 10.1186/s12957-015-0467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/17/2015] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study is to investigate the expressions of somatostatin receptor (SSTR), SSTR-2, SSTR-3, and SSTR-5, in pancreatic tissue and non-cancerous tissue and elucidate their clinical significance. Methods The expression of somatostatin receptor subtypes SSTR-2, SSTR-3, and SSTR-5 messenger RNA (mRNA) in 108 cases of cancer tissue and adjacent tissue in patients with pancreatic cancer was detected by reverse transcriptase polymerase chain reaction (RT-PCR). Expression of SSTR-2, SSTR-3, and SSTR-5 mRNA was evaluated after specimens were taken from selected patients who underwent surgical resection by Whipple’s operation. We speculated the clinical significance of the expression of somatostatin receptor (SSTR) subtype genes SSTR-2, SSTR-3, and SSTR-5 in pancreatic tissue and non-cancerous tissue and further elucidated their clinical significance. Results The expression rates of SSTR-2 mRNA in cancer and adjacent tissue of 108 patients with pancreatic cancer were 81.5% (88/108) and 97.2% (105/108), respectively; SSTR-3 mRNA expression rates were 69.4% (75/108) and 55.6% (60/108). SSTR-5 mRNA expression rates were 13.0% (14/108) and 18.5% (20/108). Conclusion We propose that SSTR-2 plays an important role in clinical implications for patients with pancreatic cancer undergoing somatostatin or its analog therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12957-015-0467-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Wenhua west Road #44, Jinan, 250012, China. .,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, 250012, Shandong, People's Republic of China.
| | - Fang Ruliang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Wenhua west Road #44, Jinan, 250012, China. .,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, 250012, Shandong, People's Republic of China.
| | - Zhang Xu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Wenhua west Road #44, Jinan, 250012, China.
| | - Liang Benjia
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Wenhua west Road #44, Jinan, 250012, China. .,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, 250012, Shandong, People's Republic of China.
| | - Wang Cong
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| | - He Zhaobin
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Wenhua west Road #44, Jinan, 250012, China.
| | - Niu Jun
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Wenhua west Road #44, Jinan, 250012, China.
| |
Collapse
|
32
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
33
|
Kiviniemi A, Gardberg M, Autio A, Li XG, Heuser VD, Liljenbäck H, Käkelä M, Sipilä H, Kurkipuro J, Ylä-Herttuala S, Knuuti J, Minn H, Roivainen A. Feasibility of experimental BT4C glioma models for somatostatin receptor 2-targeted therapies. Acta Oncol 2014; 53:1125-34. [PMID: 24957558 DOI: 10.3109/0284186x.2014.925577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Somatostatin receptor subtype 2 (sstr2) is regarded as a potential target in malignant gliomas for new therapeutic approaches. Therefore, visualizing and quantifying tumor sstr2 expression in vivo would be highly relevant for the future development of sstr2-targeted therapies. The purpose of this study was to evaluate sstr2 status in experimental BT4C malignant gliomas. METHODS Rat BT4C malignant glioma cells were injected into BDIX rat brain or subcutaneously into nude mice. Tumor uptake of [(68)Ga]DOTA-(Tyr(3))-Octreotide ([(68)Ga]DOTATOC), a somatostatin analog binding to sstr2, was studied by positron emission tomography/computed tomography (PET/CT). Additionally, subcutaneous tumor-bearing mice underwent PET imaging with 5-deoxy-5-[(18)F]fluororibose-NOC ([(18)F]FDR-NOC), a novel glycosylated peptide tracer also targeting sstr2. Ex vivo tissue radioactivity measurements, autoradiography and immunohistochemistry were performed to study sstr2 expression. RESULTS Increased tumor uptake of [(68)Ga]DOTATOC was detected at autoradiography with mean tumor-to-brain ratio of 68 ± 30 and tumor-to-muscle ratio of 9.2 ± 3.8 for rat glioma. High tumor-to-muscle ratios were also observed in subcutaneous tumor-bearing mice after injection with [(68)Ga]DOTATOC and [(18)F]FDR-NOC with both autoradiography (6.7 ± 1.5 and 4.3 ± 0.8, respectively) and tissue radioactivity measurements (6.5 ± 0.8 and 4.8 ± 0.6, respectively). Furthermore, sstr2 immunohistochemistry showed positive staining in both tumor models. However, surprisingly low tumor signal compromised PET imaging. Mean SUVmax for rat gliomas was 0.64 ± 0.28 from 30 to 60 min after [(68)Ga]DOTATOC injection. The majority of subcutaneous tumors were not visualized by [(68)Ga]DOTATOC or [(18)F]FDR-NOC PET. CONCLUSIONS Experimental BT4C gliomas show high expression of sstr2. Weak signal in PET imaging, however, suggests only limited benefit of [(68)Ga]DOTATOC or [(18)F]FDR-NOC PET/CT in this tumor model for in vivo imaging of sstr2 status.
