1
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
2
|
Maurer JJ, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. eLife 2024; 12:RP92095. [PMID: 38884573 PMCID: PMC11182646 DOI: 10.7554/elife.92095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John J Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexandra Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
3
|
Huang L, Zhu W, Li N, Zhang B, Dai W, Li S, Xu H. Functions and mechanisms of adenosine and its receptors in sleep regulation. Sleep Med 2024; 115:210-217. [PMID: 38373361 DOI: 10.1016/j.sleep.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders.
Collapse
Affiliation(s)
- Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Maurer J, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554341. [PMID: 37662417 PMCID: PMC10473649 DOI: 10.1101/2023.08.22.554341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rapid-eye-movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Xu L, Lin W, Zheng Y, Wang Y, Chen Z. The Diverse Network of Brain Histamine in Feeding: Dissect its Functions in a Circuit-Specific Way. Curr Neuropharmacol 2024; 22:241-259. [PMID: 36424776 PMCID: PMC10788888 DOI: 10.2174/1570159x21666221117153755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Feeding is an intrinsic and important behavior regulated by complex molecular, cellular and circuit-level mechanisms, one of which is the brain histaminergic network. In the past decades, many studies have provided a foundation of knowledge about the relationship between feeding and histamine receptors, which are deemed to have therapeutic potential but are not successful in treating feeding- related diseases. Indeed, the histaminergic circuits underlying feeding are poorly understood and characterized. This review describes current knowledge of histamine in feeding at the receptor level. Further, we provide insight into putative histamine-involved feeding circuits based on the classic feeding circuits. Understanding the histaminergic network in a circuit-specific way may be therapeutically relevant for increasing the drug specificity and precise treatment in feeding-related diseases.
Collapse
Affiliation(s)
- Lingyu Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenkai Lin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Jung J, Kim T. General anesthesia and sleep: like and unlike. Anesth Pain Med (Seoul) 2022; 17:343-351. [DOI: 10.17085/apm.22227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
General anesthesia and sleep have long been discussed in the neurobiological context owingto their commonalities, such as unconsciousness, immobility, non-responsiveness to externalstimuli, and lack of memory upon returning to consciousness. Sleep is regulated bycomplex interactions between wake-promoting and sleep-promoting neural circuits. Anestheticsexert their effects partly by inhibiting wake-promoting neurons or activating sleep-promotingneurons. Unconscious but arousable sedation is more related to sleep-wake circuitries,whereas unconscious and unarousable anesthesia is independent of them. Generalanesthesia is notable for its ability to decrease sleep propensity. Conversely, increasedsleep propensity due to insufficient sleep potentiates anesthetic effects. Taken together, it isplausible that sleep and anesthesia are closely related phenomena but not the same ones.Further investigations on the relationship between sleep and anesthesia are warranted.
Collapse
|
7
|
Grady FS, Boes AD, Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci 2022; 16:930514. [PMID: 35928009 PMCID: PMC9344068 DOI: 10.3389/fnins.2022.930514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Wakefulness is necessary for consciousness, and impaired wakefulness is a symptom of many diseases. The neural circuits that maintain wakefulness remain incompletely understood, as do the mechanisms of impaired consciousness in many patients. In contrast to the influential concept of a diffuse "reticular activating system," the past century of neuroscience research has identified a focal region of the upper brainstem that, when damaged, causes coma. This region contains diverse neuronal populations with different axonal projections, neurotransmitters, and genetic identities. Activating some of these populations promotes wakefulness, but it remains unclear which specific neurons are necessary for sustaining consciousness. In parallel, pharmacological evidence has indicated a role for special neurotransmitters, including hypocretin/orexin, histamine, norepinephrine, serotonin, dopamine, adenosine and acetylcholine. However, genetically targeted experiments have indicated that none of these neurotransmitters or the neurons producing them are individually necessary for maintaining wakefulness. In this review, we emphasize the need to determine the specific subset of brainstem neurons necessary for maintaining arousal. Accomplishing this will enable more precise mapping of wakefulness circuitry, which will be useful in developing therapies for patients with coma and other disorders of arousal.
Collapse
Affiliation(s)
- Fillan S. Grady
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| | - Aaron D. Boes
- Boes Laboratory, Departments of Pediatrics, Neurology, and Psychiatry, The University of Iowa, Iowa City, IA, United States
| | - Joel C. Geerling
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Dorsey A, de Lecea L, Jennings KJ. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci 2021; 14:625397. [PMID: 33519372 PMCID: PMC7840832 DOI: 10.3389/fnins.2020.625397] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Sleep is crucial for optimal well-being, and sex differences in sleep quality have significant implications for women's health. We review the current literature on sex differences in sleep, such as differences in objective and subjective sleep measures and their relationship with aging. We then discuss the convincing evidence for the role of ovarian hormones in regulating female sleep, and survey how these hormones act on a multitude of brain regions and neurochemicals to impact sleep. Lastly, we identify several important areas in need of future research to narrow the knowledge gap and improve the health of women and other understudied populations.
