1
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
2
|
The Genetic Stability, Replication Kinetics and Cytopathogenicity of Recombinant Avian Coronaviruses with a T16A or an A26F Mutation within the E Protein Is Cell-Type Dependent. Viruses 2022; 14:v14081784. [PMID: 36016406 PMCID: PMC9415719 DOI: 10.3390/v14081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.
Collapse
|
3
|
Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W, Meng X. Characterization of the SARS-CoV-2 E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci 2021; 30:1114-1130. [PMID: 33813796 PMCID: PMC8138525 DOI: 10.1002/pro.4075] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| | - Rui Yang
- Department of Infection and ImmunityTianjin Union Medical Center, Nankai University Affiliated HospitalTianjinPeople's Republic of China
| | - Imshik Lee
- College of PhysicsNankai UniversityTianjinPeople's Republic of China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Xiangfei Meng
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| |
Collapse
|
4
|
Mukherjee S, Bhattacharyya D, Bhunia A. Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain. Biophys Chem 2020; 266:106452. [PMID: 32818817 PMCID: PMC7418743 DOI: 10.1016/j.bpc.2020.106452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
The Envelope (E) protein in SARS Coronavirus (CoV) is a small structural protein, incorporated as part of the envelope. A major fraction of the protein has been known to be associated with the host membranes, particularly organelles related to intracellular trafficking, prompting CoV packaging and propagation. Studies have elucidated the central hydrophobic transmembrane domain of the E protein being responsible for much of the viroporin activity in favor of the virus. However, newer insights into the organizational principles at the membranous compartments within the host cells suggest further complexity of the system. The lesser hydrophobic Carboxylic-terminal of the protein harbors interesting amino acid sequences- suggesting at the prevalence of membrane-directed amyloidogenic properties that remains mostly elusive. These highly conserved segments indicate at several potential membrane-associated functional roles that can redefine our comprehensive understanding of the protein. This should prompt further studies in designing and characterizing of effective targeted therapeutic measures. The SARS CoV Envelope protein is a small structural protein of the virus, responsible for viroporin like activity. Membrane- E protein interaction provides an useful insight into gaining mechanistic insight into its viroporin functions. The central hydrophobic transmembrane domain of E protein, known to affect ion-channel formation. The C-terminal region of the protein show further potential host-membrane directed functional roles. The highly conserved amyloidogenic amino acid stretches of the C-terminal suggest for its contribution to CoV propagation.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India.
| |
Collapse
|
5
|
Lin S, Liu N, Yang Z, Song W, Wang P, Chen H, Lucio M, Schmitt-Kopplin P, Chen G, Cai Z. GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta 2010; 83:262-8. [DOI: 10.1016/j.talanta.2010.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 12/12/2022]
|
6
|
Glycoprotein-dependent acidification of vesicular stomatitis virus enhances release of matrix protein. J Virol 2009; 83:12139-50. [PMID: 19776119 DOI: 10.1128/jvi.00955-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study vesicular stomatitis virus (VSV) entry and uncoating, we generated a recombinant VSV encoding a matrix (M) protein containing a C-terminal tetracysteine Lumio tag (rVSV-ML) that could be fluorescently labeled using biarsenical compounds. Quantitative confocal microscopy showed that there is a transient loss of fluorescence at early times after the initiation of endocytosis of rVSV-ML-Green (rVSV-MLG) virions, which did not occur when cells were treated with bafilomycin A1. The reduction in fluorescence occurred 5 to 10 min postentry, followed by a steady increase in fluorescence intensity from 15 to 60 min postentry. A similar loss of fluorescence was observed in vitro when virions were exposed to acidic pH. The reduction in fluorescence required G protein since "bald" DeltaG-MLG particles did not show a similar loss of fluorescence at low pH. Based on the pH-dependent fluorescence properties of Lumio Green, we hypothesize that the loss of fluorescence of rVSV-MLG virions during virus entry is due to a G ectodomain-dependent acidification of the virion interior. Biochemical analysis indicated that low pH also resulted in an enhancement of M protein dissociation from partially permeabilized, but otherwise intact, wild-type virions. From these data we propose that low-pH conformational changes in G protein promote acidification of the virus interior, which facilitates the release of M from ribonucleoprotein particles during uncoating.
Collapse
|
7
|
Poliovirus 2b insertion into lipid monolayers and pore formation in vesicles modulated by anionic phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2621-6. [DOI: 10.1016/j.bbamem.2008.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/09/2008] [Accepted: 06/18/2008] [Indexed: 11/23/2022]
|
8
|
Madan V, Sánchez-Martínez S, Vedovato N, Rispoli G, Carrasco L, Nieva JL. Plasma membrane-porating domain in poliovirus 2B protein. A short peptide mimics viroporin activity. J Mol Biol 2007; 374:951-64. [PMID: 17963782 DOI: 10.1016/j.jmb.2007.09.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/13/2007] [Accepted: 09/20/2007] [Indexed: 11/30/2022]
Abstract
Picornavirus 2B, a non-structural protein required for effective viral replication, has been implicated in cell membrane permeabilization during the late phases of infection. Here, we have approached the molecular mechanism of this process by assessing the pore-forming activity of an overlapping peptide library that spanned the complete 2B sequence. At non-cytopathic concentrations, only the P3 peptide, spanning 2B residues 35-55, effectively assembled hydrophilic pores that allowed diffusion of low molecular mass solutes across the cell plasma membrane (IC(50) approximately 4x10(-7) M) and boundary liposome bilayers (starting at peptide to lipid molar ratios>1:10(4)). Circular dichroism data were consistent with its capacity to fold as a helix in a membrane-like environment. Furthermore, addition of this peptide to a sealed plasma-membrane model, consisting of retinal rod outer segments patch-clamped in a whole-cell configuration, induced ion channel activity within seconds at concentrations as low as 10(-8) M. Thus, we have established a "one-helix" 2B version that possesses the intrinsic pore-forming activity required to directly and effectively permeabilize the cell plasma membrane. We conclude that 2B viroporin can be classified as a genuine pore-forming toxin of viral origin, which is produced intracellularly at certain times post infection.
Collapse
Affiliation(s)
- Vanesa Madan
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Enveloped viruses penetrate the host cells by fusion of the viral envelope with a cellular target membrane. One of the best studied viruses with respect to its penetration and uncoating is the alphavirus Semliki Forest virus that is taken up by endocytosis. The alphavirus membrane glycoprotein E1 harbors a so-called fusion peptide, which is responsible for interaction with the endosomal membrane, leading to fusion. Besides this fusion process, cell infection by alphaviruses is accompanied by membrane permeability changes, thus implying some form of pore across the membrane. However, the ability of E1 protein to form ion pores has not been widely accepted. This review provides an overview of studies that confirm earlier results predicting the formation of a proteinaceous pore by the alphavirus spike proteins. Furthermore, different models to explain this pore formation during virus entry are discussed.