Collapse
Affiliation(s)
- Aida Kiviniemi
- Turku PET Centre, Turku University Hospital and University of Turku , Turku , Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen W, Ke JB, Wu HJ, Miao Y, Li F, Yang XL, Wang Z. Somatostatin receptor-mediated suppression of gabaergic synaptic transmission in cultured rat retinal amacrine cells. Neuroscience 2014; 273:118-27. [PMID: 24846611 DOI: 10.1016/j.neuroscience.2014.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023]
Abstract
Somatostatin (SRIF) modulates neurotransmitter release by activating the specific receptors (sst1-sst5). Our previous study showed that sst5 receptors are expressed in rat retinal GABAergic amacrine cells. Here, we investigated modulation of GABA release by SRIF in cultured amacrine cells, using patch-clamp techniques. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the amacrine cells was significantly reduced by SRIF, which was partially reversed by BIM 23056, an sst5 receptor antagonist, and was further rescued by addition of CYN-154806, an sst2 receptor antagonist. Both nimodipine, an L-type Ca2+ channel blocker, and ω-conotoxin GVIA, an N-type Ca2+ channel blocker, suppressed the sIPSC frequency, and in the presence of nimodipine and ω-conotoxin GVIA, SRIF failed to further suppress the sIPSC frequency. Extracellular application of forskolin, an activator of adenylate cyclase, increased the sIPSC frequency, while the membrane permeable protein kinase A (PKA) inhibitor Rp-cAMP reduced it, and in the presence of Rp-cAMP, SRIF did not change sIPSCs. However, SRIF persisted to suppress the sIPSCs in the presence of KT5823, a protein kinase G (PKG) inhibitor. Moreover, pre-incubation with Bis IV, a protein kinase C (PKC) inhibitor, or pre-application of xestospongin C, an inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor, SRIF still suppressed the sIPSC frequency. All these results suggest that SRIF suppresses GABA release from the amacrine cells by inhibiting presynaptic Ca2+ channels, in part through activating sst5/sst2 receptors, a process that is mediated by the intracellular cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- W Chen
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - J B Ke
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - H J Wu
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Y Miao
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - F Li
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - X L Yang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Z Wang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
35
|
Suto B, Szitter I, Bagoly T, Pinter E, Szolcsányi J, Loibl C, Nemeth T, Tanczos K, Molnar T, Leiner T, Varnai B, Bardonicsek Z, Helyes Z. Plasma somatostatin-like immunoreactivity increases in the plasma of septic patients and rats with systemic inflammatory reaction: experimental evidence for its sensory origin and protective role. Peptides 2014; 54:49-57. [PMID: 24457113 DOI: 10.1016/j.peptides.2014.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 01/06/2023]
Abstract
Alterations of somatostatin-like immunoreactivity (SST-LI) in the plasma of 11 systemic inflammatory response syndrome (SIRS) patients were investigated in correlation with cytokines, adhesion molecules and coagulation markers repeatedly during 4 days. The origin and role of SST were studied in the cecum ligation and puncture (CLP) rat SIRS model. Capsaicin-sensitive peptidergic sensory nerves were defunctionalized by resiniferatoxin (RTX) pretreatment 2 weeks earlier, in a separate group animals were treated with the somatostatin receptor antagonist cyclo-somatostatin (C-SOM). Plasma SST-LI significantly elevated in septic patients compared to healthy volunteers during the whole 4-day period. Significantly decreased Horowitz score showed severe lung injury, increased plasma C-reactive protein and procalcitonin confirmed SIRS. Soluble P-selectin, tissue plasminogen activator and the interleukin 8 and monocyte chemotactic protein-1 significantly increased, interleukin 6 and soluble CD40 ligand did not change, and soluble Vascular Adhesion Molecule-1 decreased. SST-LI significantly increased in rats both in the plasma and the lung 6h after CLP compared to sham-operation. After RTX pretreatment SST-LI was not altered in intact animals, but the SIRS-induced elevation was absent. Lung MPO activity significantly increased 6h following CLP compared to sham operation, which was significantly higher both after RTX-desensitization and C-SOM-treatment. Most non-pretreated operated rats survived the 6h, but 60% of the RTX-pretreated ones died showing a significantly worse survival. This is the first comprehensive study in humans and animal experiments providing evidence that SST is released from the activated peptidergic sensory nerves. It gets into the bloodstream and mediates a potent endogenous protective mechanism.