Collapse
Affiliation(s)
| | | | - Kimberly J. Jennings
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Michael NJ, Caron A, Lee CE, Castorena CM, Lee S, Zigman JM, Williams KW, Elmquist JK. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Mol Metab 2020; 35:100956. [PMID: 32244183 PMCID: PMC7082550 DOI: 10.1016/j.molmet.2020.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Histaminergic neurons of the tuberomammillary nucleus (TMN) are wake-promoting and contribute to the regulation of energy homeostasis. Evidence indicates that melanocortin 4 receptors (MC4R) are expressed within the TMN. However, whether the melanocortin system influences the activity and function of TMN neurons expressing histidine decarboxylase (HDC), the enzyme required for histamine synthesis, remains undefined. METHODS We utilized Hdc-Cre mice in combination with whole-cell patch-clamp electrophysiology and in vivo chemogenetic techniques to determine whether HDC neurons receive metabolically relevant information via the melanocortin system. RESULTS We found that subsets of HDC-expressing neurons were excited by melanotan II (MTII), a non-selective melanocortin receptor agonist. Use of melanocortin receptor selective agonists (THIQ, [D-Trp8]-γ-MSH) and inhibitors of synaptic transmission (TTX, CNQX, AP5) indicated that the effect was mediated specifically by MC4Rs and involved a glutamatergic dependent presynaptic mechanism. MTII enhanced evoked excitatory post-synaptic currents (EPSCs) originating from electrical stimulation of the perifornical lateral hypothalamic area (PeFLH), supportive of melanocortin effects on the glutamatergic PeFLH projection to the TMN. Finally, in vivo chemogenetic inhibition of HDC neurons strikingly enhanced the anorexigenic effects of intracerebroventricular administration of MTII, suggesting that MC4R activation of histaminergic neurons may restrain the anorexigenic effects of melanocortin system activation. CONCLUSIONS These experiments identify a functional interaction between the melanocortin and histaminergic systems and suggest that HDC neurons act naturally to restrain the anorexigenic effect of melanocortin system activation. These findings may have implications for the control of arousal and metabolic homeostasis, especially in the context of obesity, in which both processes are subjected to alterations.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Eating/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Hypothalamic Area, Lateral/cytology
- Hypothalamic Area, Lateral/metabolism
- Locomotion/drug effects
- Male
- Melanocortins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/drug effects
- Neurons/metabolism
- Peptides, Cyclic/pharmacology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Natalie J Michael
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Alexandre Caron
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Syann Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| |
Collapse
|
10
|
Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci Biobehav Rev 2019; 105:72-80. [PMID: 31377219 DOI: 10.1016/j.neubiorev.2019.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/22/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022]
Abstract
With aging, our sleeping pattern alters. Elderly often wake unrested because their sleep time and sleep efficacy is reduced. In Alzheimer's disease (AD) patients, these alterations are even more pronounced and may further aggravate cognitive decline. Therefore, sleep disturbances greatly impact self-care ability, caregiver exhaustion and institutionalization rate. Reestablishing an effective sleep-wake cycle in these patients still remains an unresolved challenge, partly because sleep physiology is quite complex and multiple neurotransmitter systems contribute to a single process. Gaining a better understanding of sleep physiology will be crucial for further research. Conjointly, animal models, along with a multidisciplinary approach, will be of great value to establish a common ground between AD and sleep disturbances and work towards a potential therapeutic application.
Collapse
|
11
|
Histamine N-Methyltransferase in the Brain. Int J Mol Sci 2019; 20:ijms20030737. [PMID: 30744146 PMCID: PMC6386932 DOI: 10.3390/ijms20030737] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood–brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson’s disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.
Collapse
|
12
|
Neurotransmitters are released in brain areas according to ultradian rhythms: Coincidence with ultradian oscillations of EEG waves. J Chem Neuroanat 2018; 96:66-72. [PMID: 30576780 DOI: 10.1016/j.jchemneu.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/23/2022]
Abstract
Use of the push-pull superfusing technique has shown that in the brain the release rates of endogenous catecholamines, GABA, glutamate and histamine are not constant but fluctuate temporally according to ultradian rhythms. Rhythmic fluctuations have been found in the posterior and anterior hypothalamus, the locus coeruleus, the nucleus of the solitary tract, the mammillary body and the medial amygdaloid nucleus of cats and rats. Similar fluctuations appear in the nitric oxide signal registered in the nucleus accumbens, as well as in the power of delta and theta waves of the EEG in the posterior hypothalamus. The EEG rhythmic fluctuations are generated in the arcuate nucleus because they disappear after its electrocoagulation. The frequency of the EEG fluctuations is increased, decreased or even abolished when catecholamine or histamine receptor agonists and antagonists are centrally applied showing that the EEG ultradian rhythm is controlled by catecholaminergic and histaminergic neurons. Moreover, the rhythmic fluctuations of delta and theta waves corelate negatively with those of histamine in the rat posterior hypothalamus. The possible role of these rhythmic fluctuations is discussed. Their potential importance for pharmacotherapy is still unknown.
Collapse
|
13
|
Ikeno T, Yan L. A comparison of the orexin receptor distribution in the brain between diurnal Nile grass rats (Arvicanthis niloticus) and nocturnal mice (Mus musculus). Brain Res 2018; 1690:89-95. [PMID: 29630859 PMCID: PMC5944353 DOI: 10.1016/j.brainres.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022]
Abstract
The neuropeptide orexin/hypocretin regulates a wide range of behaviors and physiology through its receptors OX1R and OX2R, or HCRTR-1 and HCRTR-2. Although the distributions of these receptors have been established in nocturnal rodents, their distributions in the brain of diurnal species have not been studied. In the present study, we examined spatial patterns of OX1R and OX2R mRNA expression in diurnal Nile grass rats (Arvicanthis niloticus) by in situ hybridization and compared them with those in nocturnal mice (Mus musculus). Both receptors showed similar spatial patterns between species in most brain regions. However, species-specific expression was found in several regions that are mainly implicated in regulation of sleep/wakefulness, emotion and cognition. OX1R expression was detected in the caudate putamen and ventral tuberomammillary nucleus only in grass rats, while it was detected in the bed nucleus of the stria terminalis, medial division, posteromedial part only in mice. The distribution of OX2R mRNA was mostly consistent between the two species, although it was more widely expressed in the ventral tuberomammillary nucleus in grass rats compared to mice. These results suggest that neuronal pathways of the orexin system differ between chronotypes, and these differences could underlie the distinct profiles in behaviors and physiology between diurnal and nocturnal species.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018; 9:413. [PMID: 29928253 PMCID: PMC5997825 DOI: 10.3389/fneur.2018.00413] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jeremy C Borniger
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Kumar S, Verma L, Jain NS. Role of histamine H 1 receptor in caffeine induced locomotor sensitization. Neurosci Lett 2018; 668:60-66. [PMID: 29309856 DOI: 10.1016/j.neulet.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022]
Abstract
The present study elucidated the role of histamine H1 receptor in the caffeine induced locomotor sensitization. Intermittent administration of caffeine (15 mg/kg, i.p.) on alternate days (induction phase) i.e. 1st, 3rd, 5th, 7th, 9th, 11th and 13th resulted in the development of locomotor sensitization. In addition, challenge with sub-stimulant dose of caffeine (10 mg/kg, i.p.) directly on 17th day to induction group animals resulted in expression to locomotor sensitization to caffeine. I.c.v. injection of histaminergic agents concomitantly with caffeine during induction phase i.e. histamine H1 receptor agonist, FMPH (6.5 μg/mouse) significantly potentiated while H1 receptor antagonist, cetirizine (0.1 μg/mouse) attenuated the locomotor sensitization induced by caffeine (15 mg/kg, i.p.). In addition, challenge with caffeine (10 mg/kg, i.p.) on the expression day (17th) to the induction group mice on FMPH + caffeine treatment showed enhanced, while those on cetirizine + caffeine treatment exhibited lesser expression to locomotor sensitization. Therefore, a possible contributory role of the central histaminergic system via H1 receptor stimulation or up-regulation in the caffeine-induced locomotor sensitizing effect is proposed.