Collapse
Affiliation(s)
- Fabian Käsermann
- University of Bern, Department of Chemistry & Biochemistry, Bern, Switzerland and, ZLB Behring AG, Switzerland
| | - Christoph Kempf
- University of Bern, Department of Chemistry & Biochemistry, Bern, Switzerland and, ZLB Behring AG, Switzerland
| |
Collapse
|
10
|
Wengler G, Koschinski A, Wengler G, Repp H. During entry of alphaviruses, the E1 glycoprotein molecules probably form two separate populations that generate either a fusion pore or ion-permeable pores. J Gen Virol 2004; 85:1695-1701. [PMID: 15166454 DOI: 10.1099/vir.0.79845-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies using the alphavirus Semliki Forest virus have indicated that the viral E1 fusion protein forms two types of pore: fusion pores and ion-permeable pores. The formation of ion-permeable pores has not been generally accepted, partly because it was not evident how the protein might form these different pores. Here it is proposed that the choice of the target membrane determines whether a fusion pore or ion-permeable pores are formed. The fusion protein is activated in the endosome and for steric reasons only a fraction of the activated molecules can interact with the endosomal membrane. This target membrane reaction forms the fusion pore. It is proposed that the rest of the activated molecules interact with the membrane in which the protein is anchored and that this self-membrane reaction leads to formation of ion-permeable pores, which can be detected in the target membrane after fusion of the viral membrane into the target membrane.
Collapse
Affiliation(s)
- Gerd Wengler
- Institut für Virologie der Veterinärmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Andreas Koschinski
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Gisela Wengler
- Institut für Virologie der Veterinärmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Holger Repp
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| |
Collapse
|
11
|
Koschinski A, Wengler G, Wengler G, Repp H. The membrane proteins of flaviviruses form ion-permeable pores in the target membrane after fusion: identification of the pores and analysis of their possible role in virus infection. J Gen Virol 2003; 84:1711-1721. [PMID: 12810864 DOI: 10.1099/vir.0.19062-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we presented evidence that the E1 fusion protein of the alphavirus Semliki Forest virus forms ion-permeable pores in the target membrane after fusion. We proposed that the homologous fusion proteins of flaviviruses and hepatitis C virus form similar pores. To test this hypothesis for the E fusion protein of flaviviruses, the release of [(3)H]choline from liposomes by the flavivirus West Nile (WN) virus was determined. [(3)H]Choline was released at mildly acid pH. The pH threshold depended on the lipid composition. Release from certain liposomes was activated even at neutral pH. To identify the generation of individual pores, single cells were investigated with the patch-clamp technique. The formation of individual pores during low pH-induced WN virus entry at the plasma membrane occurred within seconds. These experiments were performed in parallel with Semliki Forest virus. The results indicated that, similar to alphavirus infection, infection with flaviviruses via endosomes leads to the formation of ion-permeable pores in the endosome after fusion, which allows the flow of protons from the endosome into the cytoplasm during virus entry. However, in vitro translation experiments of viral cores showed that, in contrast to alphaviruses, which probably need this proton flow for core disassembly, the genome RNA of WN virus present in the viral core is directly accessible for translation. For entry of flaviviruses, therefore, a second pathway for productive infection may exist, in which fusion of the viral membrane is activated at neutral pH by contact with a plasma membrane of appropriate lipid composition.
Collapse
Affiliation(s)
- Andreas Koschinski
- Rudolf-Buchheim-Institut für Pharmakologie1, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Gerd Wengler
- Institut für Virologie der Veterinärmedizin2, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Gisela Wengler
- Institut für Virologie der Veterinärmedizin2, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Holger Repp
- Rudolf-Buchheim-Institut für Pharmakologie1, Justus-Liebig-Universität, D-35392 Giessen, Germany
| |
Collapse
|
12
|
Wengler G, Koschinski A, Wengler G, Dreyer F. Entry of alphaviruses at the plasma membrane converts the viral surface proteins into an ion-permeable pore that can be detected by electrophysiological analyses of whole-cell membrane currents. J Gen Virol 2003; 84:173-181. [PMID: 12533714 DOI: 10.1099/vir.0.18696-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Alphaviruses are small enveloped viruses that have been used extensively as model enveloped viruses. During infection, virus particles are taken up into endosomes, where a low pH activates the viral fusion protein, E1. Fusion of the viral and the endosomal membranes releases the viral core into the cytoplasm where cores are disassembled by interaction with 60S ribosomal subunits. Recently, we have shown that in vitro this disassembly is strongly stimulated by low pH. We have proposed that after entry of the core into the cytoplasm, the viral membrane proteins that have been transferred to the endosomal membrane form an ion-permeable pore in the endosome. The resulting flow of protons from the endosome into the cytoplasm through this pore could generate a low-pH environment for core disassembly in vivo. Here we report two types of analysis aimed at the identification of such pores. First, the release of [3H]choline from the interior of liposomes was analysed in the presence of virus particles and viral proteins. Secondly, cells were infected with Sindbis or Semliki Forest alphaviruses at the plasma membrane and the possible generation of ion-permeable pores during this process was analysed by whole-cell voltage clamp analysis of the membrane current. The results obtained indicated that the proposed pores are in fact generated and allowed us to identify the formation of individual pores. Available evidence indicates that the alphavirus E1 protein probably forms these pores. Proteins homologous to the alphavirus E1 protein are present in flaviviruses and hepatitis C virus.