Collapse
Affiliation(s)
- Balazs Suto
- Department of Accident and Emergency, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Istvan Szitter
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624 Pécs, Hungary
| | - Terez Bagoly
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi Gy. u. 10., H-7629 Pécs, Hungary
| | - Janos Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi Gy. u. 10., H-7629 Pécs, Hungary
| | - Csaba Loibl
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Timea Nemeth
- Faculty of Sciences, University of Pécs, Ifjúság u. 6., H-7624 Pécs, Hungary
| | - Krisztian Tanczos
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Tamas Leiner
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Bianka Varnai
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Zsofia Bardonicsek
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Pécs, Rákóczi út 2., H-7623 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi Gy. u. 10., H-7629 Pécs, Hungary.
| |
Collapse
|
36
|
Abstract
INTRODUCTION Acromegaly is a rare disease that severely impacts patients' health all the while, being a slowly progressing illness. In the past decades, advancements in treatment modalities, especially development of new drugs, as well as focused guidelines has improved management of acromegaly. Still, many patients are considered not sufficiently treated and there remains an ongoing need for further development. AREAS COVERED This article reviews new medical treatments currently under clinical investigation (such as pasireotide, oral octreotide and somatoprim) and under experimental development (such as octreotide implants, CAM2029 and ATL-1103). EXPERT OPINION As it seems unlikely that one single agent may achieve cure in 100% of cases, there is an urgent need for new agents that help patients where current medication fails. Imperatively, this means we have to improve our understanding of the underlying pathogenetic and molecular mechanisms.
Collapse
Affiliation(s)
- Sylvère Störmann
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV , Ziemssenstr. 1, 80336 München , Germany +49 0 89 5160 2111 ; +49 0 89 5160 2194 ;
| | | |
Collapse
|
37
|
Tatsi A, Maina T, Cescato R, Waser B, Krenning EP, de Jong M, Cordopatis P, Reubi JC, Nock BA. [DOTA]Somatostatin-14 analogs and their (111)In-radioligands: effects of decreasing ring-size on sst1-5 profile, stability and tumor targeting. Eur J Med Chem 2013; 73:30-7. [PMID: 24378707 DOI: 10.1016/j.ejmech.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/27/2013] [Accepted: 12/08/2013] [Indexed: 12/23/2022]
Abstract
Multiple somatostatin receptor (sst)-subtype expression has been manifested in several human tumors. Hence, the availability of radiopeptides retaining the full pansomatostatin profile of the native hormone (SS14) is expected to increase the sensitivity and broaden the clinical indications of currently applied sst2-preferring cyclic octapeptide radioligands, like OctreoScan(®) ([(111)In-DTPA]octreotide). On the other hand, SS14 has been excluded from clinical use due to its rapid in vivo degradation. We herein present a small library of seven novel cyclic SS14-mimics carrying at their N-terminus the universal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for stable binding of medically useful radiometals, like (111)In. By decreasing the number of amino acids composing the ring in their structure from 12 up to 6 AA, we induced important changes in key-biological parameters in vitro and in vivo. In particular, we observed unexpected changes and even total loss of sst1-5-affinity (6AA-ring), as well as weaker sst2-internalization efficacy as the ring size decreased. In contrast, in vivo stability increased with decreasing ring size, reaching its maximum in the 6AA-ring analogs. Interestingly, only the 12AA- and 9AA-ring members of this series showed sst2-specific uptake in AR4-2J tumors in mice revealing the prominent role of ring size on the biological response of tested SS14-derived radioligands.