Collapse
Affiliation(s)
- Shalu Kumar
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, India
| | - Lokesh Verma
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, India
| | - Nishant S Jain
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
16
|
Noseda R, Borsook D, Burstein R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache 2018; 57 Suppl 2:97-111. [PMID: 28485844 DOI: 10.1111/head.13083] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological, and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective, and cognitive functions. This review defines a chemical framework for thinking about the complexity of factors that modulate the response properties of relay trigeminovascular thalamic neurons. Following the presentation of scientific evidence for monosynaptic connections between thalamic trigeminovascular neurons and axons containing glutamate, GABA, dopamine, noradrenaline, serotonin, histamine, orexin, and melanin-concentrating hormone, this review synthesizes a large body of data to propose that the transmission of headache-related nociceptive signals from the thalamus to the cortex is modulated by potentially opposing forces and that the so-called 'decision' of which system (neuropeptide/neurotransmitter) will dominate the firing of a trigeminovascular thalamic neuron at any given time is determined by the constantly changing physiological (sleep, wakefulness, food intake, body temperature, heart rate, blood pressure), behavioral (addiction, isolation), cognitive (attention, learning, memory use), and affective (stress, anxiety, depression, anger) adjustment needed to keep homeostasis.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Lkhagvasuren B, Oka T. The histaminergic system is involved in psychological stress-induced hyperthermia in rats. Physiol Rep 2018; 5:5/8/e13204. [PMID: 28438982 PMCID: PMC5408279 DOI: 10.14814/phy2.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
The histaminergic system modulates numerous physiological functions such as wakefulness, circadian rhythm, feeding, and thermoregulation. However, it is not yet known if this system is also involved in psychological stress-induced hyperthermia (PSH) and, if so, which histamine (H) receptor subtype mediates the effect. Therefore, we investigated the effects of pretreatments with intraperitoneal injections of mepyramine (an H1 receptor inverse agonist), cimetidine (an H2 receptor antagonist), and ciproxifan (an H3 receptor inverse agonist) on cage-exchange stress-induced hyperthermia (a model of PSH) by monitoring core body temperature (Tc) during both light (10:00 am-12:00 pm) and dark (10:00 pm-12:00 am) phases in conscious, freely moving rats. We also investigated the effects of these drugs on stress-induced changes in locomotor activity (La) to rule out the possibility that effects on Tc are achieved secondary to altered La Cage-exchange stress increased Tc within 20 min followed by a gradual decrease back to baseline Tc during both phases. In the light phase, mepyramine and cimetidine markedly attenuated PSH, whereas ciproxifan did not affect it. In contrast, in the dark phase, mepyramine dropped Tc by 1°C without affecting cage-exchange stress-induced hyperthermia, whereas cimetidine and ciproxifan did not affect both postinjection Tc and PSH Cage-exchange stress induced an increase in La, especially in the light phase, but none of these drugs altered cage-exchange stress-induced La in either circadian rhythm phase. These results suggest that the histaminergic system is involved in the physiological mechanisms underlying PSH, particularly through H1 and H2 receptors, without influencing locomotor activity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,The Neuroscience Cluster, Science and Technology Center, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Takakazu Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci 2017; 37:9574-9592. [PMID: 28874450 DOI: 10.1523/jneurosci.0580-17.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 11/21/2022] Open
Abstract
Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons (Hdc-Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep.SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain function, but has been difficult to selectively manipulate owing to cellular heterogeneity in this region. Here we use a transgenic mouse to interrogate both the characteristic firing properties of HA neurons and their specific role in maintaining wakefulness. Our results demonstrate that the acute, cell type-specific silencing of HA neurons during wakefulness is sufficient to not only impair arousal but to rapidly and selectively induce slow-wave sleep. This work furthers our understanding of HA-mediated mechanisms that regulate behavioral arousal.
Collapse
|
20
|
Um MY, Kim S, Jin YH, Yoon M, Yang H, Lee J, Jung J, Urade Y, Huang ZL, Kwon S, Cho S. A novel neurological function of rice bran: a standardized rice bran supplement promotes non-rapid eye movement sleep in mice through histamine H 1 receptors. Mol Nutr Food Res 2017; 61. [PMID: 28722302 DOI: 10.1002/mnfr.201700316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
SCOPE Although rice bran has been shown to be associated with a wide spectrum of health benefits, to date, there are no reports on its effects on sleep. We investigated the effect of rice bran on sleep and the mechanism underlying this effect. METHODS AND RESULTS Electroencephalography was used to evaluate the effects of standardized rice bran supplement (RBS) and doxepin hydrochloride (DH), a histamine H1 receptor (H1 R) antagonist used as a positive control, on sleep in mice. The mechanism of RBS action was investigated using knockout (KO) mice and ex vivo electrophysiological recordings. Oral administration of RBS and DH significantly decreased sleep latency and increased the amount of non-rapid eye movement sleep (NREMS) in mice. Similar to DH, RBS fully inhibited H1 R agonist-induced increase in action potential frequency in tuberomammillary nucleus neurons. In H1 R KO mice, neither RBS nor DH administration led to the increase in NREMS and decrease in sleep latency observed in WT mice. These results indicate that the sleep-promoting effect of RBS is completely dependent on H1 R antagonism. CONCLUSIONS RBS decreases sleep latency and promotes NREMS through the inhibition of H1 R, suggesting that it could be a promising therapeutic agent for insomnia.
Collapse
Affiliation(s)
- Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Sojin Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Minseok Yoon
- Division of Functional Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Hyejin Yang
- Division of Functional Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Jaekwang Lee
- Division of Functional Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Jonghoon Jung
- Division of Functional Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Japan
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sangoh Kwon
- S&D Research and Development Institute, Cheongju, Republic of Korea
| | - Suengmok Cho
- Division of Functional Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| |
Collapse
|
21
|
Yao L, Ramirez AD, Roecker AJ, Fox SV, Uslaner JM, Smith SM, Hodgson R, Coleman PJ, Renger JJ, Winrow CJ, Gotter AL. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. J Neurochem 2017; 142:204-214. [PMID: 28444767 DOI: 10.1111/jnc.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/27/2022]
Abstract
Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA)A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABAA receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABAA modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABAA modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep.