Collapse
Affiliation(s)
| | - Andreas Koschinski
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | - Florian Dreyer
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| |
Collapse
|
13
|
Gatti PJ, Choi B, Haislip AM, Fermin CD, Garry RF. Inhibition of HIV type 1 production by hygromycin B. AIDS Res Hum Retroviruses 1998; 14:885-92. [PMID: 9671217 DOI: 10.1089/aid.1998.14.885] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV infection alters the cellular uptake of ions and other small molecules. This study was designed to determine whether hygromycin B, a low molecular weight (MW 527) aminoglycoside protein synthesis inhibitor that is normally impermeable to mammalian cells at micromolar concentrations, can selectively inhibit HIV expression and cytopathology. CD4+ T lymphoblastoid cells (H9) and peripheral blood mononuclear cells (PBMCs) were infected with HIV-1, then incubated in medium containing various concentrations of hygromycin B. HIV-1-induced formation of multinucleated giant cells and single cell killing were dramatically reduced in the presence of micromolar concentrations of hygromycin B. Hygromycin B also inhibited HIV-1 production in a dose-dependent manner during acute infection. G418, a larger and more hydrophobic aminoglycoside (MW 692), did not display the same selective inhibition of HIV-1 production as hygromycin B. Relative to mock-infected cells, protein synthesis in acutely infected H9 cells was selectively inhibited by hygromycin B. Hygromycin B also reduced HIV production in PBMCs and in H9 cells persistently infected with HIV. PCR analysis demonstrated that hygromycin B did not inhibit HIV-1 reverse transcription. These results demonstrate that HIV-1 infection renders cells more sensitive to hygromycin B than uninfected cells, and provides support for the hypothesis that HIV-1 induces an alteration of plasma membrane permeability. The HIV-modified cell membrane may be a potential target for antiviral intervention and chemotherapy.
Collapse
Affiliation(s)
- P J Gatti
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
14
|
Aldabe R, Barco A, Carrasco L. Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem 1996; 271:23134-7. [PMID: 8798506 DOI: 10.1074/jbc.271.38.23134] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Poliovirus infection leads to drastic alterations in membrane permeability late during infection. Transient expression of each nonstructural protein of poliovirus by means of recombinant vaccinia virus encoding the T7 RNA polymerase indicates that proteins 2B and 2BC strongly enhance membrane permeability to hygromycin B in HeLa cells. Almost no effect on expression of proteins 2C, 3A, 3AB, and 3C was found. Deletions and point mutations in 2B and 2BC have identified sequences in 2B involved in membrane permeabilization. Regions located at both ends of 2B are necessary to bring about these permeability alterations. A deletion of 11 amino acids of 2BC at the junction between 2B and 2C, as well as long deletions in 2C encompassing the GTPase motifs of this protein, do not impair the capacity of 2BC to modify the permeability of the membrane. The release of compounds such as choline or uridine from preloaded cells is also augmented by 2B and 2BC expression.
Collapse
Affiliation(s)
- R Aldabe
- Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
15
|
Tzadok-David Y, Metzkin-Eizenberg M, Zakay-Rones Z. The effect of a mesogenic and a lentogenic Newcastle disease virus strain on Burkitt lymphoma Daudi cells. J Cancer Res Clin Oncol 1995; 121:169-74. [PMID: 7713989 DOI: 10.1007/bf01198099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The destructive effect of Newcastle disease virus (NDV) strains on Burkitt lymphoma Daudi cells was investigated. Interaction of an active and UV-inactivated mesogenic strain (Roakin), as well as an active attenuated lentogenic strain (B1), grown in the allantoic sac of embryonated eggs, at high multiplicity, caused inhibition in cellular DNA synthesis and arrest in cell multiplication, eventually killing of the cells. The lentogenic strain cultivated in chicken fibroblasts exhibited only a moderate activity. The mechanism of the cytolytic effect is presumably linked to the increase in cell membrane permeability indicated by the elevation in 51Cr release. Thus it appears that the massive adsorption and/or penetration of viral particles, active or UV-inactivated (or possibly a toxic component that resides in the virion), damages the plasma membrane and may be responsible for the killing of the cells.
Collapse
Affiliation(s)
- Y Tzadok-David
- Department of Virology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
16
|
Abstract
Animal viruses permeabilize cells at two well-defined moments during infection: (1) early, when the virus gains access to the cytoplasm, and (2) during the expression of the virus genome. The molecular mechanisms underlying both events are clearly different; early membrane permeability is induced by isolated virus particles, whereas late membrane leakiness is produced by newly synthesized virus protein(s) that possess activities resembling ionophores or membrane-active toxins. Detailed knowledge of the mechanisms, by which animal viruses permeabilize cells, adds to our understanding of the steps involved in virus replication. Studies on early membrane permeabilization give clues about the processes underlying entry of animal viruses into cells; understanding gained on the modification by viral proteins of membrane permeability during virus replication indicates that membrane leakiness is required for efficient virus release from infected cells or virus budding, in the case of enveloped viruses. In addition, the activity of these membrane-active virus proteins may be related to virus interference with host cell metabolism and with the cytopathic effect that develops after virus infection.
Collapse
Affiliation(s)
- L Carrasco
- Centro de Biologia Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| |
Collapse
|
17
|
Abstract
The entry of animal viruses into cells is mediated by conformational changes in certain virion-particle components. These changes are triggered by the binding of virions to receptors and are influenced by low pH during receptor-mediated endocytosis. These conformational alterations promote the interaction of some viral proteins with cellular membranes thereby leading to transient pore formation and the disruption of ionic and pH gradients. The entry of toxins that do not possess receptors on the cell surface is promoted during the translocation of the virus genome or the nucleocapsid to the cytoplasm. A model is now presented which indicates that efficient virus translocation through cellular membranes requires energy, that may be generated by a protonmotive force. The entry of some animal viruses, as promoted by low pH, should thus only take place when a pH gradient and/or a membrane potential exist, but will not take place if these are dissipated, even if virion particles are present in an acidic environment.