Collapse
Affiliation(s)
- Aikaterini Tatsi
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Ag. Paraskevi Attikis, GR-153 10 Athens, Greece; Department of Radiology, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Ag. Paraskevi Attikis, GR-153 10 Athens, Greece
| | - Renzo Cescato
- Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland
| | - Beatrice Waser
- Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland
| | - Eric P Krenning
- Department of Nuclear Medicine, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, 3015 GD, Rotterdam, The Netherlands; Department of Radiology, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - Paul Cordopatis
- Department of Pharmacy, University of Patras, GR-26500 Patras, Greece
| | - Jean-Claude Reubi
- Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Ag. Paraskevi Attikis, GR-153 10 Athens, Greece.
| |
Collapse
|
38
|
Somatostatin receptor 1, a novel EBV-associated CpG hypermethylated gene, contributes to the pathogenesis of EBV-associated gastric cancer. Br J Cancer 2013; 108:2557-64. [PMID: 23722468 PMCID: PMC3694244 DOI: 10.1038/bjc.2013.263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Somatostatin receptor 1 (SSTR1) was preferentially methylated in Epstein-Barr virus (EBV)-positive gastric cancer using promoter methylation array. We aimed to analyse the epigenetic alteration and biological function of SSTR1 in EBV-associated gastric cancer (EBVaGC). METHODS Promoter methylation was examined by combined bisulphite restriction analysis (COBRA) and pyrosequencing. The biological functions of SSTR1 were evaluated by loss- and gain-of-function assays. RESULTS Promoter hypermethylation of SSTR1 was detected in EBV-positive gastric cancer cell lines (AGS-EBV) with SSTR1 transcriptional silence, but not in EBV-negative gastric cancer cell lines with SSTR1 expression. Expression level of SSTR1 was restored in AGS-EBV by exposure to demethylating agent. Moreover, methylation level of SSTR1 was significantly higher in EBV-positive primary gastric cancers compared with EBV-negative gastric cancers (P=0.004). Knock-down of SSTR1 in gastric cancer cell lines (AGS and BGC823) increased cell proliferation and colony formation ability, and promoted G1 to S-phase transition, enhanced cell migration and invasive ability. In contrast, ectopic expression of SSTR1 in gastric cancer cell lines (MKN28 and MGC803) significantly suppressed cell growth in culture conditions and reduced tumour size in nude mice. The tumour suppressive effect of SSTR1 was associated with upregulation of cyclin-dependent kinase inhibitors (p16, p15, p27 and p21); downregulation of oncogenes (MYC and MDM2), key cell proliferation and pro-survival regulators (PI3KR1, AKT, BCL-XL and MET); and inhibition of the migration/invasion-related genes (integrins, MMP1 (matrix metallopeptidase 1), PLAUR (plasminogen activator urokinase receptor) and IL8 (interleukin 8)). CONCLUSION Somatostatin receptor 1 is a novel methylated gene driven by EBV infection in gastric cancer cells and acts as a potential tumour suppressor.
Collapse
|
39
|
Gupta SK, Singla S, Bal C. Renal and Hematological Toxicity in Patients of Neuroendocrine Tumors After Peptide Receptor Radionuclide Therapy with177Lu-DOTATATE. Cancer Biother Radiopharm 2012; 27:593-9. [DOI: 10.1089/cbr.2012.1195] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Santosh K. Gupta
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Suhas Singla
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Tatsi A, Maina T, Cescato R, Waser B, Krenning EP, de Jong M, Cordopatis P, Reubi JC, Nock BA. [111In-DOTA]Somatostatin-14 analogs as potential pansomatostatin-like radiotracers - first results of a preclinical study. EJNMMI Res 2012; 2:25. [PMID: 22682002 PMCID: PMC3407795 DOI: 10.1186/2191-219x-2-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/09/2012] [Indexed: 02/04/2023] Open
Abstract
Background In this study, we report on the synthesis, radiolabeling, and biological evaluation of two new somatostatin-14 (SS14) analogs, modified with the universal chelator DOTA. We were interested to investigate if and to what extent such radiotracer prototypes may be useful for targeting sst1-5-expressing tumors in man but, most importantly, to outline potential drawbacks and benefits associated with their use. Methods AT1S and AT2S (DOTA-Ala1-Gly2-c[Cys3-Lys4-Asn5-Phe6-Phe7-Trp8/DTrp8-Lys9-Thr10-Phe11-Thr12-Ser13-Cys14-OH], respectively) were synthesized on the solid support and labeled with 111In. The sst1-5 affinity profile of AT1S/AT2S was determined by receptor autoradiography using [Leu8,dTrp22,125I-Tyr25]SS28 as radioligand. The ability of AT2S to stimulate sst2 or sst3 