Collapse
Affiliation(s)
- Lihang Yao
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Andres D Ramirez
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Anthony J Roecker
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Steven V Fox
- Department of In Vivo Pharmacology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Jason M Uslaner
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Sean M Smith
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Robert Hodgson
- Department of In Vivo Pharmacology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| |
Collapse
|
22
|
Sleep-Promoting Effects and Possible Mechanisms of Action Associated with a Standardized Rice Bran Supplement. Nutrients 2017; 9:nu9050512. [PMID: 28524102 PMCID: PMC5452242 DOI: 10.3390/nu9050512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Natural sleep aids are becoming more popular due to the widespread occurrence of sleep disorders. The objective of this study was to assess the sleep-promoting effects of rice bran—a product that is considered as a functional ingredient. To evaluate the sleep-promoting effects of a standardized rice bran supplement (RBS), we employed a pentobarbital-induced sleep test and conducted analyses of sleep architecture. In addition, the effect of RBS on a caffeine-induced sleep disturbance was investigated. Oral administration of RBS (500 and 1000 mg/kg) produced a significant decrease in sleep latency and increase in sleep duration in pentobarbital-induced sleep in mice. Moreover, both RBS (1000 mg/kg) and doxepin hydrochloride (histamine H1 receptor antagonist, 30 mg/kg) counteracted a caffeine-induced sleep disturbance in mice. In terms of sleep phases, RBS (500 mg/kg) promoted non-rapid eye movement sleep for the first 3 h following its administration. Lastly, we unveiled a possible mechanism for RBS action as the hypnotic effect of RBS was blocked by a histamine H1 receptor agonist. The present study revealed sleep-promoting effects of RBS using various animal assays. Such effects seem to be mediated through the histaminergic system. Our findings suggest that RBS may be a promising natural aid for relieving sleep problems.
Collapse
|
23
|
Inactivation of the Tuberomammillary Nucleus by GABAA Receptor Agonist Promotes Slow Wave Sleep in Freely Moving Rats and Histamine-Treated Rats. Neurochem Res 2017; 42:2314-2325. [DOI: 10.1007/s11064-017-2247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
|
24
|
Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017; 4:eN-NWR-0286-16. [PMID: 28275716 PMCID: PMC5334454 DOI: 10.1523/eneuro.0286-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/11/2023] Open
Abstract
Pharmacological studies in mammals and zebrafish suggest that histamine plays an important role in promoting arousal. However, genetic studies using rodents with disrupted histamine synthesis or signaling have revealed only subtle or no sleep/wake phenotypes. Studies of histamine function in mammalian arousal are complicated by its production in cells of the immune system and its roles in humoral and cellular immunity, which can have profound effects on sleep/wake states. To avoid this potential confound, we used genetics to explore the role of histamine in regulating sleep in zebrafish, a diurnal vertebrate in which histamine production is restricted to neurons in the brain. Similar to rodent genetic studies, we found that zebrafish that lack histamine due to mutation of histidine decarboxylase (hdc) exhibit largely normal sleep/wake behaviors. Zebrafish containing predicted null mutations in several histamine receptors also lack robust sleep/wake phenotypes, although we are unable to verify that these mutants are completely nonfunctional. Consistent with some rodent studies, we found that arousal induced by overexpression of the neuropeptide hypocretin (Hcrt) or by stimulation of hcrt-expressing neurons is not blocked in hdc or hrh1 mutants. We also found that the number of hcrt-expressing or histaminergic neurons is unaffected in animals that lack histamine or Hcrt signaling, respectively. Thus, while acute pharmacological manipulation of histamine signaling has been shown to have profound effects on zebrafish and mammalian sleep, our results suggest that chronic loss of histamine signaling due to genetic mutations has only subtle effects on sleep in zebrafish, similar to rodents.
Collapse
|
25
|
McCloskey RJ. Sleep and cargo reorganization: A hypothesis. Med Hypotheses 2017; 100:37-42. [PMID: 28236845 DOI: 10.1016/j.mehy.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 11/19/2022]
Abstract
Several molecules that act in the nervous system to regulate sleep and wake were first identified based on their transport effects in pigmented cells. I compiled a list of such molecules like melatonin, melanin-concentrating hormone, and pigment dispersing factor, etc. Molecules that induce pigment aggregation promote sleep whereas molecules that induce pigment dispersal promote wake. I call these Sleep and PIgment Regulating Factors SPIRFs. SPIRFs regulate organelle trafficking in both pigmentary models and neurons. I propose that cargo transport fulfills necessary sleep functions such as remodeling synapses and restoring homeostasis in the distribution of cell components. I put forth the hypothesis that sleep-promoting SPIRFs induce states of increased cargo movement towards the cell body, and propose that this function is a critical neuron maintenance task for which animals must sleep.
Collapse
|
26
|
Hoffman GE, Koban M. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats. PLoS One 2016; 11:e0152252. [PMID: 27997552 PMCID: PMC5172538 DOI: 10.1371/journal.pone.0152252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, United States of America
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Wang ZJ, Liu JF. The Molecular Basis of Insomnia: Implication for Therapeutic Approaches. Drug Dev Res 2016; 77:427-436. [DOI: 10.1002/ddr.21338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zi-Jun Wang
- Department of Physiology and Biophysics; State University of New York at Buffalo; Buffalo NY
- Department of Pharmacology and Toxicology; State University of New York at Buffalo; Buffalo NY
| | - Jian-Feng Liu
- Department of Pharmacology and Toxicology; State University of New York at Buffalo; Buffalo NY
| |
Collapse
|
28
|
Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology 2016; 106:74-84. [PMID: 26275849 PMCID: PMC4917894 DOI: 10.1016/j.neuropharm.2015.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022]
Abstract
The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- J Paul Bolam
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom
| | - Tommas J Ellender
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom.