Collapse
Affiliation(s)
- L Carrasco
- Centro de Biologia Molecular, Universidad Autónoma de Madrid, UAM-CSIC, Spain
| |
Collapse
|
18
|
Seth P, Rosenfeld M, Higginbotham J, Crystal RG. Mechanism of enhancement of DNA expression consequent to cointernalization of a replication-deficient adenovirus and unmodified plasmid DNA. J Virol 1994; 68:933-40. [PMID: 7507187 PMCID: PMC236531 DOI: 10.1128/jvi.68.2.933-940.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Given the knowledge that replication-deficient adenoviruses can mediate the delivery of unlinked plasmid DNA into eukaryotic cells (K. Yoshimura, M. A. Rosenfeld, P. Seth, and R. G. Crystal, J. Biol. Chem. 268:2300-2303, 1993), this study focuses on the role of receptor-mediated endocytosis in this process. AdCFTR (an E1- E3- adenovirus type 5-based replication-deficient adenovirus containing the 4.5-kb human cystic fibrosis transmembrane conductance regulator cDNA) was added to Cos-7 cells together with plasmid pRSVL (containing the Rous sarcoma virus long terminal repeat promoter followed by the luciferase cDNA), and luciferase activity was quantified as a measure of the expression of the plasmid DNA. When AdCFTR was bound to Cos-7 cells at 4 degrees C and the cells were subsequently incubated at 37 degrees C in the presence of pRSVL, the expression of luciferase activity was increased in proportion to the amount of AdCFTR added, reaching > 10(4)-fold at 3,000 PFU per cell. AdCFTR-mediated increase in pRSVL was inhibited by addition of purified adenovirus fiber but not hexon, suggesting cell surface adenovirus receptors were involved in the cointernalization process. Cell lines with a high number of adenovirus receptors (Cos-7 and HeLa) showed significant AdCFTR-dependent pRSVL expression, while cell lines with low numbers of adenovirus receptors (NIH 3T3 and U-937) showed little. AdCFTR-mediated increase in the expression of pRSVL was prevented when AdCFTR was heat treated and exposed to antibody against adenovirus or when the cointernalization process was evaluated in the presence of chloroquine, conditions all known to prevent adenovirus-mediated disruption of endocytic vesicles. In contrast, the uptake of AdCFTR into Cos-7 cells was not affected by any of these conditions. When AdCFTR was exposed to UV light, its ability to grow in 293 cells was obviated, but AdCFTR-dependent increase in pRSVL expression was minimally reduced. Finally, empty capsids of AdCFTR were able to enhance the delivery and expression of plasmid pRSVL into Cos-7 cells, suggesting that the adenovirus genome is not required for AdCFTR-mediated plasmid cointernalization. Together, these observations suggest that the ability of a replication-deficient recombinantly adenovirus to mediate the cointernalization and expression of plasmids is mediated by the receptor-mediated endocytosis pathway.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/growth & development
- Adenoviruses, Human/metabolism
- Adenoviruses, Human/radiation effects
- Animals
- Biological Transport, Active
- Capsid/metabolism
- Cells, Cultured
- Cystic Fibrosis Transmembrane Conductance Regulator
- DNA, Recombinant/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA, Viral/radiation effects
- Endocytosis
- Gene Transfer Techniques
- Genome, Viral
- Humans
- Luciferases/biosynthesis
- Luciferases/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Plasmids/genetics
- Plasmids/metabolism
- Receptors, Virus/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Ultraviolet Rays
- Virus Replication
Collapse
Affiliation(s)
- P Seth
- Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
19
|
Abstract
Picornaviruses are among the best understood animal viruses in molecular terms. A number of important human and animal pathogens are members of the Picornaviridae family. The genome organization, the different steps of picornavirus growth and numerous compounds that have been reported as inhibitors of picornavirus functions are reviewed. The picornavirus particles and several agents that interact with them have been solved at atomic resolution, leading to computer-assisted drug design. Picornavirus inhibitors are useful in aiding a better understanding of picornavirus biology. In addition, some of them are promising therapeutic agents. Clinical efficacy of agents that bind to picornavirus particles has already been demonstrated.
Collapse
Key Words
- picornavirus
- poliovirus
- antiviral agents
- drug design
- virus particles
- viral proteases
- 2′-5′a, ppp(a2′p5′a)na
- bfa, brefel a
- bfla1, bafilomycin a1
- dsrna, double-stranded rna
- emc, encephalomyocarditis
- fmdv, foot-and-mouth disease virus
- g413, 2-amino-5-(2-sulfamoylphenyl)-1,3,4-thiadiazole
- hbb, 2-(α-hydroxybenzyl)-benzimidazole
- hiv, human immunodeficiency virus
- hpa-23, ammonium 5-tungsto-2-antimonate
- icam-1, intercellular adhesion molecule-1
- ip3, inositol triphosphate
- m12325, 5-aminosulfonyl-2,4-dichorobenzoate
- 3-mq, 3-methyl quercetin
- ires, internal ribosome entry site
- l protein, leader protein
- rf, replicative form
- ri, rplicative intermediate
- rlp, ribosome landing pad
- sfv, semliki forest virus
- tofa, 5-(tetradecyloxy)-2-furoic acid
- vpg, viral protein bound to the genome
- vsv, vesicular stomatitis virus
Collapse
Affiliation(s)
- L Carrasco
- Centro de Biologia Molecular, Universidad Autonoma, Madrid, Spain
| |
Collapse
|
20
|
Abstract
The requirement of a low-pH step during poliovirus entry was investigated by using the macrolide antibiotic bafilomycin A1, which is a powerful and selective inhibitor of the vacuolar proton-ATPases. Thus, viruses such as Semliki Forest virus and vesicular stomatitis virus that enter cells through endosomes and need their acidification, are potently inhibited by bafilomycin A1, whereas poliovirus infection is not affected by the antibiotic. The presence of lysosomotropic agents such as chloroquine, amantadine, dansylcadaverine, and monensin during poliovirus entry did not inhibit infection, further supporting the idea that poliovirus does not depend on a low-pH step to enter the cytoplasm. The effect of bafilomycin A1 on other members of the Picornaviridae family was also assayed. Encephalomyocarditis virus entry into HeLa cells was not affected by the macrolide antibiotic, whereas rhinovirus was sensitive. Coentry of toxins, such as alpha-sarcin, with viral particles was potently inhibited by bafilomycin A1, indicating that an active vacuolar proton-ATPase is necessary for the early membrane permeabilization (coentry of alpha-sarcin) induced by poliovirus to take place.
Collapse
Affiliation(s)
- L Pérez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
21
|
Yoshimura K, Rosenfeld M, Seth P, Crystal R. Adenovirus-mediated augmentation of cell transfection with unmodified plasmid vectors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53773-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Kalko SG, Cachau RE, Silva AM. Ion channels in icosahedral virus: a comparative analysis of the structures and binding sites at their fivefold axes. Biophys J 1992; 63:1133-45. [PMID: 1384743 PMCID: PMC1262251 DOI: 10.1016/s0006-3495(92)81693-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An analysis of the crystallographically determined structures of the icosahedral protein coats of Tomato Bushy Stunt Virus, Southern Bean Mosaic Virus, Satellite Tobacco Necrosis Virus, Human Rhinovirus 14 and Mengovirus around their fivefold axes is presented. Accessibilities surfaces, electrostatic energy profile calculations, ion-protein interaction energy calculations, free energy perturbation methods and comparisons with structures of chelating agents are used in this study. It is concluded that the structures built around the viral fivefold axes would be adequate for ion binding and transport. Relative ion preferences are derived for the binding sites, using free energy perturbation methods, which are consistent with the experimental data when available. In the cases where crystallographic studies determined the existence of ions on the fivefold axes, our results indicate that they would correspond to ions in crystallization or purification buffers. The environment of the fivefold axes are rich in polar residues in all icosahedral viral structures whose atomic coordinates are available, including some that are not being analyzed in detail in this work. The fivefold channel-like structures have most of the basic properties expected for real ion channels including a funnel at the entrance, a polar internal environment with frequent alternation of acidic and basic residues, ion binding sites, the capability to induce ion dehydration and ion transit from the external viral surface to the binding sites.