internalization was qualitatively analyzed by an immunofluorescence-based internalization assay using hsst2- or hsst3-expressing HEK293 cells. Furthermore, the internalization of the radioligands [111In]AT1S and [111In]AT2S was studied at 37 °C in AR4-2J cells endogenously expressing sst2. The in vivo stability of [111In]AT1S and [111In]AT2S was tested by high-performance liquid chromatography analysis of mouse blood collected 5 min after radioligand injection, and biodistribution was studied in normal mice. Selectively for [111In]AT2S, biodistribution was further studied in SCID mice bearing AR4-2J, HEK293-hsst2A+, -hsst3+ or -hsst5+ tumors. Results The new SS14-derived analogs were obtained by solid phase peptide synthesis and were easily labeled with 111In. Both SS14 conjugates, AT1S, and its DTrp8 counterpart, AT2S, showed a pansomatostatin affinity profile with the respective hsst1-5 IC50 values in the lower nanomolar range. In addition, AT2S behaved as an agonist for sst2 and sst3 since it stimulated receptor internalization. The 111In radioligands effectively and specifically internalized into rsst2A-expressing AR4-2J cells with [111In]AT2S internalizing faster than [111In]AT1S. Ex vivo mouse blood analysis revealed a rapid degradation of both radiopeptides in the bloodstream with the DTrp8 analog showing higher stability. Biodistribution results in healthy mice were consistent with these findings with only [111In]AT2S showing specific uptake in the sst2-rich pancreas. Biodistribution of [111In]AT2S in tumor-bearing mice revealed receptor-mediated uptake in the AR4-2J (1.82 ± 0.36 %ID/g - block 0.21 ± 0.17 %ID/g at 4 h post injection (pi)), the HEK293-hsst2A+ (1.49 ± 0.2 %ID/g - block 0.27 ± 0.20 %ID/g at 4 h pi), the HEK293-hsst3+ (1.24 ± 0.27 %ID/g - block 0.32 ± 0.06 %ID/g at 4 h pi), and the HEK293-hsst5+ tumors (0.41 ± 0.12 %ID/g - block 0.22 ± 0.006 %ID/g at 4 h pi). Radioactivity washed out from blood and background tissues via the kidneys. Conclusions This study has revealed that the native SS14 structure can indeed serve as a motif for the development of promising pansomatostatin-like radiotracers. Further peptide stabilization is required to increase in vivo stability and, consequently, to enhance in vivo delivery and tumor targeting.
Collapse
Affiliation(s)
- Aikaterini Tatsi
- Molecular Radiopharmacy, Institute of Radioisotopes - Radiodiagnostic Products, National Center for Scientific Research "Demokritos", 153 10 Ag, Paraskevi Attikis, Athens, GR-153 10, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Parry JJ, Chen R, Andrews R, Lears KA, Rogers BE. Identification of critical residues involved in ligand binding and G protein signaling in human somatostatin receptor subtype 2. Endocrinology 2012; 153:2747-55. [PMID: 22495673 PMCID: PMC3359596 DOI: 10.1210/en.2011-1662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a B(max) and dissociation constant (K(d)) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with B(max) and K(d) values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling.
Collapse
Affiliation(s)
- Jesse J Parry
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108-8224, USA
| | | | | | | | | |
Collapse
|
42
|
Efficacy and tolerability of long-acting octreotide in the treatment of thymic tumors: results of a pilot trial. Am J Clin Oncol 2012; 35:105-9. [PMID: 21325939 DOI: 10.1097/coc.0b013e318209a8f8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Octreotide is a somatostatin analog, long-acting formulations of which have been used experimentally for the treatment of patients with invasive tumors and/or residual disease after conventional therapies. The objective of this retrospective study was to evaluate the efficacy of long-acting octreotide (Sandostatin LAR) for the treatment of thymic tumors, with a primary efficacy end point of progression-free survival. METHODS Between 1994 and 2010, 44 patients with thymic malignancies were evaluated. Twenty-seven patients underwent an OctreoScan, and 12 OctreoScan-positive patients were treated with long-acting octreotide at a dose of 20 mg, given as an intramuscular injection, every 2 weeks. RESULTS Treatment with long-acting octreotide gave the following results: 3 cases of partial response (25%), 5 cases of stable disease (42%), and 4 cases of progressive disease (33%), with an average progression-free survival of 8 months (range, 3 to 21). Treatment compliance and tolerability were good for all evaluated patients. CONCLUSIONS The results of this study confirm the somatostatin receptor as a valid target for the treatment of thymic malignancies. Overall, therapy with long-acting somatostatin analogs seems to be safe and effective.