| |
Collapse
|
29
|
The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2015; 106:3-12. [PMID: 26164344 DOI: 10.1016/j.neuropharm.2015.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
Abstract
The control of food intake and body weight is very complex. Key factors driving eating behavior are hunger and satiety that are controlled by an interplay of several central and peripheral neuroendocrine systems, environmental factors, the behavioral state and circadian rhythm, which all concur to alter homeostatic aspects of appetite and energy expenditure. Brain histamine plays a fundamental role in eating behavior as it induces loss of appetite and has long been considered a satiety signal that is released during food intake (Sakata et al., 1997). Animal studies have shown that brain histamine is released during the appetitive phase to provide a high level of arousal preparatory to feeding, but also mediates satiety. Furthermore, histamine regulates peripheral mechanisms such as glucose uptake and insulin function. Preclinical research indicates that activation of H1 and H3 receptors is crucial for the regulation of the diurnal rhythm of food consumption; furthermore, these receptors have been specifically recognized as mediators of energy intake and expenditure. Despite encouraging preclinical data, though, no brain penetrating H1 receptor agonists have been identified that would have anti-obesity effects. The potential role of the H3 receptor as a target of anti-obesity therapeutics was explored in clinical trials that did not meet up to the expectations or were interrupted (clinicaltrials.gov). Nonetheless, interesting results are emerging from clinical trials that evaluated the attenuating effect of betahistine (an H1 agonist/H3 antagonist) on metabolic side effects associated with chronic antipsychotics treatment. Aim of this review is to summarize recent results that suggest the clinical relevance of the histaminergic system for the treatment of feeding disorders and provide an up-to-date summary of preclinical research. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
|
30
|
Wakefulness Is Governed by GABA and Histamine Cotransmission. Neuron 2015; 87:164-78. [PMID: 26094607 PMCID: PMC4509551 DOI: 10.1016/j.neuron.2015.06.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
Abstract
Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of “histaminergic” axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl− currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas. Histaminergic axons corelease GABA into the neocortex and striatum The released GABA produces slow tonic inhibition Reducing vgat expression in histaminergic neurons increases wakefulness Histamine-GABA axons will coordinate tonic inhibition over large cortical areas
Collapse
|
31
|
Fasting activated histaminergic neurons and enhanced arousal effect of caffeine in mice. Pharmacol Biochem Behav 2015; 133:164-73. [PMID: 25895691 DOI: 10.1016/j.pbb.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 12/18/2022]
Abstract
Caffeine, a popular psychoactive compound, promotes wakefulness via blocking adenosine A2A receptors in the shell of the nucleus accumbens, which projects to the arousal histaminergic tuberomammillary nucleus (TMN). The TMN controls several behaviors such as wakefulness and feeding. Fasting has been reported to activate the TMN histaminergic neurons to increase arousal. Therefore, we propose that caffeine may promote greater arousal under fasting rather than normal feeding conditions. In the current study, locomotor activity recording, electroencephalogram (EEG) and electromyogram recording and c-Fos expression were used in wild type (WT) and histamine H1 receptor (H1R) knockout (KO) mice to investigate the arousal effects of caffeine under fasting conditions. Caffeine (15mg/kg) enhanced locomotor activity in fasted mice for 5h, but only did so for 3h in normally fed animals. Pretreatment with the H1R antagonist pyrilamine abolished caffeine-induced stimulation on locomotor activity in fasted mice. EEG recordings confirmed that caffeine-induced wakefulness for 3h in fed WT mice, and for 5h in fasted ones. A stimulatory effect of caffeine was not observed in fasted H1R KO mice. Furthermore, c-Fos expression was increased in the TMN under fasting conditions. These results indicate that caffeine had greater wakefulness-promoting effects in fasted mice through the mediation of H1R.
Collapse
|
32
|
Doxepin and diphenhydramine increased non-rapid eye movement sleep through blockade of histamine H1 receptors. Pharmacol Biochem Behav 2015; 129:56-64. [DOI: 10.1016/j.pbb.2014.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/23/2022]
|
33
|
Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG, Hastings MH, Franks NP, Wisden W. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol 2014; 24:2838-44. [PMID: 25454592 PMCID: PMC4252164 DOI: 10.1016/j.cub.2014.10.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/29/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Anna Zecharia
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Zhe Zhang
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Qianzi Yang
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Polona Jager
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterhurerstrasse 190, Zurich 8057, Switzerland
| | - Elizabeth S Maywood
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Johanna E Chesham
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Stephen G Brickley
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK
| | - Michael H Hastings
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
34
|
Hanken K, Eling P, Kastrup A, Klein J, Hildebrandt H. Integrity of hypothalamic fibers and cognitive fatigue in multiple sclerosis. Mult Scler Relat Disord 2014; 4:39-46. [PMID: 25787051 DOI: 10.1016/j.msard.2014.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Cognitive fatigue is a common and disabling symptom of multiple sclerosis (MS), but little is known about its pathophysiology. The present study investigated whether the posterior hypothalamus, which is considered as the waking center, is associated with MS-related cognitive fatigue. We analyzed the integrity of posterior hypothalamic fibers in 49 patients with relapsing-remitting MS and 14 healthy controls. Diffusion tensor imaging (DTI) parameters were calculated for fibers between the posterior hypothalamus and, respectively, the mesencephalon, pons and prefrontal cortex. In addition, DTI parameters were computed for fibers between the anterior hypothalamus and these regions and for the corpus callosum. Cognitive fatigue was assessed using the Fatigue Scale for Motor and Cognitive Functions. Analyses of variance with repeated measures were performed to investigate the impact of cognitive fatigue on diffusion parameters. Cognitively fatigued patients (75.5%) showed a significantly lower mean axial and radial diffusivity for fibers between the posterior hypothalamus and the mesencephalon than cognitively non-fatigued patients (Group(⁎)Target area(⁎)Diffusion orientation: F=4.047; p=0.023). For fibers of the corpus callosum, MS patients presented significantly higher axial and radial diffusivity than healthy controls (Group(⁎)Diffusion orientation: F=9.904; p<0.001). Depressive mood, used as covariate, revealed significant interaction effects for anterior hypothalamic fibers (Target area(⁎)Diffusion orientation(⁎)Depression: F=5.882; p=0.021; Hemisphere(⁎)Diffusion orientation(⁎) Depression: F=8.744; p=0.008). Changes in integrity of fibers between the posterior hypothalamus and the mesencephalon appear to be associated with MS-related cognitive fatigue. These changes might cause an altered modulation of hypothalamic centers responsible for wakefulness. Furthermore, integrity of anterior hypothalamic fibers might be related to depression in MS.