Collapse
Affiliation(s)
- S G Kalko
- Instituto de Investigaciones Bioquimicas (INIBIBB), Bahia Blanca, Argentina
| | | | | |
Collapse
|
23
|
Modalsli K, Bukholm G, Mikalsen SO, Degré M. Coxsackie B1 virus-induced changes in cell membrane-associated functions are not responsible for altered sensitivity to bacterial invasiveness. Arch Virol 1992; 124:321-32. [PMID: 1318709 DOI: 10.1007/bf01309812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To analyze the possible mechanisms by which coxsackie B1 virus infection affects the invasiveness of Shigella flexneri, we have studied the influence of intracellular levels of Na+ and K+, ATPase activity, cytoplasmic membrane potential, cAMP level and cell communication through gap junctions. 3h after adsorption of viable or UV-inactivated coxsackie B1 virus the Na(+)-K+ gradient of the cell collapsed, ATPase activity decreased, the cytoplasmic membranic potential-dependent tetraphosphonium ion uptake were reduced. No changes in cAMP or intercellular cell communication were observed. S. flexneri invasiveness in HEp-2 cell pretreated with viable or UV-inactivated coxsackie B 1 virus was enhanced, but bacterial invasiveness was unchanged in K(+)-depleted HEp-2 cells, cell cultures with high intracellular Na+ content or ouabain pre-treated cells compared to control cells. We found no correlation between the enhanced bacterial invasiveness in the early phase of coxsackie B 1 virus infection in HEp-2 cell cultures and intracellular K+ depletion, high intracellular Na+ content, inhibited Na(+)-K+ ATPase activity or membranic depolarization.
Collapse
Affiliation(s)
- K Modalsli
- Kaptein W. Wilhelmsen og Frues Bakteriologiske Institutt, University of Oslo, Norway
| | | | | | | |
Collapse
|
24
|
Klein-Bauernschmitt P, zur Hausen H, Schlehofer JR. Induction of differentiation-associated changes in established human cells by infection with adeno-associated virus type 2. J Virol 1992; 66:4191-200. [PMID: 1318400 PMCID: PMC241222 DOI: 10.1128/jvi.66.7.4191-4200.1992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The nonpathogenic human defective parvovirus adeno-associated virus (AAV) type 2 induced differentiation-associated antigens in cells of the human leukemia cell line HL60 (CD 67), as well as in two different lines of immortalized human keratinocytes, HaCaT and HPK Ia cells (involucrin and cytokeratin 10). Simultaneously, expression of the c-myc and c-myb oncogenes and the retinoblastoma gene was down regulated whereas c-fos expression increased in infected cells. These data point to the potential of AAV to induce functions related to the differentiation pathway in different types of human cells. This phenomenon may be involved in the reported oncosuppressive properties of AAV infections.
Collapse
|
25
|
Almela MJ, González ME, Carrasco L. Inhibitors of poliovirus uncoating efficiently block the early membrane permeabilization induced by virus particles. J Virol 1991; 65:2572-7. [PMID: 1850030 PMCID: PMC240614 DOI: 10.1128/jvi.65.5.2572-2577.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The entry of animal viruses into cells is associated with permeabilization of the infected cells to protein toxins such as alpha-sarcin (C. Fernández-Puentes and L. Carrasco, Cell 20:769-775, 1980). This phenomenon has been referred to as "the early permeabilization by animal viruses" (L. Carrasco, Virology 113:623-629, 1981). A number of inhibitors of poliovirus growth such as WIN 51711 6-(3,4-dichlorophenoxy)-3-(ethylthio)-2-pyridincarbonitrile (DEPC) and Ro 09-0410 specifically block the uncoating step of poliovirus but have no effect on attachment or entry of poliovirus particles into cells. These agents are potent inhibitors of the early permeabilization induced by poliovirus to the toxin alpha-sarcin. Thus, the uncoating of poliovirus is required for the permeabilization of cell membranes to proteins. The increased entry of labeled heparin promoted by virus entry is not blocked by these agents, indicating that poliovirus binds to its receptor and is internalized along with heparin in endosomes in the presence of WIN 51711, DEPC, or Ro 09-0410. We conclude that the delivery to the cytoplasm of some molecules that coenter with virion particles does not take place if the uncoating process is hindered.
Collapse
Affiliation(s)
- M J Almela
- Centro de Biología Molecular, UAM-CSIC, Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|
26
|
Defer C, Belin MT, Caillet-Boudin ML, Boulanger P. Human adenovirus-host cell interactions: comparative study with members of subgroups B and C. J Virol 1990; 64:3661-73. [PMID: 2196380 PMCID: PMC249659 DOI: 10.1128/jvi.64.8.3661-3673.1990] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Host cell interactions of human adenovirus serotypes belonging to subgroups B (adenovirus type 3 [Ad3] and Ad7) and C (Ad2 and Ad5) were comparatively analyzed at three levels: (i) binding of virus particles with host cell receptors; (ii) cointernalization of macromolecules with adenovirions; and (iii) adenovirus-induced cytoskeletal alterations. The association constants with human cell receptors were found to be similar for Ad2 and Ad3 (8 x 10(9) to 9 x 10(9) M-1), and the number of receptor sites per cell ranged from 5,000 (Ad2) to 7,000 (Ad3). Affinity blottings, competition experiments, and immunofluorescence stainings suggested that the receptor sites for adenovirus were distinct for members of subgroups B and C. Adenovirions increased the permeability of cells to macromolecules. We showed that this global effect could be divided into two distinct events: (i) cointernalization of macromolecules and virions into endocytotic vesicles, a phenomenon that occurred in a serotype-independent way, and (ii) release of macromolecules into the cytoplasm upon adenovirus-induced lysis of endosomal membranes. The latter process was found to be type specific and to require unaltered and infectious virus particles of serotype 2 or 5. Perinuclear condensation of the vimentin filament network was observed at early stages of infection with Ad2 or Ad5 but not with Ad3, Ad7, and noninfectious particles of Ad2 or Ad5, obtained by heat inactivation of wild-type virions or with the H2 ts1 mutant. This phenomenon appeared to be a cytological marker for cytoplasmic transit of infectious virions within adenovirus-infected cells. It could be experimentally dissociated from vimentin proteolysis, which was found to be serotype dependent, occurring only with members of subgroup C, regardless of the infectivity of the input virus.