Collapse
|
43
|
The Concept of Divergent Targeting through the Activation and Inhibition of Receptors as a Novel Chemotherapeutic Strategy: Signaling Responses to Strong DNA-Reactive Combinatorial Mimicries. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:282050. [PMID: 22523681 PMCID: PMC3317223 DOI: 10.1155/2012/282050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 12/13/2011] [Indexed: 10/28/2022]
Abstract
Recently, we reported the combination of multitargeted ErbB1 inhibitor-DNA damage combi-molecules with OCT in order to downregulate ErbB1 and activate SSTRs. Absence of translation to cell kill was believed to be partially due to insufficient ErbB1 blockage and DNA damage. In this study, we evaluated cell response to molecules that damage DNA more aggressively and induce stronger attenuation of ErbB1 phosphorylation. We used three cell lines expressing low levels (U87MG) or transfected to overexpress wildtype (U87/EGFR) or a variant (U87/EGFRvIII) of ErbB1. The results showed that Iressa ± HN2 and the combi-molecules, ZRBA4 and ZR2003, significantly blocked ErbB1 phosphorylation in U87MG cells. Addition of OCT significantly altered cell cycle distribution. Analysis of the DNA damage response pathway revealed strong upregulation of p53 by HN2 and the combi-molecules. Apoptosis was only induced by a 48 h exposure to HN2. All other treatments resulted in cell necrosis. This is in agreement with Akt-Bad pathway activation and survivin upregulation. Despite strong DNA damaging properties and downregulation of ErbB1 phosphorylation by these molecules, the strongest effect of SSTR activation was on cell cycle distribution. Therefore, any enhanced antiproliferative effects of combining ErbB1 inhibition with SSTR activation must be addressed in the context of cell cycle arrest.
Collapse
|
44
|
Tringali G, Greco MC, Lisi L, Pozzoli G, Navarra P. Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides 2012; 34:353-9. [PMID: 22342595 DOI: 10.1016/j.peptides.2012.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide characterized by remarkable structural and functional resemblance to somatostatin (SST), both peptides sharing the ability to bind and activate all five SST receptor subtypes. Evidence is also available showing that CST exerts biological activities independently from SST, perhaps via the activation of specific receptors that remain to be fully characterized at present. Here we have investigated the effects of CST on the gene expression and release of corticotrophin releasing hormone (CRH) from rat hypothalamic and hippocampal explants; moreover, we compared the effects of CST with those of SST and octreotide (OCT) in these models. We found that: (i) CST inhibits the expression and release of CRH from rat hypothalamic and hippocampal explants under basal conditions as well as after CRH stimulation by well known secretagogues; (ii) SST does not modify basal CRH secretion from the hypothalamus or the hippocampus, while it is able to reduce KCl-stimulated CRH release from both brain areas; (iii) OCT inhibits both basal and KCl-induced CRH secretion from rat hypothalamic explants, while it has no effect on CRH release from the hippocampus, either under basal conditions or after stimulation by high K(+) concentrations; (iv) at variance with CST; SST and OCT have not effect whatsoever on veratridine-induced CRH release from the hypothalamus. In conclusion the present findings provide in vitro evidence in support of the hypothesis that CST plays a role in the regulation of endocrine adaptive responses to stress.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | |
Collapse
|
45
|
Influence of membrane ion channel in pituitary somatotrophs by hypothalamic regulators. Cell Calcium 2012; 51:231-9. [DOI: 10.1016/j.ceca.2011.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/19/2022]
|
46
|
Wu XH, Deng QQ, Jiang SX, Yang XL, Zhong YM. Distribution of somatostatin receptor 5 in mouse and bullfrog retinas. Peptides 2012; 33:291-7. [PMID: 22244811 DOI: 10.1016/j.peptides.2011.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 01/21/2023]
Abstract