Collapse
Affiliation(s)
- Katrin Hanken
- Klinikum Bremen-Ost, Department of Neurology, Züricher Str. 40, 28325 Bremen, Germany
| | - Paul Eling
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Andreas Kastrup
- Klinikum Bremen-Ost, Department of Neurology, Züricher Str. 40, 28325 Bremen, Germany
| | - Jan Klein
- Fraunhofer-MeVis Institute, University of Bremen, Germany
| | - Helmut Hildebrandt
- Klinikum Bremen-Ost, Department of Neurology, Züricher Str. 40, 28325 Bremen, Germany; University of Oldenburg, Institute of Psychology, 26111 Oldenburg, Germany.
| |
Collapse
|
35
|
Electric stimulation of the tuberomamillary nucleus affects epileptic activity and sleep-wake cycle in a genetic absence epilepsy model. Epilepsy Res 2014; 109:119-25. [PMID: 25524851 DOI: 10.1016/j.eplepsyres.2014.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022]
Abstract
Deep brain stimulation (DBS) is a promising approach for epilepsy treatment, but the optimal targets and parameters of stimulation are yet to be investigated. Tuberomamillary nucleus (TMN) is involved in EEG desynchronization-one of the proposed mechanisms for DBS action. We studied whether TMN stimulation could interfere with epileptic spike-wave discharges (SWDs) in WAG/Rij rats with inherited absence epilepsy and whether such stimulation would affect sleep-wake cycle. EEG and video registration were used to determine SWD occurrence and stages of sleep and wake during three-hours recording sessions. Stimulation (100Hz) was applied in two modes: closed-loop (with previously determined interruption threshold intensity) or open-loop mode (with 50% or 70% threshold intensity). Closed-loop stimulation successfully interrupted SWDs but elevated their number by 148 ± 54% compared to baseline. It was accompanied by increase in number of episodes but not total duration of both active and passive wakefulness. Open-loop stimulation with amplitude 50% threshold did not change measured parameters, though 70% threshold stimulation reduced SWDs number by 40 ± 9%, significantly raised the amount of active wakefulness and decreased the amount of both slow-wave and rapid eye movement sleep. These results suggest that the TMN is unfavorable as a target for DBS as its stimulation may cause alterations in sleep-wake cycle. A careful choosing of parameters and control of sleep-wake activity is necessary when applying DBS in epilepsy.
Collapse
|
36
|
Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS One 2014; 9:e103929. [PMID: 25090640 PMCID: PMC4121288 DOI: 10.1371/journal.pone.0103929] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022] Open
Abstract
Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a ‘decision’ is made on whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question, we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons. Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR) and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH); but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory) that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.
Collapse
|
37
|
Ramirez AD, Gotter AL, Fox SV, Tannenbaum PL, Yao L, Tye SJ, McDonald T, Brunner J, Garson SL, Reiss DR, Kuduk SD, Coleman PJ, Uslaner JM, Hodgson R, Browne SE, Renger JJ, Winrow CJ. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators. Front Neurosci 2013; 7:254. [PMID: 24399926 PMCID: PMC3871832 DOI: 10.3389/fnins.2013.00254] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022] Open
Abstract
Dual orexin receptor antagonists (DORAs) are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA)-A receptor modulators of distinct chemical structure and pharmacological properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone, and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam [0.3–30 mg/kg administered orally (PO)] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.5 g/kg) induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO) nor almorexant (30–300 mg/kg, PO) impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone, and diazepam) and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.
Collapse
Affiliation(s)
- Andres D Ramirez
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Anthony L Gotter
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Steven V Fox
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - Pamela L Tannenbaum
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - Lihang Yao
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - Spencer J Tye
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - Terrence McDonald
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Joseph Brunner
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Susan L Garson
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Duane R Reiss
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Scott D Kuduk
- Merck Research Laboratories, Department of Medicinal Chemistry, Merck & Co., Inc. West Point, PA, USA
| | - Paul J Coleman
- Merck Research Laboratories, Department of Medicinal Chemistry, Merck & Co., Inc. West Point, PA, USA
| | - Jason M Uslaner
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - Robert Hodgson
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - Susan E Browne
- Merck Research Laboratories, Department of In Vivo Pharmacology, Merck & Co., Inc. West Point, PA, USA
| | - John J Renger
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| | - Christopher J Winrow
- Merck Research Laboratories, Department of Neuroscience, Merck & Co., Inc. West Point, PA, USA
| |
Collapse
|
38
|
Krystal AD, Richelson E, Roth T. Review of the histamine system and the clinical effects of H1 antagonists: Basis for a new model for understanding the effects of insomnia medications. Sleep Med Rev 2013; 17:263-72. [DOI: 10.1016/j.smrv.2012.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
|
39
|
Matsui S, Murota H, Takahashi A, Yang L, Lee JB, Omiya K, Ohmi M, Kikuta J, Ishii M, Katayama I. Dynamic analysis of histamine-mediated attenuation of acetylcholine-induced sweating via GSK3β activation. J Invest Dermatol 2013; 134:326-334. [PMID: 23900020 DOI: 10.1038/jid.2013.323] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 12/31/2022]
Abstract
Sweating has been associated with the exacerbation of atopic dermatitis (AD) in diverse ways. Acetylcholine (ACh)-mediated sweating is known to be attenuated in AD, but its cause remains obscure. To address this issue, the impact of histamine on ACh-induced sweating was evaluated. Sweating was measured by counting the number of active sweat pores by the starch-iodine reaction and dynamic optical coherence tomography; sweat was visualized using two-photon excitation fluorescence microscopy in mice and the quantitative sudomotor axon reflex test in humans. Both histamine receptor antagonists and H1 receptor (H1R)-knockout (KO) mice were used to determine methodological specificity. Histamine demonstrably inhibited ACh-induced sweating in both mice and humans via H1R-mediated signaling. In sweat glands, ACh inactivated glycogen synthase kinase 3β (GSK3β), a kinase involved in endocytosis and secretion, whereas simultaneous stimulation with histamine activated GSK3β. Results of two-photon excitation fluorescence microscopy confirmed the dynamic motion of sweat and sweat glands after ACh treatment, showing that simultaneous stimulation with histamine altered their dynamic properties. These results indicate that histamine inhibits sweat gland secretions by blocking ACh-induced inactivation of GSK3β. Histamine-mediated hypohidrosis might be involved in the mechanism of abnormal skin dryness in patients with AD.