Collapse
Affiliation(s)
- C Defer
- Unité de Virologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, (U-233), Lille, France
| | | | | | | |
Collapse
|
27
|
Modalsli K, Bukholm G, Degré M. Coxsackie B1 virus infection enhances the bacterial invasiveness, the phagocytosis and the membrane permeability in HEp-2 cells. APMIS 1990; 98:489-95. [PMID: 2166540 DOI: 10.1111/j.1699-0463.1990.tb01061.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To analyze the effect of coxsackie B1 virus infection on bacterial invasiveness, phagocytosis and cytoplasma membrane permeability, we have studied invasiveness of Shigella flexneri, unspecific phagocytosis of latex particles and release of the non-metabolizible amino acid, alpha-aminoisobutyric acid (AIB). Virus infection enhanced invasiveness of S. flexneri and phagocytosis of latex beads and increased plasma membrane permeability as measured by release of AIB. The effect on all three functions increased with virus concentration, but the kinetics were different. During the early phase of virus infection there was no difference between the effect on invasiveness, phagocytosis and permeability in cell cultures pretreated with viable or with UV-inactivated virus. However, after 6 h, 5 h and 2 h respectively, there was an increased response in cell cultures pretreated with viable virus compared to cells inoculated with UV-inactivated virus. The results indicate that the virus effect on bacterial invasiveness is a function of several parameters, including phagocytosis and membrane function changes.
Collapse
Affiliation(s)
- K Modalsli
- Kaptein W. Wilhelmsen og Frues Bakteriologiske Institutt, University of Oslo, Norway
| | | | | |
Collapse
|
28
|
Konkel ME, Joens LA. Effect of enteroviruses on adherence to and invasion of HEp-2 cells by Campylobacter isolates. Infect Immun 1990; 58:1101-5. [PMID: 2156779 PMCID: PMC258588 DOI: 10.1128/iai.58.4.1101-1105.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coinfection of HEp-2 epithelial cells with coxsackievirus B3, echovirus 7, poliovirus (LSc type 1), porcine enterovirus, and Campylobacter isolates was performed to determine if a synergistic effect could be obtained. The invasiveness of Campylobacter jejuni ATCC 33560 was significantly increased for HEp-2 cells preinfected with echovirus 7, coxsackievirus B3, and UV-inactivated (noninfectious) coxsackievirus B3 particles. Additionally, the invasiveness of C. jejuni M96, a clinical isolate, was significantly increased for HEp-2 cells preinfected with coxsackievirus B3. Poliovirus and porcine enterovirus had no effect on C. jejuni ATCC 33560 adherence and invasiveness. Furthermore, poliovirus had no effect on the ability of C. jejuni M96 to adhere to and invade HEp-2 cells. Campylobacter hyointestinalis and Campylobacter mucosalis, two noninvasive isolates, did not invade virus-infected HEp-2 cells. The increase in the invasiveness of C. jejuni appeared to be the result of specific interactions between the virus and the HEp-2 cell membrane. The data suggest that the invasiveness of Campylobacter spp. is dependent upon the inherent properties of the organism. Virus-induced cell alterations can potentiate the invasiveness of virulent Campylobacter spp. but are not sufficient to allow internalization of noninvasive bacteria.
Collapse
Affiliation(s)
- M E Konkel
- Department of Veterinary Science, University of Arizona, Tucson 85721
| | | |
Collapse
|
29
|
Bessodes M, Egron MJ, Filippi J, Antonakis K. Synthesis of unsaturated 4′-azido pyranosyl thymines as potential antiviral and anti-HIV agents. ACTA ACUST UNITED AC 1990. [DOI: 10.1039/p19900003035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Abstract
Four situations in which membrane transport is altered by disease are discussed: (a) non-specific leaks induced by poreforming agents; (b) glucose transport and cellular stress; (c) Ca2+-ATPase and hypertension; (d) Na+ channels and HSV infection.
Collapse
|
31
|
Shlomi Y, Zakay-Rones Z. Sensitivity of Burkitt lymphoma Daudi cells to inactive influenza virus. J Cancer Res Clin Oncol 1989; 115:61-6. [PMID: 2921273 DOI: 10.1007/bf00391601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interaction of UV-inactivated influenza A/X47 virus at high multiplicity caused a rapid inhibition in cellular protein and DNA synthesis, thus arresting Burkitt-lymphoma-derived Daudi cell multiplication, and eventually killing the cells. The mechanism of the cytolytic effect is presumably, linked to the increase in cell membrane permeability indicated by elevation in 51Cr release. This might be the consequence of the mass adsorption and/or penetration of viral particles.
Collapse
Affiliation(s)
- Y Shlomi
- Department of Virology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
32
|
Abstract
Animal viruses modify membrane permeability during lytic infection. There is a co-entry of macromolecules and virion particules during virus penetration and a drastic change in transport and membrane permeability at the late stages of the lytic cycle. Both events are of importance to understand different molecular aspects of viral infection, as virus entry into the cell and the interference of virus infection with cellular metabolism. Other methods of cell permeabilization of potential relevance to understand the mechanism of viral damage of the membrane are also discussed.
Collapse
Affiliation(s)
- L Carrasco
- Departamento de Microbiología, Universidad Autónoma and Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
33
|
|
34
|
Abstract
Mammalian cells treated with low concentrations of phospholipase C become permeable to the protein toxin alpha-sarcin. A similar permeabilization is not induced upon treatment with other lipases such as phospholipase A2, sphingomyelinase, or cholesterol esterase. Concentrations of 10 micrograms/ml alpha-sarcin almost completely blocked translation in HeLa cells treated with 0.3 U/ml phospholipase C (PL-C) for 1 h. In contrast, 200 micrograms/ml of alpha-sarcin had no effect at all on protein synthesis in untreated cells. Other macromolecules such as horseradish peroxidase and luciferase also enter into cells if they are treated with phospholipase C. This permeabilization method is fully reversible. As soon as 5 min after PL-C removal, the cells become impermeable to alpha-sarcin. Other metabolites such as uridine nucleotides are partially released after PL-C incubation, whereas the content of 86Rb+ remains at control levels, probably because the Na+/K+ ATPase activity increases.