Somatostatin (SRIF), as a neuroactive peptide in the CNS, may act as a neuromodulator through activation of five specific receptor subtypes (sst(1)-sst(5)). In this work we conducted a comparative study of the expression of sst(5) in mouse and bullfrog retinas by immunofluorescence double labeling. Basically, the expression profiles of sst(5) in the retinas of the two species were similar. That is, in the inner retina sst(5) was localized to dopaminergic and cholinergic amacrine cells, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, and cells in the ganglion cell layer, whereas in the outer retina immunostaining for sst(5) was observed in horizontal cells. However, a more widespread, abundant distribution of labeling for sst(5), as compared to mouse retina, was seen in bullfrog retina: strong labeling for sst(5) was diffusely distributed in both outer and inner plexiform layers (OPL and IPL) in the bullfrog retina, but the labeling was only observed in the IPL of the mouse retina. In addition, bullfrog photoreceptors, both rods and cones, but not mouse ones, were labeled by sst(5). In combination with the experiments showing that SRIF-immunoreactivity was mainly found in the inner retina, our results suggest that SRIF, released from SRIF-containing cells in the inner retina, may play a neuromodulatory role in both outer and inner retina mediated by volume transmission via sst(5) in bullfrog retina, while the SRIF action may be largely restricted to the mouse inner retina.
Collapse
Affiliation(s)
- Xiao-Hua Wu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
47
|
Wang J, Cao DY, Guo Y, Ma SJ, Luo R, Pickar JG, Zhao Y. Octreotide inhibits capsaicin-induced activation of C and Aδ afferent fibres in rat hairy skin in vivo. Clin Exp Pharmacol Physiol 2012; 38:521-7. [PMID: 21595740 DOI: 10.1111/j.1440-1681.2011.05542.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. The present study investigated whether the somatostatin receptor (SSTR) agonist, octreotide, could inhibit the activation of dorsal skin afferent fibres induced by local injection of capsaicin in the rat. 2. Single unit activity from Aδ mechano-heat sensitive (AMH; n = 41) and C mechano-heat sensitive (CMH; n = 30) afferents was recorded after their isolation in thin filaments from the dorsal cutaneous nerve branches. The effect of subcutaneous octreotide injection on the change in discharge rate and mechanical threshold induced by capsaicin was determined. 3. Capsaicin (0.05%) injection into the edge of the receptive field of both AMH and CMH units increased their discharge rate and decreased their mechanical threshold. Pre-injection of octreotide inhibited these responses, and co-application of SSTR antagonist, cyclosomatostatin, reversed the inhibitory effect of octreotide. 4. The present study provides electrophysiological evidence that the signal evoked by the somatostatin receptor inhibits the activation and mechanical sensitization evoked by capsaicin in the terminals in small-diameter sensory neurons.
Collapse
Affiliation(s)
- Jun Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Khan MS, Caplin ME. Therapeutic management of patients with gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2011; 18 Suppl 1:S53-74. [PMID: 22005115 DOI: 10.1530/erc-10-0271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with neuroendocrine tumours (NETs) are best managed in a specialist centre as part of a multidisciplinary team comprising gastroenterologists, oncologists, endocrinologists, gastrointestinal and hepatopancreaticobiliary surgeons, pathologists, nuclear medicine physicians and technicians, radiologists, specialist nurses, pharmacists, biochemists and dieticians. This should ideally be led by a clinician with experience and interest in NETs. Although the number of medical treatments and clinical trials has increased in the decade, there is still a lack of prospective randomised trials; thus, management is mainly based on limited often single-centre studies, although there are now formal guidelines based on consensus expert opinion. We have outlined the current optimal management of patients with NETs. We have reviewed therapeutic options including surgery, somatostatin analogues and other biotherapies and peptide receptor-targeted therapy. We have discussed the challenge in managing hepatic metastases including hepatic artery embolisation, ablation and orthotopic liver transplant. In addition, we have briefly reviewed the emerging therapies such as the mammalian target of rapamycin and angiogenic inhibitors and the newer somatostatin analogues.