Collapse
Affiliation(s)
- Saki Matsui
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Aya Takahashi
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lingli Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Chenan, Republic of Korea
| | - Kouta Omiya
- Course of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masato Ohmi
- Course of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 2013; 14:472-87. [DOI: 10.1038/nrn3526] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Gondard E, Anaclet C, Akaoka H, Guo RX, Zhang M, Buda C, Franco P, Kotani H, Lin JS. Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice. Neuropsychopharmacology 2013; 38:1015-31. [PMID: 23303066 PMCID: PMC3629391 DOI: 10.1038/npp.2012.266] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term abolition of a brain arousal system impairs wakefulness (W), but little is known about the consequences of long-term enhancement. The brain histaminergic arousal system is under the negative control of H3-autoreceptors whose deletion results in permanent enhancement of histamine (HA) turnover. In order to determine the consequences of enhancement of the histaminergic system, we compared the cortical EEG and sleep-wake states of H3-receptor knockout (H3R-/-) and wild-type mouse littermates. We found that H3R-/-mice had rich phenotypes. On the one hand, they showed clear signs of enhanced HA neurotransmission and vigilance, i.e., a higher EEG θ power during spontaneous W and a greater extent of W or sleep restriction during behavioral tasks, including environmental change, locomotion, and motivation tests. On the other hand, during the baseline dark period, they displayed deficient W and signs of sleep deterioration, such as pronounced sleep fragmentation and reduced cortical slow activity during slow wave sleep (SWS), most likely due to a desensitization of postsynaptic histaminergic receptors as a result of constant HA release. Ciproxifan (H3-receptor inverse agonist) enhanced W in wild-type mice, but not in H3R-/-mice, indicating a functional deletion of H3-receptors, whereas triprolidine (postsynaptic H1-receptor antagonist) or α-fluoromethylhistidine (HA-synthesis inhibitor) caused a greater SWS increase in H3R-/- than in wild-type mice, consistent with enhanced HA neurotransmission. These sleep-wake characteristics and the obesity phenotypes previously reported in this animal model suggest that chronic enhancement of histaminergic neurotransmission eventually compromises the arousal system, leading to sleep-wake, behavioral, and metabolic disorders similar to those caused by voluntary sleep restriction in humans.
Collapse
Affiliation(s)
- Elise Gondard
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | - Christelle Anaclet
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | - Hidéo Akaoka
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | - Rui-Xian Guo
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | - Mei Zhang
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | - Colette Buda
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | - Patricia Franco
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France
| | | | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, Lyon, France,Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, Faculty of Medicine, Claude Bernard University, 8 av. Rockefeller, 69373, Lyon, Cedex 08 69373, France, Tel: (33) 478 777 116, Fax: (33) 478 777 150, E-mail:
| |
Collapse
|
42
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
43
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
44
|
Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol Rev 2012; 64:389-420. [PMID: 22759794 DOI: 10.1124/pr.111.005546] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Orexin signaling is essential for normal regulation of arousal and behavioral state control and represents an attractive target for therapeutics combating insomnia. Alternatively termed hypocretins, these neuropeptides were named to reflect sequence similarity to incretins and their potential to promote feeding. Current nomenclature reflects these molecular and biochemical discovery approaches in which HCRT, HCRTR1, and HCRTR2 genes encode prepro-orexin, the orexin 1 receptor (OX(1)) and the orexin 2 receptor (OX(2))-gene names designated by the Human Genome Organization and receptor names designated by the International Union of Basic and Clinical Pharmacology. Orexinergic neurons are most active during wakefulness and fall silent during inactive periods, a prolonged disruption in signaling most profoundly resulting in hypersomnia and narcolepsy. Hcrtr2 mutations underlie the etiology of canine narcolepsy, deficiencies in orexin-producing neurons are observed in the human disorder, and ablation of mouse orexin neurons or the Hcrt gene results in a narcolepsy-cataplexy phenotype. The development of orexin receptor antagonists and genetic models targeting components of the orexin pathway have elucidated the OX(2) receptor-specific role in histamine-mediated arousal and the contribution of both receptors in brainstem pathways involved in vigilance state gating. Orexin receptor antagonists of varying specificity uncovered additional roles beyond sleep and feeding that include addiction, depression, anxiety, and potential influences on peripheral physiology. Combined genetic and pharmacological approaches indicate that orexin signaling may represent a confluence of sleep, feeding, and reward pathways. Selective orexin receptor antagonism takes advantage of these properties toward the development of novel insomnia therapeutics.
Collapse
MESH Headings
- Animals
- Arousal/drug effects
- Arousal/genetics
- Clinical Trials as Topic
- Evolution, Molecular
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Hypnotics and Sedatives/therapeutic use
- International Agencies
- Ligands
- Models, Molecular
- Molecular Structure
- Narcolepsy/drug therapy
- Narcolepsy/genetics
- Neurotransmitter Agents/chemistry
- Neurotransmitter Agents/pharmacology
- Neurotransmitter Agents/therapeutic use
- Orexin Receptors
- Protein Conformation
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/classification
- Receptors, Neuropeptide/genetics
- Sleep Initiation and Maintenance Disorders/drug therapy
- Sleep Initiation and Maintenance Disorders/genetics
- Terminology as Topic
Collapse
Affiliation(s)
- Anthony L Gotter
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, PA 19486-0004.