Collapse
Affiliation(s)
- M J Otero
- Departamento de Microbiología, Universidad Autónoma, Madrid, Spain
| | | |
Collapse
|
35
|
Kaljot KT, Shaw RD, Rubin DH, Greenberg HB. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 1988; 62:1136-44. [PMID: 2831376 PMCID: PMC253121 DOI: 10.1128/jvi.62.4.1136-1144.1988] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 [VP3]; 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. Cleavage of VP3 does not alter viral binding to cell monolayers. In previous electron microscopic studies of infected cell cultures, it has been demonstrated that rotavirus particles enter cells by both endocytosis and direct cell membrane penetration. To determine whether trypsin treatment affected rotavirus internalization, we studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Endocytosis inhibitors (sodium azide, dinitrophenol) and lysosomotropic agents (ammonium chloride, chloroquine) had a limited effect on the entry of infectious virus into cells. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 medicated 51Cr, [14C]choline, and [3H]inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.
Collapse
Affiliation(s)
- K T Kaljot
- Department of Medicine, Stanford University School of Medicine, California 95305
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- C A Pasternak
- Department of Biochemistry, St George's Hospital Medical School, London, U.K
| |
Collapse
|
37
|
Hudson TH, Neville DM. Enhancement of immunotoxin action: manipulation of the cellular routing of proteins. Cancer Treat Res 1988; 37:371-89. [PMID: 2908633 DOI: 10.1007/978-1-4613-1083-9_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Abstract
Mammalian cells infected with enveloped or naked animal viruses become permeabilized to several proteins. The entry of alpha-sarcin, horseradish peroxidase, and luciferase is greatly increased during the early stages of viral infection. This process is promoted by uv-inactivated SFV, but not by heat-inactivated virions, suggesting that the process does not require viral gene expression. The entry of alpha-sarcin has been monitored both by its effects on protein synthesis and by indirect immunofluorescence. Increased entry of alpha-sarcin and luciferase is clearly observed in animal virus-infected cells by fluorescence microscopy. Chloroquine blocks the coentry of alpha-sarcin with enveloped, but not with naked, viruses. These results have implications to elucidate the mechanisms involved in virus entry.
Collapse
|
39
|
Cameron JM, Clemens MJ, Gray MA, Menzies DE, Mills BJ, Warren AP, Pasternak CA. Increased sensitivity of virus-infected cells to inhibitors of protein synthesis does not correlate with changes in plasma membrane permeability. Virology 1986; 155:534-44. [PMID: 3024398 DOI: 10.1016/0042-6822(86)90214-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Semliki Forest virus-infected BHK cells or herpes simplex virus-infected Vero cells were incubated with the protein synthesis inhibitors hygromycin B and gougerotin. Infected cells take up no more [3H]hygromycin or [3H]gougerotin than do mock-infected cells, at a time p.i. at which either compound is more inhibitory to protein synthesis in infected, than in mock-infected cells. The concentrations of hygromycin and gougerotin required to inhibit protein synthesis in intact cells (irrespective of whether they are infected or not) are several orders of magnitude higher than those required in either permeabilized cells or in cell-free systems. Infected cells take up 86Rb+ at the same rate as mock-infected cells, their intracellular content of K+ is the same, and the activity of the Na+ pump is the same. It is concluded that the increased efficacy of hygromycin and gougerotin in virus-infected cells is a consequence of altered intracellular compartmentation and that increases in permeability of the plasma membrane, if any, are so small as to be undetectable by direct methods.
Collapse
|
40
|
Abstract
Sindbis virus infection of baby hamster kidney cells or chick embryo cells resulted in a significant increase in the rate of uptake of [2-3H]deoxy-D-glucose ([3H]dGlu). Stimulation of hexose transport in Sindbis virus-infected cells occurred only if the cells were rendered quiescent by culturing at high density or by serum starvation. In contrast, Sindbis virus-induced inhibition of potassium transport, measured as a decrease in the uptake of 86Rb+, was independent of cell growth state. Stimulation of [3H]dGlu uptake in Sindbis virus-infected cells was the result of an increase in the Vmax of the hexose transporter, but not a change in the Km. The stimulation of [3H]dGlu uptake induced by Sindbis virus was insensitive to the drug actinomycin D, but was blocked by cordycepin. The stimulation was also insensitive to treatment with tunicamycin, which prevented the virally induced inhibition of the plasma membrane-associated Na+/K+ ATPase and termination of host protein synthesis.
Collapse
|
41
|
Abstract
Serendipity and random screening have been successful in producing effective antiviral agents. The increase in our knowledge of the basic biochemistry of viral replication and of virus-host interrelationships has revealed not only an understanding of the targets upon which existing antiviral agents exert their inhibitory effect, but also has uncovered new potential targets. The hope is that such molecular understanding will afford the synthesis of compounds with selective antiviral activity. A review of various viral targets which are potentially susceptible to attack, and a few approaches for development of antiviral agents are presented.
Collapse
|
42
|
Abstract
Viral recognition of specific receptors in the host cell plasma membrane is the first step in virus infection. Attachment is followed by a redistribution or capping of virus particles on the cell surface which may play a role in the uptake process. Certain viruses penetrate the plasma membrane directly but many, both enveloped and non-enveloped viruses, are endocytosed at coated pits and subsequently pass into endosomes. The low pH environment of the endosome facilitates passage of the viral genome into the cytoplasm. For some viruses the mechanism of membrane penetration is now known to be linked to a pH-mediated conformational change in external virion proteins. As a consequence of infection there are alterations in the permeability of the plasma membrane which may contribute to cellular damage. Recent advances in the understanding of these processes are reviewed and their relevance to the development of new strategies for vaccines emphasised.
Collapse
|
43
|
Muñoz A, Castrillo JL, Carrasco L. Modification of membrane permeability during Semliki Forest virus infection. Virology 1985; 146:203-12. [PMID: 4049733 DOI: 10.1016/0042-6822(85)90004-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Modification of membrane permeability has been analyzed in Semliki Forest virus (SFV)-infected cells by means of translation inhibitors not permeable to normal cells. A higher inhibition of protein synthesis in the infected cells is only observed with those antibiotics that do not easily pass the cell membrane, but not with others, permeable to cells, such as anisomycin, cycloheximide, trichodermin, etc. It does not, therefore, seem that the suggestion of M. A. Gray, K. J. Micklem, and C. A. Pasternak [Eur. J. Biochem. 135, 299-302, (1983)] that protein synthesis in virus-infected cells is more susceptible to translation inhibitors in general is correct. Both low- and high-molecular weight compounds enter the cell very early during SFV infection. This permeabilization is blocked by compounds known to increase the pH of coated vesicles, such as NH4Cl and chloroquine. Inhibition of energy production by means of N3Na and 2'-deoxyglucose also blocks this process. The optimal external pH for this early permeabilization is around 7-8. Acidic pH inhibits the entry of these impermeant antibiotics promoted by SFV. Analysis of 86Rb+ content in SFV-infected HeLa cells also indicates that a drastic decline in this cation takes place, in agreement with previous findings, but disagreeing with the previous results. A parallel between the decrease in this cation and the blockade of protein synthesis is apparent, throughout the course of infection. In addition to the early permeabilization that takes place during virus entry, increased entry of hygromycin B and alpha-sarcin also occurs in SFV-infected cells from 2 to 3 hr postinfection, but not when late viral replication is blocked by means of interferon treatment.