Collapse
Affiliation(s)
- Mohid S Khan
- Neuroendocrine Tumour Unit, Centre for Gastroenterology, Royal Free Hospital, London NW3 2QG, UK
| | | |
Collapse
|
49
|
Markovics A, Szoke É, Sándor K, Börzsei R, Bagoly T, Kemény Á, Elekes K, Pintér E, Szolcsányi J, Helyes Z. Comparison of the anti-inflammatory and anti-nociceptive effects of cortistatin-14 and somatostatin-14 in distinct in vitro and in vivo model systems. J Mol Neurosci 2011; 46:40-50. [PMID: 21695504 DOI: 10.1007/s12031-011-9577-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
We showed that somatostatin (SST) exerts anti-inflammatory and anti-nociceptive effects through somatostatin receptor subtypes 4 and 1 (sst(4)/sst(1)). Since cortistatin (CST) is a structurally similar peptide, we aimed at comparing the sst(1)- and sst(4)-binding and activating abilities, as well as the effects of SST-14 and CST-14 on inflammatory and nociceptive processes. CST-14 concentration-dependently displaced radiolabeled SST-14 binding, induced similar sst(1) and sst(4)-activation with a less potency, and exerted significantly greater inhibitory effect on endotoxin-stimulated interleukin (IL)-1β production of murine peritoneal macrophages. Capsaicin-induced calcitonin gene-related peptide release from peripheral sensory nerve terminals of isolated rat tracheae was significantly decreased by 2 μM CST and 100 nM SST, but concentration-response correlation was not found. Mustard oil-evoked acute neurogenic plasma protein extravasation in the rat hindpaw skin, carrageenan-induced mouse paw edema, mechanical hyperalgesia, and IL-1β, tumor necrosis factor-α production, as well as mild heat injury-evoked thermal hyperalgesia were similarly attenuated by both peptides. In the latter case, i.pl. and i.p. injections exerted equal inhibitory actions. CST-14 and SST-14 similarly diminish both acute neurogenic and cellular inflammatory processes, as well as mechanical and heat hyperalgesia, in which their inhibitory effect on sensory nerve endings is likely to be involved. However, CST-14 exerts remarkably greater inhibition on cytokine production.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti str. 12, 7624, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yim CB, van der Wildt B, Dijkgraaf I, Joosten L, Eek A, Versluis C, Rijkers DTS, Boerman OC, Liskamp RMJ. Spacer effects on in vivo properties of DOTA-conjugated dimeric [Tyr3]octreotate peptides synthesized by a "Cu(I)-click" and "sulfo-click" ligation method. Chembiochem 2011; 12:750-60. [PMID: 21328514 DOI: 10.1002/cbic.201000639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
We report on the SSTR2-binding properties of a series of four dimeric [Tyr3]octreotate analogues with different spacer lengths (nine, 19, 41, and 57 atoms) between the peptides. Two analogues (9 and 57 atoms) were selected as precursors for the design, synthesis, and biological evaluation of DOTA-conjugated dimeric [Tyr3]octreotate analogues for tumor targeting. These compounds were synthesized by using a two-stage click ligation procedure: a Cu(I) -catalyzed 1,3-dipolar cycloaddition ("copper-click" reaction) and a thio acid/sulfonyl azide amidation ("sulfo-click" reaction). The IC(50) values of these DOTA-conjugated [Tyr3]octreotate analogues were comparable, and internalization studies showed that the nine-atom (111) In-DOTA-labeled [Tyr3]octreotate dimer had rapid and high receptor binding. Biodistribution studies with BALB/c nude mice bearing subcutaneous AR42J tumors showed that the (111) In-labeled [Tyr3]octreotate dimer (nine atoms) had a high tumor uptake at 1 h p.i. (38.8 ± 8.3 % ID g(-1) ), and excellent tumor retention at 4 h p.i. (40.9 ± 2.5 % ID g(-1) ). However, the introduction of the extended hydrophilic 57 atoms spacer led to rapid clearance from the circulation; this limited tumor accumulation of the radiotracer (21.4 ± 4.9 % ID g(-1) at 1 h p.i.). These findings provide important insight on dimerization and spacer effects on the in vivo properties of DOTA-conjugated [Tyr3]octreotate dimers.
Collapse
Affiliation(s)
- Cheng-Bin Yim
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|