| | | | | | | | | |
Collapse
|
45
|
Ikeda-Sagara M, Ozaki T, Shahid M, Morioka E, Wada K, Honda K, Hori A, Matsuya Y, Toyooka N, Ikeda M. Induction of prolonged, continuous slow-wave sleep by blocking cerebral H₁ histamine receptors in rats. Br J Pharmacol 2012; 165:167-82. [PMID: 21699505 DOI: 10.1111/j.1476-5381.2011.01547.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Classic H(1) histamine receptor (H(1)R) antagonists are non-selective for H(1)R and known to produce drowsiness. Modern antihistamines are more selective for H(1)R, and are 'non-drowsy' presumably due to reduced permeability through the blood-brain barrier. To characterize both histaminergic sleep regulation and the central actions of antihistamines, in the present study we analysed the effect of classic and modern antihistamines on rats' sleep using continuous i.c.v. infusions. EXPERIMENTAL APPROACH Effects of classic (d-chlorpheniramine; d-CPA) and second-generation (cetirizine) antihistamines on sleep were compared after i.p. injections or continuous i.c.v. infusions into rats. Fluorescent cetirizine/DBD-pz was synthesized to trace the approximate distribution of cerebral cetirizine. Furthermore, the effects of H(1) R antagonists on cultured preoptic neurons were examined using calcium imaging. KEY RESULTS d-CPA 4 mg·kg(-1) i.p. increased non-rapid eye movement (REM) sleep whereas 10-40 mg·kg(-1) d-CPA decreased non-REM sleep at dark onset time. Nocturnal i.c.v. infusions of d-CPA (10 µmol·100 µL(-1)·10 h(-1)) increased drowsiness but not non-REM sleep, whereas the same i.c.v. infusions of cetirizine significantly increased non-REM sleep, abolished REM sleep, and decreased wakefulness for more than 10 h. The medial preoptic area contained the greatest fluorescent labelling after i.c.v. cetirizine/DBD-pz infusions. Histamine-induced Ca(2+) increases in medial preoptic neurons were blocked by d-CPA or cetirizine, whereas d-CPA, but not cetirizine, increased Ca(2+) irrespective of antihistaminergic activity at ≥ 100 µM. CONCLUSION AND IMPLICATIONS The excitatory action of d-CPA may explain the seemingly inconsistent actions of d-CPA on sleep. Cerebral H(1)R inhibition by cetirizine induces synchronization of cerebral activity and prolonged, continuous slow-wave sleep.
Collapse
Affiliation(s)
- Masami Ikeda-Sagara
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gotter AL, Roecker AJ, Hargreaves R, Coleman PJ, Winrow CJ, Renger JJ. Orexin receptors as therapeutic drug targets. PROGRESS IN BRAIN RESEARCH 2012; 198:163-88. [PMID: 22813974 DOI: 10.1016/b978-0-444-59489-1.00010-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Orexin (hypocretin) receptor antagonists stand as a model for the development of targeted CNS small-molecule therapeutics. The identification of mutations in the gene for the orexin 2 receptor responsible for canine narcolepsy, the demonstration of a hypersomnolence phenotype in hypocretin knockout mice and the disruption in orexin signaling in narcoleptic patients provides clear genetic proof of concept for targeting orexin-induced arousal for the treatment of insomnia. The full characterization of the genes encoding orexin and its two cognate receptors enabled the rapid development of in vitro and ex vivo assays with which to identify lead compound structures and to optimize potency and pharmacokinetic properties. Polysomnographic measures with cross-species translatability capable of measuring the sleep-promoting effects of orexin receptor antagonists from mice to man, and the existence of knockout models not only allow efficacy assessment but also the demonstration of mechanism of action. Focused efforts by a number of groups have identified potent compounds of diverse chemical structure with differential orexin receptor selectivity for either the orexin 1 receptor (OX₁R) or the orexin 2 receptor (OX₂R), or both. This work has yielded tool compounds that, along with genetic models, have been used to specifically define the role these receptors in mediating orexin-induced arousal and vigilance state control. Optimized dual receptor antagonists with favorable pharmacokinetic and safety profiles have now demonstrated efficacy in clinical development and represent a distinct mechanism of action for the treatment of insomnia relative to current standard of care.
Collapse
Affiliation(s)
- Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ishizuka T, Murotani T, Yamatodani A. Action of Modafinil Through Histaminergic and Orexinergic Neurons. SLEEP HORMONES 2012; 89:259-78. [DOI: 10.1016/b978-0-12-394623-2.00014-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci 2011; 31:15340-51. [PMID: 22031880 DOI: 10.1523/jneurosci.3144-11.2011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Information processing in the striatum is critical for basal ganglia function and strongly influenced by neuromodulators (e.g., dopamine). The striatum also receives modulatory afferents from the histaminergic neurons in the hypothalamus which exhibit a distinct diurnal rhythm with high activity during wakefulness, and little or no activity during sleep. In view of the fact that the striatum also expresses a high density of histamine receptors, we hypothesized that released histamine will affect striatal function. We studied the role of histamine on striatal microcircuit function by performing whole-cell patch-clamp recordings of neurochemically identified striatal neurons combined with electrical and optogenetic stimulation of striatal afferents in mouse brain slices. Bath applied histamine had many effects on striatal microcircuits. Histamine, acting at H(2) receptors, depolarized both the direct and indirect pathway medium spiny projection neurons (MSNs). Excitatory, glutamatergic input to both classes of MSNs from both the cortex and thalamus was negatively modulated by histamine acting at presynaptic H(3) receptors. The dynamics of thalamostriatal, but not corticostriatal, synapses were modulated by histamine leading to a facilitation of thalamic input. Furthermore, local inhibitory input to both classes of MSNs was negatively modulated by histamine. Subsequent dual whole-cell patch-clamp recordings of connected pairs of striatal neurons revealed that only lateral inhibition between MSNs is negatively modulated, whereas feedforward inhibition from fast-spiking GABAergic interneurons onto MSNs is unaffected by histamine. These findings suggest that the diurnal rhythm of histamine release entrains striatal function which, during wakefulness, is dominated by feedforward inhibition and a suppression of excitatory drive.
Collapse
|
49
|
Abstract
Many neurochemical systems interact to generate wakefulness and sleep. Wakefulness is promoted by neurons in the pons, midbrain, and posterior hypothalamus that produce acetylcholine, norepinephrine, dopamine, serotonin, histamine, and orexin/hypocretin. Most of these ascending arousal systems diffusely activate the cortex and other forebrain targets. NREM sleep is mainly driven by neurons in the preoptic area that inhibit the ascending arousal systems, while REM sleep is regulated primarily by neurons in the pons, with additional influence arising in the hypothalamus. Mutual inhibition between these wake- and sleep-regulating regions likely helps generate full wakefulness and sleep with rapid transitions between states. This up-to-date review of these systems should allow clinicians and researchers to better understand the effects of drugs, lesions, and neurologic disease on sleep and wakefulness.
Collapse
Affiliation(s)
- Rodrigo A España
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | | |
Collapse
|
50
|
|