Collapse
|
44
|
Expression of transfected DNA in avian cells can be enhanced in trans by retroviral infection. Mol Cell Biol 1985. [PMID: 2991753 DOI: 10.1128/mcb.5.7.1804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a quantitative S1 nuclease protection assay, we demonstrated that acute or chronic infection of avian cells enhances expression of an exogenously introduced rat preproinsulin II gene by approximately equal to 50-fold. The degree of enhancement is shown to vary with the transfection technique used but is independent of the transcription control region of the transfected gene. We conclude that retroviral infection of avian cells enhances expression of transfected DNA in trans by facilitating the uptake of DNA rather than by activating the transfected promoter.
Collapse
|
45
|
Expression of transfected DNA in avian cells can be enhanced in trans by retroviral infection. Mol Cell Biol 1985; 5:1804-7. [PMID: 2991753 PMCID: PMC367303 DOI: 10.1128/mcb.5.7.1804-1807.1985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using a quantitative S1 nuclease protection assay, we demonstrated that acute or chronic infection of avian cells enhances expression of an exogenously introduced rat preproinsulin II gene by approximately equal to 50-fold. The degree of enhancement is shown to vary with the transfection technique used but is independent of the transcription control region of the transfected gene. We conclude that retroviral infection of avian cells enhances expression of transfected DNA in trans by facilitating the uptake of DNA rather than by activating the transfected promoter.
Collapse
|
46
|
Ulug ET, Bose HR. Effect of tunicamycin on the development of the cytopathic effect in Sindbis virus-infected avian fibroblasts. Virology 1985; 143:546-57. [PMID: 2998024 DOI: 10.1016/0042-6822(85)90393-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Sindbis virus-infected avian cells the development of the cytopathic effect is correlated with the disruption of plasma membrane function. Sindbis virus inhibits the activity of the Na+K+ATPase, a membrane-associated enzyme complex which regulates intracellular monovalent cation levels. Tunicamycin, which blocks envelope protein glycosylation, prevents inhibition of Na+K+ATPase activity and the development of morphological changes in Sindbis virus-infected cells. Although inhibition of Na+K+ATPase activity is not essential for the termination of host protein synthesis, membrane-mediated events may favor the selective translation of viral proteins. The termination of host protein synthesis does not contribute to the development of these cytopathic changes in the time frame examined. In tunicamycin-treated, Sindbis virus-infected cells, unglycosylated E1 is inserted into the plasma membrane but virus release is prevented. In productively infected cells, therefore, the inhibition of Na+K+ATPase activity and the development of the cytopathic effect may result from terminal events in virus assembly and/or virus release.
Collapse
|
47
|
Abstract
Upon binding to receptor-bearing target cells, viruses cause cell membrane potential changes. Epstein-Barr Virus causes a biphasic membrane potential change in receptor-bearing B lymphocytes but not receptor-negative T lymphocytes, as measured by flow cytometry or cyanine dye uptake. Membrane potential changes from EBV binding to receptor-bearing cells resemble electrical responses of other cells following ligand binding to transmembrane receptors.
Collapse
|
48
|
Gray MA, Micklem KJ, Pasternak CA. Protein synthesis in cells infected with Semliki Forest virus is not controlled by intracellular cation changes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:299-302. [PMID: 6884366 DOI: 10.1111/j.1432-1033.1983.tb07652.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Treatment of BHK cells with 1 microM nigericin results in a 55% decrease in K+ and a 3.3-fold increase in intracellular Na+; protein synthesis under these conditions is depressed by 35%. In BHK cells infected with Semliki Forest virus (SFV), protein synthesis is depressed by 76% 6.5 h after infection; intracellular K+ is unchanged, and intracellular Na+ is increased 1.8-fold at this time. These results suggest that the increase in intracellular Na+ in SFV-infected BHK cells does not adequately account for the decrease in protein synthesis, and makes it likely that an increased Na+ concentration is a consequence, not a cause, of alterations in protein synthesis in virally-infected cells. No evidence was obtained for the purported [Alonso, M. A. and Carrasco, L. (1980) Eur. J. Biochem. 109, 535-540; (1981) Eur. J. Biochem. 118, 289-294; (1981) FEBS Lett. 127, 112-114] ability of 1 microM nigericin to permeabilize' cells.
Collapse
|
49
|
Lacal JC, Carrasco L. Antiviral effects of hygromycin B, a translation inhibitor nonpermeant to uninfected cells. Antimicrob Agents Chemother 1983; 24:273-5. [PMID: 6314888 PMCID: PMC185150 DOI: 10.1128/aac.24.2.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hygromycin B, a preferential translation inhibitor in virus-infected cells, has been tested for its antiviral effects against herpes simplex virus type 2 and poliovirus. The activity has been compared with other antiviral agents such as vidarabine and iododeoxyuridine.
Collapse
|
50
|
Tsurumi T, Aoki H, Nishiyama Y, Shibata M, Maeno K, Seo H. Effect of high salt treatment on influenza B viral protein synthesis in MDCK cells. Microbiol Immunol 1983; 27:519-29. [PMID: 6195511 DOI: 10.1111/j.1348-0421.1983.tb00613.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Based on the information that high salt inhibits the initiation of cellular mRNA translation which depends on the function of the 5'-terminal structure of mRNA, we compared the effect of high salt on translation of host cellular mRNAs and influenza viral mRNAs, both of which are of 5'-terminal structure. Brief exposure of influenza B virus-infected MDCK cells to high salt medium resulted in a dose-dependent inhibition of viral polypeptide synthesis as well as of cellular polypeptide synthesis, but it had less effect on synthesis of viral polypeptides, particularly nonstructural protein (NS). Under these conditions the Na+ content of the infected cells was significantly increased. A similar salt effect on in vitro translation of viral and cellular mRNAs extracted from infected cells was also observed. There was no significant difference in sensitivity to hypertonic block of in vivo translation of influenza viral mRNAs and vesicular stomatitis virus mRNAs, the latter of which possess a virus-directed structure at the 5'-terminus.
Collapse
|